
JAISCR, 2017, Vol. 7, No. 3, pp. 183

DIRECTED EVOLUTION – A NEW METAHEURISTC FOR
OPTIMIZATION

Corina Rotar1, Laszlo Barna Iantovics2

1Department of Exact and Engineering Sciences, “1 Decembrie 1918” University
Unirii street, no. 15-17, 510109 Alba Iulia, Romania

2Department of Computer Science, ”Petru Maior” University
N. Iorga street, no. 1, 540088, Trgu Mure, ROMANIA

Submitted: 12th March 2016; accepted: 27th October 2016

Abstract

Recently, we have witnessed an infusion of calculating models based on models offered
by nature, models with more or less fidelity to the original that have led to the development
of various problem-solving computational procedures. Starting from the observation of
natural processes at the macroscopic or microscopic level, various methods have been
developed. Technological progress today allows the accelerated reproduction of natural
phenomena in the laboratory, which is why a new niche has arisen in the landscape of
nature-inspired methods. This niche is devoted to the emulation of artificial biological
processes in computational problem-solving methods.

This paper proposes a novel approach, which is to develop novel computational meth-
ods in the field of Natural Computing based on the semi-natural process, namely Directed
Evolution. In the first step we explain Directed Evolution, defined as the artificial re-
production of the process of evolution in the laboratory in order to obtain performing
biological entities. For computer scientists, this provide a strong source of inspiration in
the search for efficient methods of optimization. The computational model that proposed
here largely overlaps with the Directed Evolution protocol, and the results obtained in
the numerical experiments confirm the viability of such techniques inspired by processes
which are more artificial than natural. The paper describes a novel general algorithm,
inspired by Directed Evolution, which is able to solve different optimization problems,
such as single optimization, multiobjective optimization and combinatorial optimization
problems.
Keywords: optimization, directed evolution, nature-inspired computing

1 Introduction

Natural Computing is a significant branch of arti-
ficial intelligence research, and comprises a series
of paradigms and computational techniques broadly
inspired by the nature. A detailed account of the
field is given in [25], where Natural Computation
is defined as the combination of three major re-
search directions: computing inspired by nature,
simulation and emulation of nature in computers,

and computing with natural materials. Among these
directions, computing inspired by nature seems to
be the most popular, presenting different compu-
tational methods which have been successfully ap-
plied in solving various problems. Through a di-
verse range of processes, phenomena, structures,
and organizations, and thanks in no small measure
to its complexity, nature constantly feeds research
into developing new methods and paradigms that
mimic it.

– 200
 10.1515/jaiscr-2017-0013

184 Corina Rotar, Laszlo Barna Iantovics

1.1 Motivation

Perspectives on nature are not limited to a single
science: they are found in biology, physics, chem-
istry, sociology, etc. Yet, the computational meth-
ods that belong to computing inspired by nature
lie beyond the boundaries of any individual branch
of science. The computational researchers bor-
row various metaphors, theories and concepts, of-
ten selected from different areas, and linking them
in order to design an efficient method for solv-
ing specific problems. Taking into account the
proposed goal, the designer (the computer scien-
tist) affords herself the freedom to abstract, sim-
plify and re-interpret the original sources of inspira-
tion, so that a perfect mapping between structures,
natural phenomena and the product (the paradigm,
method or technique) in fact proves difficult to
achieve. An example of this is the rich complex
of genetic algorithms inspired by the theory of neo-
Darwinian natural selection theory, which encapsu-
lates Mendelian genetics (heredity theory). As de-
fined in [26] the artificial model transcends the bor-
ders of evolutionary biology, through making use
of various mechanisms that allow an acceleration
of the evolutionary process: these mechanisms are
necessary in order to solve the problem in ques-
tion, but thereby render the model different from
the original source. In addition, the spontaneity of
nature, whether established or as yet unexplained,
cannot be fully mimicked through exact formulas.
A genetic algorithm is equipped with additional
control parameters or mechanisms to achieve con-
vergence towards the desired solution. In a natu-
ral evolutionary process, such strict control is ab-
sent. That the computational entities evolve under
strict control, contrary to the natural evolution of
biological entities, is a discrepancy between natu-
ral phenomena and artificial processes which seem-
ingly cannot be surpassed.

Generally, the computing approach inspired by
nature mimics observable phenomena in nature and
borrows concepts and terminology from disciplines
cognate to biology. Thanks to technological ad-
vances, phenomena are now produced in the lab-
oratory. All these may be seen as powerful sources
of inspiration in the development of computational
techniques. We refer here to Directed Evolution,
defined as an artificial process by which the process
of evolution is recreated in the laboratory. Obvi-

ously, emulation of evolution, seen from the biolog-
ical perspective, in the paradigm of artificial evolu-
tion, needs to be adjusted: the time required is re-
duced by speeding up the ‘evolution’ process, and
the process itself is guided and strictly controlled
in order to obtain what is desired. Whereas na-
ture evolves spontaneously, but over a very long pe-
riod of time, the lab allows for controlled evolution
of biological entities over a short time. Thus Di-
rected Evolution, viewed as a tool inspired by na-
ture, seems to be a source worthy of consideration
in the design of evolutionary algorithms, since, un-
like natural evolution, it has the advantages of con-
trol and time.

The development of algorithms inspired by Di-
rected Evolution would not fit any of the categories
covered by Natural Computation. The strict plan of
organization proposed in [25], which lists the three
subfields of Natural Computing, would perhaps re-
quire the addition of a new branch, which might in-
volve the infusion of one of the artificial technolo-
gies into the computational technique. The richness
of the process, and the similarity with the evolution-
ary metaphor, thus led us to the idea of designing a
computational model based on Directed Evolution.

1.2 Background

The proposal to formulate a new computational
paradigm that is inspired by the artificial process of
Directed Evolution represents an isolated and chal-
lenging enterprise in the landscape of bio-inspired
techniques. Nevertheless, the richness of such a
source of inspiration is detected in [4], which sug-
gests the use of Directed Evolution techniques for
solving the Hamiltonian Path problem. In [5], the
Directed Evolution expresses evolutionary strate-
gies that are accompanied with ingenious mecha-
nisms for controlled mutation, and does not refer to
the simulation of evolution in the laboratory. How-
ever, it does prefigure the need for directing the evo-
lution in terms of obtaining better performances of
the computational methods. A first attempt to pro-
pose a novel technique inspired by Directed Evo-
lution protocol, dedicated to solving several single
objective optimization problems, is presented in [6].
The emergent nature of Directed Evolution is an-
ticipated in [7], but the strong divergence between
evolutionary computational tools and the research
of molecular biologists is also highlighted.

185Corina Rotar, Laszlo Barna Iantovics

1.1 Motivation

Perspectives on nature are not limited to a single
science: they are found in biology, physics, chem-
istry, sociology, etc. Yet, the computational meth-
ods that belong to computing inspired by nature
lie beyond the boundaries of any individual branch
of science. The computational researchers bor-
row various metaphors, theories and concepts, of-
ten selected from different areas, and linking them
in order to design an efficient method for solv-
ing specific problems. Taking into account the
proposed goal, the designer (the computer scien-
tist) affords herself the freedom to abstract, sim-
plify and re-interpret the original sources of inspira-
tion, so that a perfect mapping between structures,
natural phenomena and the product (the paradigm,
method or technique) in fact proves difficult to
achieve. An example of this is the rich complex
of genetic algorithms inspired by the theory of neo-
Darwinian natural selection theory, which encapsu-
lates Mendelian genetics (heredity theory). As de-
fined in [26] the artificial model transcends the bor-
ders of evolutionary biology, through making use
of various mechanisms that allow an acceleration
of the evolutionary process: these mechanisms are
necessary in order to solve the problem in ques-
tion, but thereby render the model different from
the original source. In addition, the spontaneity of
nature, whether established or as yet unexplained,
cannot be fully mimicked through exact formulas.
A genetic algorithm is equipped with additional
control parameters or mechanisms to achieve con-
vergence towards the desired solution. In a natu-
ral evolutionary process, such strict control is ab-
sent. That the computational entities evolve under
strict control, contrary to the natural evolution of
biological entities, is a discrepancy between natu-
ral phenomena and artificial processes which seem-
ingly cannot be surpassed.

Generally, the computing approach inspired by
nature mimics observable phenomena in nature and
borrows concepts and terminology from disciplines
cognate to biology. Thanks to technological ad-
vances, phenomena are now produced in the lab-
oratory. All these may be seen as powerful sources
of inspiration in the development of computational
techniques. We refer here to Directed Evolution,
defined as an artificial process by which the process
of evolution is recreated in the laboratory. Obvi-

ously, emulation of evolution, seen from the biolog-
ical perspective, in the paradigm of artificial evolu-
tion, needs to be adjusted: the time required is re-
duced by speeding up the ‘evolution’ process, and
the process itself is guided and strictly controlled
in order to obtain what is desired. Whereas na-
ture evolves spontaneously, but over a very long pe-
riod of time, the lab allows for controlled evolution
of biological entities over a short time. Thus Di-
rected Evolution, viewed as a tool inspired by na-
ture, seems to be a source worthy of consideration
in the design of evolutionary algorithms, since, un-
like natural evolution, it has the advantages of con-
trol and time.

The development of algorithms inspired by Di-
rected Evolution would not fit any of the categories
covered by Natural Computation. The strict plan of
organization proposed in [25], which lists the three
subfields of Natural Computing, would perhaps re-
quire the addition of a new branch, which might in-
volve the infusion of one of the artificial technolo-
gies into the computational technique. The richness
of the process, and the similarity with the evolution-
ary metaphor, thus led us to the idea of designing a
computational model based on Directed Evolution.

1.2 Background

The proposal to formulate a new computational
paradigm that is inspired by the artificial process of
Directed Evolution represents an isolated and chal-
lenging enterprise in the landscape of bio-inspired
techniques. Nevertheless, the richness of such a
source of inspiration is detected in [4], which sug-
gests the use of Directed Evolution techniques for
solving the Hamiltonian Path problem. In [5], the
Directed Evolution expresses evolutionary strate-
gies that are accompanied with ingenious mecha-
nisms for controlled mutation, and does not refer to
the simulation of evolution in the laboratory. How-
ever, it does prefigure the need for directing the evo-
lution in terms of obtaining better performances of
the computational methods. A first attempt to pro-
pose a novel technique inspired by Directed Evo-
lution protocol, dedicated to solving several single
objective optimization problems, is presented in [6].
The emergent nature of Directed Evolution is an-
ticipated in [7], but the strong divergence between
evolutionary computational tools and the research
of molecular biologists is also highlighted.

DIRECTED EVOLUTION – A NEW . . .

Analysing the two branches of the different
fields – Directed Evolution in biology and evolu-
tionary algorithms in computer science – it may be
noticed that the infusion from biology toward com-
putation is inferior to the influence flowing in the
opposite direction. Computational techniques rep-
resent more or less efficient methods for sustain-
ing or optimizing Directed Evolution processes [8].
Moreover, the evolutionary computation techniques
are applied for optimizing the process of Directed
Evolution or else they are exploited as helpful tools
[9], [10].

2 Directed Evolution versus Natu-
ral Evolution

Natural evolution refers to the complex phenomena
by which a species adapts in an almost intelligent
manner to environmental conditions. Evolution is
possible due to variation and it is guided by natural
selection. These propositions were formulated by
Charles Darwin in his famous work On the Origin
of Species [17].

The evolutionary principles gradually became
accepted among the academic community, and later
the Darwinian ideas spread and became part of the
collective mentality; nowadays evolutionary theory
belongs to the formal education given through biol-
ogy textbooks. Starting with the above-mentioned
work, the roots of evolutionary theory have ex-
panded and been supplemented by new ideas sup-
ported by scientific demonstrations in the field of
biology.

If technical progress in the 19th century did
not allow a more detailed analysis of the under-
lying structures of natural evolution, the twentieth
century brought a remarkable change in this direc-
tion. Due to later discoveries, the original Dar-
winian Theory required revisions and additions, so
that modern evolutionary theories or neo-Darwinian
theory gradually came to integrate the principle of
genetics. In his The Genetical Theory of Natural
Selection [18], Fisher introduced the term popula-
tion genetics, thereby proposing a new branch of
biology which combines Mendelian genetics with
Darwinian natural selection.

