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1 Introduction

Real world decision making problems are quite
challenging because of the difficulty of modeling
and coping with uncertain situation. One of the
most commonly used approaches in multiple cri-
teria decision making problems is the technique
for order preference by similarity to ideal solu-
tion (TOPSIS). Hwang and Yoon [11] developed
TOPSIS for multiple criteria based decision making
(MCDM) problems. TOPSIS is an effective tech-
nique for the selection of suitable alternative and to
rank the alternatives from best to worst or vice versa
[1, 2, 5, 13, 14]. The MCDM provides a frame-
work for comparison of different alternatives based
on different criteria. Ranking of alternatives in the
TOPSIS work on the concept of distances between
alternatives and ideal solutions. Kim et al. [15] and
Shih et al. [22] addressed four advantages of TOP-
SIS:

– It has sound logic to represent the rationale of
human choice;

– It has scalar value to consider the best and worst
alternative simultaneously;

– It has a simple computation process and can be
easily programmed;

– It has ability of the performance measures of all
alternatives on attributes to be visualized on a
polyhedron, at least for any two dimensions.

Representation of human preference is not suit-
ably possible with exact numeric values for real
world decision problems. To handle uncertainty,
fuzzy set theory and its different generalizations
have been developed and used. Bellman and Zadeh
[4] proposed the concept of fuzzy set theory in de-
cision making for the solution of ambiguity in in-
formation from human preference. Dubois [9] gave
a comparison about some old and new techniques
for fuzzy decision analysis. Fuzzy numbers are ap-
plied to establish a fuzzy TOPSIS [7, 18] and fuzzy
TOPSIS has been further developed by several au-
thors [3, 6, 8, 12, 16, 17, 20, 24, 25, 26]. Hesi-
tant fuzzy sets that have been recently introduced in
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[23] provide a very interesting extension of fuzzy
sets. They try to manage those situations, where a
set of values are possible in the definition process
of the membership of an element. In [19, 21, 27]
hesitant fuzzy sets are used to obtain multiple at-
tribute decision making. The aim of this paper is
to two fold; the first one is to extend fuzzy TOP-
SIS for hesitant fuzzy sets under the opinion of de-
cision makers, and the second one is the new ap-
proach in modelling uncertainties. In the proposed
method TOPSIS and HFS is, for the first time used
simultaneously.

This article is organized as follows: In Section
2, some preliminary concepts are given to under-
stand our proposal. In Section 3, we gave a no-
tion of distance between HFE’s and fuzzy TOPSIS
is constructed for HFS. Then in Section 4, the pro-
posed fuzzy TOPSIS method is applied to see its
feasibility. Conclusion of the paper is given in the
last Section.

2 Preliminaries

A fuzzy set B in the universe X is a mapping from
X to [0,1]. The value B(x) is called the degree of
membership of x in B. Torra [23] introduced hesi-
tant fuzzy sets (HFS) as a generalization of fuzzy
sets.

Definition 1 [23] A hesitant fuzzy set on X is a
function h that when applied to X returns a subset
of [0,1], which can be represented as the following
mathematical symbol:

E = {(x,h(x))|x ∈ X},

where h(x) is a set of some values in [0,1], denot-
ing the possible membership degrees of the element
x∈X to the set E. For convenience, Xia and Xu [28]
named h(x) a hesitant fuzzy element (HFE).

A typical hesitant fuzzy set is a fuzzy set where
h(x) is a finite subset of [0,1]. Examples of hesitant
fuzzy sets are given below where h(x) represents the
possible membership values of the set at x.

It is noted that the number of values in different
HFEs may be different, let lh(x) be the number of
values in h(x). In case values in an HFE are out of
order; we can arrange them in such a order, that an
HFE h, let σ : (1,2, ...,n)→ (1,2, ...,n) be a permu-

tation satisfying hσ(i) ≤ hσ(i+1), i = 1,2, ..., lh − 1.
Xu and Xia [29] proposed that two HFEs h1 and h2
have the same length l and h1σ(i) = h2σ(i) if and only
if h1 = h2, for i = 1,2, ..., l.

