
JAISCR, 2017, Vol. 7, No. 3, pp. 201

MAPREDUCE AND SEMANTICS ENABLED EVENT
DETECTION USING SOCIAL MEDIA

Peng Yan

3M Corporate Research Laboratory
3M Corporate Headquarters3M Center, St. Paul, MN 55144

Submitted: 1st January 2016; accepted: 4th July 2016

Abstract

Social media is playing an increasingly important role in reporting major events happen-
ing in the world. However, detecting events from social media is challenging due to the
huge magnitude of the data and the complex semantics of the language being processed.
This paper proposes MASEED (MapReduce and Semantics Enabled Event Detection), a
novel event detection framework that effectively addresses the following problems: 1) tra-
ditional data mining paradigms cannot work for big data; 2) data preprocessing requires
significant human efforts; 3) domain knowledge must be gained before the detection;
4) semantic interpretation of events is overlooked; 5) detection scenarios are limited to
specific domains. In this work, we overcome these challenges by embedding semantic
analysis into temporal analysis for capturing the salient aspects of social media data, and
parallelizing the detection of potential events using the MapReduce methodology. We
evaluate the performance of our method using real Twitter data. The results will demon-
strate the proposed system outperforms most of the state-of-the-art methods in terms of
accuracy and efficiency.
Keywords: event detection, social media, semantic relatedness, MapReduce

1 Introduction

Twitter, a social networking and microblogging ser-
vice, has become an important channel of commu-
nication for worldwide users in the current age of
Web. It allows users to post short messages, so-
called tweets, with up to 140 characters to describe
“what is happening” in the real world. In addition, a
user can follow other users to read their tweets, and
can also be followed by others so that his/her tweets
can be read. As of the first quarter of 2014, Twitter
averaged at 255 million monthly active users, mak-
ing it one of the most fast-growing and influential
sites in the world. By publishing tweets on Twitter,
users express and exchange information on various
topics, ranging from their life bagatelle to national
and global events. This fact makes Twitter an ever-

updating information source which could be used
for event detection. In comparison to traditional
media, Twitter is much swifter in discovering and
broadcasting news, since each user is a real-time
event sensor and broadcaster. For example, Osama
bin Laden’s death was first leaked from Twitter be-
fore President Barack Obama officially announced
it on TV [Sheldon Levine 2011]. Therefore, the
broad coverage and quick responsiveness of social
media make it promising in detecting major events.

Events can be generally regarded as something
that does not happen often. Event detection aims
at discovering such unusual things when they are
taking place. The underlying assumption of event
detection research is that the event-related words
normally show an increase in the usage when the
event is happening [Weng et al. 2011]. The words

Corina Rotar, Laszlo Barna Iantovics

[17] Darwin Ch., and Beer G., The origin of species.
Oxford: Oxford University Press, 1951.

[18] Fisher R. A., The genetical theory of natural selec-
tion. , 1958, available online at https://archive.org

[19] Huxley J., Evolution. The Modern Synthesis, 1942.
available online at www.ehudlamm.com/huxley.pdf

[20] Zitzler E., et al., Performance assessment of multi-
objective optimizers: An analysis and review. Evo-
lutionary Computation, IEEE Transactions on, 7(2),
2003, p. 117-132.

[21] Zitzler E., Deb, K., Thiele, L., Comparison of Mul-
tiobjective Evolutionary Algorithms: Empirical Re-
sults, Evolutionary Computation, vol. 8 no, 2, 2000,
p. 173-195.

[22] Deb K., et al., A fast and elitist multi-objective ge-
netic algorithm: NSGA-II, IEEE Transactions on
Evolutionary Computation, 6 (2), 2002, pp. 182-
197.

[23] Shi, Y. and Eberhart, R., A modified particle swarm
optimizer, In Evolutionary Computation Proceed-
ings, IEEE World Congress on Computational In-
telligence., 1998, pp. 69-73.

[24] Pisinger D., Where are the hard knapsack prob-
lems?, Computers & Operations Research 32.9,
2005, p. 2271-2284.

[25] De Castro, L.N., Fundamentals of natural comput-
ing: basic concepts, algorithms, and applications.
CRC Press, 2006.

[26] Mitchell, M. An introduction to genetic algorithms.
MIT press, 1998.

[27] Dorigo M., Birattari M., and Stutzle T., Ant colony
optimization, Computational Intelligence Magazine,
IEEE 1.4, 2006, p. 28-39.

[28] De Castro L.N., and Timmis J., Artificial im-
mune systems: a new computational intelligence ap-
proach, Springer Science & Business Media, 2002.

[29] Wilkins M. R. et al., From proteins to proteomes:
large scale protein identification by two-dimensional
electrophoresis and amino acid analysis, BioTech-
nology 14, 1996, p. 61–65.

[30] Adorio E. P., Diliman U., MVF-Multivariate
Test Functions Library in C for Unconstrained
Global Optimization, 2005, available online at
http://www.geocities.ws/eadorio.

 – 213
 10.1515/jaiscr-2017-0014

202 Peng Yan

exhibiting a high frequency for a period of time
are referred to as burst words. Therefore, a ma-
jor part of the work for detecting events is moni-
toring the appearances of words over time, finding
those related burst words and statistical patterns if
any, and grouping the burst words together to see
if they stand for or reveal any actual events in real-
ity. However, detecting events from Twitter is much
more challenging than doing it from other informa-
tion resources such as academic papers, news arti-
cles and social streams [Zhao et al. 2007; Parikh
et al. 2013; Fung et al. 2005; Kleinberg 2003],
because 1) unlike traditional well-written and well-
formatted document collections, tweets are particu-
larly terse and difficult for Natural Language Pro-
cessing (NLP) tools to understand [Ritter et al.
2011], since most of them contain a lot of abbrevi-
ations and misspellings of words (or phrases), and
are usually grammatically and syntactically incor-
rect; 2) tweets are too noisy and according to a re-
port by Pear Analytics [Pear Analytics 2009], no
more than 10% tweets have any real ”pass-along
value” and nearly 40% tweets are just “pointless
babble,” 3) tweets are associated with time and
modeling the temporal aspect of tweets is nontriv-
ial; 4) tweets accumulates rapidly over time, mak-
ing scalable and efficient algorithms in demand.

In this work, we present MASEED (MapRe-
duce and Semantics Enabled Event Detection), a
system that can handle all of the aforementioned
issues. In general, our method employs effective
algorithms for noise removal, considers both the
temporal and semantic natures of Twitter for key-
word similarity estimation, and leverages state-of-
the-art techniques for big data computing. The sys-
tem is built upon the software as a service (SAAS)
architecture and MapReduce framework. Specifi-
cally, the detection process is as follows. We first
remove noise data from the given tweets. In our
system, we consider three types of data as noise: 1)
non-English characters (since we are only consider-
ing English words in this work); 2) the tweets with
invalid or missing creation time (since the tempo-
ral patterns of these tweets cannot be captured); 3)
those less than 3 words (since it is hard to accurately
model the semantics of very short sentences).Then,
we build an inverted index against the cleaned data
so that any statistical computation in later steps can
be speeded up. After that, the detection engine
starts to perform temporal and semantic analysis,

and persists the discovered events into the backend
database. Finally, the visualization module pulls the
results from the database and shows them to users.
Our contribution of this effort can be summarized
as follows

– Total automation of event detection. To the
best of our knowledge, our approach represents
a first attempt to build a fully automated event
detection system. For example, the approach
proposed in [Sakaki et al. 2010] needs to prepare
a set of training data specifically for earthquake
in advance, and [Chen et al. 2014] needs to man-
ually build a vocabulary for the type of events to
be detected. Such requirements would signifi-
cantly increase the difficulty of deploying into
real-world applications. Another obvious disad-
vantage is that such methods are limited to de-
tecting only a certain type of events. While our
system does not require any human efforts for
data preparation and data preprocessing, and is
able to detect any kind of events without requir-
ing any domain knowledge.

– A proposal of a new machine learning frame-
work. The proposed approach naturally com-
bines the linguistic and temporal features of
Twitter for event detection. An effective
temporal-semantic estimation model is pre-
sented for measuring the intrinsic relatedness
between words. With this model, the detection
accuracy is steadily above 70%. Note that this
accuracy is achieved without pre-selecting rele-
vant tweets for a target type of events as com-
pared to [Chen et al. 2014].

– A proposal of a practically effective dis-
tributed computing platform. To the best of
our knowledge, it is the first distributed event
detection platform which can perform high per-
formance computing against mass texts. We
parallelize the indexing of raw tweets as well
as the detection process using the MapReduce
methodology. The system is able to detect major
events from 3 million tweets within 30 minutes
as demonstrated in the experiments.

