
JAISCR, 2017, Vol. 7, No. 3, pp. 171

MIDACO PARALLELIZATION SCALABILITY ON 200
MINLP BENCHMARKS

Martin Schlueter and Masaharu Munetomo

Information Initiative Center, Hokkaido University Sapporo,
Sapporo 060-0811, Japan

Submitted: 16th September 2016; accepted: 15th November 2016

Abstract

This contribution presents a numerical evaluation of the impact of parallelization on
the performance of an evolutionary algorithm for mixed-integer nonlinear programming
(MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is
assessed with gradually increasing parallelization factor from one to three hundred. The
results demonstrate that the efficiency of the algorithm can be significantly improved by
parallelized function evaluation. Furthermore, the results indicate that the scale-up be-
haviour on the efficiency resembles a linear nature, which implies that this approach will
even be promising for very large parallelization factors. The presented research is espe-
cially relevant to CPU-time consuming real-world applications, where only a low number
of serial processed function evaluation can be calculated in reasonable time.
Keywords: MINLP, optimization, MIDACO, parallelization

1 Introduction

This contribution is an extended version of the
numerical study recently presented in Schlueter and
Munetomo [23]. This study discusses the opti-
mization of problems known as mixed-integer non-
linear programs (MINLP). The considered MINLP
is stated mathematically in (1), where f (x,y) de-
notes the objective function to be minimized.
In (1), the equality constraints are given by
g1,...,me(x,y) and the inequality constraints are given
by gme+1,...,m(x,y). The solution vector x contains
the continuous decision variables and the solution
vector y contains the discrete decision variables
(also called integers). Furthermore, some box con-
straints as xl,yl (lower bounds) and xu,yu (upper
bounds) for the decision variables x and y are con-
sidered in (1).

Minimize f (x,y) (x ∈ R, y ∈ Z),

subject to: gi(x,y) = 0, i = 1, ...,me

gi(x,y) ≥ 0, i = me +1, ...,m,

and bounds: xl ≤ x ≤ xu (xl, xu ∈ R)
yl ≤ y ≤ yu (yl, yu ∈ N).

(1)

Optimization of MINLP problems is a young
and growing field in the evolutionary computing
community, see e.g. Babu and Angira [1], Cardoso
[2], Costa and Oliveira [3], Deep et al. [4], Glover
[6], Liang et al. [11], Mohammed [12], Munawar
[13], Wasanapradit et al. [28], Young et al. [30],
Yiqing et al. [29] or Yue et al. [32]. One advantage
of evolutionary algorithms is their robustness to-
wards the analytical properties of the objective and
constraint functions. Therefore, in above MINLP

 – 181
 10.1515/jaiscr-2017-0012

172 Martin Schlueter and Masaharu Munetomo

(1) the functions f (x,y) and g(x,y) are considered
as general black-box functions without any require-
ments, such as differentiability or smoothness. An-
other advantage of evolutionary algorithms is their
capability to (greatly) benefit from parallelization,
see for example Du et al. [14], Laessig and Sud-
holt [10], Gupta [10], Sakuray [16], Sudholt [27]
or Yingyong et al [31]. One of the most popular
strategies to use parallelization in evolutionary al-
gorithms is the distributed computing of the prob-
lem function evaluations. This strategy is some-
times denoted as co-evaluation.

Presented here numerical study investigates the
impact of a varying co-evaluation factor on the
performance of an evolutionary optimization algo-
rithm on a set of 200 MINLP benchmarks (see
Schittkowski [24]), which mostly originate from the
well-known GAMS MINLPlib library [9]. Con-
sidered benchmark instances consist of up to 205
variables and 283 constraints, including up to 100
equality constraints (see the Appendix for details
on the benchmark instances). This paper focuses
on investigation and measurement of the efficiency
of parallelized function evaluation calls on the al-
gorithmic performance. As numerical solver, the
MIDACO optimization software is used, which is
based on an evolutionary algorithm especially de-
veloped for mixed-integer problems and capable
of seamless parallelization of function evaluation
calls.

This paper is structured as follows: In Section 2
a brief overview on the MIDACO algorithm is given
with an emphasis on its parallelization approach. In
Section 3 the numerical results of 300 individual
test runs on the set of 200 MINLP benchmarks are
illustrated and discussed. In Section 4 a summary
and general conclusions are presented. A compre-
hensive Appendix lists detailed individual informa-
tion on all considered benchmarks.

2 MIDACO Algorithm

MIDACO stands for Mixed Integer Distributed
Ant Colony Optimization. The evolutionary al-
gorithm within MIDACO is based on the ant
colony optimization metaheuristic for continuous
search domains proposed by Socha and Dorigo
[26] and was extended to mixed-integer domains
by Schlueter et al. in [17]. For constrained opti-

mization problems the algorithm applies the Oracle
Penalty Method which was introduced in Schlueter
and Gerdts [18]. While the MIDACO algorithm is
conceptually designed as general black-box solver,
it has proven its effectiveness especially on chal-
lenging interplanetary space trajectory design prob-
lems (see Schlueter [21]), where it holds several
best known record solutions on benchmarks pro-
vided by the European Space Agency [5]. It is fur-
thermore the first algorithm that was able to suc-
cessfully solve interplanetary trajectory problems
formulated as mixed-integer problems, where the
sequence of fly-by planets was considered as integer
optimization variables (see Schlueter et. al. [20]).

2.1 Parallelization Approach

The parallelization approach considered here
aims on distributing the problem function evalua-
tion. This approach is sometimes referred to as co-
evaluation. The MIDACO solver optimization soft-
ware easily enables this kind of parallelization due
to its reverse communication architecture. Reverse
communication means here that the call of the ob-
jective and constraint functions happens outside and
independently of the MIDACO source code.

Within a single reverse communication loop,
MIDACO does accept and returns an arbitrary large
number of P iterates x (also called ”solution can-
didates” or ”individuals”) at once. Hence, those P
iterates can be evaluated in parallel, outside and in-
dependently from the MIDACO source code. This
idea of passing a block of P iterates at once within
one reverse communication step to the optimization
algorithm was originally introduced by the code
NLPQLP by Schittkowski [25].

Figure 1. Reverse communication loop with block
of P iterates (solution candidates).

Figure 1 illustrates the reverse communication
loop where a block of P iterates is evaluated regard-

173Martin Schlueter and Masaharu Munetomo

(1) the functions f (x,y) and g(x,y) are considered
as general black-box functions without any require-
ments, such as differentiability or smoothness. An-
other advantage of evolutionary algorithms is their
capability to (greatly) benefit from parallelization,
see for example Du et al. [14], Laessig and Sud-
holt [10], Gupta [10], Sakuray [16], Sudholt [27]
or Yingyong et al [31]. One of the most popular
strategies to use parallelization in evolutionary al-
gorithms is the distributed computing of the prob-
lem function evaluations. This strategy is some-
times denoted as co-evaluation.

Presented here numerical study investigates the
impact of a varying co-evaluation factor on the
performance of an evolutionary optimization algo-
rithm on a set of 200 MINLP benchmarks (see
Schittkowski [24]), which mostly originate from the
well-known GAMS MINLPlib library [9]. Con-
sidered benchmark instances consist of up to 205
variables and 283 constraints, including up to 100
equality constraints (see the Appendix for details
on the benchmark instances). This paper focuses
on investigation and measurement of the efficiency
of parallelized function evaluation calls on the al-
gorithmic performance. As numerical solver, the
MIDACO optimization software is used, which is
based on an evolutionary algorithm especially de-
veloped for mixed-integer problems and capable
of seamless parallelization of function evaluation
calls.

