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Abstract

In our previous work, Fitness Predator Optimizer (FPO) is proposed to avoid premature
convergence for multimodal problems. In FPO, all of the particles are seen as predators.
Only the competitive, powerful predator that are selected as an elite could achieve the
limited opportunity to update. The elite generation with roulette wheel selection could
increase individual independence and reduce rapid social collaboration. Experimental re-
sults show that FPO is able to provide excellent performance of global exploration and
local minima avoidance simultaneously. However, to the higher dimensionality of multi-
modal problem, the slow convergence speed becomes the bottleneck of FPO. A dynamic
team model is utilized in FPO, named DFPO to accelerate the early convergence rate. In
this paper, DFPO is more precisely described and its variant, DFPO-r is proposed to im-
prove the performance of DFPO. A method of team size selection is proposed in DFPO-r
to increase population diversity. The population diversity is one of the most important
factors that determines the performance of the optimization algorithm. A higher degree
of population diversity is able to help DFPO-r alleviate a premature convergence. The
strategy of selection is to choose team size according to the higher degree of population
diversity. Ten well-known multimodal benchmark functions are used to evaluate the solu-
tion capability of DFPO and DFPO-r. Six benchmark functions are extensively set to 100
dimensions to investigate the performance of DFPO and DFPO-r compared with LBest
PSO, Dolphin Partner Optimization and FPO. Experimental results show that both DFPO
and DFPO-r could demonstrate the desirable performance. Furthermore, DFPO-r shows
better robustness performance compared with DFPO in experimental study.
Keywords: swarm intelligence, sitness predator optimizer, dynamic virtual team, popu-
lation diversity

1 Introduction

Swarm Intelligence (SI) is a relatively new in-
terdisciplinary field of research, which has gained
huge popularity these days. It is study of compu-
tational systems, which draw inspiration from the
collective intelligence emerging from the behav-
ior of groups of simple agents (like bees, ants and
birds). The most well-known paradigms in the area

of swarm intelligence are Ant Colony Optimiza-
tion (ACO) [9], Particle Swarm Optimization (PSO)
[10], Artificial Bee Colony (ABC) [12], Stochas-
tic Diffusion Search (SDS) [2], [25] and bacterial
foraging algorithm [20]. Recently, there are many
other nature-inspired meta-heuristic algorithms that
proposed as extensions of SI, such as firefly algo-
rithm [34], fireworks algorithm [32], wasp swarm
algorithm [26], Glowworm Swarm Optimization
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(GSO) [21], [22], Gravitational Search Algorithm
(GSA) [27] and so on.

A major problem with most swarm intelligence
algorithms in multimodal optimization is premature
convergence, which results in great performance
loss and sub-optimal solutions [1]. Generally, the
fast social collaboration between particles seems to
be the reason for loss of population diversity. Di-
versity declines rapidly in the later iteration period,
leaving the optimization algorithm with great diffi-
culties of escaping the local optima. Consequently,
the clustering particles with fitness stagnation fur-
ther exacerbates the premature convergence situa-
tion. An accepted hypothesis is that maintenance
of high diversity is crucial for preventing premature
convergence in multimodal optimization.

Many kinds of optimization algorithms are pro-
posed to improve the diversity of the population
for preventing premature convergence. Some of
them are inspired by the social behavior of swarms
and herds in nature. Moreover, hunting and search
behavior of predators are implemented by more
and more researchers and proved to be an effective
method. For instance, the basic idea of Artificial
Fish-Swarm Algorithm (AFSA) [23] is to imitate
fish behavior such as preying, swarming, follow-
ing with local search of individual fish for reach-
ing the global optimum. The Grey Wolf Optimizer
(GWO) [24] algorithm mimics the leadership hier-
archy and hunting mechanism of grey wolves in na-
ture. The Dolphin Partner Optimization (DPO) [30]
mimics the hunting mechanism of dolphins in na-
ture. Bat-inspired Algorithm (BA) [35] based on
the echolocation behavior of bats. Bats use a type
of sonar, called, echolocation to detect prey, avoid
obstacles and locate their roosting crevices in the
dark. Krill Herd (KH) [11] is based on the simula-
tion of the herding of the krill swarms in response
to specific biological and environmental processes.
The most closely associated algorithm with our pro-
posed method is the Predator-Prey Optimizer (PPO)
[31]. It is a form of particle swarm optimization
where new particles called predators are introduced.
The objective of predator is to pursue the best in-
dividual in the swarm. The fear probability is the
probability of a particle changing its velocity due to
the presence of the predator. When all of the parti-
cles tend to move toward the best global particle,
a predator particle nearby will disturb these par-

ticles’ movement to avoid premature convergence.
The experimental results show that the PPO has a
better performance than the traditional PSO [13],
[16] in regard to multimodal functions. However,
the parameters of the PPO were empirically defined,
which greatly influence the robust performance of
the algorithm.

Generally, most of swarm intelligence algo-
rithms, such as cuckoo search [36], brain storm op-
timization algorithm [28], bacterial foraging opti-
mization algorithm [8], focus on social collabora-
tion of population while they seldom concentrate
on the individual competition and independent self
awareness. The skills of individual competition are
effective methods for inspiration to develop intelli-
gent systems and provide solutions to multimodal
problems. We assume that the individual competi-
tion is more efficient for reducing the rapid social
collaboration and increase the ability of being out
of the local optimum for the swarm. This motivated
our attempt to present a new swarm intelligence op-
timization, the Fitness Predator Optimizer (FPO)
[33] that implements hunting and search behavior
of predators, but also emphasizes on the individual
competition and independent self awareness.

In an FPO system, all of the individuals are seen
as predators. Only the competitive, powerful indi-
viduals selected as elites can achieve the limited op-
portunity to update. The elite team reduces the risk
of all of the individuals moving towards the same
place. However, in regards to the higher dimension-
ality of multimodal problem, the slow convergence
speed in the early iteration becomes the bottleneck
to restrict the improvement of the Fitness Predator
Optimizer. In order to resolve this problem, we try
to design a superior topology structure of FPO in
this paper.

Many investigations about the swarm paradigm
[14], [17] have found that the gbest type converges
quickly on problem solutions but has a weakness for
becoming trapped in the local optima, while lbest
populations are able to escape from local optima, as
subpopulations explore different regions. In [15],
[18], Kennedy theorized that heterogeneous popu-
lation structures, with some subsets of the popula-
tion tightly connected and others relatively isolated,
could provide the benefits of both lbest and gbest
sociometries. Motivated by the heterogeneous pop-
ulation structure, a modified dynamic virtual team
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(GSO) [21], [22], Gravitational Search Algorithm
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convergence, which results in great performance
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fast social collaboration between particles seems to
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versity declines rapidly in the later iteration period,
leaving the optimization algorithm with great diffi-
culties of escaping the local optima. Consequently,
the clustering particles with fitness stagnation fur-
ther exacerbates the premature convergence situa-
tion. An accepted hypothesis is that maintenance
of high diversity is crucial for preventing premature
convergence in multimodal optimization.