In the same period, in his Evolution: The Mod-
ern Synthesis (1942) [19], Huxley lay the founda-
tion for the modern evolutionary paradigm, intro-
ducing the term modern evolutionary synthesis to
refer to the unification of Darwinian principles and
genetics. The discovery of the structure of DNA
(heredity molecules) by Watson and Crick (1953) is
one of the most remarkable discoveries of the twen-
tieth century and was a turning point in the devel-
opment of molecular biology. An overview of the
dynamics of biology, from Darwin to Crick, reveals
a major shift in perspective, from the macroscopic
level to the most sophisticated level of cell biology.
Nowadays, the latest discoveries in the fields of bi-
ology and chemistry and the rapid progress of tech-
nology have made possible the simulation of evolu-
tion in the laboratory.

Directed Evolution mimics natural evolutionary
process, but unlike it, it occurs at the molecular
level, and does not create new organisms but only
accentuates or produces new genetic traits. The
process of Directed Evolution is possible due to
research that was initiated by the enunciation of
the Central Dogma (Crick, 1951), under which the
transfer of biological information is mostly done
in the following direction: DNA can be copied to
DNA (DNA replication), DNA information can be
copied into RNA (transcription), and proteins can
be synthesized using the information in RNA as a
template (translation).

The ‘central dogma’ has foregrounded the sim-
ple formula of gene flow from DNA to protein. Pro-
tein synthesis is one of the most fundamental bi-
ological processes by which individual cells con-
struct their specific proteins, and proves to be an
area of interest in molecular engineering, so that
Directed Evolution is obviously used at the protein
level.

In short, directed evolution at the protein level
can be defined as the evolving of proteins toward
a user-defined goal, and it is an iterative process
that involves the generation of a set of biological
entities of interest (gene variants), and the screen-
ing/selection to identify those variants which dis-
play better properties. The best mutants of each it-
eration will serve as templates for subsequent itera-
tions of diversification and selection. The process is
repeated until the desired improvement is achieved.
This powerful engineering tool is an iterative strat-

186 Corina Rotar, Laszlo Barna Iantovics

egy which includes at each round three major steps:
amplification, diversification and selection [2-3]. A
survey of Directed Evolution is given in [1].

Even if Directed Evolution mimics natural evo-
lution, there are several features that differentiate
the two processes. Firstly, Directed Evolution rep-
resents a process which is inspired by natural evo-
lution and is recreated in an artificial environment.
From this point of view, the necessary time for ob-
taining the expected results in laboratory is consid-
erably shorter, the complete procedure taking just
few days contrasting to the epochs over which the
natural process occurs. Secondly, absent external
interference, the natural process happens sponta-
neously by transmitting genetic traits from one gen-
eration to another, and mutations and selection of
the adapted individuals. In the case of Directed
Evolution, as the name implies, the entire process
is controlled in the laboratory by various mecha-
nisms of diversification, amplification and selection
schemes that are designed according to the engi-
neer’s goal. Therefore, irrespective of its real pur-
pose, Directed Evolution is in essence superior to
the natural process from the perspective of time and
the possibility of controlling the output.

Figure 1. Synthetic description of the relations
between natural and artificial paradigms

Natural evolution and genetics are major
sources of inspiration in two different branches of
science: Molecular Engineering through Directed
Evolution, and Computer Science through Evolu-
tionary Algorithms. By correlating directed evo-
lution and evolutionary algorithms, it is noticeable
that at least in terms of two aspects, time and con-
trol, the two instruments are very close. Just as Di-

rected Evolution surpasses natural evolution in re-
spect of time and control, so Evolutionary Algo-
rithms achieve the desired results in a short time,
by directing the evolution through sophisticated and
ingenious mechanisms. A common desideratum
of evolutionary techniques and Directed Evolution
procedures is to get the best outcomes in a short
time by following the principles of natural evolu-
tion. Based on these considerations, a computa-
tional model inspired by Directed Evolution can be
proposed as a viable paradigm in Natural Comput-
ing.

3 The Metaphor of Directed Evolu-
tion

The Directed Evolution [11] refers to a collection
of procedures that are performed in the labora-
tory and by which evolution is simulated, aiming
to generate molecules that cannot be found in na-
ture. As a method, Directed Evolution involves
several rounds, comprising diversification, amplifi-
cation and selection of a large library of variants.
Through these procedures, the beneficial mutations
accumulate in the genetic pool, and scientists can
thereby guide the evolution of biological entities to-
wards the desired goal.

Directed Evolution begins with a first phase
whose outcome is a large library of genes. Specific
tools of the first stage are random mutagenesis and
gene recombination. The most widely used meth-
ods of random mutagenesis is error-prone poly-
merase chain reaction (PCR) [12] which introduce
mutations into the DNA chain. Genetic recombina-
tion, considered as the sexual component of diversi-
fication, involves the recombination of different ge-
netic sequences in order to create new structures.
One of the most robust techniques developed in this
direction is DNA shuffling [13], which consists in
the recombination of homologous genes.

Directed Evolution involves the coupling of the
genetic information stored in DNA or RNA with the
functional information from proteins [16]. The pro-
teins that are expressed by the produced library of
genes require linkage to the correspondent genetic
code [15], as long as the purpose of the screening or
the selection process that takes place at the level of
phenotype (the expressed proteins’ pool) is to iden-

187Corina Rotar, Laszlo Barna Iantovics

egy which includes at each round three major steps:
amplification, diversification and selection [2-3]. A
survey of Directed Evolution is given in [1].

Even if Directed Evolution mimics natural evo-
lution, there are several features that differentiate
the two processes. Firstly, Directed Evolution rep-
resents a process which is inspired by natural evo-
lution and is recreated in an artificial environment.
From this point of view, the necessary time for ob-
taining the expected results in laboratory is consid-
erably shorter, the complete procedure taking just
few days contrasting to the epochs over which the
natural process occurs. Secondly, absent external
interference, the natural process happens sponta-
neously by transmitting genetic traits from one gen-
eration to another, and mutations and selection of
the adapted individuals. In the case of Directed
Evolution, as the name implies, the entire process
is controlled in the laboratory by various mecha-
nisms of diversification, amplification and selection
schemes that are designed according to the engi-
neer’s goal. Therefore, irrespective of its real pur-
pose, Directed Evolution is in essence superior to
the natural process from the perspective of time and
the possibility of controlling the output.

Figure 1. Synthetic description of the relations
between natural and artificial paradigms

Natural evolution and genetics are major
sources of inspiration in two different branches of
science: Molecular Engineering through Directed
Evolution, and Computer Science through Evolu-
tionary Algorithms. By correlating directed evo-
lution and evolutionary algorithms, it is noticeable
that at least in terms of two aspects, time and con-
trol, the two instruments are very close. Just as Di-

rected Evolution surpasses natural evolution in re-
spect of time and control, so Evolutionary Algo-
rithms achieve the desired results in a short time,
by directing the evolution through sophisticated and
ingenious mechanisms. A common desideratum
of evolutionary techniques and Directed Evolution
procedures is to get the best outcomes in a short
time by following the principles of natural evolu-
tion. Based on these considerations, a computa-
tional model inspired by Directed Evolution can be
proposed as a viable paradigm in Natural Comput-
ing.

3 The Metaphor of Directed Evolu-
tion

The Directed Evolution [11] refers to a collection
of procedures that are performed in the labora-
tory and by which evolution is simulated, aiming
to generate molecules that cannot be found in na-
ture. As a method, Directed Evolution involves
several rounds, comprising diversification, amplifi-
cation and selection of a large library of variants.
Through these procedures, the beneficial mutations
accumulate in the genetic pool, and scientists can
thereby guide the evolution of biological entities to-
wards the desired goal.

Directed Evolution begins with a first phase
whose outcome is a large library of genes. Specific
tools of the first stage are random mutagenesis and
gene recombination. The most widely used meth-
ods of random mutagenesis is error-prone poly-
merase chain reaction (PCR) [12] which introduce
mutations into the DNA chain. Genetic recombina-
tion, considered as the sexual component of diversi-
fication, involves the recombination of different ge-
netic sequences in order to create new structures.
One of the most robust techniques developed in this
direction is DNA shuffling [13], which consists in
the recombination of homologous genes.

Directed Evolution involves the coupling of the
genetic information stored in DNA or RNA with the
functional information from proteins [16]. The pro-
teins that are expressed by the produced library of
genes require linkage to the correspondent genetic
code [15], as long as the purpose of the screening or
the selection process that takes place at the level of
phenotype (the expressed proteins’ pool) is to iden-

DIRECTED EVOLUTION – A NEW . . .

tify and isolate the genetic signature (genotype) of
those proteins with the desired features.

Subsequent to the diversification phase, the ob-
tained molecules (proteins) are made the subject of
the selection/screening in order to isolate the im-
proved entities. The major difference between the
two mechanisms of selection and screening is that
selection is understood as a method of identifying
the best variants by simultaneously analysing the
entire library, while screening is understood as a
method of examination of each member of the li-
brary [2]. Next, the selected entities are subject to
the amplification process (e.g., PCR), the process
by which multiple copies of a gene or DNA se-
quence are created. During this process, the genetic
information is diversified by the rare introduction of
errors, cross-overs, and reorganizations [14]. The
entire procedure repeats until the goal is achieved –
for example, obtaining a protein with specific func-
tionality.

Figure 2. Schematic overview of directed
evolution cycle

Figure 3. Schematic overview of an evolutionary
algorithm

A brief description of Directed Evolution reveals
several features that are remarkably similar to the
process described by evolutionary algorithms. De-
fined in the 1950s as methods of solving search and
optimization problems, these biological-inspired
computational techniques have been rapidly devel-
oped according to the principles of genetics and
the evolutionary metaphor. Evolutionary compu-
tation comprises four main areas: Genetic Algo-
rithms, Evolutionary Strategies, Evolutionary Pro-
gramming, and Genetic Programming, to which
have recently been added other biologically in-
spired techniques (Particle Swarm Optimization
[23], Ant Colony Optimization [27], Artificial Im-
mune Systems [28], and so on).

Although the literature is extensive, the research
focuses on developing new performant algorithms
or finding new problems where the evolutionary
techniques prove to be efficient. In this landscape,
but also from the perspective of similarities with the
procedures of Directed Evolution, a new Directed
Evolution–inspired paradigm seems to be appropri-
ate.

Next, a scheme of Directed Evolution for prob-
lem solving is described. The system contains:

a Structures of numerical information which cod-
ify the possible solutions of the search space and
by which the entities from biological model are
represented (DNA, Proteins)

b Computing procedures which describe the
corresponding processes from Directed Evo-
lution (Diversification, Expression, Screen-
ing/Selection)

The main elements (structures and modules) of
the model described in Figure 4 are detailed next:

188 Corina Rotar, Laszlo Barna Iantovics

Table 1. Description of the involved structures in
natural and artificial paradigma

Structures Desciption
Natural
Paradigm

Genes
(DNA)

- sequence of nucleotides
in DNA, which is the
functional unit of inher-
itance; code for mak-
ing proteins: the infor-
mation that is stored in
DNA is partially trans-
ferred into proteins us-
ing RNA as an intermedi-
ary(transcription, transla-
tion)

Natural
Paradigm

Proteins -large biological
molecules consisting
of chains of amino acids;
these are generated
through the process of
gene expression in two
stages: transcription
and translation

Artificial
Paradigm

Genes
(DNA)

- possible solutions from
the search space, numer-
ically codified

Artificial
Paradigm

Proteins - solutions in the objec-
tive space (gene’s prod-
uct)
- the protein synthesis
procedure is comparable
to the process of mapping
the search space to the
objective space

Modules:

a Diversification represents the process by which
the gene library (analogous to the population
from the genetic algorithm paradigm) is created.
The specific procedures of diversification con-
sist in the introduction of the genetic mutation
and in the shuffling of the genetic code.

b Expression represents the process through
which the partial solutions that are codified in
genes are further evaluated conforming to the
problems’ objectives. The outcome of this pro-
cedure is the protein library, corresponding to
the objectives’ space.

c Screening/Selection mimics the corresponding
screening and selection process from the natu-
ral paradigm, aiming to identify those elements
which respond to the problem’s objectives by
establishing correspondence between the genes
and the expressed proteins.

d Amplification is the process by which the re-
sults obtained by selection or screening are am-
plified in order to obtain a new diverse library of
genes. The procedures involved in this stage are
the cloning of the genes and diversification by
mutagenesis.