This paper is structured as follows: In Section 2
a brief overview on the MIDACO algorithm is given
with an emphasis on its parallelization approach. In
Section 3 the numerical results of 300 individual
test runs on the set of 200 MINLP benchmarks are
illustrated and discussed. In Section 4 a summary
and general conclusions are presented. A compre-
hensive Appendix lists detailed individual informa-
tion on all considered benchmarks.

2 MIDACO Algorithm

MIDACO stands for Mixed Integer Distributed
Ant Colony Optimization. The evolutionary al-
gorithm within MIDACO is based on the ant
colony optimization metaheuristic for continuous
search domains proposed by Socha and Dorigo
[26] and was extended to mixed-integer domains
by Schlueter et al. in [17]. For constrained opti-

mization problems the algorithm applies the Oracle
Penalty Method which was introduced in Schlueter
and Gerdts [18]. While the MIDACO algorithm is
conceptually designed as general black-box solver,
it has proven its effectiveness especially on chal-
lenging interplanetary space trajectory design prob-
lems (see Schlueter [21]), where it holds several
best known record solutions on benchmarks pro-
vided by the European Space Agency [5]. It is fur-
thermore the first algorithm that was able to suc-
cessfully solve interplanetary trajectory problems
formulated as mixed-integer problems, where the
sequence of fly-by planets was considered as integer
optimization variables (see Schlueter et. al. [20]).

2.1 Parallelization Approach

The parallelization approach considered here
aims on distributing the problem function evalua-
tion. This approach is sometimes referred to as co-
evaluation. The MIDACO solver optimization soft-
ware easily enables this kind of parallelization due
to its reverse communication architecture. Reverse
communication means here that the call of the ob-
jective and constraint functions happens outside and
independently of the MIDACO source code.

Within a single reverse communication loop,
MIDACO does accept and returns an arbitrary large
number of P iterates x (also called ”solution can-
didates” or ”individuals”) at once. Hence, those P
iterates can be evaluated in parallel, outside and in-
dependently from the MIDACO source code. This
idea of passing a block of P iterates at once within
one reverse communication step to the optimization
algorithm was originally introduced by the code
NLPQLP by Schittkowski [25].

Figure 1. Reverse communication loop with block
of P iterates (solution candidates).

Figure 1 illustrates the reverse communication
loop where a block of P iterates is evaluated regard-

MIDACO PARALLELIZATION SCALABILITY ON . . .

ing their objective function f (x) and constraints
g(x) and then passed to the MIDACO optimization
algorithm, which then again returns a new block of
P iterates to be evaluated.

This concept allows an independent and user
controlled distributed computing of the objective
and constraint function. In other words: The
displayed parallelization option is valid for any
language and any CPU architecture. This in-
cludes in particular multi-core PC’s, PC-Clusters
and GPGPU (General Purpose Graphical Process-
ing Unit) based computation. In case of MIDACO,
the parallelization factor P can furthermore be any
arbitrary large integer value, enabling a seamless
and massive parallelization. As this parallelization
approach aims on distributing the function evalu-
ation calls, it is intended for problems where the
function evaluation are numerically expensive to
compute, which is often the case for complex real-
world applications. For further details on the par-
allelization approach by MIDACO, please consult
[22] or [19].

3 Numerical Results

This Section presents the numerical results ob-
tained by MIDACO (5.0 beta version) on the set
of 200 MINLP benchmark problems, provided by
Schittkowski [24]. In total, 300 executions on the
full set of 200 problem instances have been con-
ducted. Each execution considered a different par-
allelization factor P (see Section 2.1) and a different
random seed. With each execution, the paralleliza-
tion factor P was incrementally increased from one
up to three hundred. For each individual problem
out of the library a maximal number of function
evaluation budget of ten million was assigned. No
time limit was enforced on any run. Each individual
test run on each problem was either stopped if the
maximal evaluation budget was reached, or if the
global1 optimal solution was obtained.

The criteria for reaching a global optimal solu-
tion (x∗,y∗) by an approximation (x̂, ŷ) is given in
Equation (2).

f (x̂, ŷ)≤ f (x∗,y∗)+
∥ f (x∗,y∗)∥

100
,

∥g(x̂, ŷ)i=1,...,me∥ ≤ 0.01,

g(x̂, ŷ)i=me+1,...,m ≥− 0.01.

(2)

Equation (2) implies that a test run was con-
sidered successful, if the approximative solution
(x̂, ŷ) reached by MIDACO was as close as 1% to
the global optimal solution objective function value
f (x∗,y∗) while satisfying all constraints with a pre-
cision of at least 0.01. Note that the tolerance
of 0.01 for the constraint violation is chosen here
rather moderate. This is due to the relatively large
number of (up to one hundred) equality constraints
in several benchmark instances (see Appendix). For
real-world problems, solutions with higher preci-
sion in the constraint satisfaction can normally be
achieved easily with refinement runs. The lower
bounds of each problem instance were used as start-
ing point and the original bounds2 provided by
Schittkowski [24] were considered for each prob-
lem. Except for the parallelization factor, all MI-
DACO parameters were set to default.

Table 1 displays the number of optimal solu-
tions obtained for various test runs on the full set
of 200 MINLP benchmarks. The number of each
run equals the parallelization factor P used in such
run. The abbreviations for Table 1 are as follows:

Run = P : Individual run
on 200 benchmarks (using
a parallelization factor of P)

Optimal : Number of global
optimal solutions

Blocks : Average performed blocks
Evaluation : Average number of evaluation

All numerical runs were conducted on a Desk-
top computer with XEON cpu with 3.47GHz clock-
rate, 4GB RAM memory and six physical cores.
The total time to calculate all 300 executions on
the full benchmark library took 521,009 seconds,
which is around six days. It is important to note

1The best known numerical f (x,y) values provided in Schittkowski [24] were used as global optimal solutions throughout this
study.

2Note that the original bounds provided in Schittkowski [24] on the problem instance are sometimes huge in the context of
evolutionary computing, where the entire search space is sampled. This makes some of the instance exceptionally hard to solve
with evolutionary methods.

174 Martin Schlueter and Masaharu Munetomo

that for the here presented results the co-evaluation
of objectives and constraints was calculated on a
single thread and not distributed by common paral-
lelization schemes, such as OpenMP [8] or MPI [8].
The reason is that all benchmark function in this
study are computational cheap (take only millisec-
onds to compute) and any actual parallelized com-
puting scheme would introduce a computing over-
head which would in fact increase overall calcula-
tion times rather than reducing them. The presented
results nevertheless accurately represent the factor
of reduced serial processed function evaluation and
that the results are therefore fully valid to estimate
the performance gain in parallel executed function
evaluation for CPU-time intensive real-world appli-
cations.