Many kinds of optimization algorithms are pro-
posed to improve the diversity of the population
for preventing premature convergence. Some of
them are inspired by the social behavior of swarms
and herds in nature. Moreover, hunting and search
behavior of predators are implemented by more
and more researchers and proved to be an effective
method. For instance, the basic idea of Artificial
Fish-Swarm Algorithm (AFSA) [23] is to imitate
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dark. Krill Herd (KH) [11] is based on the simula-
tion of the herding of the krill swarms in response
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The most closely associated algorithm with our pro-
posed method is the Predator-Prey Optimizer (PPO)
[31]. It is a form of particle swarm optimization
where new particles called predators are introduced.
The objective of predator is to pursue the best in-
dividual in the swarm. The fear probability is the
probability of a particle changing its velocity due to
the presence of the predator. When all of the parti-
cles tend to move toward the best global particle,
a predator particle nearby will disturb these par-

ticles’ movement to avoid premature convergence.
The experimental results show that the PPO has a
better performance than the traditional PSO [13],
[16] in regard to multimodal functions. However,
the parameters of the PPO were empirically defined,
which greatly influence the robust performance of
the algorithm.

Generally, most of swarm intelligence algo-
rithms, such as cuckoo search [36], brain storm op-
timization algorithm [28], bacterial foraging opti-
mization algorithm [8], focus on social collabora-
tion of population while they seldom concentrate
on the individual competition and independent self
awareness. The skills of individual competition are
effective methods for inspiration to develop intelli-
gent systems and provide solutions to multimodal
problems. We assume that the individual competi-
tion is more efficient for reducing the rapid social
collaboration and increase the ability of being out
of the local optimum for the swarm. This motivated
our attempt to present a new swarm intelligence op-
timization, the Fitness Predator Optimizer (FPO)
[33] that implements hunting and search behavior
of predators, but also emphasizes on the individual
competition and independent self awareness.

In an FPO system, all of the individuals are seen
as predators. Only the competitive, powerful indi-
viduals selected as elites can achieve the limited op-
portunity to update. The elite team reduces the risk
of all of the individuals moving towards the same
place. However, in regards to the higher dimension-
ality of multimodal problem, the slow convergence
speed in the early iteration becomes the bottleneck
to restrict the improvement of the Fitness Predator
Optimizer. In order to resolve this problem, we try
to design a superior topology structure of FPO in
this paper.

Many investigations about the swarm paradigm
[14], [17] have found that the gbest type converges
quickly on problem solutions but has a weakness for
becoming trapped in the local optima, while lbest
populations are able to escape from local optima, as
subpopulations explore different regions. In [15],
[18], Kennedy theorized that heterogeneous popu-
lation structures, with some subsets of the popula-
tion tightly connected and others relatively isolated,
could provide the benefits of both lbest and gbest
sociometries. Motivated by the heterogeneous pop-
ulation structure, a modified dynamic virtual team
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is presented in this paper with the aim of acceler-
ating the early convergence rate and improving the
global searching capability for FPO. Dynamic vir-
tual team, which was first presented by the Dolphin
Partner Optimization (DPO) [30] mimics the hunt-
ing mechanism of dolphins in nature. The perfor-
mance of DPO with the virtual team model is eval-
uated on several benchmark functions. Experiments
show that it could demonstrate the desirable per-
formance. However, the original structure of the
dynamic team is not beneficial for the FPO sys-
tem. Furthermore, the implementation of dynamic
virtual team in FPO caused a slight performance
degradation. Actually, the individual independent
consciousness is weakened by the team leader. Our
next work is to propose an appropriate wheel topol-
ogy instead of the original topology structure in
DPO. In this paper, the modified structure of the
dynamic virtual team as an appropriate wheel topol-
ogy is applied to FPO, which is a Dynamic Fitness
Predator Optimizer (DFPO).

The rest of the paper is organized as follows:
Section 2 provides a brief introduction of related
work about FPO, dynamic virtual team and the al-
gorithm for the team model. In Section 3, DFPO-
r is proposed. Experiments on ten well-known
multimodal functions are conducted in Section 4.
The analysis and discussion of the performance of
DFPO and DFPO-r are also shown in Section 4. Fi-
nally, some concluding remarks and suggestions for
future research are provided in Section 5.

2 Related Work

In this Section, the brief introduction of FPO,
the basic concepts of dynamic virtual team and the
algorithm of a dynamic virtual team model are ap-
prehensively presented.

2.1 Fitness Predator Optimizer

Fitness Predator Optimizer (FPO) [33] is a new
bionic-inspired algorithm proposed in our previous
work to avoid premature convergence for multi-
modal problems. In this Section, we mainly focus
on the basic principles of FPO and the main func-
tion of FPO as described in Algorithm 1.

Principle 1: The limited opportunities are only
for the stronger competitors.

To most swarm intelligence algorithms, all par-
ticles in a swarm get an equal opportunity to update
during each iteration. Unlike most swarm intelli-
gence algorithms, FPO practices a limited number
of updates for each iteration. This greatly stimulates
the competition among the particles in a swarm.
Principle 1 means that a particle with a better fitness
function value, that had a prior possibility to update
is considered a stronger competitor. The stronger
competitor is called the elite. It is worth noting that
the elite is not the group’s best one, many particles
could be the elites when they receive an update op-
portunity in each iteration.

Principle 2: The elite team is composed of
competitors.

Principle 2 defines the components of an elite
team. The elite team topology of FPO differs from
the previous studies. For example, the global gbest
topology structure in canonical PSO. In its global
gbest topology, only one particle is denoted as a
global best position (so called gbest) for the en-
tire swarm. Some publications [19], [7] show that
the gbest model converges quickly on problem so-
lutions, but has a weakness for becoming trapped
in the local optima. The fast social collaboration
between particles will lead all the particles to move
toward the global best position. While the elite team
topology proposed in FPO is composed of a number
of personal best positions instead of single global
best position, which reduces the possibility of all
the particles moving toward the same position.

Principle 3: The territory intrusion is to take
advantage of a companion’s position information.

In principle 3, the new territory for elite is the
next alternative updated position. If the elite i does
not know what is the next best place, a sensible way
is to dynamically adjust it according to its own ex-
perience and its companions’ experience. The defi-
nition of updated position is:

x∗(i, j) = x(i, j) +θ∗ c∗w∗ (x(g, j)− x(i, j)). (1)

To the position i, xi = (xi1,xi2, ...,xid) is a vector
with d dimensions. x∗(i, j) is the next alternative po-
sition and x(i, j) is the current position. θ = (rand −
0.5) is a random decimal. Generally, c∈ [0,2] and w
is defined as inertia weight, first proposed by Y.Shi
and Eberhart [29] for PSO. g(g ̸= i) is a companion
of position i.
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Having presented three basic principles, the
main function of FPO is described in Algorithm 1.

From the main function of FPO shown in Algo-
rithm 1, we note that the FPO is an iterative, syn-
chronous algorithm. Each individual particle in a
swarm moving to a new location carries implicit
synchronization on each iteration. As previously
mentioned, the slow convergence speed in the early
iteration becomes the performance bottleneck for
the FPO. In order to improve the optimum search-
ing capability of FPO, an improved FPO with dy-
namic virtual team is proposed to accelerate the rate
of convergence. We hypothesized that such a dy-
namic team network topology could provide higher
quality solutions for FPO. Consequently the mech-
anism of a dynamic virtual team is described in the
next subsection.

