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Abstract

Due to the vast and rapid increase in the size of data, data mining has been an increasingly
important tool for the purpose of knowledge discovery to prevent the presence of rich
data but poor knowledge. In this context, machine learning can be seen as a powerful
approach to achieve intelligent data mining. In practice, machine learning is also an
intelligent approach for predictive modelling. Rule learning methods, a special type of
machine learning methods, can be used to build a rule based system as a special type
of expert systems for both knowledge discovery and predictive modelling. A rule based
system may be represented through different structures. The techniques for representing
rules are known as rule representation, which is significant for knowledge discovery in
relation to the interpretability of the model, as well as for predictive modelling with regard
to efficiency in predicting unseen instances. This paper justifies the significance of rule
representation and presents several existing representation techniques. Two types of novel
networked topologies for rule representation are developed against existing techniques.
This paper also includes complexity analysis of the networked topologies in order to show
their advantages comparing with the existing techniques in terms of model interpretability
and computational efficiency.
Keywords: rule based networks, knowledge discovery, predictive modelling, rule repre-
sentation

1 Introduction

The daily increase in the size of data has led to
the research of knowledge discovery in databases
[1]. This is in order to prevent the presence of
rich data but poor knowledge [2], which means
that there would potentially be a large amount of
knowledge that can be discovered from data. Data
mining is commonly seen as an important tool for
knowledge discovery [3]. Data mining can be done
by subject experts through manual analysis of data
or by machines through empirical analysis of data.
Due to the presence of big data, it is necessary to
employ more intelligent methods to achieve intel-

ligent data mining. In this context, machine learn-
ing can be seen as a powerful approach that could
serve for such data mining tasks. On the other hand,
machine learning is also an intelligent approach for
predictive modelling in a black box manner while
knowledge discovery follows a white box approach,
i.e. predictive modelling emphasizes on the map-
ping from inputs to outputs without interpreting the
reasons whereas knowledge discovery needs to in-
terpret the reasons for the mapping. The rest of this
Section focuses on the background on data mining
and machine learning as well as applications of rule
based systems for the purpose of knowledge discov-
ery and predictive modelling.
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Machine learning is a branch of artificial intelli-
gence and involves two stages: training and testing
[4]. Training aims to learn something from known
properties by using learning algorithms and testing
aims to make predictions on unknown properties by
using the knowledge learned in the training stage.
From this point of view, training and testing are also
known as learning and prediction respectively. In
practice, a machine learning task aims to build a
model, which is further used to make predictions,
through the use of learning algorithms. Therefore,
this task is usually referred to as predictive mod-
elling.

Machine learning could be divided into two
types: supervised learning and unsupervised learn-
ing, in accordance with the form of learning. Su-
pervised learning means learning with a teacher be-
cause all instances from a training set are labelled.
The aim of this type of learning is to build a model
by learning from labelled data and then to make pre-
dictions on other unlabeled instances with regard
to the value of a predicted attribute. The predicted
value of an attribute could be either discrete or con-
tinuous. Therefore, supervised learning could be in-
volved in both classification and regression tasks for
categorical prediction and numerical prediction re-
spectively.

In contrast, unsupervised learning means learn-
ing without a teacher. This is because all instances
from a training set are unlabeled. The aim of this
type of learning is to find previously unknown pat-
terns from data sets. It includes association, which
aims to identify correlations between attributes, and
clustering, which aims to group objects based on
similarity measures.

On the other hand, as was mentioned earlier in
this Section, machine learning algorithms are pop-
ularly used in data mining tasks to discover some
previously unknown pattern. Therefore, this task is
usually referred to as knowledge discovery. From
this point of view, data mining tasks also involve
classification, regression, association and cluster-
ing. Both classification and regression can be used
to reflect the correlation between multiple indepen-
dent variables and a single dependent variable. The
difference between classification and regression is
that the former typically reflects the correlation in
qualitative aspects whereas the latter reflects it in
quantitative aspects. Association is used to reflect

the correlation between multiple independent vari-
ables and multiple dependent variables in both qual-
itative and quantitative aspects. Clustering can be
used to reflect patterns in relation to grouping of
objects.

One practical application of machine learning
is the design of expert systems. A rule based sys-
tem is a special type of expert systems, which typi-
cally consists of a set of if-then rules referred to as
a rule set. Rule based systems could be designed
by adopting rule learning methods that belong to a
special type of machine learning methods and can
serve for classification, regression and association.
A unified framework for design of rule based classi-
fication systems has been recently developed in [5].
In this framework, rule representation is justified as
a significant impact factor for the efficiency of rule
based systems in predicting unseen instances. In
addition, rule representation is also important for
knowledge extraction due to the interpretability of a
particular representation. In other words, poor rep-
resentation would usually make a rule set become
cumbersome and less readable. This paper presents
two types of novel networked topologies for rule
representation that are developed against existing
techniques, such as decision trees and linear lists.
The above types of novel networked topologies also
show their superiority against these existing tech-
niques in terms of model interpretability and com-
putational efficiency.

The rest of this paper is organized as follows.
Section 2 outlines the significance of rule represen-
tation in both data mining and machine learning
tasks. Section 3 describes the existing techniques
of rule representation from a conceptual point of
view and compares them in terms of their com-
plexity. Section 4 introduces some network topolo-
gies used as network based rule representation tech-
niques. The techniques are validated through theo-
retical analysis in terms of computational complex-
ity and structure complexity in comparison with ex-
isting techniques. Section 5 summarises the com-
pleted work and highlights the contributions to re-
search and development in data mining, machine
learning and expert systems. Further directions of
this research area are also suggested at the end of
this paper.
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2 Significance of Rule Representa-
tion

As mentioned in Section 1, rule representation
is a significant impact factor that may affect both
computational efficiency in the testing stage for ma-
chine learning tasks and knowledge interpretabil-
ity for data mining tasks. This Section focuses on
justifying why rule representation is significant for
knowledge discovery and predictive modelling.