The aim of the evolutionary method here devel-
oped is to evolve the genetic code that corresponds
to the beneficial proteins that conform to the prob-
lem’s objectives. The whole process simulates the
procedures and the controlling mechanism from the
paradigm of Directed Evolution. The first phase
consists in generating a diverse library of genes
(possible solutions in the search space) which are
expressed for obtaining the proteins’ library (fitness
landscape). The selection procedure identifies the
most promising structures (the proteins) according
to the given problems’ objectives. The genes that
correspond to those proteins are further subject to
amplification and diversification, and thus a new li-
brary of genes is constructed. The cycle repeats un-
til the outcome of the entire process is satisfactory.

Figure 4. Schematic overview of a computational
directed evolution algorithm

189Corina Rotar, Laszlo Barna Iantovics

Table 1. Description of the involved structures in
natural and artificial paradigma

Structures Desciption
Natural
Paradigm

Genes
(DNA)

- sequence of nucleotides
in DNA, which is the
functional unit of inher-
itance; code for mak-
ing proteins: the infor-
mation that is stored in
DNA is partially trans-
ferred into proteins us-
ing RNA as an intermedi-
ary(transcription, transla-
tion)

Natural
Paradigm

Proteins -large biological
molecules consisting
of chains of amino acids;
these are generated
through the process of
gene expression in two
stages: transcription
and translation

Artificial
Paradigm

Genes
(DNA)

- possible solutions from
the search space, numer-
ically codified

Artificial
Paradigm

Proteins - solutions in the objec-
tive space (gene’s prod-
uct)
- the protein synthesis
procedure is comparable
to the process of mapping
the search space to the
objective space

Modules:

a Diversification represents the process by which
the gene library (analogous to the population
from the genetic algorithm paradigm) is created.
The specific procedures of diversification con-
sist in the introduction of the genetic mutation
and in the shuffling of the genetic code.

b Expression represents the process through
which the partial solutions that are codified in
genes are further evaluated conforming to the
problems’ objectives. The outcome of this pro-
cedure is the protein library, corresponding to
the objectives’ space.

c Screening/Selection mimics the corresponding
screening and selection process from the natu-
ral paradigm, aiming to identify those elements
which respond to the problem’s objectives by
establishing correspondence between the genes
and the expressed proteins.

d Amplification is the process by which the re-
sults obtained by selection or screening are am-
plified in order to obtain a new diverse library of
genes. The procedures involved in this stage are
the cloning of the genes and diversification by
mutagenesis.

The aim of the evolutionary method here devel-
oped is to evolve the genetic code that corresponds
to the beneficial proteins that conform to the prob-
lem’s objectives. The whole process simulates the
procedures and the controlling mechanism from the
paradigm of Directed Evolution. The first phase
consists in generating a diverse library of genes
(possible solutions in the search space) which are
expressed for obtaining the proteins’ library (fitness
landscape). The selection procedure identifies the
most promising structures (the proteins) according
to the given problems’ objectives. The genes that
correspond to those proteins are further subject to
amplification and diversification, and thus a new li-
brary of genes is constructed. The cycle repeats un-
til the outcome of the entire process is satisfactory.

Figure 4. Schematic overview of a computational
directed evolution algorithm

DIRECTED EVOLUTION – A NEW . . .

4 Directed Evolution Algorithm as
Optimization Tool

Let us consider a general optimization problem with
m objectives and n variables. For the purpose of cur-
rent research, we consider only optimization prob-
lems without constraints. The following paragraphs
describe the structures and procedures involved in
the Directed Evolution Algorithm.

4.1 Codification - structures

In a natural model, each gene is a sequence of
nucleotides which form the DNA. In an artificial
model, a gene corresponds to the possible solution
from the search space and is represented by an n-
dimensional vector of values from the specific al-
phabet: (x1,x1

1,x2,x2
1, ...,xn) (Figure 5).

The natural protein represents a chain of
aminoacids. The corresponding objectives’ val-
ues computed on the basis of the genes’ codifica-
tion form the protein structures (f1x1

1, f2,x2
1, ..., fm),

which correspond to the m-dimensional vector as in
Figure 6.

Figure 5. Gene structure

Figure 6. Protein structure

4.2 Libraries and Expressing

The algorithms work with two libraries: the first
corresponds to the genes; the second corresponds to
the expressed proteins. Both libraries vary in size,
Scurrent ∈ [Smin,Smax], during the directed evolution
process.

The real proteins are generated through the pro-
cess of gene expression in two stages: transcription
and translation. Natural transcription is the process
by which the genes are copied into the RNA from
where, in the next phase, namely translation, the
proteins are created. For the purpose of our study
we simplified the expressing procedure, consider-
ing that the output of the transcription and trans-
lation is given by the proteome (the entire set of
expressed proteins [29]) (fig. 7). For those opti-
mization problems that have constraints, the distinct
phase of transcription would be suitable as it would
allow the generation of a subset of the proteome,
corresponding to the feasible solutions (fig. 8).

The procedure of Artificial Expressing repre-
sents the process by which the proteins are gener-
ated, respectively, the objectives’ values are com-
puted.

Figure 7. Gene expression. Protein synthesis. (For
optimization problems without constrains)

Figure 8. Gene expression. Protein synthesis. (For
optimization problems involving constrains)

The fitness (the quality of the gene giving the
functionality of a protein) of a gene G ∈ DNA
is given by the quality of the corresponding ex-
pressed protein, obtained using Translate function
P=Translate(G):

Fitness(G)=Quality(P)=Quality(Translate(G))

where the function to evaluate the quality of the pro-
tein is designed according to the specification of the
problem.

Figure 5. Gene structure

Figure 6. Protein structure

4.2. Libraries and Expressing

The algorithms work with two libraries: the
first corresponds to the genes; the second
corresponds to the expressed proteins. Both
libraries vary in size, Scurrent ∊[Smin , Smax],
during the directed evolution process.

The real proteins are generated
through the process of gene expression in two
stages: transcription and translation. Natural
transcription is the process by which the genes
are copied into the RNA from where, in the
next phase, namely translation, the proteins are
created. For the purpose of our study we
simplified the expressing procedure,
considering that the output of the transcription
and translation is given by the proteome (the
entire set of expressed proteins [29]) (fig. 7).
For those optimization problems that have
constraints, the distinct phase of transcription
would be suitable as it would allow the
generation of a subset of the proteome,
corresponding to the feasible solutions (fig. 8).

The procedure of Artificial Expressing
represents the process by which the proteins
are generated, respectively, the objectives’
values are computed.

Figure 7. Gene expression. Protein synthesis.
(For optimization problems without constrains)

Figure 8. Gene expression. Protein synthesis.
(For optimization problems involving
constrains)

The fitness (the quality of the gene

giving the functionality of a protein) of a gene
G∈DNA is given by the quality of the
corresponding expressed protein, obtained
using Translate function P=Translate(G):

   ))((GTranslateQualityPQualityGFitness 

where the function to evaluate the quality of
the protein is designed according to the
specification of the problem.

Function Translate (Gi, Proteini)
for each objective j=1 to m

Proteini(j) ⇽ fj(Gi) //compute the jth
objectives
end for
End

Procedure Expressing
for each gene Gi∈DNA

Proteini ⇽Translate(Gi) //protein
expressing
end for
End

4.3 Selection/Screening

Selection and screening of the qualified
sequences is conducted in order to spread the
performant DNA variants. The decision by
which the genetic sequences (obtained either
by shuffling or by mutagenesis) survive is
made on the basis of the qualities of the
proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the
improved sequences can be performed within
the variation procedures after each new gene is
generated from the original genes. Therefore,
in DNA Shuffling and Mutagenesis, the new
genetic sequences may be inspected and
compared with the original ones and the
outcome of the direct comparisons may be
further included into the Gene Library.

 protein

f1 f2 f3 f4 f5 ... … … … …

 gene

x1 x2 x3 x4 x5 ... … … … …

…

gene gene gene

protein protein

 gene

…

gene gene

protein

protein

 gene

protein

Protein
Synthesis

Figure 5. Gene structure

Figure 6. Protein structure

4.2. Libraries and Expressing

The algorithms work with two libraries: the
first corresponds to the genes; the second
corresponds to the expressed proteins. Both
libraries vary in size, Scurrent ∊[Smin , Smax],
during the directed evolution process.

The real proteins are generated
through the process of gene expression in two
stages: transcription and translation. Natural
transcription is the process by which the genes
are copied into the RNA from where, in the
next phase, namely translation, the proteins are
created. For the purpose of our study we
simplified the expressing procedure,
considering that the output of the transcription
and translation is given by the proteome (the
entire set of expressed proteins [29]) (fig. 7).
For those optimization problems that have
constraints, the distinct phase of transcription
would be suitable as it would allow the
generation of a subset of the proteome,
corresponding to the feasible solutions (fig. 8).

The procedure of Artificial Expressing
represents the process by which the proteins
are generated, respectively, the objectives’
values are computed.

Figure 7. Gene expression. Protein synthesis.
(For optimization problems without constrains)

Figure 8. Gene expression. Protein synthesis.
(For optimization problems involving
constrains)

The fitness (the quality of the gene

giving the functionality of a protein) of a gene
G∈DNA is given by the quality of the
corresponding expressed protein, obtained
using Translate function P=Translate(G):

   ))((GTranslateQualityPQualityGFitness 

where the function to evaluate the quality of
the protein is designed according to the
specification of the problem.

Function Translate (Gi, Proteini)
for each objective j=1 to m

Proteini(j) ⇽ fj(Gi) //compute the jth
objectives
end for
End

Procedure Expressing
for each gene Gi∈DNA

Proteini ⇽Translate(Gi) //protein
expressing
end for
End

4.3 Selection/Screening

Selection and screening of the qualified
sequences is conducted in order to spread the
performant DNA variants. The decision by
which the genetic sequences (obtained either
by shuffling or by mutagenesis) survive is
made on the basis of the qualities of the
proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the
improved sequences can be performed within
the variation procedures after each new gene is
generated from the original genes. Therefore,
in DNA Shuffling and Mutagenesis, the new
genetic sequences may be inspected and
compared with the original ones and the
outcome of the direct comparisons may be
further included into the Gene Library.

 protein

f1 f2 f3 f4 f5 ... … … … …

 gene

x1 x2 x3 x4 x5 ... … … … …

…

gene gene gene

protein protein

 gene

…

gene gene

protein

protein

 gene

protein

Protein
Synthesis

Figure 5. Gene structure

Figure 6. Protein structure

4.2. Libraries and Expressing

The algorithms work with two libraries: the
first corresponds to the genes; the second
corresponds to the expressed proteins. Both
libraries vary in size, Scurrent ∊[Smin , Smax],
during the directed evolution process.

The real proteins are generated
through the process of gene expression in two
stages: transcription and translation. Natural
transcription is the process by which the genes
are copied into the RNA from where, in the
next phase, namely translation, the proteins are
created. For the purpose of our study we
simplified the expressing procedure,
considering that the output of the transcription
and translation is given by the proteome (the
entire set of expressed proteins [29]) (fig. 7).
For those optimization problems that have
constraints, the distinct phase of transcription
would be suitable as it would allow the
generation of a subset of the proteome,
corresponding to the feasible solutions (fig. 8).

The procedure of Artificial Expressing
represents the process by which the proteins
are generated, respectively, the objectives’
values are computed.

Figure 7. Gene expression. Protein synthesis.
(For optimization problems without constrains)

Figure 8. Gene expression. Protein synthesis.
(For optimization problems involving
constrains)

The fitness (the quality of the gene

giving the functionality of a protein) of a gene
G∈DNA is given by the quality of the
corresponding expressed protein, obtained
using Translate function P=Translate(G):

   ))((GTranslateQualityPQualityGFitness 

where the function to evaluate the quality of
the protein is designed according to the
specification of the problem.