Table 1. Number of optimal solutions obtained by
MIDACO in various runs on 200 Benchmarks

Run = P Optimal Blocks Evaluation
1 160 2,747,356 2,747,356

10 160 284,719 2,847,195
20 156 162,785 3,255,716
30 155 107,293 3,218,808
40 159 82,824 3,312,999
50 156 67,314 3,365,719

100 152 38,214 3,821,471
150 151 27,099 4,064,936
200 144 22,689 4,537,802
250 148 17,980 4,495,111
300 144 15,979 4,793,737

From Table 1 it can be seen that MIDACO ob-
tained in its first run (which had a parallelization
factor of one and therefore no actual paralleliza-
tion) a number of 160 global optimal solutions on
the set of 200 benchmarks. It is important to note
that the number of processed blocks in the first run
equals the number of evaluation, which where about
2.7 million (2,747,356). Table 1 illustrates that the
number of global solutions obtained by MIDACO
in regarding to various individual test runs from one
to three hundred. Note in Table 1 that for an in-
creased parallelization factor P the average num-
ber of blocks decreases while the average number
of total performed function evaluation increases.
While in the first run around 2.7 million blocks
had to be processed on average, it is only a 15,979

blocks for parallelization factor of 300. There-
fore a reduction of around 2747356

15979 ≈ 171.9 times in
the number of processed blocks could be achieved
for the maximalconsidered parallelization factor of
P=300, while the number of optimal solved in-
stances dropped only by 10.0% (144 in comparison
to 160).

Additionally to Table 1, the numerical results
are illustrated in Figure 2 which displays the indi-
vidual and average1 number of optimal optimal so-
lutions obtained by MIDACO in each of the 300 ex-
ecutions on the full benchmark library.

Figure 2. Optimal solutions at run 1 to 300.

From Table 1 it can be seen how the MIDACO
algorithm benefits in drastically reducing its num-
ber of processed blocks by parallelization, while
still maintaining a similar high number of global
optimal solutions. From Figure 2 it can be seen that
such trend exhibits a more or less linear behaviour.

In order to give a more sophisticated answer to
the question, how the efficiency of the algorithm
scales with the parallelization factor, a new crite-
ria for the algorithmic efficiency is now introduced
here. Based on the first run, which exemplifies
the unparalleled performance, the ”Efficiency” of a
run (which number equals its parallelization factor)
should be measured as given in Equation (3)

E f f iciency(run) =

#Optimal(run)
#Optimal(1st run)

· #Blocks(1st run)
#Blocks(run)

.

(3)

1The smooth function provided by Matlab was used to approximate the average from the raw data of individual global optimal
solutions.

175Martin Schlueter and Masaharu Munetomo

that for the here presented results the co-evaluation
of objectives and constraints was calculated on a
single thread and not distributed by common paral-
lelization schemes, such as OpenMP [8] or MPI [8].
The reason is that all benchmark function in this
study are computational cheap (take only millisec-
onds to compute) and any actual parallelized com-
puting scheme would introduce a computing over-
head which would in fact increase overall calcula-
tion times rather than reducing them. The presented
results nevertheless accurately represent the factor
of reduced serial processed function evaluation and
that the results are therefore fully valid to estimate
the performance gain in parallel executed function
evaluation for CPU-time intensive real-world appli-
cations.

Table 1. Number of optimal solutions obtained by
MIDACO in various runs on 200 Benchmarks

Run = P Optimal Blocks Evaluation
1 160 2,747,356 2,747,356

10 160 284,719 2,847,195
20 156 162,785 3,255,716
30 155 107,293 3,218,808
40 159 82,824 3,312,999
50 156 67,314 3,365,719

100 152 38,214 3,821,471
150 151 27,099 4,064,936
200 144 22,689 4,537,802
250 148 17,980 4,495,111
300 144 15,979 4,793,737

From Table 1 it can be seen that MIDACO ob-
tained in its first run (which had a parallelization
factor of one and therefore no actual paralleliza-
tion) a number of 160 global optimal solutions on
the set of 200 benchmarks. It is important to note
that the number of processed blocks in the first run
equals the number of evaluation, which where about
2.7 million (2,747,356). Table 1 illustrates that the
number of global solutions obtained by MIDACO
in regarding to various individual test runs from one
to three hundred. Note in Table 1 that for an in-
creased parallelization factor P the average num-
ber of blocks decreases while the average number
of total performed function evaluation increases.
While in the first run around 2.7 million blocks
had to be processed on average, it is only a 15,979

blocks for parallelization factor of 300. There-
fore a reduction of around 2747356

15979 ≈ 171.9 times in
the number of processed blocks could be achieved
for the maximalconsidered parallelization factor of
P=300, while the number of optimal solved in-
stances dropped only by 10.0% (144 in comparison
to 160).

Additionally to Table 1, the numerical results
are illustrated in Figure 2 which displays the indi-
vidual and average1 number of optimal optimal so-
lutions obtained by MIDACO in each of the 300 ex-
ecutions on the full benchmark library.

Figure 2. Optimal solutions at run 1 to 300.

From Table 1 it can be seen how the MIDACO
algorithm benefits in drastically reducing its num-
ber of processed blocks by parallelization, while
still maintaining a similar high number of global
optimal solutions. From Figure 2 it can be seen that
such trend exhibits a more or less linear behaviour.

In order to give a more sophisticated answer to
the question, how the efficiency of the algorithm
scales with the parallelization factor, a new crite-
ria for the algorithmic efficiency is now introduced
here. Based on the first run, which exemplifies
the unparalleled performance, the ”Efficiency” of a
run (which number equals its parallelization factor)
should be measured as given in Equation (3)

E f f iciency(run) =

#Optimal(run)
#Optimal(1st run)

· #Blocks(1st run)
#Blocks(run)

.

(3)

1The smooth function provided by Matlab was used to approximate the average from the raw data of individual global optimal
solutions.

MIDACO PARALLELIZATION SCALABILITY ON . . .

Equation (3) measures the ”Efficiency” based
on a multiplication of a ratio of optimal obtained
solutions with a ratio of required blocks. Because
the number of optimal solutions is desired to be as
high as possible, the average number of optimal so-
lutions appear in the numerator of the ratio, while
the number of optimal solutions from the first run
appear in the denominator of the ratio. Contrary
to desired number of optimal solutions, the num-
ber of blocks is desired to be as low as possible and
hence the blocks required in the first run appear in
the numerator, while the average number of blocks
appear in the denominator. The efficiency measure
given by Equation 3 can be calculated for each of
the 300 runs on the full library of test problems.
Figure 3 displays the efficiency measure for all such
300 runs.

Figure 3. Dependence of efficiency on
parallelization

Table 2. Efficiency of P factor

Run = P #Blocks(1st run)
#Blocks(run) E f f iciency(P)

1 1.0 1.0
10 9.6 9.5
20 16.8 16.6
30 25.6 27.2
40 33.1 32.4
50 40.8 39.7
100 71.8 68.9
150 101.3 95.2
200 121.0 112.0
250 152.8 139.3
300 171.9 154.7

Table 2 lists some of the individual efficiency
measure values for various runs and additionally
displays the second term (#Blocks(1st run)

#Blocks(run)) of the
efficiency measure formula given in Equation (3).

From Figure 3 it can be observed that the scale
up effect on the algorithmic efficiency (thus, reduc-
ing the number of serial processed function evalu-
ation) resembles a nearly linear behaviour, which
appears to be particularly robust for parallelization
factors below 30. This behaviour indicates that par-
allelization will further significantly improve per-
formance even for much larger parallelization fac-
tors. In regard to the concrete set of 200 instances,
it can be seen from Figure 3 and Table 2, that a par-
allelization factor of 300 makes the MIDACO al-
gorithm over 150 times more effective as in serial
mode. In other words: Using a parallelization fac-
tor of 300 reduces the number of (serial processed)
function evaluation by a factor of 150.