– A proposal of two-level event detection visu-
alization. We visualize the detected events in
two dimensions: one is in event level and the
other is in keyword level. The event-level visu-
alization shows what events are detected and the

203Peng Yan

exhibiting a high frequency for a period of time
are referred to as burst words. Therefore, a ma-
jor part of the work for detecting events is moni-
toring the appearances of words over time, finding
those related burst words and statistical patterns if
any, and grouping the burst words together to see
if they stand for or reveal any actual events in real-
ity. However, detecting events from Twitter is much
more challenging than doing it from other informa-
tion resources such as academic papers, news arti-
cles and social streams [Zhao et al. 2007; Parikh
et al. 2013; Fung et al. 2005; Kleinberg 2003],
because 1) unlike traditional well-written and well-
formatted document collections, tweets are particu-
larly terse and difficult for Natural Language Pro-
cessing (NLP) tools to understand [Ritter et al.
2011], since most of them contain a lot of abbrevi-
ations and misspellings of words (or phrases), and
are usually grammatically and syntactically incor-
rect; 2) tweets are too noisy and according to a re-
port by Pear Analytics [Pear Analytics 2009], no
more than 10% tweets have any real ”pass-along
value” and nearly 40% tweets are just “pointless
babble,” 3) tweets are associated with time and
modeling the temporal aspect of tweets is nontriv-
ial; 4) tweets accumulates rapidly over time, mak-
ing scalable and efficient algorithms in demand.

In this work, we present MASEED (MapRe-
duce and Semantics Enabled Event Detection), a
system that can handle all of the aforementioned
issues. In general, our method employs effective
algorithms for noise removal, considers both the
temporal and semantic natures of Twitter for key-
word similarity estimation, and leverages state-of-
the-art techniques for big data computing. The sys-
tem is built upon the software as a service (SAAS)
architecture and MapReduce framework. Specifi-
cally, the detection process is as follows. We first
remove noise data from the given tweets. In our
system, we consider three types of data as noise: 1)
non-English characters (since we are only consider-
ing English words in this work); 2) the tweets with
invalid or missing creation time (since the tempo-
ral patterns of these tweets cannot be captured); 3)
those less than 3 words (since it is hard to accurately
model the semantics of very short sentences).Then,
we build an inverted index against the cleaned data
so that any statistical computation in later steps can
be speeded up. After that, the detection engine
starts to perform temporal and semantic analysis,

and persists the discovered events into the backend
database. Finally, the visualization module pulls the
results from the database and shows them to users.
Our contribution of this effort can be summarized
as follows

– Total automation of event detection. To the
best of our knowledge, our approach represents
a first attempt to build a fully automated event
detection system. For example, the approach
proposed in [Sakaki et al. 2010] needs to prepare
a set of training data specifically for earthquake
in advance, and [Chen et al. 2014] needs to man-
ually build a vocabulary for the type of events to
be detected. Such requirements would signifi-
cantly increase the difficulty of deploying into
real-world applications. Another obvious disad-
vantage is that such methods are limited to de-
tecting only a certain type of events. While our
system does not require any human efforts for
data preparation and data preprocessing, and is
able to detect any kind of events without requir-
ing any domain knowledge.

– A proposal of a new machine learning frame-
work. The proposed approach naturally com-
bines the linguistic and temporal features of
Twitter for event detection. An effective
temporal-semantic estimation model is pre-
sented for measuring the intrinsic relatedness
between words. With this model, the detection
accuracy is steadily above 70%. Note that this
accuracy is achieved without pre-selecting rele-
vant tweets for a target type of events as com-
pared to [Chen et al. 2014].

– A proposal of a practically effective dis-
tributed computing platform. To the best of
our knowledge, it is the first distributed event
detection platform which can perform high per-
formance computing against mass texts. We
parallelize the indexing of raw tweets as well
as the detection process using the MapReduce
methodology. The system is able to detect major
events from 3 million tweets within 30 minutes
as demonstrated in the experiments.

– A proposal of two-level event detection visu-
alization. We visualize the detected events in
two dimensions: one is in event level and the
other is in keyword level. The event-level visu-
alization shows what events are detected and the

MAPREDUCE AND SEMANTICS ENABLED . . .

keyword-level serves as a further interpretation
of each event.

– Comprehensive evaluation to demonstrate
the effectiveness of the proposed system. The
effectiveness of the proposed system is evalu-
ated on real Twitter datasets. The experimen-
tal results demonstrate our system outperforms
existing representative solutions for event detec-
tion.

The remainder of this paper is organized as fol-
lows: Section 2 describes related works. In Sec-
tion 3, we discuss the proposed system in details.
Experimental results are presented and analyzed in
Section 4. Section 5 concludes this work and de-
scribes future directions.

2 Related Works

Event detection has been an interesting research
topic for years. Before social media becomes pop-
ular, research in event detection mainly focused
on well-formatted text documents, and was often
associated with text classification and named en-
tity recognition [Kumaran et al. 2004; Ritter et
al. 2011]. Event detection from social media is
an important topic in text mining and natural lan-
guage processing. Existing methods for event de-
tection can be classified into three categories: word
frequency based approaches, topic modeling based
approaches and clustering based approaches. The
word frequency based approaches define weighting
schemes mainly based on the number of word oc-
currences to measure word importance to an event.
Wang et al in [Wang et al. 2013] developed a time
dependent Hierarchical Dirichlet Process (HDP)
model [Teh et al. 2006] for real time event detec-
tion. Basically, they use a mixture Gaussian model
to extract the burst words from Twitter and then
apply their time dependent HDP model to identify
new events. Shamma et al. in [Shamma et al.
2011] proposed a normalized frequency model to
detect words within a given time window. Due to
the difficulty of capturing the complex semantics
of texts and performing effective disambiguation
using single word, Benhardus et al in [Benhardus
et al. 2013] developed a method called “Trending
Score” to extract n-grams for identifying trending
topics from streaming Twitter data. Different from

the topic definition in [Gruhl et al. 2004], they
define a trending topic as a word or phrase show-
ing an increase in usage both in its long-term us-
age and the relative usage to others. The trending
score of an n-gram is computed using the normal-
ized frequency derived from the TF*IDF weighting
scheme. Our proposed temporal model is motivated
by [Benhardus et al. 2013; Shamma et al. 2011],
but we define a variation of the TF*IDF weighting
scheme that is able to capture the usage change of
words/n-grams over time. The distribution based
approaches focus on using topic model techniques
to discover the core theme of a text document. [Lau
et al. 2012] proposed a variation of Latent Dirich-
let allocation (LDA) which periodically updates the
topic model based on the previously learned model.
However, when applied to noisy and short texts like
Twitter data, the performance of topic modeling
based methods is reduced [Guille et al. 2014; Hu
et al. 2012]. Representative methods using clus-
tering techniques for event detection include [Weng
et al. 2011; Parikh et al. 2013;Li et al. 2012].
Weng and Lee [Weng et al. 2011] proposed ED-
CoW (Event Detection with Clustering of Wavelet-
based Signals), which employs wavelet analysis to
provide precise measurements regarding when and
how the frequency of the target signal changes over
time [Kaplan et al. 2011]. By treating each word in
text corpus as a signal, EDCoW is able to charac-
terize the appearances of words over time and iden-
tify those event related words. Specifically, it builds
the signal for each individual word in two stages.
The first stage constructs a word vector composed
of a number of signals using TF*IDF weighting
scheme. The vector is sliced into several segments
based on a time window specified by the user. The
second stage defines a sliding window, and calcu-
lates the change of signals by moving the sliding
window along the vector built in the first stage.
This mechanism is able to identify the change of
a word’s appearance pattern. Then EDCoW mea-
sures the similarity between two words by comput-
ing their cross correlation and generates a correla-
tion matrix to represent the similarity between any
two words. Then it groups similar words into one
cluster using modularity-based graph partitioning.
However, EDCoW only models the temporal pat-
terns of words and our observation has shown that it
tends to introduce a fair amount of noise words into
the event representation. Parikh and Karlapalem in

204 Peng Yan

[Parikh et al. 2013] proposed to use bigram and
incorporate content analysis into event detection.
Their idea is to extract the frequent co-occurring bi-
grams with regard to a keyword, and then compute
similarity between two keywords based on the co-
occurring bigrams they share. Several researches do
not strictly fall into the aforementioned three cate-
gories. For example, [Guille et al. 2014] takes ad-
vantage of the creation frequency of dynamic links
to detect events, and [Chen et al. 2014] models the
Twitter components (such as user, tweet, location,
etc) as a heterogeneous graph and identifies events
by finding anomalous clusters in the graph. In this
work, we also use bigram as a single unit, since our
experiments indicated that bigram achieved better
performance than unigram. This is consistent with
the finding from Li et al. in [Li et al. 2012], where
they demonstrated that over half of the tweet seg-
ments are bigrams and there are rarely any segments
of more than 3 grams. In the rest of the paper, when
we use “word(s)/keyword(s)”, we actually refer to
“bigram(s)”.

Figure 1. System architecture

3 Proposed System

We propose in this paper a fully automated event
detection system which employs the software as a
service (SAAS) architecture where users can easily
run a detection through a web interface.The system
accepts raw Twitter data uploaded by users, per-

forms temporal and semantic analysis against it us-
ing MapReduce technology, and finally visualizes
the detection results. The whole process does not
need any human intervention and no domain knowl-
edge needs to be gained prior to detection. Figure 1
gives the architectural overview of our event detec-
tion system and each system component is detailed
subsequently.