Function Translate (Gi, Proteini)
for each objective j=1 to m

Proteini(j) ⇽ fj(Gi) //compute the jth
objectives
end for
End

Procedure Expressing
for each gene Gi∈DNA

Proteini ⇽Translate(Gi) //protein
expressing
end for
End

4.3 Selection/Screening

Selection and screening of the qualified
sequences is conducted in order to spread the
performant DNA variants. The decision by
which the genetic sequences (obtained either
by shuffling or by mutagenesis) survive is
made on the basis of the qualities of the
proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the
improved sequences can be performed within
the variation procedures after each new gene is
generated from the original genes. Therefore,
in DNA Shuffling and Mutagenesis, the new
genetic sequences may be inspected and
compared with the original ones and the
outcome of the direct comparisons may be
further included into the Gene Library.

 protein

f1 f2 f3 f4 f5 ... … … … …

 gene

x1 x2 x3 x4 x5 ... … … … …

…

gene gene gene

protein protein

 gene

…

gene gene

protein

protein

 gene

protein

Protein
Synthesis

Figure 5. Gene structure

Figure 6. Protein structure

4.2. Libraries and Expressing

The algorithms work with two libraries: the
first corresponds to the genes; the second
corresponds to the expressed proteins. Both
libraries vary in size, Scurrent ∊[Smin , Smax],
during the directed evolution process.

The real proteins are generated
through the process of gene expression in two
stages: transcription and translation. Natural
transcription is the process by which the genes
are copied into the RNA from where, in the
next phase, namely translation, the proteins are
created. For the purpose of our study we
simplified the expressing procedure,
considering that the output of the transcription
and translation is given by the proteome (the
entire set of expressed proteins [29]) (fig. 7).
For those optimization problems that have
constraints, the distinct phase of transcription
would be suitable as it would allow the
generation of a subset of the proteome,
corresponding to the feasible solutions (fig. 8).

The procedure of Artificial Expressing
represents the process by which the proteins
are generated, respectively, the objectives’
values are computed.

Figure 7. Gene expression. Protein synthesis.
(For optimization problems without constrains)

Figure 8. Gene expression. Protein synthesis.
(For optimization problems involving
constrains)

The fitness (the quality of the gene

giving the functionality of a protein) of a gene
G∈DNA is given by the quality of the
corresponding expressed protein, obtained
using Translate function P=Translate(G):

   ))((GTranslateQualityPQualityGFitness 

where the function to evaluate the quality of
the protein is designed according to the
specification of the problem.

Function Translate (Gi, Proteini)
for each objective j=1 to m

Proteini(j) ⇽ fj(Gi) //compute the jth
objectives
end for
End

Procedure Expressing
for each gene Gi∈DNA

Proteini ⇽Translate(Gi) //protein
expressing
end for
End

4.3 Selection/Screening

Selection and screening of the qualified
sequences is conducted in order to spread the
performant DNA variants. The decision by
which the genetic sequences (obtained either
by shuffling or by mutagenesis) survive is
made on the basis of the qualities of the
proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the
improved sequences can be performed within
the variation procedures after each new gene is
generated from the original genes. Therefore,
in DNA Shuffling and Mutagenesis, the new
genetic sequences may be inspected and
compared with the original ones and the
outcome of the direct comparisons may be
further included into the Gene Library.

 protein

f1 f2 f3 f4 f5 ... … … … …

 gene

x1 x2 x3 x4 x5 ... … … … …

…

gene gene gene

protein protein

 gene

…

gene gene

protein

protein

 gene

protein

Protein
Synthesis

190 Corina Rotar, Laszlo Barna Iantovics

Function Translate (Gi, Proteini)

for each objective j=1 to m

Proteini(j) ← f j(Gi) //compute the jth objec-
tives

end for End

Procedure Expressing for each gene Gi ∈ DNA

Proteini ← Translate(Gi) //protein expressing

end for End

4.3 Selection/Screening

Selection and screening of the qualified sequences
is conducted in order to spread the performant DNA
variants. The decision by which the genetic se-
quences (obtained either by shuffling or by mutage-
nesis) survive is made on the basis of the qualities
of the proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the improved se-
quences can be performed within the variation pro-
cedures after each new gene is generated from the
original genes. Therefore, in DNA Shuffling and
Mutagenesis, the new genetic sequences may be in-
spected and compared with the original ones and
the outcome of the direct comparisons may be fur-
ther included into the Gene Library. Nevertheless,
this above-described procedure, even though it is
straightforward, would significally increase the se-
lection pressure, and should be generally avoided.
This screening process may be required for some
optimization problems where the risk of the pre-
mature convergence is limited. Also, because this
phenomenon cannot be checked beforehand, the se-
lection mechanism that is described next would be
more suitable for a general optimization technique.

The selection mechanism will favour the best
candidates from the genetic library. Depending on
the optimization problem, whether single or multi-
objective, the selection procedure gathers either the
elite among the genetic pool according to the single
objective values, or the sub-set of the Pareto non-
dominated solutions. In both cases the elite acts for
the next round of variation, increasing the chance
of an overall improvement of the genetic library,
and thus implicitly of the expressed proteins. As
for multiobjective optimization problems, the num-
ber of the nondominated candidates gives the size
of the selected elite, where for a single-objective

optimization this size should be defined a priori.
In respect to the ratio between the initial size and
the maximum size of the genetic library, we choose
the same proportion of elite size from the current
library (e.g., 20%). Simply speaking, the selection
procedure chooses the set of the best solutions from
the current library representing the gene pool for a
next round of diversification. To put it differently,
the screening process analyzes each newly created
gene and determines if it replaces the original one.

Procedure Selection

Input DNA new

DNA← Elite(DNA New)

Output DNA

End

4.4 Diversification: Mutagenesis and DNA
Shuffling

Figure 9. Mutagenesis. Mutated DNA sequence
may vary differently, according to the mutation

frequency

Figure 10. Shuffling of homologous genes

Nevertheless, this above-described procedure,
even though it is straightforward, would
significally increase the selection pressure, and
should be generally avoided. This screening
process may be required for some optimization
problems where the risk of the premature
convergence is limited. Also, because this
phenomenon cannot be checked beforehand,
the selection mechanism that is described next
would be more suitable for a general
optimization technique.

The selection mechanism will favour
the best candidates from the genetic library.
Depending on the optimization problem,
whether single or multi-objective, the selection
procedure gathers either the elite among the
genetic pool according to the single objective
values, or the sub-set of the Pareto
nondominated solutions. In both cases the elite
acts for the next round of variation, increasing
the chance of an overall improvement of the
genetic library, and thus implicitly of the
expressed proteins. As for multiobjective
optimization problems, the number of the
nondominated candidates gives the size of the
selected elite, where for a single-objective
optimization this size should be defined a
priori. In respect to the ratio between the initial
size and the maximum size of the genetic
library, we choose the same proportion of elite

size from the current library (e.g., 20%).
Simply speaking, the selection procedure
chooses the set of the best solutions from the
current library representing the gene pool for a
next round of diversification. To put it
differently, the screening process analyzes
each newly created gene and determines if it
replaces the original one.

Procedure Selection
Input DNA_new

DNA⇽ Elite(DNA_New)
Output DNA
End

4.4. Diversification: Mutagenesis
and DNA Shuffling

Considering DNA={G1,…,GS} - the genes’
library and ∏={Protein1,…,ProteinS} – the
proteins’ library, the following procedures
describes the major variation phases of the
Directed Evolution Optimization Algorithm,
namely DNA Shuffling and Mutagenesis.
Diversification of the genetic code is made
according to the DE protocol: mutagenesis and
DNA Shuffling.

Figure 9. Mutagenesis. Mutated DNA
sequence may vary differently, according to
the mutation frequency

Figure 10. Shuffling of homologous genes

The mutations’ frequency represents the
average number of mutations per each selected
gene and is computed according to the
following formula:

SSfrequency max
where Smax is the maximum size of the library
and S represents the current size of the library.

This value measures to what extent
each variant proliferates into the genetic pool.
Depending on the type of the optimization

problem, whether single or multiobjective, the
frequency is a constant value during the
evolutionary process or else varies according
to the variable size of the current population.

Each new variant is generated within
the boundaries of the gene library, as in the

x1 x2 x3 x4 x5 ... … … …

y1 y2 y3 y4 y5 ... … … …

Homologous
genes

… .

x1 x2 x3 x4 x5 ... … … … …

Nevertheless, this above-described procedure,
even though it is straightforward, would
significally increase the selection pressure, and
should be generally avoided. This screening
process may be required for some optimization
problems where the risk of the premature
convergence is limited. Also, because this
phenomenon cannot be checked beforehand,
the selection mechanism that is described next
would be more suitable for a general
optimization technique.

The selection mechanism will favour
the best candidates from the genetic library.
Depending on the optimization problem,
whether single or multi-objective, the selection
procedure gathers either the elite among the
genetic pool according to the single objective
values, or the sub-set of the Pareto
nondominated solutions. In both cases the elite
acts for the next round of variation, increasing
the chance of an overall improvement of the
genetic library, and thus implicitly of the
expressed proteins. As for multiobjective
optimization problems, the number of the
nondominated candidates gives the size of the
selected elite, where for a single-objective
optimization this size should be defined a
priori. In respect to the ratio between the initial
size and the maximum size of the genetic
library, we choose the same proportion of elite

size from the current library (e.g., 20%).
Simply speaking, the selection procedure
chooses the set of the best solutions from the
current library representing the gene pool for a
next round of diversification. To put it
differently, the screening process analyzes
each newly created gene and determines if it
replaces the original one.

Procedure Selection
Input DNA_new

DNA⇽ Elite(DNA_New)
Output DNA
End

4.4. Diversification: Mutagenesis
and DNA Shuffling

Considering DNA={G1,…,GS} - the genes’
library and ∏={Protein1,…,ProteinS} – the
proteins’ library, the following procedures
describes the major variation phases of the
Directed Evolution Optimization Algorithm,
namely DNA Shuffling and Mutagenesis.
Diversification of the genetic code is made
according to the DE protocol: mutagenesis and
DNA Shuffling.

Figure 9. Mutagenesis. Mutated DNA
sequence may vary differently, according to
the mutation frequency

Figure 10. Shuffling of homologous genes

The mutations’ frequency represents the
average number of mutations per each selected
gene and is computed according to the
following formula:

SSfrequency max
where Smax is the maximum size of the library
and S represents the current size of the library.

This value measures to what extent
each variant proliferates into the genetic pool.
Depending on the type of the optimization

problem, whether single or multiobjective, the
frequency is a constant value during the
evolutionary process or else varies according
to the variable size of the current population.

Each new variant is generated within
the boundaries of the gene library, as in the

x1 x2 x3 x4 x5 ... … … …

y1 y2 y3 y4 y5 ... … … …

Homologous
genes

… .

x1 x2 x3 x4 x5 ... … … … …

191Corina Rotar, Laszlo Barna Iantovics

Function Translate (Gi, Proteini)

for each objective j=1 to m

Proteini(j) ← f j(Gi) //compute the jth objec-
tives

end for End

Procedure Expressing for each gene Gi ∈ DNA

Proteini ← Translate(Gi) //protein expressing

end for End

4.3 Selection/Screening

Selection and screening of the qualified sequences
is conducted in order to spread the performant DNA
variants. The decision by which the genetic se-
quences (obtained either by shuffling or by mutage-
nesis) survive is made on the basis of the qualities
of the proteins, which are given by the values of the
objectives codified in the proteins’ structures.

The screening for survival of the improved se-
quences can be performed within the variation pro-
cedures after each new gene is generated from the
original genes. Therefore, in DNA Shuffling and
Mutagenesis, the new genetic sequences may be in-
spected and compared with the original ones and
the outcome of the direct comparisons may be fur-
ther included into the Gene Library. Nevertheless,
this above-described procedure, even though it is
straightforward, would significally increase the se-
lection pressure, and should be generally avoided.
This screening process may be required for some
optimization problems where the risk of the pre-
mature convergence is limited. Also, because this
phenomenon cannot be checked beforehand, the se-
lection mechanism that is described next would be
more suitable for a general optimization technique.