2.2 Dynamic Virtual Team

In this Section, the original concept of dynamic
virtual team in [30] is introduced at first. Then a
simple diagram of virtual team is shown in Figure 1.

The dynamic virtual team is first proposed by
the Dolphin Partner Optimization (DPO) [30]. It
mimics the hunting mechanism of dolphins in na-
ture. During the hunting process, a dolphin will
look for his neighbors and select some of them as
his partners. All of his partners and himself form a
self-organizing team, which is defined as a dynamic
virtual team. In a swarm, each dolphin will do the
same clustering behavior at the same time. Here are
the related definitions about the dynamic team.

Team: According to the nearest neighbor prin-
ciple, one dolphin and some of his neighbors are

composed of a dynamic virtual team. It should
be noted that one dolphin could belong to multiple
teams when teams are connected.

Role recognition: A dolphin evaluates himself
by comparing the best fitness value with other part-
ners in his virtual team. Normally, the one that has
the best fitness value will be selected as the team
leader. Each member of the team is recognized as
either a leader or an ordinary member.

Exchange: A dolphin provides his best experi-
ence information to the team. The team’s best expe-
rience could be concluded by comparing the team
members’ experience. The information expansion
of individuals and team experience is carried out by
the dolphin that belongs to multiple teams.

Leader: The function of team leader dolphin
is to analyze all communication information and
to predict the most applicable position for the next
step.

Member: The function of the ordinary member
is to abide with the team leader.

Figure 1. Diagram of dynamic virtual teams

The simple diagram of a virtual team is shown
in Figure 1. The solid red circles are team leader
and the blank rings present ordinary team members.
According to the nearest neighbor rule, each indi-
vidual dynamically select its 4 immediate neigh-
bors as a team on each iteration. The structure of
this team is seemed as an appropriate circle topol-
ogy. In the circle topology, if two teams have the
same members, they are interrelated and affect each
other. Otherwise, they are distant from one another
and also independent of one another.

Generally, the leader marked with red color has
the best fitness value in the team. The main function
of the team leader is to analyze all communication
information and to predict the most accessible posi-

in each iteration.
Principle 2: The elite team is composed of com-

petitors.
Principle 2 defines the components of an elite

team. The elite team topology of FPO differs from
the previous studies. For example, the global gbest
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gbest topology, only one particle is denoted as a
global best position (so called gbest) for the en-
tire swarm. Some publications [19], [7] show that
the gbest model converges quickly on problem solu-
tions, but has a weakness for becoming trapped in the
local optima. The fast social collaboration between
particles will lead all the particles to move toward
the global best position. While the elite team topol-
ogy proposed in FPO is composed of a number of
personal best positions instead of single global best
position, which reduces the possibility of all the par-
ticles moving toward the same position.

Principle 3: The territory intrusion is to take ad-
vantage of a companion’s position information.

In principle 3, the new territory for elite is the next
alternative updated position. If the elite i does not
know what is the next best place, a sensible way is to
dynamically adjust it according to its own experience
and its companions’ experience. The definition of
updated position is:

x∗(i, j) = x(i, j) +θ∗ c∗w∗ (x(g, j)− x(i, j)) (1)

To the position i, xi = (xi1,xi2, ...,xid) is a vector with
d dimensions. x∗(i, j) is the next alternative position
and x(i, j) is the current position. θ = (rand − 0.5)
is a random decimal. Generally, c ∈ [0,2] and w is
defined as inertia weight, first proposed by Y.Shi and
Eberhart [29] for PSO. g(g ̸= i) is a companion of
position i.

Having presented three basic principles, the main
function of FPO is described in Algorithm 1.

From the main function of FPO shown in Algo-
rithm 1, we note that the FPO is an iterative, syn-

Algorithm 1 Main Function of FPO
1: Initialize population: popsize = n
2: Initialize xi: rand(xi) ∈ (xmin,xmax)
3: Initialize opportunities: ρ
4: Repeat
5: for all particles do
6: if xi get an opportunity to update then
7: Generate a new position by equation (1)
8: if the new position is better than xi then
9: Update xi and record it as an elite

10: end if
11: end if
12: end for
13: Until maximum opportunities are attained

chronous algorithm. Each individual particle in a
swarm moving to a new location carries implicit syn-
chronization on each iteration. As previously men-
tioned, the slow convergence speed in the early it-
eration becomes the performance bottleneck for the
FPO. In order to improve the optimum searching ca-
pability of FPO, an improved FPO with dynamic vir-
tual team is proposed to accelerate the rate of conver-
gence. We hypothesized that such a dynamic team
network topology could provide higher quality so-
lutions for FPO. Consequently the mechanism of a
dynamic virtual team is described in the next sub-
section.

2.2 Dynamic Virtual Team

In this section, the original concept of dynamic vir-
tual team in [30] is introduced at first. Then a simple
diagram of virtual team is shown in Fig. 1.

The dynamic virtual team is first proposed by the
Dolphin Partner Optimization (DPO) [30]. It mimics
the hunting mechanism of dolphins in nature. Dur-
ing the hunting process, a dolphin will look for his
neighbors and select some of them as his partners.

4
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be noted that one dolphin could belong to multiple
teams when teams are connected.

Role recognition: A dolphin evaluates himself
by comparing the best fitness value with other part-
ners in his virtual team. Normally, the one that has
the best fitness value will be selected as the team
leader. Each member of the team is recognized as
either a leader or an ordinary member.

Exchange: A dolphin provides his best experi-
ence information to the team. The team’s best expe-
rience could be concluded by comparing the team
members’ experience. The information expansion
of individuals and team experience is carried out by
the dolphin that belongs to multiple teams.

Leader: The function of team leader dolphin
is to analyze all communication information and
to predict the most applicable position for the next
step.

Member: The function of the ordinary member
is to abide with the team leader.

Figure 1. Diagram of dynamic virtual teams

The simple diagram of a virtual team is shown
in Figure 1. The solid red circles are team leader
and the blank rings present ordinary team members.
According to the nearest neighbor rule, each indi-
vidual dynamically select its 4 immediate neigh-
bors as a team on each iteration. The structure of
this team is seemed as an appropriate circle topol-
ogy. In the circle topology, if two teams have the
same members, they are interrelated and affect each
other. Otherwise, they are distant from one another
and also independent of one another.

Generally, the leader marked with red color has
the best fitness value in the team. The main function
of the team leader is to analyze all communication
information and to predict the most accessible posi-
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tion for the further search. The star in purple is the
future optimal position that is obtained by one of
team leaders from the exchanged information with
interrelated teams. The expansion of personal ex-
perience and the team’s experience is carried out by
some interrelated members between the teams. An-
other function of the ordinary team member is to
abide with the team leader which belongs to.

Having accomplished the description of origi-
nal concepts of dynamic virtual teams, the main
organization algorithm of a dynamic virtual team
model will be demonstrated in the next subsection.