3.1 Task Manager

There are mainly three responsibilities for task
manager. 1) It provides a graphical user interface
for users to define a detection task. Users are re-
quired to upload the Twitter dataset, specify the task
parameters such as the name of the task, the length
of the time interval used to split the dataset, whether
lemmatization is performed against the dataset, etc.
The task manager has a data distributor. Once a
dataset is uploaded, the distributor will distribute
the dataset across all the nodes in the cluster. 2)
It interacts with the detection engine, querying for
status of the detection process. 3) It tells the visual-
ization module the task status, so that the visualiza-
tion module knows whether the detected results are
ready for displaying.

3.2 Detection Engine

The detection engine is the core component of the
system. It is composed of three major components:
the framework initializer, the indexing engine and
the detection processor. We introduce each compo-
nent in detail in the following Sections.

This Section introduces the first two compo-
nents in the detection engine: the framework ini-
tializer and the indexing engine. The main function
of the framework initializer is to preprocess the up-
loaded dataset associated with user specified param-
eters. This involves extracting the textual content of
each tweet and the time at which a tweet was posted.
Based on the parameters specified by the user, the
textual content of each tweet is can be either kept
intact or lemmatized and cut into n-grams. Once
the extraction is finished, we can get the upper and
lower bounds of the post times for all tweets. Then
we use the two bounds and the time window defined
by the user to split the tweets into different buckets.
Suppose the upper time bound is T1, the lower is
T2, and the time window is W, then the tweets can

frequency of dynamic links to detect events,
and [Chen et al. 2014] models the Twitter
components (such as user, tweet, location, etc)
as a heterogeneous graph and identifies events
by finding anomalous clusters in the graph. In
this work, we also use bigram as a single unit,
since our experiments indicated that bigram
achieved better performance than unigram.
This is consistent with the finding from Li et
al. in [Li et al. 2012], where they demonstrated
that over half of the tweet segments are
bigrams and there are rarely any segments of
more than 3 grams. In the rest of the paper,
when we use “word(s)/keyword(s)”, we
actually refer to “bigram(s)”.

3 Proposed System
We propose in this paper a fully automated
event detection system which employs the
software as a service (SAAS) architecture
where users can easily run a detection through
a web interface.The system accepts raw
Twitter data uploaded by users, performs
temporal and semantic analysis against it using
MapReduce technology, and finally visualizes
the detection results. The whole process does
not need any human intervention and no
domain knowledge needs to be gained prior to
detection. Figure 1 gives the architectural
overview of our event detection system and
each system component is detailed
subsequently.

Event Visualization

Web Application Server

Event Detection Task Manager

Database

Data Persistence and Data
Access Layer

Detection Engine

MapReduce Enabled Indexing Engine

Event Detection Processor

Framework Initializer

Raw Twitter
Data

Figure 1: System architecture.

3.1 Task Manager
There are mainly three responsibilities for task
manager. 1) It provides a graphical user
interface for users to define a detection task.
Users are required to upload the Twitter
dataset, specify the task parameters such as the
name of the task, the length of the time interval
used to split the dataset, whether
lemmatization is performed against the dataset,
etc. The task manager has a data distributor.
Once a dataset is uploaded, the distributor will
distribute the dataset across all the nodes in the
cluster. 2) It interacts with the detection
engine, querying for status of the detection
process. 3) It tells the visualization module the
task status, so that the visualization module
knows whether the detected results are ready
for displaying.

3.2 Detection Engine
The detection engine is the core component of
the system. It is composed of three major
components: the framework initializer, the
indexing engine and the detection processor.
We introduce each component in detail in the
following sections.
This section introduces the first two
components in the detection engine: the
framework initializer and the indexing engine.
The main function of the framework initializer
is to preprocess the uploaded dataset associated
with user specified parameters. This involves
extracting the textual content of each tweet and
the time at which a tweet was posted. Based on
the parameters specified by the user, the
textual content of each tweet is can be either
kept intact or lemmatized and cut into n-grams.
Once the extraction is finished, we can get the
upper and lower bounds of the post times for
all tweets. Then we use the two bounds and the
time window defined by the user to split the
tweets into different buckets. Suppose the
upper time bound is T1, the lower is T2, and the
time window is W, then the tweets can be
divided into 1 2() / 1T T W number of
buckets, where bucket (0)iB i W contains
all tweets posted between 2T W i and

2 (1)T W i .
The detailed workflow of the initializer is
illustrated in Figure 2. The whole workflow of
the initializer has been parallelized with
MapReduce. Basically, the mapper takes the
uploaded raw Twitter data file as input,

205Peng Yan

[Parikh et al. 2013] proposed to use bigram and
incorporate content analysis into event detection.
Their idea is to extract the frequent co-occurring bi-
grams with regard to a keyword, and then compute
similarity between two keywords based on the co-
occurring bigrams they share. Several researches do
not strictly fall into the aforementioned three cate-
gories. For example, [Guille et al. 2014] takes ad-
vantage of the creation frequency of dynamic links
to detect events, and [Chen et al. 2014] models the
Twitter components (such as user, tweet, location,
etc) as a heterogeneous graph and identifies events
by finding anomalous clusters in the graph. In this
work, we also use bigram as a single unit, since our
experiments indicated that bigram achieved better
performance than unigram. This is consistent with
the finding from Li et al. in [Li et al. 2012], where
they demonstrated that over half of the tweet seg-
ments are bigrams and there are rarely any segments
of more than 3 grams. In the rest of the paper, when
we use “word(s)/keyword(s)”, we actually refer to
“bigram(s)”.

Figure 1. System architecture

3 Proposed System

We propose in this paper a fully automated event
detection system which employs the software as a
service (SAAS) architecture where users can easily
run a detection through a web interface.The system
accepts raw Twitter data uploaded by users, per-

forms temporal and semantic analysis against it us-
ing MapReduce technology, and finally visualizes
the detection results. The whole process does not
need any human intervention and no domain knowl-
edge needs to be gained prior to detection. Figure 1
gives the architectural overview of our event detec-
tion system and each system component is detailed
subsequently.

3.1 Task Manager

There are mainly three responsibilities for task
manager. 1) It provides a graphical user interface
for users to define a detection task. Users are re-
quired to upload the Twitter dataset, specify the task
parameters such as the name of the task, the length
of the time interval used to split the dataset, whether
lemmatization is performed against the dataset, etc.
The task manager has a data distributor. Once a
dataset is uploaded, the distributor will distribute
the dataset across all the nodes in the cluster. 2)
It interacts with the detection engine, querying for
status of the detection process. 3) It tells the visual-
ization module the task status, so that the visualiza-
tion module knows whether the detected results are
ready for displaying.

3.2 Detection Engine

The detection engine is the core component of the
system. It is composed of three major components:
the framework initializer, the indexing engine and
the detection processor. We introduce each compo-
nent in detail in the following Sections.

This Section introduces the first two compo-
nents in the detection engine: the framework ini-
tializer and the indexing engine. The main function
of the framework initializer is to preprocess the up-
loaded dataset associated with user specified param-
eters. This involves extracting the textual content of
each tweet and the time at which a tweet was posted.
Based on the parameters specified by the user, the
textual content of each tweet is can be either kept
intact or lemmatized and cut into n-grams. Once
the extraction is finished, we can get the upper and
lower bounds of the post times for all tweets. Then
we use the two bounds and the time window defined
by the user to split the tweets into different buckets.
Suppose the upper time bound is T1, the lower is
T2, and the time window is W, then the tweets can

MAPREDUCE AND SEMANTICS ENABLED . . .

be divided into (T1 − T2)/W + 1 number of buck-
ets, where bucket Bi (0 ≤ i ≤W) contains all tweets
posted between T2 +W ∗ i andT2 +W ∗ (i+1).

The detailed workflow of the initializer is illus-
trated in Figure 2. The whole workflow of the ini-
tializer has been parallelized with MapReduce. Ba-
sically, the mapper takes the uploaded raw Twitter
data file as input, extracts temporal and textual in-
formation. The reducer collects the tweets belong-
ing to the same bucket and outputs basic statistics
(i.e. the upper and lower bounds of the post times,
the number of buckets) and preprocessed texts (i.e.
n-grams of the tweets) which will be used for in-
dexing.

As was discussed earlier, the initializer takes raw
tweets as input and divides them into different buck-
ets. These buckets of tweets are then passed to the
indexing engine. Figure 3 gives the detailed index-
ing algorithm. The algorithm uses the statistics cal-
culated by the initializer to group tweets into dif-
ferent buckets. Each bucket is viewed as a single
document and an inverted index is built against the
textual content of all tweets in that bucket.