The selection mechanism will favour the best
candidates from the genetic library. Depending on
the optimization problem, whether single or multi-
objective, the selection procedure gathers either the
elite among the genetic pool according to the single
objective values, or the sub-set of the Pareto non-
dominated solutions. In both cases the elite acts for
the next round of variation, increasing the chance
of an overall improvement of the genetic library,
and thus implicitly of the expressed proteins. As
for multiobjective optimization problems, the num-
ber of the nondominated candidates gives the size
of the selected elite, where for a single-objective

optimization this size should be defined a priori.
In respect to the ratio between the initial size and
the maximum size of the genetic library, we choose
the same proportion of elite size from the current
library (e.g., 20%). Simply speaking, the selection
procedure chooses the set of the best solutions from
the current library representing the gene pool for a
next round of diversification. To put it differently,
the screening process analyzes each newly created
gene and determines if it replaces the original one.

Procedure Selection

Input DNA new

DNA← Elite(DNA New)

Output DNA

End

4.4 Diversification: Mutagenesis and DNA
Shuffling

Figure 9. Mutagenesis. Mutated DNA sequence
may vary differently, according to the mutation

frequency

Figure 10. Shuffling of homologous genes

DIRECTED EVOLUTION – A NEW . . .

Considering DNA={G1,. . . ,GS} - the genes’ library
and Π={Protein1,. . . ,ProteinS} – the proteins’ li-
brary, the following procedures describes the ma-
jor variation phases of the Directed Evolution Op-
timization Algorithm, namely DNA Shuffling and
Mutagenesis. Diversification of the genetic code is
made according to the DE protocol: mutagenesis
and DNA Shuffling.

The mutations’ frequency represents the average
number of mutations per each selected gene and is
computed according to the following formula

f requency = Smax
/

S,

where Smax is the maximum size of the library and
S represents the current size of the library.

This value measures to what extent each vari-
ant proliferates into the genetic pool. Depending
on the type of the optimization problem, whether
single or multiobjective, the frequency is a constant
value during the evolutionary process or else varies
according to the variable size of the current popula-
tion.

Each new variant is generated within the bound-
aries of the gene library, as in the natural model
where mutants are similar to the originals. There-
fore, the range of the search space updates accord-
ingly to the current library. The selected genetic
sequence is mutated by randomly replacing a value
(nucleotide) with a new one that is generated into
the current range.

Procedure Mutagenesis

Input DNA – current genetic library

for each gene Gi ∈DNA

for k=1 to frequency

M ← Mutate (Gi)

Copy(G Newi, M)

end for

end for

Output DNA new //new genetic library

End Mutagenesis

The DNA shuffling algorithm, to some extent, mim-
ics the genetic shuffling procedure in Directed Evo-
lution. Mating is made on the basis of the similari-
ties of two genetic sequences.

The similarity of two genes is computed
through a distance measure. In our experiments we
used either the Euclidian distance when genes are
real values, or the Hamming distance when the bi-
nary alphabet is used.

The homologous partner of one gene is the clos-
est gene from the same library according to the dis-
tance measure. Put simply, the genetic shuffling
procedure blends two homologous genes.

Procedure DNA Shuffling

Input DNA – current genetic library

//copy first S genes into the new DNA

for k=1 to S

Copy(G newk ,Gk)

end for

for k=S+1 to Smax

//binary tournament selection

BinarySelection Gi∈DNA

//Search homologous gene Hi∈DNA

Hi←Homologous (Gi)

New←GeneticShuffle (Gi,Hi)

Copy(G newi ,New)

end for

Output DNA new // new genetic library

End DNA Shuffling

The general Directed Evolution Algorithm for
Optimization is an iterative technique with the
following modules: diversification (Dna Shuffling,
Mutagenesis), Expression and Selection.

Algorithm DirectedEvolution

Randomly generate DNA library of size Smin

while (termination condition∗)

Call Mutagenesis

Call Expression

Call Selection

Call DNA Shuffling

Call Expression

Call Selection

end while

EndAlgorithm

192 Corina Rotar, Laszlo Barna Iantovics

∗termination condition may refer to the attaining
the pre-established maximum cycles or to the at-
taining of the desired quality of the protein

5 Experimental results - algo-
rithm’s behaviour

In order to evaluate the behaviour of the DE algo-
rithm, we considered several popular test functions:
Ackley, Griewank, Rastrigin and Schwefel, which
are scalable as regards the number of variables. The
test functions are described in [30].

The algorithm runs 30 times and the Accuracy
metric is computed. Accuracy measures the Euclid-
ian distance between the best found solution and the
global optimum. The number of fitness evaluations
is also recorded.

We considered three test scenarios to observe
the algorithm’s performance when the size of li-
brary, the number of cycles and the number of vari-
ables varies:

a First scenario: the maximum library size varies
as 50, 100, 150, 200, 250, and 300 when the ini-
tial library size represents 20% of the maximum
size. At each run a number of 100 cycles are
produced and the number of variables is set to
30.

b Second scenario: the cycles’ number varies as
50, 100, 200, 300, 400, 500. The maximum size
of the library is 50 (initial size is 20%), the num-
ber of variables is 30.

c Third scenario: The number of variables varies
(5, 10, 15, 20, 25, 30) . The maximum library
size is 100 and 100 cycles are produced for each
run.

As we expected, the accuracy of the solutions found
by the DE algorithm becomes better with increas-
ing size of the library. Exept for the Griewank test
function, which is paricularly difficult as it is highly
multimodal, for the other test functions the perfor-
mance of the algorithm increases as the library size
becomes larger.

For the second scenario, when the number of cy-
cles/iterations increases, the accuracy of the solu-
tions improves accordingly. For a number of cy-

cles greater than 100 the accuracy significantly de-
creases, which confirms the convergence of the DE
algorithm and its ability to deal with multimodality.

For the third test scenario, the dimension of the
search space varies. Thus, it is hard to give con-
clusive assessment from the table above, as the av-
erage accuracy of the solutions does not improve
monotonically with the search space’s dimension,
as is expected (higher dimension would correspond
to larger error). Nevertheless, for the 5-variables
test scenario, Ackley test function, the DE algo-
rithm converges to the global minimum 19 times
out of 30 runs. In this situation the mean of the ac-
curacy doesn’t reflect the good performance of the
algorithm, therefore, the modal value (the most fre-
quent data value) and the number of occurences of
the modal value are presented too.

We consider that the algorithm finds the global
optimum when the accuracy of the final solution is
computed as 0 as the variable values are of an or-
der of magnitude higher than (-10) and the cosinus
function returns 1. For those cases where the global
minimum value is obtained we have given in the ta-
ble the average order of magnitude for the variables’
values.

For Rastrigin test function with 5 and 10 vari-
ables, the DE algorithm finds the global minimum
for more than 70% of the runs. An interesting sit-
uation occurs when 10 variables were considered,
where the success ratio (29/30) is higher than for
the 5 variables’ case (25/30). Also, as the local op-
tima are less and more spaced apart for fewer vari-
ables, the premature convergence is more probable,
and that could be an explanation of the situation
previously described. The difference between the
results for 5 and 10 variables cases also resides in
the average number of cycles in which the global
optimum is attained. So, the average number of cy-
cles in which the optimum is attained is less than
40 cycles for 5 variables and less than 80 cycles for
10 variables. As the table shows, the average ac-
curacy in the same number of evaluations (NFE) –
corresponding to 100 cycles – and the better results
obtained in 10 dimensions could be explained by
the fact that the slower convergence for higher di-
mensions offers to the DE algorithm adequate time
to overcome the local optima.

For a higher dimension of search space (e.g., 20
or 30 variables), the algorithm cannot provide the

193Corina Rotar, Laszlo Barna Iantovics

∗termination condition may refer to the attaining
the pre-established maximum cycles or to the at-
taining of the desired quality of the protein

5 Experimental results - algo-
rithm’s behaviour

In order to evaluate the behaviour of the DE algo-
rithm, we considered several popular test functions:
Ackley, Griewank, Rastrigin and Schwefel, which
are scalable as regards the number of variables. The
test functions are described in [30].

The algorithm runs 30 times and the Accuracy
metric is computed. Accuracy measures the Euclid-
ian distance between the best found solution and the
global optimum. The number of fitness evaluations
is also recorded.

We considered three test scenarios to observe
the algorithm’s performance when the size of li-
brary, the number of cycles and the number of vari-
ables varies:

a First scenario: the maximum library size varies
as 50, 100, 150, 200, 250, and 300 when the ini-
tial library size represents 20% of the maximum
size. At each run a number of 100 cycles are
produced and the number of variables is set to
30.

b Second scenario: the cycles’ number varies as
50, 100, 200, 300, 400, 500. The maximum size
of the library is 50 (initial size is 20%), the num-
ber of variables is 30.

c Third scenario: The number of variables varies
(5, 10, 15, 20, 25, 30) . The maximum library
size is 100 and 100 cycles are produced for each
run.

As we expected, the accuracy of the solutions found
by the DE algorithm becomes better with increas-
ing size of the library. Exept for the Griewank test
function, which is paricularly difficult as it is highly
multimodal, for the other test functions the perfor-
mance of the algorithm increases as the library size
becomes larger.

For the second scenario, when the number of cy-
cles/iterations increases, the accuracy of the solu-
tions improves accordingly. For a number of cy-

cles greater than 100 the accuracy significantly de-
creases, which confirms the convergence of the DE
algorithm and its ability to deal with multimodality.

For the third test scenario, the dimension of the
search space varies. Thus, it is hard to give con-
clusive assessment from the table above, as the av-
erage accuracy of the solutions does not improve
monotonically with the search space’s dimension,
as is expected (higher dimension would correspond
to larger error). Nevertheless, for the 5-variables
test scenario, Ackley test function, the DE algo-
rithm converges to the global minimum 19 times
out of 30 runs. In this situation the mean of the ac-
curacy doesn’t reflect the good performance of the
algorithm, therefore, the modal value (the most fre-
quent data value) and the number of occurences of
the modal value are presented too.

We consider that the algorithm finds the global
optimum when the accuracy of the final solution is
computed as 0 as the variable values are of an or-
der of magnitude higher than (-10) and the cosinus
function returns 1. For those cases where the global
minimum value is obtained we have given in the ta-
ble the average order of magnitude for the variables’
values.

For Rastrigin test function with 5 and 10 vari-
ables, the DE algorithm finds the global minimum
for more than 70% of the runs. An interesting sit-
uation occurs when 10 variables were considered,
where the success ratio (29/30) is higher than for
the 5 variables’ case (25/30). Also, as the local op-
tima are less and more spaced apart for fewer vari-
ables, the premature convergence is more probable,
and that could be an explanation of the situation
previously described. The difference between the
results for 5 and 10 variables cases also resides in
the average number of cycles in which the global
optimum is attained. So, the average number of cy-
cles in which the optimum is attained is less than
40 cycles for 5 variables and less than 80 cycles for
10 variables. As the table shows, the average ac-
curacy in the same number of evaluations (NFE) –
corresponding to 100 cycles – and the better results
obtained in 10 dimensions could be explained by
the fact that the slower convergence for higher di-
mensions offers to the DE algorithm adequate time
to overcome the local optima.

For a higher dimension of search space (e.g., 20
or 30 variables), the algorithm cannot provide the

DIRECTED EVOLUTION – A NEW . . .