3.1 Additional Numerical Results

In addition to the previously presented numeri-
cal results investigating the parallelization effect on
MIDACO, a separate numerical test run investigat-
ing MIDACO’s capability to locate global optimal
solutions is shown here. In contrast to previous
numerical runs, which considered 100 executions
applying a maximal function evaluation budget of
10 millions to each problem, a single (unparalleled)
run on the full library with a time limit of 3 hours
(10080 seconds) for each problem instance is con-
sidered here. Purpose of this additional numerical
run is to evaluate the fundamental potential of MI-
DACO to solve even the harder instances of the test
bed. Again, the lower bounds of each problem in-
stance were used as starting point and the original
bounds were considered for each problem. All MI-
DACO parameter were set to default.

Table 3. MIDACO performance on 200 MINLP’s

Number of problems in total: 200
Number of optimal solutions: 172
Number of feasible solutions: 194
Average evaluation: 7,548,745
Average CPU-time: 1,635.3 sec
Total CPU-time: 3.7 days

176 Martin Schlueter and Masaharu Munetomo

Table 3 lists a summary of the results obtained
by MIDACO on the full library. Note that the exe-
cution of this test run took 3.7 days of CPU-time.

From Table 3 it can be seen that MIDACO is
able to obtain in 194 out of 200 cases a feasible so-
lution. Out of this 194 feasible solutions, 172 solu-
tions were globally optimal. The average number of
function evaluation took around 7.5 million which
where processed in about half an hour (1635 sec) on
average.

The Appendix lists the individual MIDACO re-
sults on each of the 200 MINLP instances. In re-
gard to the number of variables, MIDACO is able
to solve the largest instance in the set (see bench-
mark ”PARALLEL” in Table 5) to global optimality
in about 15 minutes. This ”PARALLEL” instance
considered 205 variables and 115 constraints, in-
cluding 81 equality constraints. Other large in-
stances that could be solved to global optimality in-
clude ”M7” with 114 variables and 211 constraints
or ”MINLPHIX” with 84 variables and 92 con-
straints. Several instances with over a hundred
varibales and/or constraints are solved to a feasible
but not global optimal solution, see e.g. benchmark
M6, ST E31, RAVEM and EX1244. Note that the
majority of problems containing only few variables
and/or constraints are solved to global optimality
within less than 0.05 seconds and most instances
with ten’s of variables and/or constraints are solved
within few seconds or even below a second.

4 Conclusion

A numerical assessment of the performance
scalability of an evolutionary optimization algo-
rithm on a set of 200 mixed integer nonlinear pro-
gramming instances was presented. The MIDACO
optimization software was chosen to represent the
evolutionary algorithm as it offers mixed-integer
capability combined with a seamless parallelization
feature (see Section 2.1). In Section 3 it was demon-
strated, that the performance in obtaining global
optimal solutions can be significantly improved by
evaluating blocks of solution candidates in parallel.
Performance was understood here in a reduction of
serial processed blocks, while maintaining a simi-
lar high number of optimal solutions. In Section 3
(Table 2) it was shown that for a parallelization fac-
tor of P=300 the MIDACO performance could be

improved over 150 times in comparison to its un-
parallelized behaviour. As many real-world appli-
cations are CPU-time intensive, the required num-
ber of serial processed blocks often marks the bot-
tleneck in optimizing such applications. Hence the
presented results are especially relevant to this kind
of CPU-time intensive real-world applications.

Another interesting finding of this study con-
cerns the scale-up behaviour observed. From Fig-
ure 3 in Section 3 it could be seen that the scale-up
effect resembles a nearly linear behaviour, whereas
especially for low parallelization factors (less than
30) the efficiency gain was close to its theoretical
maximum. Such behaviour implies that the algo-
rithm will further significantly benefit from even
much larger parallelization factors. Given that par-
allelization is a growing trend in CPU-architecture,
this observation is encouraging.

Table 4. Abbreviations used in Table 5

Abbreviation Description

Name Name of the benchmark instance
n Number of variables (in total)
ni Number of integer variables
m Number of constraints (in total)
me Number of equality constraints
Time Amount of CPU-time (in sec-

onds)

Status: Solution status obtained by MI-
DACO

√
Status = Global optimum reached

- Status = Feasible local solution
x Status = Infeasible solution

Appendix

This Appendix lists all 200 MINLP benchmark
instances with their name and number and type of
variables and constraints in Table 5. It further-
more reports the MIDACO (5.0 beta version) de-
fault performance with a maximal CPU-time bud-
get of 3 hours (10080 seconds). For detailed infor-
mation on the global optimality criteria see Section
3. Note that in two benchmark cases (ST TEST1

177Martin Schlueter and Masaharu Munetomo

Table 3 lists a summary of the results obtained
by MIDACO on the full library. Note that the exe-
cution of this test run took 3.7 days of CPU-time.

From Table 3 it can be seen that MIDACO is
able to obtain in 194 out of 200 cases a feasible so-
lution. Out of this 194 feasible solutions, 172 solu-
tions were globally optimal. The average number of
function evaluation took around 7.5 million which
where processed in about half an hour (1635 sec) on
average.

The Appendix lists the individual MIDACO re-
sults on each of the 200 MINLP instances. In re-
gard to the number of variables, MIDACO is able
to solve the largest instance in the set (see bench-
mark ”PARALLEL” in Table 5) to global optimality
in about 15 minutes. This ”PARALLEL” instance
considered 205 variables and 115 constraints, in-
cluding 81 equality constraints. Other large in-
stances that could be solved to global optimality in-
clude ”M7” with 114 variables and 211 constraints
or ”MINLPHIX” with 84 variables and 92 con-
straints. Several instances with over a hundred
varibales and/or constraints are solved to a feasible
but not global optimal solution, see e.g. benchmark
M6, ST E31, RAVEM and EX1244. Note that the
majority of problems containing only few variables
and/or constraints are solved to global optimality
within less than 0.05 seconds and most instances
with ten’s of variables and/or constraints are solved
within few seconds or even below a second.

4 Conclusion

A numerical assessment of the performance
scalability of an evolutionary optimization algo-
rithm on a set of 200 mixed integer nonlinear pro-
gramming instances was presented. The MIDACO
optimization software was chosen to represent the
evolutionary algorithm as it offers mixed-integer
capability combined with a seamless parallelization
feature (see Section 2.1). In Section 3 it was demon-
strated, that the performance in obtaining global
optimal solutions can be significantly improved by
evaluating blocks of solution candidates in parallel.
Performance was understood here in a reduction of
serial processed blocks, while maintaining a simi-
lar high number of optimal solutions. In Section 3
(Table 2) it was shown that for a parallelization fac-
tor of P=300 the MIDACO performance could be

improved over 150 times in comparison to its un-
parallelized behaviour. As many real-world appli-
cations are CPU-time intensive, the required num-
ber of serial processed blocks often marks the bot-
tleneck in optimizing such applications. Hence the
presented results are especially relevant to this kind
of CPU-time intensive real-world applications.