For the purpose of knowledge discovery, it is
important that the knowledge is highly interpretable
for people, which means the knowledge needs to be
represented in such a way that makes it easier to
read and understand. In the context of rule based
systems, knowledge is actually represented in the
form of if-then rules. Higgins justified in [6] why
a rule based knowledge representation is necessary
with the following arguments:

– A network was conceived of in [7], which needs
a number of nodes exponential in the number
of attributes in order to restore the information
on conditional probabilities of any combination
of inputs. It is argued in [6] that the network
restores a large amount of information that is
mostly less valuable.

– Another type of network known as Bayesian
Networks introduced in [8] needs a number of
nodes same as the number of attributes. How-
ever, the network only restores the information
on joint probabilities based on the assumption
that each of the input attributes is totally inde-
pendent of the others. Therefore, it is argued in
[6] that this network is unlikely to predict more
complex relationships between attributes due to
lack of information on correlational probabili-
ties between attributes.

– There are some other methods that fill the
gaps in Bayesian Networks by deciding to only
choose some higher-order conjunctive probabil-
ities such as the first neural networks [9] and an-
other method based on correlation/dependency
measure [10]. However, it is argued in [6] that
these methods still need to be based on the as-
sumption that all attributes are independent of
each other.

On the basis of above arguments, Higgins rec-
ommended the use of rule based knowledge repre-
sentation and stressed the advantage that rules have
to interpret relationships between attributes in order
to be able to provide explanations with regard to a
decision of an expert system [6].

However, like data structures [11], rules can
also be represented in different structures which
may provide different levels of readability and in-
terpretability. In this context, rules need to be rep-
resented in a way that makes it easier for people to
read and understand the knowledge interpreted as
rules. Therefore, the form of rule representation is
significant in data mining tasks for knowledge dis-
covery.

For the purpose of predictive modelling, rule
representation is also significant as mentioned in
Section 1. This is because rules represented in dif-
ferent structures would usually lead to different lev-
els of computational efficiency in the testing stage
for machine learning tasks. In software engineer-
ing, different data structures usually lead to differ-
ent levels of computational efficiency in some op-
erations relating to data management such as inser-
tion, update, deletion and search. As mentioned in
[5, 12], the main objective in the prediction stage
is to find the first firing rule by searching through a
rule set. In this context, it indicates that predicting
on unseen instances by a rule set is a search prob-
lem. As mentioned above, different data structures
may lead to different levels of search efficiency. For
example, a collection of items stored in a linear list
can only be searched linearly if these items are not
given indexes. However, if the same collection of
items is stored in a tree, then it is achievable to have
a divide and conquer search. The former way of
search would be in linear time whereas the latter
way is in logarithmic time. In this sense, efficiency
in search of firing rules would also be affected by
the structure of the rule set. It is also defined in [13]
that one of the biases for rule learning methods is
search bias, which refers to the strategy used for the
hypothesis search. In general, what is expected is
to make it unnecessary to examine the whole rule
set, but as few rule terms as possible. More detailed
justifications about this are given in Section 3 and 4.

On the basis of above descriptions, rule repre-
sentation is considered highly significant in both
data mining and machine learning tasks, which
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means that a rule set is expected to have a high level
of interpretability for knowledge discovery as well
as to demonstrate a low level of computational com-
plexity for predictive modelling.

3 Existing Rule Representations

As mentioned in Section 2, rule representation
is significant for both knowledge discovery and pre-
dictive modelling. This Section describes two exist-
ing techniques of rule representation, namely deci-
sion trees and linear lists, and compares them with
respect to their computational complexity and inter-
pretability.

3.1 Decision Trees

Decision Tree is an automatic representation for
classification rules that are generated through us-
ing a divide and conquer approach [14]. This in-
dicates that if a rule learning method that follows
the above-named approach is adopted to generate
rules, then the rules are automatically represented
in a tree structure. However, decision tree represen-
tation is criticized by Cendrowska and identified as
a major cause of overfitting in [15] due to the repli-
cated sub-tree problem as illustrated in Figure 1.

Figure 1. Cendrowskas replicated subtree example
[21].

It can be seen from the Figure 1 that the four
sub-trees which have node C as their roots are iden-
tical. Cendrowska justified in [15] that those rules
which have no common attributes would not be able
to fit in a tree structure and that the replicated sub-
tree problem would arise if such rules are forced
to fit in a tree structure. It is also argued in [15,
16] that it is required to examine the entire tree in
order to extract rules about a single classification
in the worst case. This drawback on representa-

tion makes it difficult to manipulate for expert sys-
tems and thus seriously lowers the computational
efficiency in predicting unseen instances. For the
purpose of predictive modelling, as mentioned in
Section 2, computational efficiency in the testing
stage is significant especially when the expert sys-
tems to be designed are time critical [17]. On the
other hand, decision trees are often quite complex
and difficult to understand [13]. Even if decision
trees are simplified by using pruning algorithms, it
is still difficult to avoid that the decision trees be-
come too cumbersome, complex and inscrutable to
provide insight into a domain for knowledge usage
[13, 14]. This undoubtedly lowers the interpretabil-
ity of decision trees and is thus a serious drawback
for the purpose of knowledge discovery. All of the
limitations mentioned above motivate the direct use
of if-then rules represented by a linear list structure.
Mode details about linear lists are introduced in the
Section 3.2.

3.2 Linear Lists

As mentioned in Section 3.1, decision tree rep-
resentation has serious limitations for knowledge
discovery and predictive modelling and thus the di-
rect use of if-then rules is recommended. In com-
parison with decision trees, linear lists do not need
to constrain that all rules must have common at-
tributes and thus reduces the presence of redun-
dant terms in a rule set. However, as if-then rules
are represented in a linear list structure, predicting
unseen instances in this representation is demon-
strated in linear search with the time complexity of
O(n) where the total number of rule terms is used as
the input size (n). This is because the linear list rep-
resentation follows a linear search by going through
the whole rule set rule by rule in an outer loop; and
by going through term by term for each rule in an
inner loop. The process of linear search can be il-
lustrated by using the example rule set below:

Rule 1: if x1 = 0 and x2 = 0 then y = 0;

Rule 2: if x1 = 0 and x2 = 1 then y = 0;

Rule 3: if x1 = 1 and x2 = 0 then y = 0;

Rule 4: if x1 = 1 and x2 = 1 then y = 1;

On the basis of the above rule set, if an instance
with two inputs (x1 = 1 and x2 = 1), then it needs
to first go through Rule 1 checking the values of x1
and x2 and then move onto Rule 2 taking the same
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check again until Rule 4 is checked and found fir-
ing.