Table 2. SCENARIO I: Average ACCURACY and NFE for 30 runs (library size varies, constant no. of
iterations=100, constant no. of variables=30)

LIBRARY
SIZE

Metric F1 Ackley F2 Griewank F3 Rastrigin F4 Schwefel

Average Std Average Std Average Std Average Std
50 Acc 2.69E-02 1.36E-02 2.64E-01 3.12E-01 6.16E-01 1.01E+00 6.28E+00 1.62E+01

NFE 9.85E+03 1.08E+01 9.86E+03 8.58E+00 9.85E+03 1.06E+01 9.85E+03 8.58E+00
100 Acc 1.73E-02 5.46E-03 2.93E-01 2.95E-01 2.97E-02 2.44E-02 1.39E-01 1.19E-01

NFE 1.97E+04 2.31E+01 1.97E+04 2.89E+01 1.97E+04 2.49E+01 1.97E+04 2.37E+01
150 Acc 1.27E-02 4.03E-03 1.65E-01 2.34E-01 1.42E-02 1.15E-02 7.74E-02 1.00E-01

NFE 2.95E+04 4.02E+01 2.95E+04 3.49E+01 2.95E+04 3.67E+01 2.95E+04 3.81E+01
200 Acc 1.11E-02 3.79E-03 2.15E-01 2.58E-01 9.53E-03 6.54E-03 4.83E-02 4.78E-02

NFE 3.93E+04 6.81E+01 3.93E+04 5.21E+01 3.93E+04 4.32E+01 3.93E+04 3.44E+01
250 Acc 1.00E-02 2.74E-03 1.74E-01 2.75E-01 6.23E-03 5.11E-03 3.80E-02 2.83E-02

NFE 4.91E+04 6.15E+01 4.91E+04 6.96E+01 4.91E+04 5.61E+01 4.91E+04 6.47E+01
300 Acc 9.59E-03 3.35E-03 1.66E-01 2.63E-01 5.46E-03 3.02E-03 2.54E-02 1.49E-02

NFE 5.89E+04 7.14E+01 5.89E+04 6.73E+01 5.89E+04 8.38E+01 5.89E+04 8.86E+01

Table 3. SCENARIO II: Average ACCURACY and NFE for 30 runs (no of iteration variation, library size
=50, constant no. of variables=30)

Iteration
No.

Metric F1 Ackley F2 Griewank F3 Rastrigin F4 Schwefel

Average Std Average Std Average Std Average Std
50 Acc 2.85E+00 5.19E-01 1.34E+00 1.75E-01 2.02E+01 3.97E+00 6.74E+02 1.91E+02

NFE 4.88E+03 8.16E+00 4.88E+03 7.63E+00 4.88E+03 6.55E+00 4.88E+03 7.26E+00

100 Acc 2.46E-02 1.22E-02 1.99E-01 2.49E-01 7.53E-01 1.17E+00 8.90E+00 3.31E+01

NFE 9.85E+03 1.09E+01 9.85E+03 8.76E+00 9.84E+03 9.65E+00 9.85E+03 9.55E+00

150 Acc 1.10E-05 6.56E-06 1.72E-01 2.76E-01 1.51E-07 3.11E-07 2.14E-06 7.41E-06

NFE 1.98E+04 1.48E+01 1.98E+04 1.67E+01 1.98E+04 1.35E+01 1.98E+04 1.67E+01

200 Acc 4.09E-09 2.51E-09 1.60E-01 2.27E-01 1.71E-14 3.04E-14 8.79E-12 6.89E-13

NFE 2.97E+04 1.79E+01 2.97E+04 3.00E+01 2.97E+04 2.16E+01 2.97E+04 2.39E+01

250 Acc 1.56E-12 7.88E-13 1.28E-01 2.69E-01 0 0 8.19E-12 9.25E-13

NFE 3.97E+04 2.01E+01 3.97E+04 5.92E+01 3.97E+04 2.52E+01 3.97E+04 2.68E+01

300 Acc 6.44E-15 1.07E-15 1.30E-01 2.20E-01 0 0 7.52E-12 6.29E-13

NFE 4.96E+04 3.42E+01 4.96E+04 1.04E+02 4.97E+04 23.55097 4.97E+04 2.65E+01

194 Corina Rotar, Laszlo Barna Iantovics

Table 4. SCENARIO III: Average ACCURACY and NFE for 30 runs (no of variable variation, library
size =100, no of iterations=100)

Iteration
No.

Metric F1 Ackley F2 Griewank F3 Rastrigin F4 Schwefel

Average Std Average Std Average Std
&modala

Average Std

5 Acc 2.66E-05
(a)

1.32E-04 4.99E-02 2.73E-02 4.60E-03
(b)

2.52E-02 6.40E-04 2.31E-03

NFE 1.97E+04 3.71E+01 1.97E+04 3.08E+01 1.97E+04 2.03E+01 1.96E+04 6.96E+01

10 Acc 1.52E-06 8.32E-06 2.46E-01 3.00E-01 4.74E-16
(c)

2.59E-15 2.36E-04 5.98E-04

NFE 1.96E+04 2.46E+01 1.96E+04 2.46E+01 1.97E+04 2.43E+01 1.97E+04 2.85E+01

20 Acc 2.69E-04 1.32E-04 2.78E-01 3.05E-01 3.07E-06 2.66E-06 2.79E-04 5.14E-05

NFE 1.97E+04 2.54E+01 1.97E+04 2.89E+01 1.97E+04 2.50E+01 1.97E+04 2.08E+01

30 Acc 1.41E-02 4.65E-03 2.93E-01 3.00E-01 4.24E-02 4.23E-02 1.59E-01 1.24E-01

NFE 1.97E+04 2.10E+01 1.97E+04 2.94E+01 1.97E+04 2.79E+01 1.97E+04 2.40E+01

(a)- Modal value=0, No of 0s=19, order of magnitude=-10
(b)- Modal value=0, No of 0s=25, Order of magnitude=-10
(c)- Modal value=0, No of 0s=29, Order of magnitude=-10

195Corina Rotar, Laszlo Barna Iantovics

Table 4. SCENARIO III: Average ACCURACY and NFE for 30 runs (no of variable variation, library
size =100, no of iterations=100)

Iteration
No.

Metric F1 Ackley F2 Griewank F3 Rastrigin F4 Schwefel

Average Std Average Std Average Std
&modala

Average Std

5 Acc 2.66E-05
(a)

1.32E-04 4.99E-02 2.73E-02 4.60E-03
(b)

2.52E-02 6.40E-04 2.31E-03

NFE 1.97E+04 3.71E+01 1.97E+04 3.08E+01 1.97E+04 2.03E+01 1.96E+04 6.96E+01

10 Acc 1.52E-06 8.32E-06 2.46E-01 3.00E-01 4.74E-16
(c)

2.59E-15 2.36E-04 5.98E-04

NFE 1.96E+04 2.46E+01 1.96E+04 2.46E+01 1.97E+04 2.43E+01 1.97E+04 2.85E+01

20 Acc 2.69E-04 1.32E-04 2.78E-01 3.05E-01 3.07E-06 2.66E-06 2.79E-04 5.14E-05

NFE 1.97E+04 2.54E+01 1.97E+04 2.89E+01 1.97E+04 2.50E+01 1.97E+04 2.08E+01

30 Acc 1.41E-02 4.65E-03 2.93E-01 3.00E-01 4.24E-02 4.23E-02 1.59E-01 1.24E-01

NFE 1.97E+04 2.10E+01 1.97E+04 2.94E+01 1.97E+04 2.79E+01 1.97E+04 2.40E+01

(a)- Modal value=0, No of 0s=19, order of magnitude=-10
(b)- Modal value=0, No of 0s=25, Order of magnitude=-10
(c)- Modal value=0, No of 0s=29, Order of magnitude=-10

DIRECTED EVOLUTION – A NEW . . .

same accuracy in 100 cycles as it can for fewer vari-
ables. Therefore no occurrence of the global min-
imum value is recorded and in these situations the
mean accuracy is conclusive.

Excluding those situations when the zero values
for the accuracy provoke a non-representative mean
for the measurement of the central tendency, and
therefore the evaluation of the algorithm’s perfor-
mance could be misjudged, generally the expected
behaviour is verified: the algorithm provides better
results when the size of the search space is lesser.

6 Experimental results - algo-
rithm’s performance

The following paragraph is organized in three parts,
corresponding to three types of optimization prob-
lems we took into consideration: single objective
optimization, multiobjective optimization and com-
binatorial optimization. Each set of experiments
is detailed and the proposed algorithm’s perfor-
mance is compared with a state of art technique
for the considered problem. Therefore, for single
objective optimization, we choose a very popular
bio-inspired technique, namely Particle Swarm Op-
timization [23], which previously proved its per-
formance in solving these type of problems. For
the challenging multiobjective optimization prob-
lem, we conducted various experiments, consider-
ing popular test problems and comparing the pro-
posed algorithm’s performance with a state of art
algorithm, namely Non-dominated Sorting Genetic
Algorithm 2 (NSGA2) [22]. Finally, for combinato-
rial optimization problem (1/0-Knapsack Problem),
the DE algorithm’s results are compared with the re-
sults obtained through dynamic programming tech-
nique, considering various scenarios which involves
several cases of test data.

6.1 Single objective optimization

The next experiments were conducted in order to
compare the DE performance with the Particle
swarm optimization algorithm (PSO) [23]. PSO
represents one of the best competitors in the land-
scape of nature-inspired computing techniques for
single objective optimization. Also, both PSO and
DE are population-based optimization technique,
and consequently, it allows a fair comparison.

As in our previous experiments, where the algo-
rithm’s consistency was studied, we chose the Ras-
trigin and Griewank test function, since both func-
tions are highly multimodal and challenge the al-
gorithms to not be trapped in one of the local op-
tima. Also, DE provides interesting results for these
functions. For each test the dimension of the search
space varies as 5, 10, 20, and 30.

PSO settings are 100 particles and 200 iter-
ations, inertia weight linearly decreases from 0.9
to 0.4, learning coefficients = 2.0. For the space
bounded by the range [min,max] the maximum ve-
locity is 10% from max-min. DE runs in 100 cycles
with a maximum library of 100 genes and the elite
is given by the best 20% from the current library.

Each algorithm runs for 10 times and the accu-
racy is recorded. Independent-samples t-tests were
conducted to compare PSO results and DE results.
There were significant differences in the accuracy
metric for PSO and DE, considering 99% confi-
dence intervals. The results summarized in Table
5 show that DE performs better than PSO for all the
considered scenarios.

Table 5. DE versus PSO. Comparisons’ results for
Ratrigin and Griewank test functions

Griewank test function
No.
of
var.

AVERAGE
ACCURACY

Tstat p

PSO DE
5 1.3e-01 4.8e-02 3.7e+00 2.4e-03
10 7.4e-01 2.9e-01 3.9e+00 1.6e-03
20 1.1e+00 2.8e-01 6.3e+00 6.9e-05
30 1.4e+00 3.1e-01 1.2e+01 3.5e-07

Rastrigin test
function
No.
of
var.

AVERAGE
ACCURACY

Tstat p

PSO DE
5 1.4e+00 0 * 5.2e+00 2.6e-04
10 1.1e+01 0* * 9.2e+00 3.5e-06
20 2.8e+01 3.5e-06 1.6e+01 3.5e-08
30 6.2e+01 3.0e-02 2.3e+01 1.3e-09

*The most occurrence is given as for 90% in 40 cycles the 0
accuracy is found

**90% in maximum 80 cycles the algorithm returns 0

196 Corina Rotar, Laszlo Barna Iantovics

6.2 Multiobjective optimization

A more challenging task for an optimization tech-
nique is to properly solve multiobjective optimiza-
tion problems. Therefore, in order to investigate
the performance of DE in a multiobjective context,
we used several well-known test problems: ZDT1,
ZDT2, ZDT3 [20] as the two objective test func-
tions with 30 variables, and the DTLZ1, DTLZ2
and DTLZ3 problems [21] with 2, 3 and 4 objec-
tives and the corresponding number of variables.

Table 6. Description of the test scenarios for
multiobjective optimization

Scenario
No.

Test
function

No. of
obj.

No. of
var.

1 ZDT1 2 30
2 ZDT2 2 30
3 ZDT3 2 30
4 DTLZ1 2 2 6
5 DTLZ1 3 3 7
6 DTLZ1 4 4 8
7 DTLZ2 2 2 11
8 DTLZ2 3 3 12
9 DTLZ2 4 4 13
10 DTLZ3 2 2 11
11 DTLZ3 3 3 12
12 DTLZ3 4 4 13

Table 6 describes 12 test scenario where the
number of objectives and the number of variables
varies accordingly for the popular test problems we
considered.

For performance assessment, we compute the
hyper-volume metric (HV) [21]. The hyper-volume
metric corresponds to the size of the objective space
which contains the solutions which are Pareto-
dominated by at least one of the members of the
set, and it represents a widely-used metric to eval-
uate the performance of a multiobjective optimiza-
tion technique. The smaller the hypervolume value
is, the better outcomes the algorithm provides.