2.3 Algorithm of Dynamic Virtual Team

First of all, the implementation of the dynamic
virtual team model is shown in Algorithm 2. Two
important key points shown in lines 20 and 23 in
Algorithm 2 are worthy of note. One of them is
to predict the next best team position by the team
leader, and the other one is to get the next position
for the team’s ordinary members.

It is an open issue as to how to predict and cal-
culate the next team’s best position and ordinary
member’s position. In DPO, the definitions about
these two points are not fit for all of the optimal
problems. The dynamic team organization mim-
ics the dolphin’s teamwork during the process of
searching for prey, and attacking prey. It should be
noted that the structure of teamwork is a really com-
plicated system, the proposed dynamic virtual team
model is only a simplified prototype.

In order to come out the next optimal position, a
so-called ”Nucleus” is presented in DPO to predict
the best position according to the information of in-
dividual experience and the team’s best experience.
As an ordinary member, its next position is updated
by equation (2).

newx(i) = x(i)+ c1r1(Tbest − x(i))

+c2r2(Nbest − x(i))
, (2)

where, Tbest is the best fitness solution among the
team, namely the solution of the team leader. Nbest
is the best fitness solution coming from his neigh-
boring teams, which could be acquired from the
neighboring team leader.

Under the guidance of the team leader and the
influence of neighboring team leaders, members are
pulled into the potential global optimum. c1 and c2,
called cognitive factor and social factor, are positive
numbers defined by their upper limit (usually equals
to 2.0). Two values r1 and r2 are random numbers
generated in the interval [0,1].

The definitions of ”next best team position” and
”ordinary member’s position” could not be fit for
all kinds of the optimal problems. In addition, the
multivariate team size selection of DPO is not dis-
cussed in the original paper. In the next Section,
we will provide new definitions for the functions of
team members and new equations to get the next op-
timal position. Consequently, the modified dynamic
virtual team model would be combined with FPO to
form a new dynamic algorithm named DFPO as our
main work in this paper.

3 Proposal of DFPO-r

In this Section, our main work contains three
parts. First of all, we modified the previous defini-

two points are not fit for all of the optimal problems.
The dynamic team organization mimics the dolphin’s
teamwork during the process of searching for prey,
and attacking prey. It should be noted that the struc-
ture of teamwork is a really complicated system, the
proposed dynamic virtual team model is only a sim-
plified prototype.

Algorithm 2 Team Organization Function
1: Initialization: popsize, teamsize, each dolphin xi

2: for all i = 1 : popsize do
3: for all g = 1 : popsize do
4: Calculate distance between xi and xg

5: disM(i,g) = Edistance(xi,xg)
6: end for
7: Sort disM(i,g) in ascending
8: Teami = sort(disM(i,g))
9: Select the xi’s dynamic partners from Teami

10: for all h = 2 : teamsize do
11: partners(i) = h
12: end for
13: Organize dynamic virtual team for xi

14: xteam(i) = partners(i)
15: end for
16: for all xteam(i) do
17: Specify the best one as a team leader
18: if xi is the team leader then
19: Exchange its best position within team
20: Predict the next best position
21: end if
22: if xi is an ordinary member then
23: Update its position by equation (2)
24: end if
25: end for

In order to come out the next optimal position, a
so-called ”Nucleus” is presented in DPO to predict
the best position according to the information of in-
dividual experience and the team’s best experience.
As an ordinary member, its next position is updated

by equation (2).

newx(i) = x(i)+ c1r1(Tbest − x(i))

+c2r2(Nbest − x(i))
(2)

Where, Tbest is the best fitness solution among the
team, namely the solution of the team leader. Nbest is
the best fitness solution coming from his neighboring
teams, which could be acquired from the neighbor-
ing team leader.

Under the guidance of the team leader and the in-
fluence of neighboring team leaders, members are
pulled into the potential global optimum. c1 and c2,
called cognitive factor and social factor, are positive
numbers defined by their upper limit (usually equals
to 2.0). Two values r1 and r2 are random numbers
generated in the interval [0,1].

The definitions of ”next best team position” and
”ordinary member’s position” could not be fit for all
kinds of the optimal problems. In addition, the mul-
tivariate team size selection of DPO is not discussed
in the original paper. In the next section, we will pro-
vide new definitions for the functions of team mem-
bers and new equations to get the next optimal po-
sition. Consequently, the modified dynamic virtual
team model would be combined with FPO to form
a new dynamic algorithm named DFPO as our main
work in this paper.

3 Proposal of DFPO-r

In this section, our main work contains three parts.
First of all, we modified the previous definitions of
the virtual team and proposed a new diagram. Sec-
ondly, we provided a tentative team size selection for
DFPO-r. Finally, the basic pseudocode of DFPO-r is
presented in this section.
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tions of the virtual team and proposed a new dia-
gram. Secondly, we provided a tentative team size
selection for DFPO-r. Finally, the basic pseudocode
of DFPO-r is presented in this Section.

3.1 Modified Topology of Team Model

Figure 2. The modified diagram of virtual team

The modified diagram of the virtual team is
shown in Figure 2. In the first iteration, each in-
dividual is connected to its 3 immediate neighbors.
The solid red circles shown in Figure 2 are the team
leaders. The neighbors of this team are denoted
with black circles, and are not guaranteed to con-
nect with each other. The structure of this team is
an appropriate wheel topology. The wheel topology
effectively isolates individuals from one another. In
the next iteration, the team size is increased to 5,
the solid red box shown in Figure 2 is the new
team leader. Which is connected to its 4 new im-
mediate neighbours shown with black square. Ob-
viously shown in Figure 2, the team size is dy-
namic changed during the search process. In ad-
dition, team members would not follow up with the
team leader and keep their independent conscious-
ness at all time. The function of the team leader is to
provide team’s best position for the team members.
The information of individual best experience and
the team’s best experience is spread by weak ties
of these black squared members. Each of the indi-
viduals independently depicts its next position only
according to its own experience, the random elite’s
experience and the neighboring teams’ experience.
The modified definition of updated position is:

newx(i, j) = x(i, j) +θ∗ c∗w∗ (x(g, j)− x(i, j))

+θ∗ c∗w∗ (Nbest − x(i, j))
, (3)

where θ = (rand −0.5) is a random decimal, c is a
positive constant defined by its upper limit (usually
equals to 2.0). w is defined as inertia weight. xg

is the random elite, Nbest is the best fitness solution
coming from the neighboring teams, which could
be acquired from the neighboring team leader.

3.2 Method of Team Size Selection

As shown in Figure 2 the team size could dy-
namically change during the search process. In
addition, the different teams could have a various
number of team members in the process of opti-
mization. The method of team size selection is ten-
tatively proposed as an experimental study in this
paper.

Generally, we believe that increasing the pop-
ulation size enables the optimization algorithm to
search more points and thereby obtain a better so-
lution. However, a large swarm population is not
guaranteed to get the better optimized performance.
A similar discussion could be found in [37] and [4].
In other words, the team size should be diversified
for dynamic environments and various optimization
problems.

The diversity of the population is one of the
most important factors that determines the perfor-
mance of the optimal algorithm. We consider that
the population diversity is useful for team size Sec-
tion. A diversity measure S(p) introduced in [5] and
[6] is adopted here to indicate the changed of diver-
sity with various populations.
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where S(p) denotes the diversity of the swarm p, n is
the swarm size, d is the dimensionality of the func-
tion, x j represents the pivot of solutions in dimen-
sion j, and S j measures solution diversity based on
L1 norm for dimension j.