The above description implies that it may have
to go through the whole rule set to find the first rule
firing in the worst case. This would lead to huge
computational costs when the representation is used
to represent a rule set generated by learning from
large training data. As mentioned in Section 2, a
rule representation technique is expected to identify
the firing rules without the need to go through the
whole rule set. Therefore, for the purpose of predic-
tive modelling, linear lists still cannot fulfil the goal
with regard to efficient search of firing rules. In this
sense, it is necessary to develop another technique
of rule representation which demonstrates a level of
computational efficiency higher than linear time.

In addition, when a training set is large, there
would be a large number of complex rules gener-
ated. In this case, the set of rules represented in
a linear list structure would become very cumber-
some and difficult to interpret for knowledge usage.
In other words, a large number of complex rules
represented in a linear list is quite like a large num-
ber of long paragraphs in an article, which would
be very difficult for people to read and understand.
Instead, people prefer to look at diagrams to gain
information. In this sense, graphical representation
of rules would be expected to improve the inter-
pretability of knowledge discovered from data.

3.3 Discussion

On the basis of the above description about
limitations of tree and list representations in terms
of computational efficiency, the development of a
new representation of classification rules is needed,
which should have a level of efficiency higher than
linear time in time complexity. This new represen-
tation is described in Section 4.

On the other hand, in addition to the time com-
plexity limitation, the two existing representations
have the limitation of poor interpretability, espe-
cially when large data sets are involved. Higgins
has developed a representation called rule based
network in [6], which can improve the interpretabil-
ity of knowledge representation in the context of
probabilistic logic. Section 4 introduces more de-
tails about this as well as the generalization of rule
based network representation.

4 Network Based Rule Representa-
tion

Section 3 identified the limitations of decision
tree and linear list representations and outlined the
need to develop new techniques for rule represen-
tation. This is in order to achieve a more effi-
cient search of firing rules than linear search as well
as to deliver a more interpretable representation of
knowledge than decision trees and linear lists do. In
addition, predictions can be made based on different
types of logic such as deterministic, probabilistic
and fuzzy logic. Therefore, this Section introduces
the three types of logic and a special type of rule
based network representation developed by Higgins
[6]. This Section also introduces other modified
versions of the network based rule representation,
which includes a unified network topology for gen-
eralized representation in order to fulfil the topol-
ogy being based on all of the three types of logic
mentioned above.

4.1 Computational Logic

Ross stated in [18] that logic is a small part of
human capability for reasoning, which is used to
assist people in making decisions or judgments. As
mentioned in [19], in the context of Boolean logic,
each variable is only assigned a binary truth value:
0 (false) or 1 (true). It indicates that reasoning
and judgment are made under certainty leading to
deterministic outcomes. From this point of view,
this type of logic is also referred to as deterministic
logic. However, in reality, people usually can only
make decisions, judgment and reasoning under un-
certainty. Therefore, the other two types of logic,
namely probabilistic logic and fuzzy logic, are used
more widely, both of which can be seen as an ex-
tension of deterministic logic. The main difference
between the two is that the truth value is not binary
but continuous between 0 and 1. The truth value
implies a probability of truth between true and false
in probabilistic logic and a degree of that in fuzzy
logic.

Deterministic logic deals with any events un-
der certainty. For example, a crisp set has all its
elements fully belong to it without uncertainty, i.e.
each element certainly has a full membership to the
set.
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Probabilistic logic deals with any events under
probabilistic uncertainty. For example, an element
may be randomly allocated to one of five sets with
normal distribution of probability. Once the ele-
ment has eventually been allocated to a particular
set, then it has a full membership to the set.

Fuzzy logic deals with any events under non-
probabilistic uncertainty. In the context of set the-
ory, each set is referred to as a fuzzy set. This is
because each element may not have a full member-
ship to the set, i.e. the element belongs to the fuzzy
set to an extent.

In the context of rule based systems, a deter-
ministic rule based system would have each rule ei-
ther fire or not. If it fires, the consequence would
be deterministic. A probabilistic rule based sys-
tem would have a firing probability for each rule.
The consequence would be probabilistic depend-
ing on its posterior probability given specific an-
tecedents. A fuzzy rule based system would have
a firing strength for each rule. The consequence
would be weighted depending on the fuzzy truth
value of the most likely outcome. In addition, fuzzy
rule based systems deal with continuous attributes
by mapping the numerical values to a number of
linguistic terms according to the fuzzy membership
functions defined.

4.2 Attribute Oriented Rule Based Net-
work

As mentioned in Section 3, Higgins has devel-
oped a representation called rule based network as
illustrated in Figure 2, which is based on the rela-
tionship between input attributes and class labels.
It is thus referred to as attribute oriented rule based
network.

In this network, as explained in [6], each node
in the input layer represents an input attribute. Each
node in the middle layer represents a rule. The con-
nections between the nodes in the input layer and
the nodes in the conjunctive layer indicate which
rules relate to which attributes. In the output layer,
each node represents a class label. The connections
between the nodes in the conjunctive layer and the
nodes in the output layer reflect the mapping rela-
tionships between rule antecedents and classifica-
tions (consequents). Each of the connections is also
weighted as denoted by wmk, where m is the in-

dex of the rule and k is the index of the class. The
weight reflects the confidence of the rule for pre-
dicting the class given the antecedent of the rule. In
this way, each class is assigned a weight, which is
derived from the confidence of the rules having the
class as their consequents. The final classification
is predicted by weighted majority voting, which is
known as Winner-Take-All strategy as illustrated in
Figure 2 [6].