Another interesting finding of this study con-
cerns the scale-up behaviour observed. From Fig-
ure 3 in Section 3 it could be seen that the scale-up
effect resembles a nearly linear behaviour, whereas
especially for low parallelization factors (less than
30) the efficiency gain was close to its theoretical
maximum. Such behaviour implies that the algo-
rithm will further significantly benefit from even
much larger parallelization factors. Given that par-
allelization is a growing trend in CPU-architecture,
this observation is encouraging.

Table 4. Abbreviations used in Table 5

Abbreviation Description

Name Name of the benchmark instance
n Number of variables (in total)
ni Number of integer variables
m Number of constraints (in total)
me Number of equality constraints
Time Amount of CPU-time (in sec-

onds)

Status: Solution status obtained by MI-
DACO

√
Status = Global optimum reached

- Status = Feasible local solution
x Status = Infeasible solution

Appendix

This Appendix lists all 200 MINLP benchmark
instances with their name and number and type of
variables and constraints in Table 5. It further-
more reports the MIDACO (5.0 beta version) de-
fault performance with a maximal CPU-time bud-
get of 3 hours (10080 seconds). For detailed infor-
mation on the global optimality criteria see Section
3. Note that in two benchmark cases (ST TEST1

MIDACO PARALLELIZATION SCALABILITY ON . . .

and WU 4) the global optimal solution lies on the
lower bounds and hence equals the starting point,
which implies a reported single evaluation in Ta-
ble 5. Note that in Schlueter and Munetomo [23] a
enlarged version of this appendix can be found, ad-
ditionally listing the number of function evaluation
for each benchmark.

Table 5. MINLP benchmarks results

Benchmark Details MIDACO Result

Name n ni m me Time Status
MITP1 5 3 1 0 0.0

√

MITP2 5 3 7 0 0.0
√

QIP1 4 4 4 0 0.0
√

ASAADI11 4 3 3 0 0.0
√

ASAADI12 4 4 3 0 0.0
√

ASAADI21 7 4 4 0 0.0
√

ASAADI22 7 7 4 0 0.0
√

ASAADI31 10 6 8 0 0.0
√

ASAADI32 10 10 8 0 0.0
√

DIRTY 25 13 10 0 0.0
√

BRAAK1 7 3 2 0 0.0
√

BRAAK2 7 3 4 0 0.0
√

BRAAK3 7 3 4 0 0.0
√

DEX2 2 2 2 0 0.0
√

FUEL 15 3 15 6 2.0
√

WP02 2 1 2 0 0.0
√

NVS01 3 2 3 1 0.1
√

NVS02 8 5 3 3 0.1
√

NVS03 2 2 2 0 0.0
√

NVS04 2 2 0 0 0.0
√

NVS05 8 2 9 4 10800.0 -
NVS06 2 2 0 0 0.0

√

NVS07 3 3 2 0 0.0
√

NVS08 3 2 3 0 0.0
√

NVS09 10 10 0 0 0.0
√

NVS10 2 2 2 0 0.0
√

NVS11 3 3 3 0 0.0
√

NVS12 4 4 4 0 0.0
√

NVS13 5 5 5 0 0.0
√

NVS14 8 5 3 3 0.0
√

NVS15 3 3 1 0 0.0
√

NVS16 2 2 0 0 0.0
√

NVS17 7 7 7 0 0.0
√

NVS18 6 6 6 0 0.0
√

NVS19 8 8 8 0 0.0
√

Table 6. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
NVS20 16 5 8 0 0.1

√

NVS21 3 2 2 0 0.0
√

NVS22 8 4 9 4 1047.3
√

NVS23 9 9 9 0 0.0
√

NVS24 10 10 10 0 0.0
√

GEAR 4 4 0 0 0.0
√

GEAR2 28 24 4 4 0.1
√

GEAR2A 28 24 4 4 0.2
√

GEAR3 8 4 4 4 0.0
√

GEAR4 6 4 1 1 0.1
√

M3 26 6 43 0 5.1
√

M6 86 30 157 0 10800.0 -
M7 114 42 211 0 10514.2

√

FLOUDAS1 5 3 5 2 0.0
√

FLOUDAS2 3 1 3 0 0.0
√

FLOUDAS3 7 4 9 0 0.0
√

FLOUDAS4 11 8 7 3 3.2
√

FLOUDAS40 11 8 7 3 0.0
√

FLOUDAS5 2 2 4 0 0.0
√

FLOUDAS6 2 1 3 0 0.0
√

SPRING 17 12 8 5 0.0
√

DU OPT5 20 13 9 0 0.1
√

DU OPT 20 13 9 0 0.3
√

ST E13 2 1 2 0 0.0
√

ST E14 11 4 13 4 0.1
√

ST E15 5 3 5 2 0.0
√

ST E27 4 2 6 0 0.0
√

ST E29 11 8 7 2 0.9
√

ST E31 112 24 135 81 10800.0 -
ST E32 35 19 18 17 1876.8

√

ST E35 32 7 39 15 9.6
√

ST E36 2 1 2 1 0.0
√

ST E38 4 2 3 0 0.0
√

ST E40 4 3 8 4 0.0
√

ST MIQP1 5 5 1 0 0.0
√

178 Martin Schlueter and Masaharu Munetomo

Table 7. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
ST MIQP2 4 4 3 0 0.0

√

ST MIQP3 2 2 1 0 0.0
√

ST MIQP4 6 3 4 0 0.1
√

ST MIQP5 7 2 13 0 0.1
√

ST TEST1 5 5 1 0 0.0
√

ST TEST2 6 6 2 0 0.0
√

ST TEST3 13 13 10 0 0.0
√

ST TEST4 6 6 5 0 0.0
√

ST TEST5 10 10 11 0 0.0
√

ST TEST6 10 10 5 0 0.0
√

ST TEST8 24 24 20 0 0.7
√

TESTGR1 10 10 5 0 0.0
√

TESTGR3 20 20 20 0 0.0
√

TESTPH4 3 3 10 0 0.0
√

TLN2 8 8 12 0 0.0
√

TLN4 24 24 24 0 0.1
√

TLN5 35 35 30 0 0.6
√

TLN6 48 48 36 0 6.6
√

NEJI 3 1 6 0 0.0
√

TST NAG 8 4 7 2 10800.0 x
TLOSS 48 48 53 0 10800.0 -
TLTR 48 48 54 0 0.2

√

MEANVARX 35 14 44 8 0.3
√

MINLPHIX 84 20 92 30 1722.2
√

MIP EX 5 3 7 0 0.0
√

MGRID C1 5 5 1 0 0.0
√

MGRID C2 10 10 1 0 0.0
√

CROP5 5 5 3 0 0.0
√

CROP20 20 20 3 0 0.1
√

CROP50 50 50 3 0 0.1
√

CROP100 100 100 3 0 4.3
√

SPLITF1 12 9 9 3 0.0
√

SPLITF2 24 18 15 6 0.0
√

SPLITF3 24 18 15 6 0.3
√

SPLITF4 24 18 15 6 0.1
√

SPLITF5 24 18 15 6 0.4
√

Table 8. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
SPLITF6 24 18 15 6 0.0