Algorithm 1 Build Inverted Index against Tweets
Input: contentRDD, numBuckets, minPostTime
/* contentRDD: n-grams of textual content of all
tweets
timeWindow: time interval used to split tweets
numBuckets: number of buckets
minPostTime: lower bound of the post times for
all tweets*/
Output: Inverted index on tweets.
function buildIndex(contentRDD, timeWindow,
numBuckets, minPostTime)
for each i in numBuckets do

/*collect tweets from tweetRDD that fall into
bucketi, say tweetsi */
tweetsi = selectTweetsMapper(minPostTime, i,
timeWindow)
build an index for tweetsi with i as the docu-
ment number

end for
end function
function selectTweetsMapper(minPostTime, i,
timeWindow)
extract post time of the current tweet, say cur-
Time
thisBucket=(curTime–minPostTime)/timeWindow

if (i == thisBucket) then
return the textual content of this tweet

end if
end function

The purpose of indexing is to speed up the sta-
tistical computation in the detection processor. We
propose two models here: a temporal model for
capturing the temporal patterns from tweets and a
semantic modelfor computing semantic relatedness
between words. We observe that the words repre-
senting an event usually show a similar appearance
pattern when the event is taking place. For example,
the number of occurrences of the words “Japan” and
“earthquake” were showing a similar pattern after
the 2011 Thoku earthquake and tsunami occurred.
Based on this observation, we propose to represent
each word as a vector of real numbers to capture
its temporal nature. Basically, given a start time
Tstart and an end timeTend , suppose the time dura-
tion Tend −Tstart are split into n number of buckets,
we represent each word as a temporal vectoras fol-
lows

tv(wi) =< t weighti,1, t weighti,2, ..., t weighti,n >,
(1)

where t weighti,k(1 ≤ k ≤ n) represents the tempo-
ral weight of wi from time Tstart +(k− 1) · (Tend −
Tstart)/n to timeTstart + k · (Tend − Tstart)/n. To
computet weighti,k, we employ a variation of the
TF*IDF weighting scheme as follows

t weighti,k = si,k/highest(si,mk), (2)

where mk = 1,2, ...qk and there are totally qk num-
ber of words among the tweets posted between
Tstart + (k − 1) · (Tend − Tstart)/n and Tstart + k ·
(Tend −Tstart)/n, si,k = t fi,k ∗Log(Pk/d fk) where Pk
is the number of tweets posted between Tstart +(k−
1) · (Tend −Tstart)/n and Tstart + k · (Tend −Tstart)/n,
d fk is the number of tweets that wi occurs, and
t fi,k is the number of occurrences of wi in tweets
posted between Tstart +(k−1) ·(Tend −Tstart)/n and
Tstart + k · (Tend −Tstart)/n. Note that there is a spe-
cial case here, i.e. when k = n, t weighti,k simply
equals to si,k/highest(si,mk). Using the index built
from the indexing engine, the statistics (such as si,k,
d fk) can be calculated very efficiently. Here, equa-
tion (2) is able to effectively capture the increase or
decrease in the usage of wordwiby translating the
usage change into an increase or decrease of the

206 Peng Yan

Figure 2. Framework initializer workflow

TF*IDF value between two consecutive time buck-
ets. Finally, the temporal similarity between two
words wi and w j can be calculated using the cosine
value of their corresponding representation vectors
as follows

temporal sim(wi,w j) = cos(tv(wi), tv(w j)). (3)

To analyze the semantic aspect of a word, we pro-
pose to use its context words as linguistic features
to model the intrinsic meaning. We represent each
word as a semantic vector as follows

sv(wi) =< s weighti,1,s weighti,2, ...,s weighti,n >,
(4)

where s weighti,k(1 ≤ k ≤ n) represents the seman-
tic weight of wi from time Tstart +(k− 1) · (Tend −
Tstart)/n to time Tstart + k · (Tend − Tstart)/n. Here
we use the words co-occurring with wi to compute
s weighti,k. First, we set s weighti,k = 0 at the be-
ginning, and collect all tweets betweenTstart +(k−
1) · (Tend −Tstart)/n and Tstart + k · (Tend −Tstart)/n.
Then we go through each word w j from time Tstart

to Tend , and check if w j co-occurs with wi in the
same tweet in the current time bucket. If so,
s weighti,k is increased by 1. In the same way, the
semantic similarity between two words is calculated

using the cosine similarity as follows

semantic sim(wi,w j) = cos(sv(wi),sv(w j)). (5)

The final weighting scheme for measuring the
closeness between words wi and w j is defined as
follows

sim(wi,w j) = λ · temporal sim(wi,w j)+
+(1−λ) · semantic sim(wi,w j),

(6)
where λ is a tuning parameter that can be ad-
justed based on the preference on the two similarity
schemes in the experiments.

Motivated by [Parikh et al. 2013], we detect
events using Hierarchical Agglomerative Clustering
(HAC). Each cluster represents an event. The rea-
son of choosing this clustering technique is that it
does not require the number of clusters to be given
in advance. This is reasonable since there is no way
for us to know how many events are there in the
dataset. HAC is a bottom-up clustering technique
and is more frequently used in information retrieval
than top-down clustering. Basically, it starts with
a collection of single clusters where each cluster
contains only one data point. Then it merges two
closest clusters into a new cluster and removes the

extracts temporal and textual information. The
reducer collects the tweets belonging to the
same bucket and outputs basic statistics (i.e.
the upper and lower bounds of the post times,

the number of buckets) and preprocessed texts
(i.e. n-grams of the tweets) which will be used
for indexing.

Format tweet stream
into a three-column

file

Raw tweet
stream

Raw tweet
stream

Stream Formatter

“Thank you for staying
@MadKatyDisease”

Preprosess the
generated file using

map-reduce

Formatted three-
column file

Formatted three-
column file

TEXTUAL_CONTENTPOST_TIMETWEET_NUM
 1 2014-06-29 00:44:04 Thank you for staying @MadKatyDisease
 2 2014-06-27 19:43:56 Unplug to connect.

 n 2015-03-09 09:37:29 Let's take this act on the road!!!

Feature Extraction
from Tweet Stream

Textual content offfff
tweets

Textual content of
tweets

Post times of
tweets

Post times of
tweets

Tokenization Lemmatization

N-gram
extractionN-grams of tweetsN-grams of tweets

Extract max and min post times, and
calculate the number of buckets

Build inverted index for each bucketIndexing

Figure 2: Framework initializer workflow.

As discussed earlier, the initializer takes raw
tweets as input and divides them into different
buckets. These buckets of tweets are then
passed to the indexing engine. Figure 3 gives
the detailed indexing algorithm. The algorithm
uses the statistics calculated by the initializer
to group tweets into different buckets. Each
bucket is viewed as a single document and an
inverted index is built against the textual
content of all tweets in that bucket.

ALGORITHM. Build Inverted Index against Tweets
Input:contentRDD, numBuckets, minPostTime
/* contentRDD: n-grams of textual content of all tweets
timeWindow: time interval used to split tweets
numBuckets: number of buckets
minPostTime: lower bound of the post times for all
tweets*/
Output:Inverted index on tweets.
function buildIndex(contentRDD, timeWindow,
numBuckets, minPostTime)
for each i in numBuckets
/*collect tweets from tweetRDD that fall into bucketi, say
tweetsi */
tweetsi = selectTweetsMapper(minPostTime, i,
timeWindow)
build an index for tweetsi with i as the document number

end for
end function

function selectTweetsMapper(minPostTime, i,
timeWindow)
extract post time of the current tweet, say curTime
thisBucket = (curTime – minPostTime) / timeWindow
if(i == thisBucket)
return the textual content of this tweet
end if
end function

Figure 3: The algorithm of building inverted
index using MapReduce.

The purpose of indexing is to speed up the
statistical computation in the detection
processor. We propose two models here: a
temporal model for capturing the temporal
patterns from tweets and a semantic modelfor
computing semantic relatedness between
words. We observe that the words representing
an event usually show a similar appearance
pattern when the event is taking place. For
example, the number of occurrences of the
words “Japan” and “earthquake” were showing
a similar pattern after the 2011 Tōhoku

207Peng Yan

Figure 2. Framework initializer workflow

TF*IDF value between two consecutive time buck-
ets. Finally, the temporal similarity between two
words wi and w j can be calculated using the cosine
value of their corresponding representation vectors
as follows

temporal sim(wi,w j) = cos(tv(wi), tv(w j)). (3)

To analyze the semantic aspect of a word, we pro-
pose to use its context words as linguistic features
to model the intrinsic meaning. We represent each
word as a semantic vector as follows

sv(wi) =< s weighti,1,s weighti,2, ...,s weighti,n >,
(4)

where s weighti,k(1 ≤ k ≤ n) represents the seman-
tic weight of wi from time Tstart +(k− 1) · (Tend −
Tstart)/n to time Tstart + k · (Tend − Tstart)/n. Here
we use the words co-occurring with wi to compute
s weighti,k. First, we set s weighti,k = 0 at the be-
ginning, and collect all tweets betweenTstart +(k−
1) · (Tend −Tstart)/n and Tstart + k · (Tend −Tstart)/n.
Then we go through each word w j from time Tstart

to Tend , and check if w j co-occurs with wi in the
same tweet in the current time bucket. If so,
s weighti,k is increased by 1. In the same way, the
semantic similarity between two words is calculated

using the cosine similarity as follows

semantic sim(wi,w j) = cos(sv(wi),sv(w j)). (5)

The final weighting scheme for measuring the
closeness between words wi and w j is defined as
follows

sim(wi,w j) = λ · temporal sim(wi,w j)+
+(1−λ) · semantic sim(wi,w j),

(6)
where λ is a tuning parameter that can be ad-
justed based on the preference on the two similarity
schemes in the experiments.