An experiment is carried out to confirm if the
proper population size is fit for various dimensional
functions. It is shown in Figure 3 that the swarm
population is not always a case of ’the more, the
better’. When the dimension reaches 500, a swarm
size of 50 has higher initial population diversity



93Shiqin Yang, Yuji Sato

tions of the virtual team and proposed a new dia-
gram. Secondly, we provided a tentative team size
selection for DFPO-r. Finally, the basic pseudocode
of DFPO-r is presented in this Section.

3.1 Modified Topology of Team Model

Figure 2. The modified diagram of virtual team

The modified diagram of the virtual team is
shown in Figure 2. In the first iteration, each in-
dividual is connected to its 3 immediate neighbors.
The solid red circles shown in Figure 2 are the team
leaders. The neighbors of this team are denoted
with black circles, and are not guaranteed to con-
nect with each other. The structure of this team is
an appropriate wheel topology. The wheel topology
effectively isolates individuals from one another. In
the next iteration, the team size is increased to 5,
the solid red box shown in Figure 2 is the new
team leader. Which is connected to its 4 new im-
mediate neighbours shown with black square. Ob-
viously shown in Figure 2, the team size is dy-
namic changed during the search process. In ad-
dition, team members would not follow up with the
team leader and keep their independent conscious-
ness at all time. The function of the team leader is to
provide team’s best position for the team members.
The information of individual best experience and
the team’s best experience is spread by weak ties
of these black squared members. Each of the indi-
viduals independently depicts its next position only
according to its own experience, the random elite’s
experience and the neighboring teams’ experience.
The modified definition of updated position is:

newx(i, j) = x(i, j) +θ∗ c∗w∗ (x(g, j)− x(i, j))

+θ∗ c∗w∗ (Nbest − x(i, j))
, (3)

where θ = (rand −0.5) is a random decimal, c is a
positive constant defined by its upper limit (usually
equals to 2.0). w is defined as inertia weight. xg

is the random elite, Nbest is the best fitness solution
coming from the neighboring teams, which could
be acquired from the neighboring team leader.

3.2 Method of Team Size Selection

As shown in Figure 2 the team size could dy-
namically change during the search process. In
addition, the different teams could have a various
number of team members in the process of opti-
mization. The method of team size selection is ten-
tatively proposed as an experimental study in this
paper.

Generally, we believe that increasing the pop-
ulation size enables the optimization algorithm to
search more points and thereby obtain a better so-
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A similar discussion could be found in [37] and [4].
In other words, the team size should be diversified
for dynamic environments and various optimization
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where S(p) denotes the diversity of the swarm p, n is
the swarm size, d is the dimensionality of the func-
tion, x j represents the pivot of solutions in dimen-
sion j, and S j measures solution diversity based on
L1 norm for dimension j.

An experiment is carried out to confirm if the
proper population size is fit for various dimensional
functions. It is shown in Figure 3 that the swarm
population is not always a case of ’the more, the
better’. When the dimension reaches 500, a swarm
size of 50 has higher initial population diversity
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Figure 3. Comparison of varying initial population diversity in various sizes and dimensions

than that of 100. Similarly, the population diver-
sity of the swarm size of 30 is better than that of
50 on 100 dimensions. Inspired by the Competitive
Swarm Optimizer [4] and based on our experiment,
the method of team size selection is presented in
this paper.

Firstly, two kinds of team size are randomly se-
lected from the size pool. The size pool is a bound-
ary of team size, which could be designed accord-
ing to the real situation. Secondly, both of these
team sizes are compared by their population diver-
sities. Only the better one is kept as the team size.
Once the dynamic team size is researched, it will be
shared with different teams during the whole pro-
cess of optimization.

3.3 Pseudocode of DFPO-r

Algorithm 3 demonstrates the main function of
DFPO-r. It should be noted that DFPO-r is a vari-
ant of DFPO. The difference between them is the
method of team size selection. If the third sentence
in Algorithm 3 is deleted, it will be the the main
function of DFPO. The team size of DFPO-r is dy-
namic confirmed under the guidance of population
diversity while the DFPO’s team size is specified to
one third of the population.

4 Experiments

In this Section, ten well-known benchmark
functions are used for comparison with GBest PSO
[3], LBest PSO [3], DPO, FPO, DFPO and DFPO-r.
The aim of the experiments is to compare the global
convergence and optimization ability of DFPO and
DFPO-r with other four swarm intelligence algo-
rithms on various dimensions of multmodal prob-
lems. The analysis and discussion of the experi-
ments are also shown later.

4.1 Evaluation Method

The experimental design is separated by two
parts. In part A, four fixed-dimension multimodal
problems are used to make a comparison of the
convergence rate on Constricted GBest PSO, DPO,
FPO and DFPO. In part B, six flexible dimension
functions are used to test the capability of global
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Where S(p) denotes the diversity of the swarm p,
n is the swarm size, d is the dimensionality of the
function, x j represents the pivot of solutions in di-
mension j, and S j measures solution diversity based
on L1 norm for dimension j.

An experiment is carried out to confirm if the
proper population size is fit for various dimensional
functions. It is shown in Fig.3 that the swarm popu-
lation is not always a case of ’the more, the better’.
When the dimension reaches 500, a swarm size of
50 has higher initial population diversity than that of
100. Similarly, the population diversity of the swarm
size of 30 is better than that of 50 on 100 dimen-
sions. Inspired by the Competitive Swarm Optimizer
[4] and based on our experiment, the method of team
size selection is presented in this paper.

Firstly, two kinds of team size are randomly se-
lected from the size pool. The size pool is a bound-
ary of team size, which could be designed according
to the real situation. Secondly, both of these team
sizes are compared by their population diversities.
Only the better one is kept as the team size. Once
the dynamic team size is researched, it will be shared
with different teams during the whole process of op-
timization.

3.3 Pseudocode of DFPO-r

Algorithm 3 demonstrates the main function of
DFPO-r. It should be noted that DFPO-r is a vari-
ant of DFPO. The difference between them is the
method of team size selection. If the third sentence in

Algorithm 3 Main Function of DFPO-r
1: Initialize population: popsize
2: Initialize xi: rand(xi) ∈ (xmin,xmax)
3: Confirm team size by population diversity
4: for all Each position xi do
5: Create its team by Dynamic Team Organiza-

tion Function
6: end for
7: for all particles do
8: if xi gets a chance to update its position then
9: Generate a new position x∗i by equation (3)

10: if x∗i is better than xi then
11: Record x∗i as a new elite
12: end if
13: end if
14: end for
15: For all population use the elitism strategy

Algorithm 3 is deleted, it will be the the main func-
tion of DFPO. The team size of DFPO-r is dynamic
confirmed under the guidance of population diversity
while the DFPO’s team size is specified to one third
of the population.