√

SPLITF7 36 27 21 9 140.8
√

SPLITF8 36 27 21 9 0.4
√

SPLITF9 36 27 21 9 1.0
√

ELF 54 24 38 6 9.2
√

SPECTRA2 69 30 72 9 10800.0 -
WINDFAC 14 3 13 13 56.4

√

CSCHED1 76 63 22 12 10800.0 -
ALAN 8 4 7 2 0.2

√

PUMP 24 9 34 13 10800.0 -
RAVEM 112 54 186 25 10800.0 -
ORTEZ 87 18 74 24 10800.0 -
EX1221 5 3 5 2 0.0

√

EX1222 3 1 3 0 0.0
√

EX1223 11 4 13 4 0.5
√

EX1223A 7 4 9 0 0.0
√

EX1223B 7 4 9 0 0.0
√

EX1224 11 8 7 2 0.8
√

EX1225 8 6 10 2 0.0
√

EX1226 5 3 5 1 0.0
√

EX1233 52 12 64 20 10800.0 -
EX1243 68 16 96 24 10800.0 -
EX1244 95 23 129 30 10800.0 -
EX1252 39 15 43 22 10800.0 -
EX1263 92 72 55 20 10800.0 -

EX1263A 24 24 35 0 0.7
√

EX1264 88 68 55 20 10800.0 -
EX1264A 24 24 35 0 3.0

√

EX1265 130 100 74 30 10800.0 -
EX1265A 35 35 44 0 2.0

√

DIOPHE 4 4 1 1 0.0
√

EX1266A 48 48 53 0 10800.0 -
GBD 4 3 4 0 0.0

√

EX3 32 8 31 17 41.0
√

EX4 36 25 30 0 0.5
√

FAC1 22 6 18 10 0.3
√

179Martin Schlueter and Masaharu Munetomo

Table 7. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
ST MIQP2 4 4 3 0 0.0

√

ST MIQP3 2 2 1 0 0.0
√

ST MIQP4 6 3 4 0 0.1
√

ST MIQP5 7 2 13 0 0.1
√

ST TEST1 5 5 1 0 0.0
√

ST TEST2 6 6 2 0 0.0
√

ST TEST3 13 13 10 0 0.0
√

ST TEST4 6 6 5 0 0.0
√

ST TEST5 10 10 11 0 0.0
√

ST TEST6 10 10 5 0 0.0
√

ST TEST8 24 24 20 0 0.7
√

TESTGR1 10 10 5 0 0.0
√

TESTGR3 20 20 20 0 0.0
√

TESTPH4 3 3 10 0 0.0
√

TLN2 8 8 12 0 0.0
√

TLN4 24 24 24 0 0.1
√

TLN5 35 35 30 0 0.6
√

TLN6 48 48 36 0 6.6
√

NEJI 3 1 6 0 0.0
√

TST NAG 8 4 7 2 10800.0 x
TLOSS 48 48 53 0 10800.0 -
TLTR 48 48 54 0 0.2

√

MEANVARX 35 14 44 8 0.3
√

MINLPHIX 84 20 92 30 1722.2
√

MIP EX 5 3 7 0 0.0
√

MGRID C1 5 5 1 0 0.0
√

MGRID C2 10 10 1 0 0.0
√

CROP5 5 5 3 0 0.0
√

CROP20 20 20 3 0 0.1
√

CROP50 50 50 3 0 0.1
√

CROP100 100 100 3 0 4.3
√

SPLITF1 12 9 9 3 0.0
√

SPLITF2 24 18 15 6 0.0
√

SPLITF3 24 18 15 6 0.3
√

SPLITF4 24 18 15 6 0.1
√

SPLITF5 24 18 15 6 0.4
√

Table 8. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
SPLITF6 24 18 15 6 0.0

√

SPLITF7 36 27 21 9 140.8
√

SPLITF8 36 27 21 9 0.4
√

SPLITF9 36 27 21 9 1.0
√

ELF 54 24 38 6 9.2
√

SPECTRA2 69 30 72 9 10800.0 -
WINDFAC 14 3 13 13 56.4

√

CSCHED1 76 63 22 12 10800.0 -
ALAN 8 4 7 2 0.2

√

PUMP 24 9 34 13 10800.0 -
RAVEM 112 54 186 25 10800.0 -
ORTEZ 87 18 74 24 10800.0 -
EX1221 5 3 5 2 0.0

√

EX1222 3 1 3 0 0.0
√

EX1223 11 4 13 4 0.5
√

EX1223A 7 4 9 0 0.0
√

EX1223B 7 4 9 0 0.0
√

EX1224 11 8 7 2 0.8
√

EX1225 8 6 10 2 0.0
√

EX1226 5 3 5 1 0.0
√

EX1233 52 12 64 20 10800.0 -
EX1243 68 16 96 24 10800.0 -
EX1244 95 23 129 30 10800.0 -
EX1252 39 15 43 22 10800.0 -
EX1263 92 72 55 20 10800.0 -

EX1263A 24 24 35 0 0.7
√

EX1264 88 68 55 20 10800.0 -
EX1264A 24 24 35 0 3.0

√

EX1265 130 100 74 30 10800.0 -
EX1265A 35 35 44 0 2.0

√

DIOPHE 4 4 1 1 0.0
√

EX1266A 48 48 53 0 10800.0 -
GBD 4 3 4 0 0.0

√

EX3 32 8 31 17 41.0
√

EX4 36 25 30 0 0.5
√

FAC1 22 6 18 10 0.3
√

MIDACO PARALLELIZATION SCALABILITY ON . . .

Table 9. MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
FAC2 66 12 33 21 9.2

√

FAC3 66 12 33 21 8.8
√

GKOCIS 11 3 8 5 0.0
√

KG 9 2 9 5 0.2
√

SYNTHES1 6 3 6 0 0.0
√

SYNTHES2 11 5 14 1 0.0
√

SYNTHES3 17 8 23 2 0.3
√

PARALLEL 205 25 115 81 1159.4
√

SYNHEAT 56 12 64 20 10800.0 -
SEP1 29 2 31 22 25.6

√

DAKOTA 4 2 2 0 0.0
√

BATCH 47 24 73 12 36.9
√

BATCHDES 19 9 19 6 0.0
√

ENIPLAC 141 24 189 87 10800.0 x
PROB02 6 6 8 0 0.0

√

PROB03 2 2 1 0 0.0
√

PROB10 2 1 2 0 0.0
√

NOUS1 50 2 43 41 10800.0 -
NOUS2 50 2 43 41 10800.0 -
TLS2 37 33 24 6 2.1

√

TLS4 105 89 64 20 10800.0 -
TLS5 161 136 90 30 10800.0 -
OAER 9 3 7 3 0.0

√

PROCSEL 10 3 7 4 0.5
√

LICHOU 1 2 1 2 1 0.0
√

LICHOU 2 4 2 4 0 0.0
√

LICHOU 3 3 3 4 0 0.0
√

WU 1 32 32 0 0 0.0
√

WU 2 32 32 0 0 0.0
√

WU 3 64 64 0 0 0.0
√

WU 4 64 64 0 0 0.0
√

OPTPRLOC 30 25 30 0 0.0
√

GASNET 90 10 69 48 10800.0 x

Table 10. MINLP benchmarks (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status
TP83 5 4 6 0 0.0