Figure 2. Higginss̀ non-deterministic rule based
network for classification [6].

The network topology illustrated in Figure 2
could be seen as a special type of rule based net-
work representation based on the relationship be-
tween input attributes and class labels. This is be-
cause of the possibility that there are two or more
rules that fire with different classifications as rule
consequents. This issue needs to be resolved by
conflict resolution strategies as introduced in [20].
Higginss network topology actually takes into ac-
count this conflict and deals with it by the Winner-
Take-All strategy [6]. Therefore, the network topol-
ogy could be seen as a type of non-deterministic
rule based network with certain inputs but uncer-
tain outputs. However, the conflict of classification
mentioned above would never arise with the rule
sets that are generated by using the divide and con-
quer approach. In this context, if the rule generation
is based on deterministic logic, both inputs and out-
puts would be deterministic. As it is, the networked
topology is modified to become a deterministic rule
based network that is illustrated by Figure 3.

In general, this is a three layer network. In the
first layer, each node represents an input attribute
and this layer is referred to as input layer. The num-
ber of nodes in this layer is dependent on the num-
ber of attributes in a data set. In the middle layer,
each node represents a rule to make the conjunction
among inputs and provide outputs for the node in
the last layer and thus the middle layer is referred
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nodes in the output layer reflect the mapping rela-
tionships between rule antecedents and classifica-
tions (consequents). Each of the connections is also
weighted as denoted by wmk, where m is the in-

dex of the rule and k is the index of the class. The
weight reflects the confidence of the rule for pre-
dicting the class given the antecedent of the rule. In
this way, each class is assigned a weight, which is
derived from the confidence of the rules having the
class as their consequents. The final classification
is predicted by weighted majority voting, which is
known as Winner-Take-All strategy as illustrated in
Figure 2 [6].

Figure 2. Higginss̀ non-deterministic rule based
network for classification [6].

The network topology illustrated in Figure 2
could be seen as a special type of rule based net-
work representation based on the relationship be-
tween input attributes and class labels. This is be-
cause of the possibility that there are two or more
rules that fire with different classifications as rule
consequents. This issue needs to be resolved by
conflict resolution strategies as introduced in [20].
Higginss network topology actually takes into ac-
count this conflict and deals with it by the Winner-
Take-All strategy [6]. Therefore, the network topol-
ogy could be seen as a type of non-deterministic
rule based network with certain inputs but uncer-
tain outputs. However, the conflict of classification
mentioned above would never arise with the rule
sets that are generated by using the divide and con-
quer approach. In this context, if the rule generation
is based on deterministic logic, both inputs and out-
puts would be deterministic. As it is, the networked
topology is modified to become a deterministic rule
based network that is illustrated by Figure 3.

In general, this is a three layer network. In the
first layer, each node represents an input attribute
and this layer is referred to as input layer. The num-
ber of nodes in this layer is dependent on the num-
ber of attributes in a data set. In the middle layer,
each node represents a rule to make the conjunction
among inputs and provide outputs for the node in
the last layer and thus the middle layer is referred
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to as conjunction layer. The number of nodes in
this layer is dependent on the number of rules gen-
erated. The only node in the last layer represents the
class output and thus this layer is referred to as out-
put layer. In addition, the nodes in the input layer
usually have connections to other nodes in the con-
junction layer. Each of the connections represents
a condition judgment which is explained further us-
ing specific examples. However, a node in the input
layer may not necessarily have connections to other
nodes in the conjunction layer. This is due to a spe-
cial case that an attribute may be totally irrelevant
to making a classification. In other words, this at-
tribute is not involved in any rules in the form of
rule terms. From this point of view, this version
of rule based network representation can help iden-
tify the relevance of attributes for feature selection
tasks, which is listed in Table 1 and discussed fur-
ther in this Section.

Figure 3. Determinstic Rule Based Network
version 1 [21].

Table 1. Training and testing RMSE of the
proposed method and Genfis2

Criteria DT LL RBN
correlation be-
tween attributes
and classes

poor implicit explicit

relationship be-
tween attributes
and rules

implicit implicit explicit

ranking of at-
tributes

poor poor explicit

ranking of rules poor explicit explicit
attribute rele-
vance

poor poor explicit

overall low medium high

NB: DT= Decision Tree, LL= Linear List and
RBN= Rule Based Network

On the other hand, this type of networked rep-
resentation is based on the relationship between at-
tributes and class labels as mentioned earlier in this
subsection. Therefore, this representation can be
used to reflect correlations between input attributes
and class labels, i.e. it enables the identification of
the input attributes that have the highest impact on
determining each of the class labels.

Figure 4. Determinstic Rule Based Network
Example Version 1 [21].

The example rule set that is used in Section 3
and represented by this network topology is illus-
trated in Figure 4. In this diagram, both input val-
ues are supposed to be 1 (shown as green) and each
node in the input layer represents an input attribute;
each node in the middle layer represents a rule and
the layer is referred to as conjunction layer due to
the fact that each rule actually reflects the mapping
between inputs and outputs and that the output val-
ues strongly depend on the conjunction of input val-
ues; finally, the node in the output layer represents
the class attribute. On the other hand, each of the
connections between the input layer and the con-
junction layer represents a condition judgment. If
the condition is met, then the connection is colored
by green. Otherwise, it is colored by red. In addi-
tion, each of the connections between the conjunc-
tion layer and the output layer represents an output
value from the corresponding rule. In other words,
if all of the conditions in a rule are met, then the cor-
responding node in the conjunction layer becomes
green. Otherwise, the corresponding node becomes
red. The former case would result in that a node rep-
resenting a rule becomes green and that the output
value from the rule is assigned to the class attribute
in the output layer. In the meantime, the connec-
tion between the node representing the rule and an-
other node representing the class attribute becomes
green, which means that the class attribute would
be assigned the output value from the rule. In con-
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trast, the latter case would result in that the node
in the conjunction layer becomes red and that the
output value from the corresponding rule cannot be
assigned to the class attribute.