4 Experiments

In this section, ten well-known benchmark functions
are used for comparison with GBest PSO [3], LBest
PSO [3], DPO, FPO, DFPO and DFPO-r. The aim
of the experiments is to compare the global conver-
gence and optimization ability of DFPO and DFPO-
r with other four swarm intelligence algorithms on
various dimensions of multmodal problems. The
analysis and discussion of the experiments are also
shown later.
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Table 1. Bounds and global optimums of benchmark functions

Function Bound Optimum

Michalewicz: f1(x) =−
d
∑
j=1

sin(x j)[sin(
i.x2

i

π
)]20 [0,π]2 −1.8013

Branin: f2(x) = a(x2 −bx2
1 + cx1 −6)2

+g(1−h)cos(x1)+10, a = 1 x1 ∈ [−5,10] 0.397887
b = 1.25π−2,c = 5π−1,g = 10,h = 0.125π−1 x2 ∈ [0,15]

Shekel: f3(x) =−
m
∑

k=1
(

4
∑
j=1

(x j −Cjk)
2 +βk)

−1 [0,10]4 −10.5364

m = 10,β =
1
10

(1,2,2,4,4,6,3,7,5,5)T

C =




4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3




Shaffers N.2: f4(x,y) = 0.5+
sin2(x2 − y2)−0.5

(1+0.001∗ (x2 + y2))2 [−100,100]2 0

Rosenbrock: f5(x) =
D
∑
j=1

(100∗ (x j+1 − x2
j)

2 +(x j −1)2) [−5,10]d 0

Rastrigin: f6(x) =
d
∑
j=1

(x2
j −10∗ cos(2πx j))+10∗d [−5.12,5.12]d 0

Griewank: f7(x) =
1

4000

d
∑
j=1

x2
j −

d
∏
j=1

cos(
x j√

j
)+1 [−5,10]d 0

Ackley: f8(x) =−a∗ exp(−0.02∗ (d−1
d−1
∑
j=1

x2
j)

1
2 ) [−15,30]d 0

−exp(d−1
d
∑
j=1

cos(2πx j))+a+ exp,a = 20

Levy: f9(x) =
d−1
∑
j=1

(ϖ j −1)2[1+10sin2(πϖ j +1)] [−10,10]d

+sin2(πϖ1)+(ϖd −1)2[1+ sin2(2πϖd)] 0

ϖ j = 1+
x j −1

4
Schwefel: f10(x) = 418.9829∗d −

d
∑
j=1

x jsin(
√
|x j|) [−500,500]d 0
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optimal solution on Constricted LBest PSO, DPO,
FPO, DFPO and DFPO-r.

The experiments are implemented on a PC with
an Intel Core i7 860, 2.8 GHz CPU and Microsoft
Windows 7 Professional SP1 64-bit operating sys-
tem, and all algorithms are written in Matlab lan-
guage. The bounds and global minimums of ten
functions are shown in Table 1. The parameters set-
ting are illustrated in Table 2 and Table 3.

4.2 Experimental Results and Discussion

Figure 4. Mean optimization errors of the Branin
function with three algorithms in 20, 50 and 100

times iteration respectively

Figure 5. Mean optimization errors of the Shekel
function with four algorithms in 20, 50 and 100

times iteration respectively

A systematic discussion are presented here
based on experimental results shown in Tables 4,
5 and 6. Table 4 shows the statistical results of
optimization errors on four fixed-dimension mul-
timodal functions among GBest PSO, DPO, FPO
and DFPO. Table 5 and Table 6 show the global op-
timal solution capability and average computation
time of five algorithms respectively. To all statisti-

cal results, the best global optimization errors and
mean of best global optimization errors are marked
with bold type and down arrow.

Figure 6. Mean optimization errors of the Shaffers
N.2 function with four algorithms in 20, 50 and

100 times iteration respectively

Figures 4, 5 and 6 are the most important pro-
cessing curves of mean optimization errors obtained
by Table 4. From Figure 4, we found that three
algorithms (DPO, FPO and DFPO) are able to ac-
curately find the global optimum after 50 itera-
tions. GBest PSO is trapped into the local solu-
tion and could not find the accurate global optimum
for Branin function. In Figure 5, DFPO is the best
ranked and DPO is the second ranked of four algo-
rithms (GBest PSO, DPO, FPO and DFPO). In Fig-
ure 6, DFPO still keeps the best global searching
capability, but DPO shows the worst performance
compared with the others. According to the results
of Table 4 and figures, DFPO algorithm could find
the satisfied global optimum within 50 iterations.
GBest PSO and DPO are trapped into local optimal
solutions on Branin function and Shaffers N.2 func-
tion respectively. One of the possible reasons is that
competitions of predators in DFPO increase indi-
vidual independence and reduce rapid social collab-
oration on multimodal functions. These characters
in a large degree avoid DFPO dropping into local
optimum.

Table 7 shows the ranking of the solution qual-
ity based on the statistical results from Table 5 and
Table 6. The results of ranking are grouped by
functions, dimensions, the best global solutions and
mean of optimum solutions, respectively. From the
summary statistic data at the bottom of the table 7,
it is demonstrated that DFPO-r algorithm is able to
provide very competitive results both on the best so-
lution quality and on the average of best optimum
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Table 2. Experimental parameters setting of fixed-dimension multimodal functions

Experiment A Algorithm Parameters
GBest PSO c1 = c2 = 2.05,χ ≈ 0.72984
DPO c = 2, w ∈ [0.4,0.9], teamsize = 10

Population=100 FPO c = 2, w ∈ [0.4,0.9]
Run Number=50 DFPO c = 2, w ∈ [0.4,0.9], teamsize = 30

Table 3. Experimental parameters setting of six flexible dimensional functions

Experiment B Algorithm Parameters
LBest PSO c1 = c2 = 2.05, χ ≈ 0.72984
DPO c = 2, w ∈ [0.4,0.9], teamsize = 5

Population=50 FPO c = 2, w ∈ [0.4,0.9]
Run Number=20 DFPO c = 2, w ∈ [0.4,0.9], teamsize = 15

DFPO-r c = 2, w ∈ [0.4,0.9], teamsize ∈ [10,30]

Table 4. Statistical results of optimization errors on fixed-dimension multimodal functions

Algorithm Iter. f1 f2 f3 f4

GBestPSO 20
Best 3.00e-04 1.30e-05 1.09e+00 6.17e-06
Mean 2.90e-03 1.77e-02 6.11e+00 3.70e-03

DPO 20
Best 0.00e+00 0.00e+00↓ 5.33e-02 2.31e-06
Mean 0.00e+00 9.55e-06↓ 4.09e+00 8.00e-03

FPO 20
Best 0.00e+00 1.30e-05 2.09e-02 3.59e-06
Mean 1.00e-04 5.00e-04 6.67e+00 8.30e-03

DFPO 20
Best 0.00e+00 1.30e-05 4.00e-03↓ 1.28e-06↓
Mean 0.00e+00 1.13e-04 1.07e+00↓ 3.20e-03↓

GBestPSO 50
Best 0.00e+00 1.30e-05 5.00e-04 4.04e-10
Mean 0.00e+00 1.30e-05 3.04e+00 1.09e-06↓

DPO 50
Best 0.00e+00 0.00e+00↓ 2.00e-04 7.35e-13↓
Mean 0.00e+00 0.00e+00↓ 1.41e+00 5.30e-03