√

TP84 5 2 6 0 0.0
√

TP85 5 3 38 0 0.0
√

TP87 6 2 4 4 0.0
√

TP93 6 1 2 0 0.1
√

FEEDTRAY 97 7 91 83 10800.0 x
FEEDTRAY2 87 36 283 6 10800.0 x
HILBERT20 20 20 20 20 2.0

√

HILBERT50 50 50 50 50 1084.9
√

HILBERT100 100 100 100 100 6872.4
√

SLOPPY 6 6 3 0 0.0
√

RASTRIGIN 2 1 0 0 0.0
√

EMSO 6 3 4 0 0.0
√

TP1 2 2 0 0 0.0
√

TP1A 2 2 0 0 0.0
√

TP1B 2 2 0 0 0.0
√

TP9 2 2 1 1 0.0
√

TP10 2 2 1 0 0.0
√

DEB10 182 22 129 65 10800.0 x
IRAP1 68 68 18 0 1.7

√

IRAP2 38 38 20 0 0.0
√

IRAP3 40 40 21 0 0.0
√

IRAP4 45 45 16 0 1.1
√

IRAP5 60 60 16 0 2.5
√

IRAP6 34 34 18 0 0.0
√

180 Martin Schlueter and Masaharu Munetomo

References
[1] Babu B., Angira A., A differential evolution ap-

proach for global optimisation of minlp problems,
In: Proceedings of the Fourth Asia Pacific Confer-
ence on Simulated Evolution and Learning (SEAL
2002), Singapore, 2002, pp. 880–884.

[2] Cardoso M.F., Salcedo R.L., Azevedo S.F., Barbosa
D., A simulated annealing approach to the solu-
tion of MINLP problems, Computers Chem. Engng.
12(21), 1997, pp. 1349–1364.

[3] Costa L., Oliveira P., Evolutionary algorithms ap-
proach to the solution of mixed integer non-
linear programming problems, Comput Chem Eng,
25(23), 2001, 257-266.

[4] Deep K., Krishna P.S., Kansal M.L., Mohan C., A
real coded genetic algorithm for solving integer and
mixed integer optimization problems. Appl. Math.
Comput., 212(2), 2009, pp. 505–518.

[5] European Space Agency (ESA) and Ad-
vanced Concepts Team (ACT), Gtop database
- global optimisation trajectory prob-
lems and solutions, Software available at
http://www.esa.int/gsp/ACT/inf/op/globopt.htm,
2011.

[6] Glover F., Parametric tabu-search for mixed in-
teger programs, Comput Oper Res 33(9), 2006,
24492494.

[7] Gupta S., Tan G., A scalable parallel implementa-
tion of evolutionary algorithms for multi-objective
optimization on GPUs, Evolutionary Computation
(CEC), IEEE Congress on, Sendai, 2015, pp. 1567–
1574.

[8] Quinn J.M., Parallel Programming in C with MPI
and OpenMP, McGraw-Hill, 2003.

[9] GAMS MINLPlib - A collection of Mixed
Integer Nonlinear Programming models.
Washington, DC, USA; software available at
http://www.gamsworld.org/minlp/minlplib.htm,
2016.

[10] Laessig J., Sudholt D., General upper bounds
on the runtime of parallel evolutionary algorithms,
Evolutionary Computation, vol. 22, no. 3, 2014, pp.
405-437.

[11] Liang B., Wang J., Jiang Y., Huang D., Im-
proved Hybrid Differential Evolution-Estimation of
Distribution Algorithm with Feasibility Rules for
NLP/MINLP, Engineering Optimization Problems,
Chin. J. Chem. Eng. 20(6), 2012, pp. 1074–1080.

[12] Mohamed A.W., An efficient modified differen-
tial evolution algorithm for solving constrained non-
linear integer and mixed-integer global optimization

problems. Int. J. Mach. Learn. & Cyber., 2015, pp.
1–19.

[13] Munawar A., Redesigning Evolutionary Algo-
rithms for Many-Core Processors Ph.D. Thesis,
Graduate School of Information Science and Tech-
nology, Hokkaido University, Japan, 2012.

[14] Du X., Ni Y., Yao Z., Xiao R., High perfor-
mance parallel evolutionary algorithm model based
on MapReduce framework, Int. J. Computer Appli-
cations in Technology, Vol. 46, No. 3, 2013, pp.
290–296.

[15] Powell D., Hollingsworth J., A NSGA-II, web-
enabled, parallel optimization framework for NLP
and MINLP, Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation,
2007, pp. 2145–2150.

[16] Sakuray Pais M., Yamanaka K., Rodrigues Pinto
E., Rigorous Experimental Performance Analysis of
Parallel Evolutionary Algorithms on Multicore Plat-
forms, In IEEE Latin America Transactions, vol. 12,
no. 4, 2014, pp. 805–811.

[17] Schlueter M., Egea J.A., Banga J.R., Extended ant-
colony optimization for non-convex mixed integer
nonlinear programming, Comput. Oper. Res. 36(7),
2009, 2217–2229.

[18] Schlueter M., Gerdts M., The Oracle Penalty
Method. J. Global Optim. 47(2), 2010, 293–325.

[19] Schlueter, M., Gerdts, M., Rueckmann J.J., A Nu-
merical Study of MIDACO on 100 MINLP Bench-
marks, Optimization 7(61), 2012, pp. 873–900.

[20] Schlueter M., Erb S., Gerdts M., Kemble S.,
Rueckmann J.J., MIDACO on MINLP Space Appli-
cations, Advances in Space Research, 51(7), 2013,
1116–1131.

[21] Schlueter M., MIDACO Software Performance on
Interplanetary Trajectory Benchmarks, Advances in
Space Research, 54(4), 2014, 744–754.

[22] Schlueter M., MIDACO Solver - Global Optimiza-
tion Software for Mixed Integer Nonlinear Program-
ming, Software available at http://www.midaco-
solver.com, 2016.

[23] Schlueter M., Munetomo M., Numerical As-
sessment of the Parallelization Scalability on 200
MINLP Benchmarks, Proc. of the IEEE-CEC2016
Conference, Vancouver, Canada, 2016.

[24] K. Schittkowski, A Collection of 200 Test Prob-
lems for Nonlinear Mixed-Integer Programming in
Fortran (User Guide), Report, Department of Com-
puter Science, University of Bayreuth, Bayreuth,
2012.

181Martin Schlueter and Masaharu Munetomo

References
[1] Babu B., Angira A., A differential evolution ap-

proach for global optimisation of minlp problems,
In: Proceedings of the Fourth Asia Pacific Confer-
ence on Simulated Evolution and Learning (SEAL
2002), Singapore, 2002, pp. 880–884.

[2] Cardoso M.F., Salcedo R.L., Azevedo S.F., Barbosa
D., A simulated annealing approach to the solu-
tion of MINLP problems, Computers Chem. Engng.
12(21), 1997, pp. 1349–1364.

[3] Costa L., Oliveira P., Evolutionary algorithms ap-
proach to the solution of mixed integer non-
linear programming problems, Comput Chem Eng,
25(23), 2001, 257-266.

[4] Deep K., Krishna P.S., Kansal M.L., Mohan C., A
real coded genetic algorithm for solving integer and
mixed integer optimization problems. Appl. Math.
Comput., 212(2), 2009, pp. 505–518.

[5] European Space Agency (ESA) and Ad-
vanced Concepts Team (ACT), Gtop database
- global optimisation trajectory prob-
lems and solutions, Software available at
http://www.esa.int/gsp/ACT/inf/op/globopt.htm,
2011.