As illustrated in Table 1, this type of networked
rule representation also shows the relationship be-
tween attributes and rules explicitly as shown con-
nections between nodes in the input layer and nodes
in the conjunction layer. In addition, the networked
representation also introduces a ranking for both in-
put attributes and rules based on their importance.
The importance of an input attribute is measured
by the weighted average of ranks for those rules
that relate to the input attribute. For example, an
attribute A relates to two rules namely rule 1 and
rule 2. If the ranks for rule 1 and rule 2 are 4 and
8 respectively, then the average of ranks would be
6= ((4+8)/2). In real applications, this character-
istic about ranking of attributes may significantly
contribute to both knowledge discovery and feature
selection with respect to feature importance. Be-
sides, the strength of the representations also lies in
the strong interpretability on the mapping relation-
ship between inputs and outputs, which is signifi-
cantly useful for knowledge discovery. On the basis
of the above descriptions, the rule based network il-
lustrated in Figure 3 is thus a practically significant
technique in data mining tasks.

As mentioned above, a rule set may have some
or all rules non-deterministic in terms of the rela-
tionships between rule antecedents and consequents
due to the presence of uncertainty in datasets. In
this context, the rule set would be used to predict
classes based on probabilistic or fuzzy logic. There-
fore, a unified topology for rule based networks,
which could fulfil being based on different types of
logic such as deterministic, probabilistic and fuzzy
logic, is developed and illustrated in Figure 5.

In this network topology, the modifications are
made to the one illustrated in Figure 3 by adding a
new layer called disjunction and assigning a weight
to each of the connections between nodes. The dis-
junction layer is similar to the output layer in Hig-
ginss network topology illustrated in Figure 2. In
this layer, each node represents a class label and
the number of nodes is dependent on the num-
ber of classes. However, the final prediction is
not necessarily made by choosing the most com-
mon class which has the highest posteriori proba-

bility in total. In contrast to Figure 2 and Figure 3,
the topology also allows representing inconsistent
rules, which means that the same rule antecedent
could be mapped to different classes (consequents).
For example, the first node in the conjunction layer
is mapped to both the first and the second nodes in
the disjunction layer as illustrated in Figure 5. With
regard to the weights assigned to the connections
between nodes, they would represent the truth val-
ues if the computation is based on deterministic or
fuzzy logic. The truth value would be crisp (0 or 1)
for deterministic logic whereas it would be contin-
uous (between 0 and 1) for fuzzy logic. If the com-
putation is based on probabilistic logic, the weights
would represent the probabilities of the correspond-
ing cases.

Figure 5. Unified Rule Based Network [21].

In the context of deterministic logic, each of the
connections between the nodes in the input layer
and the nodes in the conjunction layer would be la-
belled 1 for its weight, i.e. ti j = 1 where i is the
index of the attribute and j is the index of the rule, if
the corresponding condition as part of the rule an-
tecedent is met. A rule would have its antecedent
satisfied if and only if all of the conditions are met.
In this case, the rule is firing to indicate its conse-
quent (as the class predicted) which is represented
by a node in the disjunction layer. If the rule is con-
sistent, the corresponding node should have a single
connection to another node in the disjunction layer.
The connection would be labelled 1 as its weight
denoted by w jk, where k is the index of the class.
In this case, if there is only one rule firing or more
rules firing without conflict of classification, then
the output would be deterministic. This is because
there is only one node in the disjunction layer pro-
viding a weight greater than or equal to 1 for its con-
nection to the node in the output layer. For all other
nodes, the weight provided for the corresponding
connection would be equal to 0.
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trast, the latter case would result in that the node
in the conjunction layer becomes red and that the
output value from the corresponding rule cannot be
assigned to the class attribute.

As illustrated in Table 1, this type of networked
rule representation also shows the relationship be-
tween attributes and rules explicitly as shown con-
nections between nodes in the input layer and nodes
in the conjunction layer. In addition, the networked
representation also introduces a ranking for both in-
put attributes and rules based on their importance.
The importance of an input attribute is measured
by the weighted average of ranks for those rules
that relate to the input attribute. For example, an
attribute A relates to two rules namely rule 1 and
rule 2. If the ranks for rule 1 and rule 2 are 4 and
8 respectively, then the average of ranks would be
6= ((4+8)/2). In real applications, this character-
istic about ranking of attributes may significantly
contribute to both knowledge discovery and feature
selection with respect to feature importance. Be-
sides, the strength of the representations also lies in
the strong interpretability on the mapping relation-
ship between inputs and outputs, which is signifi-
cantly useful for knowledge discovery. On the basis
of the above descriptions, the rule based network il-
lustrated in Figure 3 is thus a practically significant
technique in data mining tasks.

As mentioned above, a rule set may have some
or all rules non-deterministic in terms of the rela-
tionships between rule antecedents and consequents
due to the presence of uncertainty in datasets. In
this context, the rule set would be used to predict
classes based on probabilistic or fuzzy logic. There-
fore, a unified topology for rule based networks,
which could fulfil being based on different types of
logic such as deterministic, probabilistic and fuzzy
logic, is developed and illustrated in Figure 5.

In this network topology, the modifications are
made to the one illustrated in Figure 3 by adding a
new layer called disjunction and assigning a weight
to each of the connections between nodes. The dis-
junction layer is similar to the output layer in Hig-
ginss network topology illustrated in Figure 2. In
this layer, each node represents a class label and
the number of nodes is dependent on the num-
ber of classes. However, the final prediction is
not necessarily made by choosing the most com-
mon class which has the highest posteriori proba-

bility in total. In contrast to Figure 2 and Figure 3,
the topology also allows representing inconsistent
rules, which means that the same rule antecedent
could be mapped to different classes (consequents).
For example, the first node in the conjunction layer
is mapped to both the first and the second nodes in
the disjunction layer as illustrated in Figure 5. With
regard to the weights assigned to the connections
between nodes, they would represent the truth val-
ues if the computation is based on deterministic or
fuzzy logic. The truth value would be crisp (0 or 1)
for deterministic logic whereas it would be contin-
uous (between 0 and 1) for fuzzy logic. If the com-
putation is based on probabilistic logic, the weights
would represent the probabilities of the correspond-
ing cases.