Example 1 [23] Let Xbe a reference set, then fol-
lowing are some hesitant fuzzy sets;

Empty Set: h(x) = {0} for all x in X .

Full Set: h(x) = {1} for all x in X .

Complete ignorance for a x ∈ X (all is possi-
ble): h(x) = [0,1].

Nonsense for a x ∈ X : h(x) = /0.

Definition 2 [23] Let X be a reference set and h be
a HFS. The upper bound h+(x) and lower bound
h−(x) for a x ∈ X are defined as

1) Upper bound: h+(x) = maxh(x).

2) Lower bound: h−(x) = minh(x).

Example 2 Consider a hesitant fuzzy set A given
by

A= {(x1,(0.2,0.3,0.6,0.9)),(x2,(0.1,0.4,0.5,0.7))}
Then

h+A (x1) = max(0.2,0.3,0.6,0.9) = 0.9, and
h+A (x2) = max(0.1,0.4,0.5,0.7) = 0.7, and
h−A (x1) = min(0.2,0.3,0.6,0.9) = 0.2, and
h−A (x2) = min(0.1,0.4,0.5,0.7,1) = 0.1.

Definition 3 [23] For a hesitant fuzzy set repre-
sented by its membership function h, we define its
complement as follows:

hc(x) = ∪
γ∈h(x)

{1− γ}.

Example 3 Consider a hesitant fuzzy set A such
that

A= {(x1,(0.2,0.3,0.6,0.9)),(x2,(0.1,0.4,0.5,0.7,1))}
Then complement of A is given by

Ac = {(x1,(1−0.2,1−0.3,1−0.6,1−0.9)),
(x2,(1−0.1,1−0.4,1−0.5,1−0.7,1−1))}
= {(x1,(0.8,0.7,0.4,0.1)),(x2,(0.9,0.6,0.5,0.3,0))}.

Definition 4 [23] Given two hesitant fuzzy sets rep-
resented by their membership functions h1 and h2,
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– their union represented by h1 ∪h2 as

(h1 ∪h2)(x) =

{h∈ (h1(x)∪h2(x))|h ≥ max(h−1 (x),h
−
2 (x))}.

– their intersection represented by h1 ∩h2 as

(h1 ∩h2)(x) =

{h∈ (h1(x)∩h2(x))|h ≤ min(h+1 (x),h
+
2 (x))}.

Example 4 Consider two hesitant fuzzy sets A and
B such that

A = {(x1,(0.2,0.4,0.6)),(x2,(0.5,0.7,1))},

and

B = {(x1,(0,0.4,0.8)),(x2,(0.2,0.3,0.45,0.9))}.
Then

A∪B =
{(x1,(0.2,0.4,0.6,0.8)),(x2,(0.5,0.7,0.9,1))}
and

A∩B =
{(x1,(0,0.2,0.4,0.6)),
(x2,(0.2,0.3,0.45,0.5,0.7,0.9))}.
Xu and Xia [29] gave six different distance formu-
lae for HFE’s. But in their distance formulae two
HFE’s should have the same length, so their dis-
tance formulae are not applicable for any two HFE’s
with different length. Motivated by the Hausdorff
distance, we give a distance notion for any two
HFE’s.

Definition 5 Let x and y be the two HFEs, such that
x = {a1,a2, . . . ,an} and y = {b1,b2, . . . ,bm}, then
distance ′d′ between x and y is defined as

d(x,y) =

max
{

max
a j∈x

{
min
bi∈y

(|a j −bi|)
}
,max

bi∈y

{
min
a j∈x

(|a j −bi|)
}}

.

It is easy to show that this distance ‘d′ satisfies the
following properties.

1. d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x).