[6] Glover F., Parametric tabu-search for mixed in-
teger programs, Comput Oper Res 33(9), 2006,
24492494.

[7] Gupta S., Tan G., A scalable parallel implementa-
tion of evolutionary algorithms for multi-objective
optimization on GPUs, Evolutionary Computation
(CEC), IEEE Congress on, Sendai, 2015, pp. 1567–
1574.

[8] Quinn J.M., Parallel Programming in C with MPI
and OpenMP, McGraw-Hill, 2003.

[9] GAMS MINLPlib - A collection of Mixed
Integer Nonlinear Programming models.
Washington, DC, USA; software available at
http://www.gamsworld.org/minlp/minlplib.htm,
2016.

[10] Laessig J., Sudholt D., General upper bounds
on the runtime of parallel evolutionary algorithms,
Evolutionary Computation, vol. 22, no. 3, 2014, pp.
405-437.

[11] Liang B., Wang J., Jiang Y., Huang D., Im-
proved Hybrid Differential Evolution-Estimation of
Distribution Algorithm with Feasibility Rules for
NLP/MINLP, Engineering Optimization Problems,
Chin. J. Chem. Eng. 20(6), 2012, pp. 1074–1080.

[12] Mohamed A.W., An efficient modified differen-
tial evolution algorithm for solving constrained non-
linear integer and mixed-integer global optimization

problems. Int. J. Mach. Learn. & Cyber., 2015, pp.
1–19.

[13] Munawar A., Redesigning Evolutionary Algo-
rithms for Many-Core Processors Ph.D. Thesis,
Graduate School of Information Science and Tech-
nology, Hokkaido University, Japan, 2012.

[14] Du X., Ni Y., Yao Z., Xiao R., High perfor-
mance parallel evolutionary algorithm model based
on MapReduce framework, Int. J. Computer Appli-
cations in Technology, Vol. 46, No. 3, 2013, pp.
290–296.

[15] Powell D., Hollingsworth J., A NSGA-II, web-
enabled, parallel optimization framework for NLP
and MINLP, Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation,
2007, pp. 2145–2150.

[16] Sakuray Pais M., Yamanaka K., Rodrigues Pinto
E., Rigorous Experimental Performance Analysis of
Parallel Evolutionary Algorithms on Multicore Plat-
forms, In IEEE Latin America Transactions, vol. 12,
no. 4, 2014, pp. 805–811.

[17] Schlueter M., Egea J.A., Banga J.R., Extended ant-
colony optimization for non-convex mixed integer
nonlinear programming, Comput. Oper. Res. 36(7),
2009, 2217–2229.

[18] Schlueter M., Gerdts M., The Oracle Penalty
Method. J. Global Optim. 47(2), 2010, 293–325.

[19] Schlueter, M., Gerdts, M., Rueckmann J.J., A Nu-
merical Study of MIDACO on 100 MINLP Bench-
marks, Optimization 7(61), 2012, pp. 873–900.

[20] Schlueter M., Erb S., Gerdts M., Kemble S.,
Rueckmann J.J., MIDACO on MINLP Space Appli-
cations, Advances in Space Research, 51(7), 2013,
1116–1131.

[21] Schlueter M., MIDACO Software Performance on
Interplanetary Trajectory Benchmarks, Advances in
Space Research, 54(4), 2014, 744–754.

[22] Schlueter M., MIDACO Solver - Global Optimiza-
tion Software for Mixed Integer Nonlinear Program-
ming, Software available at http://www.midaco-
solver.com, 2016.

[23] Schlueter M., Munetomo M., Numerical As-
sessment of the Parallelization Scalability on 200
MINLP Benchmarks, Proc. of the IEEE-CEC2016
Conference, Vancouver, Canada, 2016.

[24] K. Schittkowski, A Collection of 200 Test Prob-
lems for Nonlinear Mixed-Integer Programming in
Fortran (User Guide), Report, Department of Com-
puter Science, University of Bayreuth, Bayreuth,
2012.

MIDACO PARALLELIZATION SCALABILITY ON . . .

[25] K. Schittkowski, NLPQLP - A Fortran implemen-
tation of a sequential quadratic programming algo-
rithm with distributed and non-monotone line search
(User Guide), Report, Department of Computer Sci-
ence, University of Bayreuth, Bayreuth, 2009.

[26] K. Socha and M. Dorigo, Ant colony optimization
for continuous domains, Eur. J. Oper. Res. 85, 2008,
pp. 1155–1173.

[27] Sudholt D., Parallel Evolutionary Algorithms, In
Janusz Kacprzyk and Witold Pedrycz (Eds.): Hand-
book of Computational Intelligence, Springer, 2015.

[28] Wasanapradit T., Mukdasanit N., Chaiyaratana N.,
Srinophakun T., Solving mixed-integer nonlinear
programming problems using improved genetic al-
gorithms, Korean J. Chem. Eng. 28(1), 2011, 32–40.

[29] Yiqing L., Xigang Y., Yongjian L., An improved
PSO algorithm for solving non-convex NLP/MINLP

problems with equality constraints, Comp. Chem.
Eng. 3(31), 2007, 153–162.

[30] Young C.T., Zheng Y., Yeh C.W., Jang S.S.,
Information-guided genetic algorithm approach to
the solution of MINLP problems, Ind. Eng. Chem.
Res. 46, 2007, pp. 1527–1537.

[31] Yingyong Z., Yongde Z., Qinghua L., Jingang
J., Guangbin Y., Improved Multi-objective Genetic
Algorithm Based on Parallel Hybrid Evolutionary
Theory, International Journal of Hybrid Information
Technology Vol.8, No.1, 2015, pp. 133–140.

[32] Yue T., Guan-Zheng T., Shu-Guang D., Hybrid
particle swarm optimization with chaotic search
for solving integer and mixed integer programming
problems. J. Central South Univ., 2014, 21:2731–
2742.

Martin Schlueter is a post-doctoral
researcher at the Information Initia-
tive Center, Hokkaido University, Ja-
pan. He obtained his Ph.D. from the
School of Mathematics at the Univer-
sity of Birmingham (UK) in 2012. In
collaboration with the European Space
Agency (ESA) and EADS-Astrium he
developed the MIDACO optimization

algorithm, which holds several best-known record solutions
to challenging interplanetary space trajectory benchmarks.
From 2014 to 2016 he was appointed as research scientist at
the Institute of Space and Astronautical Science (ISAS) of the
Japan Aerospace Exploration Agency (JAXA) to investigate
multi-objective optimization via massively parallelized evo-
lutionary algorithms.

Masaharu Munetomo is professor
and vice director of Information Ini-
tiative Center, Hokkaido University,
which is one of the Japanese national
supercomputing center also providing
cloud computing services to research-
ers. He recieved Ph.D. in information
engineering on 1996. He joined Il-
liGAL (Illinois Genetic Algorithms

Laboratory), University of Illinois at Urbana-Champaing as a
visiting scholar from 1998 to 1999. He is the chief architect of
“Hokkaido University Academic Cloud” which started ser-
vices in 2011 as the largest academic cloud system in Japan.
He is the chief examinar of cloud computing research group
of Japanese national supercomputing centers. Currently, he
conduct research projects related to evolutionary computa-
tion, metaheuristics, machine learning, and cloud computing.