Motivated by [Parikh et al. 2013], we detect
events using Hierarchical Agglomerative Clustering
(HAC). Each cluster represents an event. The rea-
son of choosing this clustering technique is that it
does not require the number of clusters to be given
in advance. This is reasonable since there is no way
for us to know how many events are there in the
dataset. HAC is a bottom-up clustering technique
and is more frequently used in information retrieval
than top-down clustering. Basically, it starts with
a collection of single clusters where each cluster
contains only one data point. Then it merges two
closest clusters into a new cluster and removes the

MAPREDUCE AND SEMANTICS ENABLED . . .

two clusters from the collection. This process re-
peats until there is only one cluster in the collection.
Here in our scenario, at the beginning, each word is
a single cluster, and we use Equation (5) to com-
pute the distance between two words. Then the two
words with the shortest distance are grouped into a
new cluster. Once a new cluster is generated, the
complete linkage algorithm is used to calculate the
distance between the newly generated cluster and
any other clusters. We will demonstrate the rea-
son of choosing the complete linkage algorithm in
the experiments later. Since both the temporal in-
formation and the semantic meaning of tweets are
considered for measuring the distance between two
clusters, our method can effectively avoid two types
of poor clustering results: 1) words with similar
temporal patterns but representing different events
are grouped into one cluster; 2) semantically related
words with dissimilar temporal patterns are grouped
into one cluster.

3.3 Event Visualization

We have developed a two-level graphical user inter-
face to visualize the event detection results.

We attempt to interpret the detected events in
two dimensions: the event-dimension and the key-
word dimension. In the event dimension, we sum-
marize all of the detected events using the keywords
representing them. In addition, we present all of the
burst intervals and the estimated start time for each
event. The events can be re-ordered based on the
number of keywords it contains, the start burst pe-
riod and the estimated start time. While in the key-
word dimension, we visualize the temporal pattern
of each keyword associated with the statistics on it
to present a complete keyword profile. It is intuitive
for the user to understand why a keyword has been
discovered by the system and selected as an event
representative keyword. Figure 4 gives a screenshot
of the system interface.

4 Experiments

This Section evaluates the performance of the pro-
posed approach in terms of effectiveness and effi-
ciency in detecting real-world events. We consid-
ered two case study scenarios: one is the Thoku
earthquake and tsunami on March 11, 2011 [Japan

Earthquake 2011] and the other is the death of
Osama bin Laden on May 2, 2011 [Death of Bin
Ladin 2011]. However, the method proposed in this
work is not limited to dealing with these two detec-
tion scenarios.

It also works for other applications such as de-
tecting financial crisis, civil unrest, disease out-
breaks, etc.

4.1 Experiment Design

Datasets: we used the Twitter dataset contributed
by [Li et al. 2012]. This dataset contains 147, 909
files where each file has at most 500 tweets pub-
lished by a Twitter user. Every tweet in the 147, 909
files contains enough information including Con-
tent, Tweet ID, Creation Time, Retweet Count, Fa-
vorite, Hashtags, etc. The whole dataset contains
61,214,013 tweets posted between November, 2006
and August, 2011. Since the information needed
by our approach is Content and Creation Time,
and there are a lot of broken tweets (i.e. tweets
that do not have Content or Creation Time, or the
Creation Time is not a valid date expression) in
the raw data, we preprocessed the data with two
steps: 1) we went through all the 147, 909 files
and extracted the Content and Creation Time from
the raw data and generated a single large CSV file
with two columns (one for Content and the other
for Creation Time); 2) we removed those broken
tweets and finally obtained 61,194,937 tweets. As
mentioned earlier, we considered two major events
happened in 2011 (the Japan earthquake and the
death of Bin Ladin) as our case study scenarios.
As the Japan earthquake occurred on March 11,
2011, we constructed three datasets for this event
by extracting the tweets posted around March 11:
dataset #1 (which is labeled as “Earthquake-A” in
Table 1) contains two days of tweets; dataset #2 (la-
beled as “Earthquake-B”) and dataset #3 (labeled
as “Earthquake-C”) contain one week of and one
month of tweets respectively. The reason of us-
ing datasets with different time spans (ranging from
two days to one month) is to completely validate
the performance of the proposed model under dif-
ferent circumstances. For example, one full month
of tweets would contain much more noise than that
of two days, and thus increase the difficulty of iden-
tifying true events. Note that we did not perform
any prior-knowledge-based preprocessing against

208 Peng Yan

Figure 3. System interface

the raw data (e.g. content filtering by extracting
tweets that contain specific terms), since our model
does not require any prior knowledge about the data
before the detection. In the same way, we also pre-
pared three datasets for the death of Bin Ladin as
shown in Table 1.

Evaluation Metrics: the goal of our evaluation is
in three dimensions: 1) event accuracy: how ac-
curate the proposed approach is in identifying real-
world events; 2) keyword accuracy: how accurate
the proposed approach is in representing a single
event; 3) how fast our approach is in reporting alerts
after a major event has happened. The first dimen-
sion of the goal has been extensively addressed in
research [Weng et al. 2011; Parikh et al. 2013], as
it is the most important criterion in evaluating the
performance of an event detection system. How-
ever, to our knowledge, we have not seen any of the
previous works address the second dimension. It is
of importance to measure the accuracy of the event
representation (i.e. the accuracy of the keywords
constituting an event) because it directly determines
whether the detected events can be understood by
human beings, as well as to what extent they can be
interpreted. In the sense of business value and so-
cial impact, the third dimension also needs to be
addressed. To the end of the three goal dimen-
sions, we use precision, one of the most widely used
performance metrics in information retrieval as our

evaluation measure. Recall cannot be used here be-
cause it is not possible to enumerate all events in
the datasets as described in [Weng et al. 2011].
Since the datasets differ in size substantially, and
the numbers of keywords for different events vary
a lot, we report both micro-averaged and macro-
averaged precisions. Specifically, 1) for the first
goal dimension (i.e. evaluating the event accuracy),
micro-averaged precision operates at event level
and is mainly affected by the detection accuracy of
large datasets. Whereas macro-averaged precision
results over datasets, and thus small datasets have
more impact on the overall detection accuracy. 2)
for the second goal dimension (i.e. evaluating the
keyword accuracy), micro-averaged precision mea-
sures at keyword level and is primarily affected by
the accuracy of events with more keywords, while
macro-averaged precision averages results over all
of the detected events, and thus events with a small
quantity of keywords impact the performance more.

Linkage Algorithm Selection and Parameter
Tuning: as described earlier, we employ two meth-
ods to calculate the similarity between keywords,
and use the linear combination of them associated
with one tuning parameter λ to generate a merged
similarity score. Here we introduce how we adjust
the value of λ so that a reasonable similarity estima-
tion between keywords can be obtained. The value
of λ was tuned from 0.1. 0.2, up to 1.0 to generate a

scenario, at the beginning, each word is a
single cluster, and we use Equation (5) to
compute the distance between two words.
Then the two words with the shortest distance
are grouped into a new cluster. Once a new
cluster is generated, the complete linkage
algorithm is used to calculate the distance
between the newly generated cluster and any
other clusters. We will demonstrate the reason
of choosing the complete linkage algorithm in
the experiments later. Since both the temporal
information and the semantic meaning of
tweets are considered for measuring the
distance between two clusters, our method can
effectively avoid two types of poor clustering
results: 1) words with similar temporal patterns
but representing different events are grouped
into one cluster; 2) semantically related words
with dissimilar temporal patterns are grouped
into one cluster.

3.3 Event Visualization
We have developed a two-level graphical user
interface to visualize the event detection
results.

We attempt to interpret the detected events in
two dimensions: the event-dimension and the
keyword dimension. In the event dimension,
we summarize all of the detected events using
the keywords representing them. In addition,
we present all of the burst intervals and the
estimated start time for each event. The events
can be re-ordered based on the number of
keywords it contains, the start burst period and
the estimated start time. While in the keyword
dimension, we visualize the temporal pattern
of each keyword associated with the statistics
on it to present a complete keyword profile. It
is intuitive for the user to understand why a
keyword has been discovered by the system
and selected as an event representative
keyword. Figure 4 gives a screenshot of the
system interface.

Figure 4: System interface.

4 Experiments
This section evaluates the performance of the
proposed approach in terms of effectiveness
and efficiency in detecting real-world events.
We considered two case study scenarios: one is
the Tōhoku earthquake and tsunami on March
11, 2011 [Japan Earthquake 2011] and the
other is the death of Osama bin Laden on May

2, 2011 [Death of Bin Ladin 2011]. However,
the method proposed in this work is not limited
to dealing with these two detection scenarios.
It also works for other applications such as
detecting financial crisis, civil unrest, disease
outbreaks, etc.