For an objective comparison with the popular
algorithm NSGA2 [22] we set the following param-
eters for the DE: maximum size of the Gene Library
is set to 50, initial size of the library is 10 (20%
from the maximum size) and the number of cycles
per each run is set to 100. NSGA2’s parameters
are 100 individuals and 100 generations per run.
These settings assure the same maximum number

of function evaluations for both algorithms. As the
elite size depends on the number of Pareto nondom-
inated solutions, it cannot be exactly equal to 20%
of the maximum size of the library. Therefore, for
the DE algorithm, the number of function evalua-
tions is lesser to some extent than for NSGA2.

The algorithms runs for 20 times and the hyper-
volume values are computed.

The results from Table 7 reveal several con-
clusions. For the first test function ZDT1 – con-
vex Pareto front, NSGA2 performs better than the
DE algorithm. For the following bi-objective op-
timization test problem (concave Pareto front) the
DE defeats its competitor and for ZDT3 (discon-
tinued Pareto front) DE and NSGA2 have similar
performance.

Table 8. Statistical results. Synthesis (+ better, -
weaker, = similar)

Test
function

Objectives
/variables

DE
algorithm

NSGA2

ZDT1 2/30 - +
ZDT2 2/30 + -
ZDT3 2/30 = =
DTLZ1 2/6 - +

3/7 - +
4/8 + -

DTLZ2 2/11 - +

3/12 - +
4/13 - +

DTLZ3 2/11 + -

3/12 + -
4/13 + -

For DTLZ1 with 2, 3 and 4 objectives, DE loses
the competition in the first two scenarios but for 4
objectives it performs better. For a conclusive re-
port we considered an extra scenario for the DTLZ1
test function (many local Pareto fronts), in order to
observe the behaviour of the DE algorithm for the
bi-objective case but in a different setting. There-
fore, we set the maximum number of function eval-
uations to 20,000: NSGA2 runs with a population
of 100 individuals for 200 generations and DE runs
with a maximum library of 50 genes in 200 cy-
cles. The results confirm that DE has a disadvantage

197Corina Rotar, Laszlo Barna Iantovics

6.2 Multiobjective optimization

A more challenging task for an optimization tech-
nique is to properly solve multiobjective optimiza-
tion problems. Therefore, in order to investigate
the performance of DE in a multiobjective context,
we used several well-known test problems: ZDT1,
ZDT2, ZDT3 [20] as the two objective test func-
tions with 30 variables, and the DTLZ1, DTLZ2
and DTLZ3 problems [21] with 2, 3 and 4 objec-
tives and the corresponding number of variables.

Table 6. Description of the test scenarios for
multiobjective optimization

Scenario
No.

Test
function

No. of
obj.

No. of
var.

1 ZDT1 2 30
2 ZDT2 2 30
3 ZDT3 2 30
4 DTLZ1 2 2 6
5 DTLZ1 3 3 7
6 DTLZ1 4 4 8
7 DTLZ2 2 2 11
8 DTLZ2 3 3 12
9 DTLZ2 4 4 13
10 DTLZ3 2 2 11
11 DTLZ3 3 3 12
12 DTLZ3 4 4 13

Table 6 describes 12 test scenario where the
number of objectives and the number of variables
varies accordingly for the popular test problems we
considered.

For performance assessment, we compute the
hyper-volume metric (HV) [21]. The hyper-volume
metric corresponds to the size of the objective space
which contains the solutions which are Pareto-
dominated by at least one of the members of the
set, and it represents a widely-used metric to eval-
uate the performance of a multiobjective optimiza-
tion technique. The smaller the hypervolume value
is, the better outcomes the algorithm provides.

For an objective comparison with the popular
algorithm NSGA2 [22] we set the following param-
eters for the DE: maximum size of the Gene Library
is set to 50, initial size of the library is 10 (20%
from the maximum size) and the number of cycles
per each run is set to 100. NSGA2’s parameters
are 100 individuals and 100 generations per run.
These settings assure the same maximum number

of function evaluations for both algorithms. As the
elite size depends on the number of Pareto nondom-
inated solutions, it cannot be exactly equal to 20%
of the maximum size of the library. Therefore, for
the DE algorithm, the number of function evalua-
tions is lesser to some extent than for NSGA2.

The algorithms runs for 20 times and the hyper-
volume values are computed.

The results from Table 7 reveal several con-
clusions. For the first test function ZDT1 – con-
vex Pareto front, NSGA2 performs better than the
DE algorithm. For the following bi-objective op-
timization test problem (concave Pareto front) the
DE defeats its competitor and for ZDT3 (discon-
tinued Pareto front) DE and NSGA2 have similar
performance.

Table 8. Statistical results. Synthesis (+ better, -
weaker, = similar)

Test
function

Objectives
/variables

DE
algorithm

NSGA2

ZDT1 2/30 - +
ZDT2 2/30 + -
ZDT3 2/30 = =
DTLZ1 2/6 - +

3/7 - +
4/8 + -

DTLZ2 2/11 - +

3/12 - +
4/13 - +

DTLZ3 2/11 + -

3/12 + -
4/13 + -

For DTLZ1 with 2, 3 and 4 objectives, DE loses
the competition in the first two scenarios but for 4
objectives it performs better. For a conclusive re-
port we considered an extra scenario for the DTLZ1
test function (many local Pareto fronts), in order to
observe the behaviour of the DE algorithm for the
bi-objective case but in a different setting. There-
fore, we set the maximum number of function eval-
uations to 20,000: NSGA2 runs with a population
of 100 individuals for 200 generations and DE runs
with a maximum library of 50 genes in 200 cy-
cles. The results confirm that DE has a disadvantage

DIRECTED EVOLUTION – A NEW . . .

Table 7. Hypervolume metric: Average and standard deviation values. Statistical tests for the considered
scenarios

No. DE NSGA2 Tstat p
1 7.48e-01(2.45e-02) 7.76e-01(2.00e-02) -4.05e+00 1.25e-04
2 6.24e-01(3.21e-02) 5.21e-01(7.69e-02) 5.67e+00 3.31e-06
3 5.90e-01(1.63e-02) 5.80e-01(2.40e-02) 1.57e+00 6.26e-02
4 6.10e-01(8.09e-02) 6.70e-01(1.10e-01) -2.01e+00 2.62e-02
5 5.87e-01(5.93e-02) 7.05e-01(1.64e-01) -3.11e+00 2.38e-03
6 5.64e-01(9.20e-02) 1.33e-01(7.57e-02) 1.66e+01 4.89e-19
7 7.50e-01(1.80e-02) 7.72e-01(9.99e-05) -5.55e+00 1.18e-05
8 7.96e-01(5.27e-02) 8.91e-01(3.73e-03) -8.22e+00 5.62e-08
9 7.74e-01(3.82e-02) 9.24e-01(8.01e-03) -1.76e+01 2.34e-14

10 1.94e-01(5.79e-02) 1.05e-01(4.11e-02) 5.76e+00 8.86e-07
11 1.71e-01(6.38e-02) 1.04e-01(4.08e-02) 4.05e+00 1.54e-04
12 4.79e-02(2.28e-02) 4.36e-03(1.11e-03) 8.77e+00 2.09e-08

when the number of cycles is smaller as compared
to its competitor. But, again, when the number of
cycles increases, the DE algorithm overcomes its
shortcoming. The cause of this behavior could be
the nature of the DTLZ1 problem, which is highly
multimodal. Consequently, for an insufficient num-
ber of cycles the DE may not have the strength to
converge to the global optimum Pareto front.

For DTLZ2 the results clearly show that
NSGA2 performs better than DE independently of
the number of objectives. However, for DTLZ3,
which has the same real Pareto front as the former,
but is more challenging than DTLZ2 since it intro-
duces multiple local Pareto optimal fronts, DE out-
performs NSGA2.

Table 8 presents the synthesis of the statistical
tests.

6.3 1-0 Knapsack problem

The 1-0 Knapsack problem is a combinatorial prob-
lem defined as follows:

Given n items of different weights wi, i= 1, ...,n
and capacities ci, i= 1, ...,n and a knapsack of max-
imum capacity Capacity, find the optimum solution
consisting in the set of items with maximum sum of
weights which do not surpass the maximum capac-
ity of the knapsack.

The Knapsack problem is of particular interest
as it is very often met in real world tasks and is a
combinatorial optimization problem.

In our approach, each gene represents a binary
sequence which reflects the selection or not of a
specific object

G=(x1, x2, . . . , xn),

where xi =
{

1 if ith item is selected;
0 otherwise.

The genetic shuffling does not strictly depend
on the nature of the gene, as the mechanism in-
volves copying the genes from the original genes.
Nevertheless, the mutation is altered to reflect the
binary codification and consists in switching the
genes’ values from 1 to 0 and vice versa.

The Knapsack problem is formulated as a
single-objective optimization where the function to
be minimized is computed as follows

fknapsack (G) =
∑n

i=1 wi −∑n
i=1 G.x(i) ·wi

∑n
i=1 wi

+

+α · Abs(Capacity−∑n
i=1 G.x(i) · ci)

Capacity
.

The protein represents the real value obtained
by computing the function fknapsack of the corre-
sponding gene. Furthermore, due to the binary rep-
resentation of the genetic material, the similarity of
two genes is measured through the Hamming dis-
tance.

Experiments

Several cases of test data sets were taken into ac-
count [24]:

198 Corina Rotar, Laszlo Barna Iantovics

1 uncorrelated,

2 weakly correlated,

3 strong correlated,

4 inverse strong correlated,

5 almost strongly correlated,

6 subset sum.

The items’ weights and capacities are generated in
[1 . . . 100]. The maximum capacity of the knapsack
is set to 500. For each data set the algorithm runs
for 30 times, for 50 cycles, with a maximum library
of 100 genes of which 20% forms the elite.

At each run we recorded the weight of the best
solution. For comparing the solutions found by the
DE algorithm we use as the exact solution those that
are found by using the conventional Dynamic pro-
gramming technique.

Table 9. Knapsack problem. Results

Data
Set
Type

Average
max.
weight

Solution
(max.
weight)

Ratio Insucess
/Success

Success
Ratio

(1)∗ 1905 1905 1 0/30 1
(2)∗ 642.4 644 0.997 9/21 0.7
(3)∗ 799.97 800 0.99 1/29 0.97
(4)∗ 448.53 450 0.997 3/27 0.9
(5)∗ 790 800 0.987 30/0 0
(6)∗ 500 500 1 0/30 1

∗(1)-Uncorrelated, (2)-Weakly Correlated,
(3)-Strongly Correlated, (4)-Inverse Strongly
Correlated, (5)-Almost Strongly Correlated,

(6)-Subset Sum.

The results shown in Table 9 prove that the DE
is able to deal with the NP-complex problem as a
Knapsack problem.

7 Conclusions and discussions

Among the many bio-inspired techniques which
make up the fascinating landscape of Natural Com-
putation, it is hard to find or to frame new
paradigms that do not correspond closely to natural
phenomena. Due to technological progress it is now
possible to simulate, control and accelerate several

natural processes in the laboratory. Among these
semi-artificial protocols, we see Directed Evolution
as a serious area of inspiration for computational
techniques, due to its inner mechanisms and the
structures it involves.

The promise of developing a new branch in bio-
inspired computing is substantiated by the richness
of the techniques that such routines offer. Evolu-
tion and genetics represent the major sources of in-
spiration both in molecular engineering through Di-
rected Evolution and in computer science through
Evolutionary Algorithms. Comparing Directed
Evolution and evolutionary algorithms, we ob-
served that in terms of two common desiderata –
speed and the possibility of control – the two in-
struments are similar.

Our study highlights the novelty of the evolu-
tionary paradigm inspired by Directed Evolution
and extends the proposed DE technique for solving
more than one type of optimization problems.

The DE algorithm was developed on the basis
of the semi-artificial process of Directed Evolution
of proteins. The strengths of the proposed technique
are its ability to handle various optimization prob-
lems and the avenues it opens up towards a new re-
search area. The proposed algorithm is not intended
to compete with or surpass the other well-known
evolutionary algorithms for optimization. Yet, even
so, the preliminary results show that the DE tech-
nique is able to offer results that are at least as good
as those given by the similar techniques for the test
problems we considered. PSO is proven effective in
solving optimization problems with a single objec-
tive while NSGA2 is recognized as one of the most
popular algorithms for multiobjective optimization.
In order to evaluate the performance of the proposed
algorithm, we chose several optimization problems
with one criterion, popular test problems for multi-
objective optimization, and the generic 1-0 Knap-
sack problem. To provide an insight for evaluation,
for each category of problem we provided the re-
sults obtained in similar settings with state-of-the-
art algorithms. For the Knapsack problem the so-
lutions found by the DE algorithm are compared
with the global optima given by a conventional al-
gorithm.