Figure 5. Unified Rule Based Network [21].

In the context of deterministic logic, each of the
connections between the nodes in the input layer
and the nodes in the conjunction layer would be la-
belled 1 for its weight, i.e. ti j = 1 where i is the
index of the attribute and j is the index of the rule, if
the corresponding condition as part of the rule an-
tecedent is met. A rule would have its antecedent
satisfied if and only if all of the conditions are met.
In this case, the rule is firing to indicate its conse-
quent (as the class predicted) which is represented
by a node in the disjunction layer. If the rule is con-
sistent, the corresponding node should have a single
connection to another node in the disjunction layer.
The connection would be labelled 1 as its weight
denoted by w jk, where k is the index of the class.
In this case, if there is only one rule firing or more
rules firing without conflict of classification, then
the output would be deterministic. This is because
there is only one node in the disjunction layer pro-
viding a weight greater than or equal to 1 for its con-
nection to the node in the output layer. For all other
nodes, the weight provided for the corresponding
connection would be equal to 0.
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However, as mentioned earlier, a rule may be
inconsistent, which means that the same rule an-
tecedent may be mapped to different classes as its
consequent. In this case, the corresponding node
would have multiple connections to different nodes
in the disjunction layer. For each of the connec-
tions, the weight would be equal to a value between
0 and 1. Nevertheless, the sum of weights for the
connections would be equal to 1. With regard to
each of classes, it may be mapped from different
rule antecedents. Therefore, each class would have
a summative weight denoted by ck, which is equal
to the sum of the weights for the rule antecedents
mapped to the class. Finally, the node in the output
layer makes the weighted majority voting for the fi-
nal prediction.

In the context of probabilistic logic, the ti j

would be equal to a value between 0 and 1 as a con-
ditional probability. Similar to deterministic logic,
a rule is firing if and only if all of the conditions
are met. However, the rule antecedent would be
assigned a firing probability computed in the cor-
responding node in the conjunction layer. The fir-
ing probability is simply equal to the product of
the conditional probabilities for the rule terms (if
corresponding attributes are independent) and also
to the posterior probability of the rule consequent
given the rule antecedent. If the rule is inconsis-
tent, the sum of posterior probabilities for the pos-
sible classes (w jk) would also be equal to the firing
probability above. This is because the rule conse-
quent is the disjunction of the output terms, each of
which has a different class as the output value. In
the disjunction layer, each class is assigned a weight
which is equal to the sum of its posterior probabili-
ties given different rule antecedents. The final pre-
diction is made by weighted majority voting in the
same way as based on deterministic logic.

In the context of fuzzy logic, in contrast to prob-
abilistic logic, in the conjunction layer, the ti j would
be equal to a value between 0 and 1 as a fuzzy truth
value for each corresponding condition. Similar to
the other two types of logic, a rule is firing if and
only if all of the conditions are met. However, the
rule antecedent would be assigned a firing strength
computed in the corresponding node in the con-
junction layer. The firing strength is simply com-
puted by choosing the minimum among the fuzzy
truth values of the conditions (that are assumed in-

dependent). The fuzzy truth value for the rule con-
sequent is equal to the firing strength. If the rule
is inconsistent, the fuzzy truth value (w jk) for hav-
ing each possible class as the consequent would be
derived by getting the minimum between the firing
strength and the original fuzzy truth value assigned
to this class for this rule. In the disjunction layer,
the weight for each class is computed by getting the
maximum among the fuzzy truth values (w jk) of the
rules having the class as the consequents. The final
prediction is made by weighted majority voting in
the same way as the above two types of logic.

Overall, the unified rule based network repre-
sentation does not only show which input attributes
are most significant for each class label in terms
of determining the class label of a test instance,
but also measures the corresponding degree of like-
lihood. It is important especially for fuzzy rule
based networks required to have a weight assigned
to each of the connections between nodes. This is
because each of the connections is only involved in
one rule in this representation. In contrast, decision
tree representation may have the same connection
shared by different rules with the need that differ-
ent weights are assigned to the same connection for
different rules, which results in confusions. In ad-
dition, if a linear list representation has each single
rule term assigned a weight, it is likely to make the
rules less readable. All above demonstrates a signif-
icant strength of using the unified network topology
for knowledge discovery in real applications due to
the presence of uncertainty.

4.3 Attribute-Value Oriented Rule Based
Network

Section 4.2 illustrated attribute oriented rule
based network topologies which demonstrate ad-
vantages in terms of model interpretability. How-
ever, as mentioned in Section 2, rule based systems
are also popularly used for predictive modelling,
which needs to demonstrate a high level of com-
putational efficiency in predicting unseen instances.
The rest of this subsection presents attribute-value
oriented rule based network topololgies towards
improvement in terms of computational efficiency
without loss of model interpretability.

In the context of deterministic logic, the rule
based network topology illustrated in Figure 3 is
modified by adding another layer referred to as in-
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put values after the input layer and changing the
output layer as illustrated in Figure 6.

Figure 6. Determinstic Rule Based Network
version 2.

The network topology illustrated in Figure 6
can be seen as a special type of rule based network
representation based on the relationship between at-
tribute values and class labels. In this diagram, each
node in the input values layer represents a value
of an input attribute and is connected to only one
node in the input layer. In other words, each node
in the input layer corresponding to an input attribute
should be connected to any nodes in the input values
layer, each of which is corresponding to one of the
values of the input attribute. In addition, each node
in the output layer represents a class label which is
also used as the consequent of a particular rule.

The example rule set that is used in Section 3
and represented by this network topology is illus-
trated in Figure 7.

Figure 7. Determinstic Rule Based Network
Example version 2.