FPO 50
Best 0.00e+00 1.30e-05 7.50e-03 1.78e-07
Mean 0.00e+00 1.30e-05 2.94e+00 2.98e-04

DFPO 50
Best 0.00e+00 1.30e-05 0.00e+00↓ 1.82e-08
Mean 0.00e+00 1.30e-05 1.40e-03↓ 1.17e-04

GBestPSO 100
Best 0.00e+00 1.30e-05 0.00e+00 1.33e-14
Mean 0.00e+00 1.30e-05 2.65e+00 6.42e-12↓

DPO 100
Best 0.00e+00 0.00e+00↓ 0.00e+00 0.00e+00↓
Mean 0.00e+00 0.00e+00↓ 1.26e+00 4.80e-03

FPO 100
Best 0.00e+00 1.30e-05 0.00e+00 5.85e-09
Mean 0.00e+00 1.30e-05 1.83e+00 5.76e-05

DFPO 100
Best 0.00e+00 0.00e+00 0.00e+00 1.83e-09
Mean 0.00e+00 0.00e+00 1.00e-04↓ 1.36e-05
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Table 5. Statistical Results of Optimization Errors on 10-Dimension, 50-Dimension Multimodal
Benchmark Functions after 20 Trials of 103, 2×103 function Evaluations, respectively

Algorithm 10-D f5 f6 f7 f8 f9 f10

LBestPSO
Best 3.15e-02 2.00e+00 7.40e-03 4.71e-14 0.00e+00 2.37e+02

Worst 4.41e+00 9.97e+00 4.43e-02 1.01e-12 0.00e+00 9.51e+02
Mean 1.83e+00↓ 6.02e+00 1.64e-02 3.98e-13 0.00e+00 5.64e+02

DPO
Best 2.48e-02 0.00e+00 2.46e-02 4.44e-15 0.00e+00 1.18e+02

Worst 3.97e+00 2.69e+00 6.60e-01 8.00e-15 0.00e+00 1.19e+03
Mean 2.97e+00 4.98e-01 2.28e-01 6.04e-15↓ 0.00e+00 6.60e+02

FPO

Best 2.20e-03 0.00e+00 1.11e-16 2.60e-12 6.42e-17 1.27e-04
Worst 1.84e+01 0.00e+00 2.21e-02 2.55e-10 3.08e-16 3.55e+02
Mean 2.81e+00 0.00e+00 5.90e-03 4.09e-11 2.33e-16 2.11e+02

Time(s) 4.28e+00 4.31e+00 4.61e+00 4.64e+00 5.08e+00 4.56e+00

DFPO

Best 4.91e-04↓ 0.00e+00 0.00e+00 8.00e-15 5.16e-17 1.27e-04
Worst 1.72e+01 0.00e+00 1.23e-02 2.00e-14 2.28e-16 1.27e-04
Mean 2.14e+00 0.00e+00 1.20e-03 1.41e-14 1.03e-16 1.27e-04

Time(s) 5.26e+00 6.99e+00 5.61e+00 5.69e+00 5.99e+00 1.06e+01

DFPO-r
Best 8.70e-03 0.00e+00 0.00e+00 4.44e-15 6.16e-17 1.27e-04

Worst 7.04e+00 0.00e+00 1.23e-02 8.00e-15 1.09e-16 1.27e-04
Mean 2.49e+00 0.00e+00↓ 2.73e-03↓ 7.64e-15 8.41e-17 1.27e-04

Algorithm 50-D f5 f6 f7 f8 f9 f10

LBestPSO
Best 3.40e+01 1.50e+02 9.85e-12 2.00e-04 2.56e-05 5.68e+03

Worst 1.36e+02 2.78e+02 7.40e-03 1.95e+00 3.99e+01 8.71e+03
Mean 6.74e+01 2.29e+02 4.00e-04 3.93e-01 1.05e+01 7.49e+03

DPO
Best 9.64e+01 5.12e+01 3.66e-05 7.70e-03 1.20e-03 4.65e+03

Worst 2.69e+03 2.13e+02 5.81e-01 1.06e+01 3.45e-01 1.14e+04
Mean 3.83e+02 1.10e+02 2.48e-02 2.34e+00 7.08e-02 7.20e+03

FPO

Best 1.60e-02↓ 4.34e-09 7.57e-11 1.75e-05 3.21e-12 1.78e+03
Worst 1.43e+02 5.97e+00 2.83e-09 1.32e-04 1.66e-09 2.49e+03
Mean 1.70e+01 1.95e+00 7.62e-10 6.27e-05 1.09e-10 2.23e+03

Time(s) 8.67e+00 8.96e+00 9.62e+00 9.60e+00 1.22e+01 9.44e+00

DFPO

Best 4.25e-02 8.64e-11 1.98e-14 1.74e-06 4.11e-07 1.18e+03
Worst 9.84e+01 3.99e+00 5.18e-12 8.63e-06 2.27e-06 1.90e+03
Mean 1.49e+01↓ 1.41e+00 3.25e-13 4.08e-06 9.54e-07 1.61e+03

Time(s) 1.12e+01 1.15e+01 1.21e+01 1.21e+01 1.21e+01 1.19e+01

DFPO-r
Best 1.15e-01 2.26e-12 1.11e-16↓ 3.80e-08↓ 2.55e-15↓ 6.36e-04

Worst 7.97e+01 3.80e-09 2.03e-12 1.59e-07 1.16e-11 3.55e+02
Mean 2.50e+01 2.49e-10↓ 1.13e-13↓ 1.00e-07↓ 1.63e-12↓ 9.51e+01↓
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Table 6. Statistical Results of Optimization Errors on 100-Dimension Multimodal Benchmark Functions
after 20 Trials of 2×103 function Evaluations

Algorithm 100-D f5 f6 f7 f8 f9 f10

LBestPSO
Best 3.81e+02 4.97e+02 1.65e-05 1.95e+00 6.41e+01 1.48e+04

Worst 9.23e+02 7.28e+02 9.00e-04 6.97e+00 1.44e+02 2.17e+04
Mean 5.65e+02 6.43e+02 8.77e-05 2.76e+00 9.11e+01 1.90e+04

DPO
Best 9.50e+02 2.09e+02 1.53e-02 2.16e+00 1.71e+00 1.22e+04

Worst 3.34e+03 3.88e+02 9.99e-01 1.34e+01 1.07e+01 2.67e+04
Mean 1.86e+03 2.88e+02 2.30e-01 5.78e+00 4.01e+00 2.04e+04

FPO

Best 2.89e-01 6.13e+00 2.79e-05 3.10e-03 1.06e-08↓ 4.91e+03
Worst 1.40e+02 4.16e+01 1.30e-03 2.17e+00 2.29e+00 6.98e+03
Mean 3.13e+01↓ 2.26e+01 5.42e-04 9.23e-01 2.17e-01 5.87e+03