209Peng Yan

Figure 3. System interface

the raw data (e.g. content filtering by extracting
tweets that contain specific terms), since our model
does not require any prior knowledge about the data
before the detection. In the same way, we also pre-
pared three datasets for the death of Bin Ladin as
shown in Table 1.

Evaluation Metrics: the goal of our evaluation is
in three dimensions: 1) event accuracy: how ac-
curate the proposed approach is in identifying real-
world events; 2) keyword accuracy: how accurate
the proposed approach is in representing a single
event; 3) how fast our approach is in reporting alerts
after a major event has happened. The first dimen-
sion of the goal has been extensively addressed in
research [Weng et al. 2011; Parikh et al. 2013], as
it is the most important criterion in evaluating the
performance of an event detection system. How-
ever, to our knowledge, we have not seen any of the
previous works address the second dimension. It is
of importance to measure the accuracy of the event
representation (i.e. the accuracy of the keywords
constituting an event) because it directly determines
whether the detected events can be understood by
human beings, as well as to what extent they can be
interpreted. In the sense of business value and so-
cial impact, the third dimension also needs to be
addressed. To the end of the three goal dimen-
sions, we use precision, one of the most widely used
performance metrics in information retrieval as our

evaluation measure. Recall cannot be used here be-
cause it is not possible to enumerate all events in
the datasets as described in [Weng et al. 2011].
Since the datasets differ in size substantially, and
the numbers of keywords for different events vary
a lot, we report both micro-averaged and macro-
averaged precisions. Specifically, 1) for the first
goal dimension (i.e. evaluating the event accuracy),
micro-averaged precision operates at event level
and is mainly affected by the detection accuracy of
large datasets. Whereas macro-averaged precision
results over datasets, and thus small datasets have
more impact on the overall detection accuracy. 2)
for the second goal dimension (i.e. evaluating the
keyword accuracy), micro-averaged precision mea-
sures at keyword level and is primarily affected by
the accuracy of events with more keywords, while
macro-averaged precision averages results over all
of the detected events, and thus events with a small
quantity of keywords impact the performance more.

Linkage Algorithm Selection and Parameter
Tuning: as described earlier, we employ two meth-
ods to calculate the similarity between keywords,
and use the linear combination of them associated
with one tuning parameter λ to generate a merged
similarity score. Here we introduce how we adjust
the value of λ so that a reasonable similarity estima-
tion between keywords can be obtained. The value
of λ was tuned from 0.1. 0.2, up to 1.0 to generate a

MAPREDUCE AND SEMANTICS ENABLED . . .

Figure 4. Event precisions for dataset #2 through #6

merged similarity score. The success of the merged
score was evaluated based on the event precision of
the clustering results.

Table 1. Datasets

Dataset # of tweets Time Span
#1
Earthquake-A

226,065 From Mar 10,
2011 to Mar
11-2011

#2
Earthquake-B

572,448 From Mar 08,
2011 to Mar 14,
2011

#3
Earthquake-C

3,099,100 From Mar 01,
2011 to Mar 31,
2011

#4 Ladin-A 300,134 From May 01,
2011 to May 02,
2011

#5 Ladin-B 1,090,434 From Apr 29,
2011 to May 05,
2011

#6 Ladin-C 4,485,374 From April 15,
2011 to May 15,
2011

We experimented seven different linkage algo-
rithms in combination with different λ values as
shown in Table 2, and calculated the event preci-
sion on dataset #1. From Table 2 we can see that
the best event precision was achieved when com-
plete linkage was used as the distance measure for
the clustering.

After the linkage algorithm was determined, our
next step was to find a proper λ value which led to

the best event precision. Figure 5 shows the event
precisions on dataset #2 through #6 using com-
plete linkage for the clustering. The x axis repre-
sents different λ values, and y axis indicates event
precisions. The results show that event precision
dropped significantly when solely relying on the
temporal or semantic analysis, and the best perfor-
mance can be obtained when λ is between 0.6 and
0.8. Therefore, we set λ to 0.7 in the following ex-
periments.

Execution Environment: we built a spark cluster
of 3 nodes on Ubuntu v13.10 64-bit: 1 master and
3 slaves (the master is also used as a slave). The
master has 12 Intel Xeon cores (each @ 2.5GHz),
and each slave has 4 Intel i5-4250U cores (each @
1.3GHz). The cluster has a total memory of 80G
and 20 cores.

4.2 Experiment Results

The proposed approach was compared with five ex-
isting representative methods for event detection:
EDCoW [Weng et al. 2011], ET [Parikh et al.
2013], Discrepancy [Lappas et al. 2009], Peaky
Topics [Shamma el al. 2011], Trending Score [Ben-
hardus et al. 2013]. We tried to run the compari-
son methods without using MapReduce and found
that it was even impossible to finish the data prepro-
cessing within reasonable time. So we decided to
use the MapReduce algorithm we proposed in Sec-
tion 3.2.2 to preprocess the data for all comparison
methods. Table 3 and 4 compare our method with
the other five methods using the micro and macro
event precision. Table 3 uses the earthquake dataset

detection accuracy. 2) for the second goal
dimension (i.e. evaluating the keyword
accuracy), micro-averaged precision measures
at keyword level and is primarily affected by
the accuracy of events with more keywords,
while macro-averaged precision averages
results over all of the detected events, and thus
events with a small quantity of keywords
impact the performance more.
Linkage Algorithm Selection and Parameter
Tuning: as described earlier, we employ two

methods to calculate the similarity between
keywords, and use the linear combination of
them associated with one tuning parameter λ to
generate a merged similarity score. Here we
introduce how we adjust the value of λ so that
a reasonable similarity estimation between
keywords can be obtained. The value of λ was
tuned from 0.1. 0.2, up to 1.0 to generate a
merged similarity score. The success of the
merged score was evaluated based on the event
precision of the clustering results.

Table 2: Event precisions with different λ values and linkage algorithms for dataset #1.

λ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Average Linkage 0.0 0.69 0.65 0.67 0.67 0.67 0.60 0.34 0.32 0.10

Centroid Linkage 0.61 0.80 0.75 0.74 0.81 0.62 0.59 0.39 0.33 0.0

Complete Linkage 0.0 0.86 0.87 0.87 0.86 0.82 0.79 0.44 0.43 0.18

Median Linkage 0.69 0.73 0.67 0.74 0.69 0.63 0.60 0.36 0.36 0.11

Single Linkage 0.0 0.65 0.65 0.65 0.62 0.61 0.55 0.33 0.30 0.10

Ward Linkage 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighted Average
Linkage 0.0 0.83 0.65 0.67 0.61 0.60 0.61 0.33 0.32 0.0

We experimented seven different linkage
algorithms in combination with different λ
values as shown in Table 2, and calculated the
event precision on dataset #1. From Table 2 we
can see that the best event precision was
achieved when complete linkage was used as
the distance measure for the clustering.
After the linkage algorithm was determined,
our next step was to find a proper λ value
which led to the best event precision. Figure 5

shows the event precisions on dataset #2
through #6 using complete linkage for the
clustering. The x axis represents different λ
values, and y axis indicates event precisions.
The results show that event precision dropped
significantly when solely relying on the
temporal or semantic analysis, and the best
performance can be obtained when λ is
between 0.6 and 0.8. Therefore, we set λ to 0.7
in the following experiments.

Figure 4: Event precisions for dataset #2 through #6.

0

0,2

0,4

0,6

0,8

1

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

Event Precision

D2 D3 D4 D5 D6

210 Peng Yan

Table 2. Event precisions with different λ values and linkage algorithms for dataset #1

λ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Average Linkage 0.0 0.69 0.65 0.67 0.67 0.67 0.60 0.34 0.32 0.10
Centroid Linkage 0.61 0.80 0.75 0.74 0.81 0.62 0.59 0.39 0.33 0.0
Complete Link-
age

0.0 0.86 0.87 0.87 0.86 0.82 0.79 0.44 0.43 0.18

Median Linkage 0.69 0.73 0.67 0.74 0.69 0.63 0.60 0.36 0.36 0.11
Single Linkage 0.0 0.65 0.65 0.65 0.62 0.61 0.55 0.33 0.30 0.10
Ward Linkage 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weighted Aver-
age Linkage

0.0 0.83 0.65 0.67 0.61 0.60 0.61 0.33 0.32 0.0

and Table 4 uses the Ladin dataset as shown in Ta-
ble 1. We define micro/macro event precision as
follows

pmicro(e) =
∑M

i=1 # of correctly detected events for Di

∑M
i=1 total # of detected events for Di

,

where M = # of datasets,
(7)

pmacro(e) = 1
M ∑M

i=1 pi(e)
where pi(e) =

of correctly detected events for Di
total # of detected events for Di

,

and M = # of datasets.
(8)

Table 3. Comparison between MASEED and
existing methods using event precision on the

earthquake datasets

Method Micro Macro
EDCoW 0.29 0.29
ET 0.58 0.56
Discrepancy 0.19 0.21
PeakyTopics 0.16 0.16
Trending
Score

0.47 0.48

MASEED 0.72 0.74

It is obvious that our method outperforms all of
the five methods to a large degree. The event pre-
cision for our method steadily stays above 0.7 for
both of the two datasets.