As can be seen from the above example, when
x1 and x2 both equal to 1, the two connections
between node x1 and node v12 and between node
x1 and node v22 respectively become green, which
means that these two paths can be passed through.
Then there are four connections (13, 14, 22, and
24) between the nodes in the second layer and the
nodes in the third layer becoming green as shown

in Figure 7. In the meantime, due to the interac-
tions between the nodes in these two layers, node
r4 is activated, which means that the corresponding
rule fires, and output 1 is derived. In other words,
node r4 can be viewed as an action listener, and will
become green once it receives the signal that both
of the two connections (14 and 24) have become
green. On the basis of the above description, the
rule based network illustrated in Figure 10 demon-
strates a divide and conquer search for the rules
that fire. Therefore, the computational complexity
is O(log(n)), where n is the total number of rule
terms in a rule set. As reported in [21], two other
techniques of rule representation, i.e. decision tree
and linear list, both demonstrate a search less effi-
cient than the above divide and conquer search. In
particular, the computational complexity by linear
list is O(n), where the n is the same as used in the
rule based network. In addition, the computational
complexity by decision tree is O(log(n)), but the
n is likely to be higher than that in the other two
representations as analysed in [21]. This is due to
the replicated subtree problem [15] by means of the
presence of redundant rule terms. A detailed analy-
sis can be seen in Table 2.

Table 2. Comparison in Efficiency

Decision Tree Linear List Rule Based
Network

O(log(n)),
which indi-
cates it is not
required to ex-
amine a whole
tree but the
n is likely to
be higher due
to the pres-
ence of more
redundant
terms.

O(n), which
indicates it
is required
to examine
a whole list
in the worst
case.

O(log(n)),
which indi-
cates it is
not required
to examine
a whole
network.

On the other hand, in terms of model inter-
pretability, as reported in Section 4.2, the attribute
oriented rule based network topology, illustrated in
Figure 3, is capable of interpreting explicitly the
following characteristics: correlation between at-
tributes and classes, relationship between attributes
and rules, ranking of attributes, ranking of rules
and attribute relevance. However, in addition to the
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put values after the input layer and changing the
output layer as illustrated in Figure 6.

Figure 6. Determinstic Rule Based Network
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The network topology illustrated in Figure 6
can be seen as a special type of rule based network
representation based on the relationship between at-
tribute values and class labels. In this diagram, each
node in the input values layer represents a value
of an input attribute and is connected to only one
node in the input layer. In other words, each node
in the input layer corresponding to an input attribute
should be connected to any nodes in the input values
layer, each of which is corresponding to one of the
values of the input attribute. In addition, each node
in the output layer represents a class label which is
also used as the consequent of a particular rule.

The example rule set that is used in Section 3
and represented by this network topology is illus-
trated in Figure 7.

Figure 7. Determinstic Rule Based Network
Example version 2.

As can be seen from the above example, when
x1 and x2 both equal to 1, the two connections
between node x1 and node v12 and between node
x1 and node v22 respectively become green, which
means that these two paths can be passed through.
Then there are four connections (13, 14, 22, and
24) between the nodes in the second layer and the
nodes in the third layer becoming green as shown

in Figure 7. In the meantime, due to the interac-
tions between the nodes in these two layers, node
r4 is activated, which means that the corresponding
rule fires, and output 1 is derived. In other words,
node r4 can be viewed as an action listener, and will
become green once it receives the signal that both
of the two connections (14 and 24) have become
green. On the basis of the above description, the
rule based network illustrated in Figure 10 demon-
strates a divide and conquer search for the rules
that fire. Therefore, the computational complexity
is O(log(n)), where n is the total number of rule
terms in a rule set. As reported in [21], two other
techniques of rule representation, i.e. decision tree
and linear list, both demonstrate a search less effi-
cient than the above divide and conquer search. In
particular, the computational complexity by linear
list is O(n), where the n is the same as used in the
rule based network. In addition, the computational
complexity by decision tree is O(log(n)), but the
n is likely to be higher than that in the other two
representations as analysed in [21]. This is due to
the replicated subtree problem [15] by means of the
presence of redundant rule terms. A detailed analy-
sis can be seen in Table 2.

Table 2. Comparison in Efficiency

Decision Tree Linear List Rule Based
Network

O(log(n)),
which indi-
cates it is not
required to ex-
amine a whole
tree but the
n is likely to
be higher due
to the pres-
ence of more
redundant
terms.

O(n), which
indicates it
is required
to examine
a whole list
in the worst
case.

O(log(n)),
which indi-
cates it is
not required
to examine
a whole
network.

On the other hand, in terms of model inter-
pretability, as reported in Section 4.2, the attribute
oriented rule based network topology, illustrated in
Figure 3, is capable of interpreting explicitly the
following characteristics: correlation between at-
tributes and classes, relationship between attributes
and rules, ranking of attributes, ranking of rules
and attribute relevance. However, in addition to the
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above characteristics, the attribute-value oriented
rule based network topology, illustrated in Figure
6, can also explicitly interpret the correlation be-
tween attribute values and classes as well as the re-
lationship between attribute values and rules due to
adding the layer of input values. In addition, the
ranking of attribute values can also be interpreted
explicitly through looking at the newly added layer
of the rule based network topology illustrated in
Figure 6.

In order to fulfil the attribute-value oriented rule
based network topology being based on any types
of computational logic such as deterministic, prob-
abilistic and fuzzy logic, a new topology, which is
a modified version on the basis of the topologies il-
lustrated in Figure 5 and 6 respectively, is developed
and illustrated in Figure 8.