Time(s) 8.85e+00 9.17e+00 1.02e+01 1.00e+01 1.47e+01 9.77e+00

DFPO

Best 1.23e-01↓ 1.54e+01 1.60e-06 6.40e-03 1.40e-02 4.51e+03
Worst 1.39e+02 2.52e+01 3.45e-04 1.25e+00 1.91e-01 6.10e+03
Mean 3.50e+01 2.05e+01 7.88e-06 5.94e-01 6.15e-02 5.20e+03

Time(s) 1.22e+01 1.31e+01 1.32e+01 1.31e+01 1.32e+01 1.32e+01

DFPO-r
Best 2.02e+00 3.07e-08↓ 1.70e-08↓ 1.01e-03↓ 5.70e-08 1.94e+03↓

Worst 2.12e+02 9.04e+00 2.03e-07 4.96e-03 3.95e-06 3.46e+03
Mean 7.68e+01 3.42e+00↓ 1.03e-07↓ 2.36e-03↓ 6.03e-07↓ 2.82e+03↓

Table 7. Ranking of the best solution quality and mean of best solution quality obtained by the Table 5 and
Table 6 with 5 kinds of algorithms on 6 multimodal benchmark functions

Fun. Dim.
Best Mean

PSO DPO FPO DFPO DFPO-r PSO DPO FPO DFPO DFPO-r

f5

10 5 4 2 1 3 1 5 4 2 3
50 4 5 1 2 3 4 5 2 1 3

100 4 5 2 1 3 4 5 1 2 3

f6

10 5 2.5 2.5 2.5 2.5 5 4 2 2 2
50 5 4 3 2 1 5 4 3 2 1

100 5 4 2 3 1 5 4 3 2 1

f7

10 4 5 3 1.5 1.5 4 5 3 2 1
50 3 5 4 2 1 4 5 3 2 1

100 3 5 4 2 1 3 5 4 2 1

f8

10 4 1.5 5 3 1.5 4 1 5 3 2
50 4 5 3 2 1 4 5 3 2 1

100 4 5 2 3 1 4 5 3 2 1

f9

10 1.5 1.5 5 3 4 1.5 1.5 5 4 3
50 4 5 2 3 1 5 4 2 3 1

100 5 4 1 3 2 5 4 3 2 1

f10

10 5 4 2 2 2 4 5 3 1.5 1.5
50 5 4 3 2 1 5 4 3 2 1

100 5 4 3 2 1 4 5 3 2 1
Total Median 4 4 2.75 2 1.25 4 5 3 2 1
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Table 6. Statistical Results of Optimization Errors on 100-Dimension Multimodal Benchmark Functions
after 20 Trials of 2×103 function Evaluations

Algorithm 100-D f5 f6 f7 f8 f9 f10
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Best 3.81e+02 4.97e+02 1.65e-05 1.95e+00 6.41e+01 1.48e+04

Worst 9.23e+02 7.28e+02 9.00e-04 6.97e+00 1.44e+02 2.17e+04
Mean 5.65e+02 6.43e+02 8.77e-05 2.76e+00 9.11e+01 1.90e+04

DPO
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Mean 7.68e+01 3.42e+00↓ 1.03e-07↓ 2.36e-03↓ 6.03e-07↓ 2.82e+03↓

Table 7. Ranking of the best solution quality and mean of best solution quality obtained by the Table 5 and
Table 6 with 5 kinds of algorithms on 6 multimodal benchmark functions

Fun. Dim.
Best Mean

PSO DPO FPO DFPO DFPO-r PSO DPO FPO DFPO DFPO-r

f5

10 5 4 2 1 3 1 5 4 2 3
50 4 5 1 2 3 4 5 2 1 3
100 4 5 2 1 3 4 5 1 2 3

f6

10 5 2.5 2.5 2.5 2.5 5 4 2 2 2
50 5 4 3 2 1 5 4 3 2 1
100 5 4 2 3 1 5 4 3 2 1

f7

10 4 5 3 1.5 1.5 4 5 3 2 1
50 3 5 4 2 1 4 5 3 2 1
100 3 5 4 2 1 3 5 4 2 1

f8

10 4 1.5 5 3 1.5 4 1 5 3 2
50 4 5 3 2 1 4 5 3 2 1
100 4 5 2 3 1 4 5 3 2 1

f9

10 1.5 1.5 5 3 4 1.5 1.5 5 4 3
50 4 5 2 3 1 5 4 2 3 1
100 5 4 1 3 2 5 4 3 2 1
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100 5 4 3 2 1 4 5 3 2 1

Total Median 4 4 2.75 2 1.25 4 5 3 2 1
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Figure 7. The improved rate of mean global optimum and increased time rate

solution quality even on the flexible dimensional
functions. It also suggests that the DFPO-r is more
robust for higher dimensional optimization because
DFPO-r has the superior performance of escaping
local optimums on 100 dimensions.

Figure 7 shows the increased rates of mean
global optimum of DFPO and DFPO-r compared
with FPO. For the computation time of DFPO-r
is very close to DFPO, the run time ratio is only
focusd on DFPO and FPO. In Figure 7, the red
curve denotes the optimal rates of mean global so-
lution of DFPO compared with FPO in 18 kinds
of conditional tests. These 18 kinds of compara-
ble tests come from six multimodal functions us-
ing 10, 50 and 100 dimensions, respectively. Sim-
ilarly, the purple dotted curve represents the same
comparisons between DFPO-r and FPO. The blue
curve shows the corresponding increased computa-
tion time of DFPO compared with FPO. As shown
in Figure 7, the improved global solution ratio of
DFPO-r is better than DFPO. Consequently, the dy-
namic team size selection method for DFPO-r is
valid for multimodal problems in most cases.

To summarize, the excellent global optimizing
abilities of DFPO and DFPO-r show that the par-
alleled exchanging information system by the dy-
namic virtual teams could help accelerate the early
convergence rate and improve the global searching
capability. We note that during the process of im-
proving the performance of DFPO and DFPO-r, the
average computation times are slightly increased.

However, the increasing space is limited within the
reasonable range.

5 Conclusion

To avoid premature problem and enhance the
capability of global exploration, a new algorithm,
DFPO is proposed to build a paralleled exchang-
ing information system based on dynamic virtual
team. However, the fixed team size is not suitable
for all of the various real situations. In this pa-
per, the strategy of team size selection is presented
based the idea that a team size with higher popula-
tion diversity is able to prevent solutions from clus-
tering too tightly in the local search space. Then
DFPO with a dynamic team size selection strat-
egy is provided as DFPO-r. In DFPO-r, two kinds
of team sizes are randomly selected from the size
pool, which is designed by a real situation. Compar-
ing their population diversities, the one with higher
population diversity will be kept as the current team
size. A paralleled exchanging information system
is created by these dynamic virtual teams. Which
is also able to enhance the global optimal capabil-
ity and speed up convergence rate during the pro-
cess of searching. To evaluate the performance
of DFPO-r and DFPO, ten well-known benchmark
functions are used to compare with GBest PSO,
LBest PSO, DPO and FPO. Experimental results
demonstrate that both DFPO-r and DFPO have de-
sirable performances for multimodal functions. In
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addition, DFPO-r shows better robustness perfor-
mance in most of cases compared with DFPO. The
implementation of DFPO-r on Graphics Processing
Units leads to a more efficient algorithm and our
future work is focusing on it.
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