Table 5 gives a comparison of the keyword pre-
cision. As introduced in the evaluation metrics Sec-
tion, keyword precision is used to measure how well
the system performs in interpreting the detected

events. We define micro/macro keyword precision
for each dataset as follows

pmicro(k) =
∑N

i=1 # of correctly detected keywords for ei

∑N
i=1 total # of detected keywords for ei

,

where N = # of detected events,
(9)

pmacro(k) = 1
N ∑N

i=1 pi(k) ,
where pi(k) =

of correctly detected keywords for ei
total # of detected keywords for ei

,

and N = # of detected events.
(10)

Therefore, a system that has higher keyword pre-
cision can do better in explaining the detection re-
sults.

Table 4. Comparison between MASEED and
existing methods using event precision on the

Ladin datasets

Method Micro Macro
EDCoW 0.21 0.24
ET 0.57 0.55
Discrepancy 0.17 0.20
PeakyTopics 0.16 0.17
Trending
Score

0.51 0.49

MASEED 0.73 0.74

To demonstrate the ability of our system in de-
tecting events from large and noisy datasets, Table
6 and 7 give the detected results on the earthquake
and Ladin datasets. For example, event #4 in Ta-
ble 6 is talking about donation to the earthquake,
and event #1 is about the death of Bin Ladin. Ta-
ble 8 gives the rum time of MASEED starting from
reading the raw twitter data to generating detected
events for all of the 6 datasets. We do not give the

211Peng Yan

Table 2. Event precisions with different λ values and linkage algorithms for dataset #1

λ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Average Linkage 0.0 0.69 0.65 0.67 0.67 0.67 0.60 0.34 0.32 0.10
Centroid Linkage 0.61 0.80 0.75 0.74 0.81 0.62 0.59 0.39 0.33 0.0
Complete Link-
age

0.0 0.86 0.87 0.87 0.86 0.82 0.79 0.44 0.43 0.18

Median Linkage 0.69 0.73 0.67 0.74 0.69 0.63 0.60 0.36 0.36 0.11
Single Linkage 0.0 0.65 0.65 0.65 0.62 0.61 0.55 0.33 0.30 0.10
Ward Linkage 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weighted Aver-
age Linkage

0.0 0.83 0.65 0.67 0.61 0.60 0.61 0.33 0.32 0.0

and Table 4 uses the Ladin dataset as shown in Ta-
ble 1. We define micro/macro event precision as
follows

pmicro(e) =
∑M

i=1 # of correctly detected events for Di

∑M
i=1 total # of detected events for Di

,

where M = # of datasets,
(7)

pmacro(e) = 1
M ∑M

i=1 pi(e)
where pi(e) =

of correctly detected events for Di
total # of detected events for Di

,

and M = # of datasets.
(8)

Table 3. Comparison between MASEED and
existing methods using event precision on the

earthquake datasets

Method Micro Macro
EDCoW 0.29 0.29
ET 0.58 0.56
Discrepancy 0.19 0.21
PeakyTopics 0.16 0.16
Trending
Score

0.47 0.48

MASEED 0.72 0.74

It is obvious that our method outperforms all of
the five methods to a large degree. The event pre-
cision for our method steadily stays above 0.7 for
both of the two datasets.

Table 5 gives a comparison of the keyword pre-
cision. As introduced in the evaluation metrics Sec-
tion, keyword precision is used to measure how well
the system performs in interpreting the detected

events. We define micro/macro keyword precision
for each dataset as follows

pmicro(k) =
∑N

i=1 # of correctly detected keywords for ei

∑N
i=1 total # of detected keywords for ei

,

where N = # of detected events,
(9)

pmacro(k) = 1
N ∑N

i=1 pi(k) ,
where pi(k) =

of correctly detected keywords for ei
total # of detected keywords for ei

,

and N = # of detected events.
(10)

Therefore, a system that has higher keyword pre-
cision can do better in explaining the detection re-
sults.

Table 4. Comparison between MASEED and
existing methods using event precision on the

Ladin datasets

Method Micro Macro
EDCoW 0.21 0.24
ET 0.57 0.55
Discrepancy 0.17 0.20
PeakyTopics 0.16 0.17
Trending
Score

0.51 0.49

MASEED 0.73 0.74

To demonstrate the ability of our system in de-
tecting events from large and noisy datasets, Table
6 and 7 give the detected results on the earthquake
and Ladin datasets. For example, event #4 in Ta-
ble 6 is talking about donation to the earthquake,
and event #1 is about the death of Bin Ladin. Ta-
ble 8 gives the rum time of MASEED starting from
reading the raw twitter data to generating detected
events for all of the 6 datasets. We do not give the

MAPREDUCE AND SEMANTICS ENABLED . . .

Table 5. Comparison between MASEED and existing methods using keyword precision

Method Dataset
#1

Dataset
#2

Dataset
#3

Dataset
#4

Dataset
#5

Dataset
#6

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
EDCoW 0.33 0.35 0.28 0.30 0.17 0.19 0.30 0.31 0.23 0.26 0.12 0.13
ET 0.85 0.90 0.85 0.91 0.71 0.80 0.81 0.87 0.77 0.84 0.72 0.75
Discrepancy 0.29 0.33 0.24 0.27 0.13 0.17 0.26 0.29 0.22 0.24 0.10 0.14
PeakyTopics 0.28 0.35 0.23 0.26 0.13 0.16 0.23 0.27 0.21 0.25 0.09 0.12
Trending
Score

0.77 0.83 0.76 0.81 0.71 0.80 0.74 0.81 0.72 0.79 0.66 0.70

MASEED 0.91 0.99 0.91 0.96 0.75 0.84 0.84 0.91 0.95 0.96 0.80 0.75

Table 6. Detected Events from Dataset #3

Events Representative Words
1 Elizabeth Taylor Died elizabeth=taylor rip=elizabeth taylor=di video=talk

talk=deliveri ki=youtub todai=health comment=video
2 St Patrick’s Day st=patrick st=patti patti=dai patrick=dai wear=green
3 The supermoon of March 19, 2011 super=moon full=moon upload=video
4 Text 90999 to redcross text=redcross 90999=donat 10=donat west=coast
5 Twitter’s 5th birthday happi=5th birthdai=twitter monopoli=att 5th=birthdai
6 Japan earthquake & tsunami tsunami=japan hit=japan tsunami=warn
7 Mardi Gras or Fat Tuesday mardi=gra happi=fat
8 AT&T acquires T-Mobile bui=tmobil acquir=tmobil 39=billion

Table 7. Detected Events from Dataset #6

Events Representative Words
1 Death of Bin Ladin laden=dead laden=death laden=kill white=hous

usa=usa god=bless kill=osama mission=accomplish
presid=Obama

2 Mother’s Day live=coverag live=stream watch=live
3 Earth’s Day mother=dai mother=mom mother=mother

mother=wonder hei=help help=15002000
fridai=shout4shout win=contest try=win

4 Microsoft acquired Skype skype=85 microsoft=bui microsoft=acquir googl=music
grow=closer

5 Tim killed in Libya tim=hetherington kill=libya
6 UFC 129: St-Pierre vs. Shields pai=pai check=video pierr=gsp video=pai
7 Wedding of Prince William and

Catherine Middleton
princ=william kate=middleton william=kate
watch=royal

8 cinco de mayo de=mayo celebr=cinco happi=cinco

Table 8. Run time for detecting events from datasets #1 through #6

Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5 Dataset #6
Run Time (mins) 2.63 3.73 29.01 3.47 12.22 96.11

212 Peng Yan

run time for comparison methods since our experi-
ments have demonstrated that they cannot complete
within reasonable time without MapReduce. Note
that for datasets #3 and #6 which have over 3 mil-
lion and 4 million number of tweets respectively,
MASEED took only 29 and 96 minutes to com-
plete the whole process of event detection, which
includes word lemmatization, 2-grams extraction,
indexing and detection.

5 Conclusions

In this work, we proposed a new distributed com-
puting framework for detecting major events from
social media. The proposed system focuses on
providing a scalable and effective solution to be
able to perform large-scaled event detection. We
present efficient algorithms using MapReduce for
data preparation and indexing. A novel hybrid
model for temporal and semantic analysis on Twit-
ter data is proposed, and a graphical user interface
for flexible event visualization is developed. Our
system completely automates the whole event de-
tection process, without requiring any human in-
tervention and domain knowledge to be gained in
advance. The effectiveness of the proposed system
has been evaluated on real Twitter datasets, and em-
pirical evaluation demonstrates our approach out-
performs most of the state-of-the-art methods.