Figure 8. Unified Rule Based Network
(Attribute-Value Oriented Version)

This is a five layer network and the main differ-
ence to the one illustrated in Figure 6 is that a new
layer referred to as output layer is added as the last
layer of the network topology and the previous out-
put layer is renamed to as disjunction layer. On the
other hand, in comparison with the topology illus-
trated in Figure 5, the input values layer is newly
added and each node in this layer has connections
to the nodes in the conjunction layer. As described
earlier, each node in the input values layer repre-
sents a value of an input attribute. For those nodes
in the input values layer, if their corresponding in-
put values are for the same input attribute, then each
node in the conjunction layer can be connected to
only one of these nodes in the input values layer as
mentioned above. This is due to the constraint that
the same input attribute can only be selected once
with one of its values as an attribute-value pair to
appear on the left hand side of any rules. In addi-
tion, all these weights, which are generally denoted
as tij, wjk and ck respectively as illustrated in Fig-

ure 8, are used in the same way as they are used
in the topology illustrated in Figure 5. The weight
for each of the connections between the nodes in
the input layer and the nodes in the input values
layer is binary (eigher 0 or 1). In predictive mod-
elling tasks, the weight for each of the connections
mentioned above is dependent on whether the cor-
responding input value is actually equal to the one
assigned to the corresponding input attribute for an
unseen instance.

5 Conclusion

This paper introduces newly developed tech-
niques of rule representation which are network
based. The variants of the network representations
contribute to improvement on model interpretabil-
ity for knowledge discovery (as illustrated in Table
1) as well as computational efficiency for predic-
tive modelling (as illustrated in Table 2) in com-
parison with decision tree and linear list represen-
tations. In addition, this paper also introduces two
generalized network topologies for rule based sys-
tems that can be based on any types of computa-
tional logic, as well as two specialized topologies
for deterministic rule based systems. In particu-
lar, the topologies, which are illustrated in Figures
3, 4 and 5 respectively, can demonstrate advances
in model interpretability as shown in Table 1. The
topolgies, which are illustrated in Figures 6, 7 and
8 respectively, can demonstrate advances in both
model interpretability and computational efficiency
as shown in Table 2 and discussed in Section 4.3.
In addition, in terms of model interpretability, in
comparison with the attribute oriented rule based
network topology, the attribute-value oriented rule
based network topolgoy can even demonstrate a
deeper interpretation of mapping relationships be-
tween inputs and outputs due to adding the input
values layer as discussed in Section 4.2.

On the other hand, the network topologies,
which are illustrated in Figure 5 and Figure 8 re-
spectively, apply to any types of computational net-
works such as a neural network, which has percep-
tron layers instead of conjunction and disjunction
layers and each node represent a perceptron. The
network topology can also represent a digital cir-
cuit, which has a number of computational layers
and each node represent a logic gate such as AND,
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OR and NOT. Therefore, the network topology pro-
vides a general framework in computational intel-
ligence and philosophical perspectives in complex
systems and networks.
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OR and NOT. Therefore, the network topology pro-
vides a general framework in computational intel-
ligence and philosophical perspectives in complex
systems and networks.
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RULE BASED NETWORKS: AN EFFICIENT . . .

above characteristics, the attribute-value oriented
rule based network topology, illustrated in Figure
6, can also explicitly interpret the correlation be-
tween attribute values and classes as well as the re-
lationship between attribute values and rules due to
adding the layer of input values. In addition, the
ranking of attribute values can also be interpreted
explicitly through looking at the newly added layer
of the rule based network topology illustrated in
Figure 6.

In order to fulfil the attribute-value oriented rule
based network topology being based on any types
of computational logic such as deterministic, prob-
abilistic and fuzzy logic, a new topology, which is
a modified version on the basis of the topologies il-
lustrated in Figure 5 and 6 respectively, is developed
and illustrated in Figure 8.

Figure 8. Unified Rule Based Network
(Attribute-Value Oriented Version)

This is a five layer network and the main differ-
ence to the one illustrated in Figure 6 is that a new
layer referred to as output layer is added as the last
layer of the network topology and the previous out-
put layer is renamed to as disjunction layer. On the
other hand, in comparison with the topology illus-
trated in Figure 5, the input values layer is newly
added and each node in this layer has connections
to the nodes in the conjunction layer. As described
earlier, each node in the input values layer repre-
sents a value of an input attribute. For those nodes
in the input values layer, if their corresponding in-
put values are for the same input attribute, then each
node in the conjunction layer can be connected to
only one of these nodes in the input values layer as
mentioned above. This is due to the constraint that
the same input attribute can only be selected once
with one of its values as an attribute-value pair to
appear on the left hand side of any rules. In addi-
tion, all these weights, which are generally denoted
as tij, wjk and ck respectively as illustrated in Fig-

ure 8, are used in the same way as they are used
in the topology illustrated in Figure 5. The weight
for each of the connections between the nodes in
the input layer and the nodes in the input values
layer is binary (eigher 0 or 1). In predictive mod-
elling tasks, the weight for each of the connections
mentioned above is dependent on whether the cor-
responding input value is actually equal to the one
assigned to the corresponding input attribute for an
unseen instance.

5 Conclusion

This paper introduces newly developed tech-
niques of rule representation which are network
based. The variants of the network representations
contribute to improvement on model interpretabil-
ity for knowledge discovery (as illustrated in Table
1) as well as computational efficiency for predic-
tive modelling (as illustrated in Table 2) in com-
parison with decision tree and linear list represen-
tations. In addition, this paper also introduces two
generalized network topologies for rule based sys-
tems that can be based on any types of computa-
tional logic, as well as two specialized topologies
for deterministic rule based systems. In particu-
lar, the topologies, which are illustrated in Figures
3, 4 and 5 respectively, can demonstrate advances
in model interpretability as shown in Table 1. The
topolgies, which are illustrated in Figures 6, 7 and
8 respectively, can demonstrate advances in both
model interpretability and computational efficiency
as shown in Table 2 and discussed in Section 4.3.
In addition, in terms of model interpretability, in
comparison with the attribute oriented rule based
network topology, the attribute-value oriented rule
based network topolgoy can even demonstrate a
deeper interpretation of mapping relationships be-
tween inputs and outputs due to adding the input
values layer as discussed in Section 4.2.

On the other hand, the network topologies,
which are illustrated in Figure 5 and Figure 8 re-
spectively, apply to any types of computational net-
works such as a neural network, which has percep-
tron layers instead of conjunction and disjunction
layers and each node represent a perceptron. The
network topology can also represent a digital cir-
cuit, which has a number of computational layers
and each node represent a logic gate such as AND,
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