Firstly, for single-objective optimization, we re-
ported the behavior of the DE algorithm for various
test scenarios which involved different settings for

199Corina Rotar, Laszlo Barna Iantovics

1 uncorrelated,

2 weakly correlated,

3 strong correlated,

4 inverse strong correlated,

5 almost strongly correlated,

6 subset sum.

The items’ weights and capacities are generated in
[1 . . . 100]. The maximum capacity of the knapsack
is set to 500. For each data set the algorithm runs
for 30 times, for 50 cycles, with a maximum library
of 100 genes of which 20% forms the elite.

At each run we recorded the weight of the best
solution. For comparing the solutions found by the
DE algorithm we use as the exact solution those that
are found by using the conventional Dynamic pro-
gramming technique.

Table 9. Knapsack problem. Results

Data
Set
Type

Average
max.
weight

Solution
(max.
weight)

Ratio Insucess
/Success

Success
Ratio

(1)∗ 1905 1905 1 0/30 1
(2)∗ 642.4 644 0.997 9/21 0.7
(3)∗ 799.97 800 0.99 1/29 0.97
(4)∗ 448.53 450 0.997 3/27 0.9
(5)∗ 790 800 0.987 30/0 0
(6)∗ 500 500 1 0/30 1

∗(1)-Uncorrelated, (2)-Weakly Correlated,
(3)-Strongly Correlated, (4)-Inverse Strongly
Correlated, (5)-Almost Strongly Correlated,

(6)-Subset Sum.

The results shown in Table 9 prove that the DE
is able to deal with the NP-complex problem as a
Knapsack problem.

7 Conclusions and discussions

Among the many bio-inspired techniques which
make up the fascinating landscape of Natural Com-
putation, it is hard to find or to frame new
paradigms that do not correspond closely to natural
phenomena. Due to technological progress it is now
possible to simulate, control and accelerate several

natural processes in the laboratory. Among these
semi-artificial protocols, we see Directed Evolution
as a serious area of inspiration for computational
techniques, due to its inner mechanisms and the
structures it involves.

The promise of developing a new branch in bio-
inspired computing is substantiated by the richness
of the techniques that such routines offer. Evolu-
tion and genetics represent the major sources of in-
spiration both in molecular engineering through Di-
rected Evolution and in computer science through
Evolutionary Algorithms. Comparing Directed
Evolution and evolutionary algorithms, we ob-
served that in terms of two common desiderata –
speed and the possibility of control – the two in-
struments are similar.

Our study highlights the novelty of the evolu-
tionary paradigm inspired by Directed Evolution
and extends the proposed DE technique for solving
more than one type of optimization problems.

The DE algorithm was developed on the basis
of the semi-artificial process of Directed Evolution
of proteins. The strengths of the proposed technique
are its ability to handle various optimization prob-
lems and the avenues it opens up towards a new re-
search area. The proposed algorithm is not intended
to compete with or surpass the other well-known
evolutionary algorithms for optimization. Yet, even
so, the preliminary results show that the DE tech-
nique is able to offer results that are at least as good
as those given by the similar techniques for the test
problems we considered. PSO is proven effective in
solving optimization problems with a single objec-
tive while NSGA2 is recognized as one of the most
popular algorithms for multiobjective optimization.
In order to evaluate the performance of the proposed
algorithm, we chose several optimization problems
with one criterion, popular test problems for multi-
objective optimization, and the generic 1-0 Knap-
sack problem. To provide an insight for evaluation,
for each category of problem we provided the re-
sults obtained in similar settings with state-of-the-
art algorithms. For the Knapsack problem the so-
lutions found by the DE algorithm are compared
with the global optima given by a conventional al-
gorithm.

Firstly, for single-objective optimization, we re-
ported the behavior of the DE algorithm for various
test scenarios which involved different settings for

DIRECTED EVOLUTION – A NEW . . .

library size, the number of cycles, and the dimen-
sion of the search space. The results suggest that
the DE algorithm is consistent and viable as an op-
timization procedure. Compared to a similar bio-
inspired technique, DE performs better than PSO
for the test scenarios considered which involved
popular test functions, each with a scalable dimen-
sion of the search space.

Secondly, for multi-objective optimization, the
DE algorithm overcomes NSGA2 for half of the
considered scenarios. Even though NSGA2 over-
comes DE for the DTLZ2 problem, it is notable
that DE offers better results for a more difficult test
problem like DTLZ3. Also, while NSGA2 offers
better results for DTLZ1 problem with 2 and 3 ob-
jectives, and when 4 objectives are specified, DE
defeats its competitor.

Thirdly, for the popular 1-0 Knapsack problem
we investigated the DE algorithm for different ran-
dom test data and we compared the results with the
exact solutions found by using a conventional tech-
nique. With minimum intervention into the DE al-
gorithm, which involves the binary codification of
the DNA sequences, similarity measurement of the
genes by using Hamming distances, and an evalua-
tion function which reflects the problem’s objective,
DE can be applied with success. Except for the al-
most strongly correlated test data, when DE is not
able to find the global optimum in any of the 30
runs, and for the weakly correlated test data when
DE’s success ratio is 0.7, for the other scenarios DE
provides a success ratio greater than 0.9. For the
most general test case when uncorrelated data are
involved, DE finds the global optimum at each run
in less than 50 cycles.

As further research, we note two major direc-
tions: analysis of the DE algorithm’s behaviour for
optimization in a dynamic environment, and in ap-
proaching real world problems.

References
[1] Cobb, R. E., Chao, R. and Zhao, H., Directed evo-

lution: Past, present, and future. AIChE Journal, 59,
2013, p. 1432–1440.

[2] Jckel, C., Kast P., and Hilvert D., Protein design by
directed evolution, Annu. Rev. Biophys, 37, 2008, p.
153-173.

[3] Rubin-Pitel S., et al., Directed evolution tools in bio-

product and bioprocess development, In Bioprocess-
ing for Value-Added Products from Renewable Re-
sources: New Technologies and Applications, 2006,
p. 49-72.

[4] Moreno, P. C., Moreno A. G., and Peuela C. J.,
Using directed evolution techniques to solve hard
combinatorial problems, Proceedings of the Com-
puter Science & Information Technologies Confer-
ence. CSIT 2009, p. 225-229.

[5] Berlik, S., Directed Evolutionary Algorithms by
Means of the Skew-Normal Distribution, In S. Co.
2009 Sixth Conference. Complex Data Modeling
and Computationally Intensive Statistical Methods
for Estimation and Prediction. Maggioli Editore,
2009, p.67.

[6] Rotar, C., Directed Evolution-a Bio-inspired Op-
timization Technique, Proceedings of International
Conference on Theory and Applications in Mathe-
matics and Informatics, Alba Iulia, 2015.

[7] Oates M. J., D. W. Corne, and D. B. Kell, The bi-
modal feature at large population sizes and high se-
lection pressure: implications for directed evolution,
Recent Advances in Simulated Evolution and Learn-
ing, 2003, p. 215-240.

[8] Voigt C. A., et al., Computationally focusing the di-
rected evolution of proteins, Journal of Cellular Bio-
chemistry, 2001, p. 58-63.

[9] Yokobayashi, Yohei, et al., .Directed evolution of
trypsin inhibiting peptides using a genetic algo-
rithm, J. Chem. Soc., Perkin Trans. 1.20, 1996, p.
2435-2437.

[10] Weber L., Applications of genetic algorithms in
molecular diversity, Current Opinion in Chemical
Biology 2.3, 1998, p. 381-385.

[11] Arnold F. H., Design by directed evolution, Ac-
counts of chemical research 31.3, 1998, p. 125-131.

[12] Cadwell R. C., and Gerald F. J., Randomization of
genes by PCR mutagenesis, Genome research 2.1,
1992, p. 28-33.

[13] Stemmer W. PC., Rapid evolution of a protein in
vitro by DNA shuffling, Nature 370.6488, 1994, p.
389-391.

[14] Gartner Z. J., Evolutionary approaches for the dis-
covery of functional synthetic small molecules, Pure
and applied chemistry 78.1 2006, p. 1-14.

[15] Biyani M., et al., Evolutionary Molecular Engi-
neering to Efficiently Direct in vitro Protein Synthe-
sis, CELL-FREE PROTEIN SYNTHESIS, 2012, p.
51.

[16] Park S. J., and Cochran J. R., eds. Protein engineer-
ing and design. Vol. 75. CRC press, 2009.

200 Corina Rotar, Laszlo Barna Iantovics

[17] Darwin Ch., and Beer G., The origin of species.
Oxford: Oxford University Press, 1951.

[18] Fisher R. A., The genetical theory of natural selec-
tion. , 1958, available online at https://archive.org

[19] Huxley J., Evolution. The Modern Synthesis, 1942.
available online at www.ehudlamm.com/huxley.pdf

[20] Zitzler E., et al., Performance assessment of multi-
objective optimizers: An analysis and review. Evo-
lutionary Computation, IEEE Transactions on, 7(2),
2003, p. 117-132.

[21] Zitzler E., Deb, K., Thiele, L., Comparison of Mul-
tiobjective Evolutionary Algorithms: Empirical Re-
sults, Evolutionary Computation, vol. 8 no, 2, 2000,
p. 173-195.

[22] Deb K., et al., A fast and elitist multi-objective ge-
netic algorithm: NSGA-II, IEEE Transactions on
Evolutionary Computation, 6 (2), 2002, pp. 182-
197.

[23] Shi, Y. and Eberhart, R., A modified particle swarm
optimizer, In Evolutionary Computation Proceed-
ings, IEEE World Congress on Computational In-
telligence., 1998, pp. 69-73.

[24] Pisinger D., Where are the hard knapsack prob-
lems?, Computers & Operations Research 32.9,
2005, p. 2271-2284.

[25] De Castro, L.N., Fundamentals of natural comput-
ing: basic concepts, algorithms, and applications.
CRC Press, 2006.

[26] Mitchell, M. An introduction to genetic algorithms.
MIT press, 1998.

[27] Dorigo M., Birattari M., and Stutzle T., Ant colony
optimization, Computational Intelligence Magazine,
IEEE 1.4, 2006, p. 28-39.

[28] De Castro L.N., and Timmis J., Artificial im-
mune systems: a new computational intelligence ap-
proach, Springer Science & Business Media, 2002.

[29] Wilkins M. R. et al., From proteins to proteomes:
large scale protein identification by two-dimensional
electrophoresis and amino acid analysis, BioTech-
nology 14, 1996, p. 61–65.

[30] Adorio E. P., Diliman U., MVF-Multivariate
Test Functions Library in C for Unconstrained
Global Optimization, 2005, available online at
http://www.geocities.ws/eadorio.

Corina Rotar is associate Professor at
Sciences and Engineering Faculty from
“1 Decembrie 1918” University of Alba
Iulia. Her research activity focuses on
bio-inspired computing, computational
intelligence, and multi-objective opti-
mization. In 15 years of activity, she
performs teaching activity on several
subjects as artificial intelligence, evo-
lutionary computation, object-oriented

programming, coordinates the scientific events, participates
in research projects and directs the administrative activity of
the Exact Science and Engineering Faculty. She is the author
of more than 50 research articles and 2 books. She holds a
Ph.D. from “Babes-Bolyai” University in Computer Science.

Associate Professor L.B. Iantovics re-
ceived Ph.D. in Artificial Intelligence
at Babes-Bolyai Univ. of Cluj-Napoca
and finished a Postdoctoral study in
Artificial Intelligence at Alexandru
Ioan Cuza University of Iasi. Actu-
ally he teaches at Petru Maior Univer-
sity and University of Medicine and
Pharmacy from Tg. Mures. His main

research interests includes the intelligent systems and com-
putational intelligence, topics on that he published dozens of
papers and contributed to research projects as project director
or researcher. He was chair and scientific organizer of Inter-
national Conferences. He is director of the “Advanced Com-
putational Technologies” from Petru Maior University.