The proposed system is not coupled with any
specific information resource or social media at all,
which means it has a promising application in other
types of resources. Social media also provides other
valuable information resources which were not used
in this study. These valuable resources may be inte-
grated into the current system to further improve the
detection accuracy. In addition, since we already
have a temporal model for event related word rep-
resentation, combined with time series analysis, our
system can be extended to an event forecasting sys-
tem.

References
[1] J. Wen and B. Lee, Event Detection in Twitter, In

Proceedings of the 5th International AAAI Confer-
ence on Weblogs and Social Media, 2011, 401-408.

[2] T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake
shakes Twitter users: real-time event detection by

social sensors, In Proceedings of the 19th Interna-
tional Conference on World Wide Web, 2010, 851-
860.

[3] Q. Zhao and P. Mitra, Event Detection and Visual-
ization for Social Text Streams, In Proceedings of
the International AAAI Conference on Weblogs and
Social Media, 2007, 26-28.

[4] G. Kumaran and J. Allan, Text classification and
named entities for new event detection, In Proceed-
ings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, 2004, 297-304.

[5] R. Parikh and K. Karlapalem, Et: events from
tweets. In Proceedings of the 22nd International
Conference on World Wide Web companion, 2013,
613-620.

[6] G. Fung, J. Yu, P. Yu, and H. Lu, Parameter free
bursty events detection in text streams, In Proceed-
ings of the 31st International Conference on Very
Large Databases, 2005, 181-192.

[7] A. Guille and C. Favre, Mention-anomaly-based
event detection and tracking in twitter, Advances in
Social Networks Analysis and Mining(ASONAM),
2014, 375-382.

[8] X. Wang, F. Zhu, J. Jiang and S. Li, Real time event
detection in twitter, In: Web-Age Information Man-
agement, Springer, Berlin Heidelberg, 2013, 502-
513.

[9] A. Ritter, S. Clark and O. Etzioni, Named entity
recognition in tweets: an experimental study, In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, 2011, 1524-1534.

[10] J. Kleinberg, Bursty and hierarchical structure in
streams, Data Mining and Knowledge Discovery 7,
no. 4, 2003, 373-397.

[11] PearAnalytics. Twitter study - august 2009,
http://www.pearanalytics.com/wpcontent/uploads
/2009/08/Twitter-Study-August-2009.pdf, 2009

[12] R. Li, S. Wang, H. Deng, R. Wang and K. Chang,
Towards social user profiling: unified and discrimi-
native influence model for inferring home locations.
In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, 2012, 1023-1031.

[13] Japan Earthquake, 2011, http://en.wikipedia.org/
wiki/2011 T%C5%8Dhoku earthquake and tsunami

[14] Death of Bin Ladin, 2011, http://en.wikipedia.org/
wiki/Death of Osama bin Laden

213Peng Yan

run time for comparison methods since our experi-
ments have demonstrated that they cannot complete
within reasonable time without MapReduce. Note
that for datasets #3 and #6 which have over 3 mil-
lion and 4 million number of tweets respectively,
MASEED took only 29 and 96 minutes to com-
plete the whole process of event detection, which
includes word lemmatization, 2-grams extraction,
indexing and detection.

5 Conclusions

In this work, we proposed a new distributed com-
puting framework for detecting major events from
social media. The proposed system focuses on
providing a scalable and effective solution to be
able to perform large-scaled event detection. We
present efficient algorithms using MapReduce for
data preparation and indexing. A novel hybrid
model for temporal and semantic analysis on Twit-
ter data is proposed, and a graphical user interface
for flexible event visualization is developed. Our
system completely automates the whole event de-
tection process, without requiring any human in-
tervention and domain knowledge to be gained in
advance. The effectiveness of the proposed system
has been evaluated on real Twitter datasets, and em-
pirical evaluation demonstrates our approach out-
performs most of the state-of-the-art methods.

The proposed system is not coupled with any
specific information resource or social media at all,
which means it has a promising application in other
types of resources. Social media also provides other
valuable information resources which were not used
in this study. These valuable resources may be inte-
grated into the current system to further improve the
detection accuracy. In addition, since we already
have a temporal model for event related word rep-
resentation, combined with time series analysis, our
system can be extended to an event forecasting sys-
tem.

References
[1] J. Wen and B. Lee, Event Detection in Twitter, In

Proceedings of the 5th International AAAI Confer-
ence on Weblogs and Social Media, 2011, 401-408.

[2] T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake
shakes Twitter users: real-time event detection by

social sensors, In Proceedings of the 19th Interna-
tional Conference on World Wide Web, 2010, 851-
860.

[3] Q. Zhao and P. Mitra, Event Detection and Visual-
ization for Social Text Streams, In Proceedings of
the International AAAI Conference on Weblogs and
Social Media, 2007, 26-28.

[4] G. Kumaran and J. Allan, Text classification and
named entities for new event detection, In Proceed-
ings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, 2004, 297-304.

[5] R. Parikh and K. Karlapalem, Et: events from
tweets. In Proceedings of the 22nd International
Conference on World Wide Web companion, 2013,
613-620.

[6] G. Fung, J. Yu, P. Yu, and H. Lu, Parameter free
bursty events detection in text streams, In Proceed-
ings of the 31st International Conference on Very
Large Databases, 2005, 181-192.

[7] A. Guille and C. Favre, Mention-anomaly-based
event detection and tracking in twitter, Advances in
Social Networks Analysis and Mining(ASONAM),
2014, 375-382.

[8] X. Wang, F. Zhu, J. Jiang and S. Li, Real time event
detection in twitter, In: Web-Age Information Man-
agement, Springer, Berlin Heidelberg, 2013, 502-
513.

[9] A. Ritter, S. Clark and O. Etzioni, Named entity
recognition in tweets: an experimental study, In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, 2011, 1524-1534.

[10] J. Kleinberg, Bursty and hierarchical structure in
streams, Data Mining and Knowledge Discovery 7,
no. 4, 2003, 373-397.

[11] PearAnalytics. Twitter study - august 2009,
http://www.pearanalytics.com/wpcontent/uploads
/2009/08/Twitter-Study-August-2009.pdf, 2009

[12] R. Li, S. Wang, H. Deng, R. Wang and K. Chang,
Towards social user profiling: unified and discrimi-
native influence model for inferring home locations.
In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, 2012, 1023-1031.

[13] Japan Earthquake, 2011, http://en.wikipedia.org/
wiki/2011 T%C5%8Dhoku earthquake and tsunami

[14] Death of Bin Ladin, 2011, http://en.wikipedia.org/
wiki/Death of Osama bin Laden

MAPREDUCE AND SEMANTICS ENABLED . . .

[15] F. Chen and D. Neill, Non-parametric scan statis-
tics for event detection and forecasting in hetero-
geneous social media graphs. In Proceedings of
the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2014,
1166-1175.

[16] S. Levine, How fast the news spreads through
social media, In http://blog.sysomos.com
/2011/05/02/how-fast-the-news-spreads-through-
social-media/, 2012.

[17] J. Benhardus and J. Kalita, Streaming trend detec-
tion in twitter, International Journal of Web Based
Communities 9, no. 1, 2013, 122-139.

[18] D, Shamma, L. Kennedy and E. Churchill, Peaks
and persistence: modeling the shape of microblog
conversations, In Proceedings of the ACM 2011
conference on Computer supported cooperative
work, 2011, 355-358.

[19] J. Lau, N. Collier and T. Baldwin, On-line Trend
Analysis with Topic Models:\# twitter Trends De-
tection Topic Model Online, In COLING, 2012,
1519-1534.

[20] T. Lappas, B. Arai, M. Platakis, D. Kotsakos and
D. Gunopulos, On burstiness-aware search for doc-

ument sequences, In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009, 477-486.

[21] D. Gruhl, R. Guha, D. Liben-Nowell and A.
Tomkins, Information diffusion through blogspace,
In Proceedings of the 13th International Conference
on World Wide Web, 2004, 491-501.

[22] Y. Hu, A. John, D. Seligmann and F. Wang, What
Were the Tweets About? Topical Associations be-
tween Public Events and Twitter Feeds, In: ICWSM,
2012.

[23] C. Li, A. Sun and A. Datta. Twevent: segment-
based event detection from tweets, In Proceedings of
the 21st ACM International Conference on Informa-
tion and Knowledge Management, 2012, 155-164.

[24] A. Kaplan and M. Haenlein, The early bird catches
the news: Nine things you should know about
micro-blogging. Business Horizons 54, no. 2, 2011,
105-113.

[25] Y. Teh, M. Jordan, M. Beal and D. Blei, Hierar-
chical dirichlet processes, Journal of the American
Statistical Association 101, no. 476, 2006

Dr. Peng Yan is a Senior Research Sci-
entist at 3M Corporate Research Labo-
ratory. He received his PH.D in Com-
puter Science from North Dakota State
University in 2013, with his interests
focused on data mining and text min-
ing. His experience ranges from work
with IBM creating automation frame-
works for software test, research with

North Dakota State University developing novel text mining
algorithms, to work with WoWiWe Instruction Co. (https://
wowiwe.net) designing intelligent tutors and research with
3M in data analysis, data visualization and data mining.