Example 5 As in above example A(x1) =
{0.2,0.4,0.6} and B(x1) = {0,0.2,0.4,0.6}, Now
we want to calculate distance between them.

d(A(x1),B(x1)) = max{max{min(|0.2− 0|, |0.2−
0.2|, |0.2− 0.4|, |0.2− 0.6|), min(|0.4− 0|, |0.4−
0.2|, |0.4− 0.4|, |0.4− 0.6|), min(|0.6− 0|, |0.6−
0.2|, |0.6− 0.4|, |0.6− 0.6|)}, max{min(|0− 0.2|,
|0 − 0.4|, |0 − 0.6|), min(|0.2 − 0.2|, |0.2 − 0.4|,
|0.2 − 0.6|), min(|0.4 − 0.2|, |0.4 − 0.4|, |0.4 −
0.6|), min(|0.6−0.2|, |0.6−0.4|, |0.6−0.6|)}}
d(A(x1),B(x1)) = max{max{min(0.2, 0, 0.2, 0.4),
min(0.4, 0.2, 0, 0.2), min(0.6, 0.4, 0.2, 0)},
max{min(0.2, 0.4, 0.6), min(0, 0.2, 0.4), min(0.2,
0, 0.2), min(0.4, 0.2, 0)}}
d(A(x1),B(x1)) = max{max{0, 0, 0}, max{0.2, 0,
0, 0}}
d(A(x1),B(x1)) = max{ 0,0.2}= 0.2.

3 TOPSIS for HFS

We give construction of TOPSIS using the proposed
notion of distance, which is then used for multi-
criteria group decision making where the opinions
about the criteria values are expressed as HFS. We
suppose that in this group decision making prob-
lem, E = {e1, e2, . . . , eK}, A = {A1, A2, . . . , Am}
and C = {C1,C2, . . . ,Cn} are the set of the decision
makers, alternatives and criteria, respectively.

Step 1. Let X̃ l = [Hl
Si j
]m×n be a hesitant fuzzy

decision matrix for the multi-criteria group deci-
sion making problem where performance of al-
ternative Ai with respect to decision maker el and
criterion Cj is denoted as Hl

Si j
.

Step 2. We produce the single decision matrix
X by aggregating the opinions of all the DMs
involved in the group decision making problem.

X = [xi j], where xi j = {x | x ∈ Hl
Si j

and spi j ≤ x ≤
sqi j for all l} where

spi j = min
{

K
min
l=1

(maxHl
Si j
),

K
max
l=1

(minHl
Si j
)

}

and

sqi j = max
{

K
min
l=1

(maxHl
Si j
),

K
max
l=1

(minHl
Si j
)

}
.
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Ã+ =
[
x|x ∈ Hl

Si j
∀i and

K
max
l=1

(
max

i
(minHl

Si j
)

)
≤ x ≤ K

max
l=1

(
max

i
(maxHl

Si j
)

)
| j ∈ Ωb,

x|x ∈ Hl
Si j
∀i and

K
min
l=1

(
min

i
(minHl

Si j
)

)
≤ x ≤

K
min
l=1

(
min

i
(maxHl

Si j
)

)
| j ∈ Ωc

]

i=1, 2, . . . , m, and j = 1, 2, . . . , n.

Ã+ = (Ṽ+
1 Ṽ+

2 . . . Ṽ+
n )

(1)

Ã− =
[
x|x ∈ Hl

Si j
∀i and

K
max
l=1

(
max

i
(minHl

Si j
)

)
≤ x ≤ K

max
l=1

(
max

i
(maxHl

Si j
)

)
| j ∈ Ωc,

x|x∈ Hl
Si j
∀iãnd

K
min
l=1

(
min

i
(minHl

Si j
)

)
≤ x ≤

K
min
l=1

(
min

i
(maxHl

Si j
)

)
| j ∈ Ωb

]

i=1, 2, . . . , m, and j = 1, 2, . . . , n.

Ã− = (Ṽ−
1 Ṽ−

2 . . .Ṽ−
n )

(2)

Aggregated performance of alternative Ai for
criterion Cj is denoted as xi j, in the final aggre-
gated matrix X .

Step 3. Let Ωb be the collection of all the bene-
fit criteria and Ωc be the collection of all the cost
criteria. The HFS positive-ideal solution (HFS-
PIS), denoted as Ã+ = (Ṽ+

1 Ṽ+
2 . . . Ṽ+

n ), and
the HFS negative-ideal solution (HFS-NIS), de-
noted as Ã− = (Ṽ−

1 Ṽ−
2 . . . Ṽ−

n ), are defined as
follows Eq. 1 and 2:

Step 4. The construction of positive ideal sepa-
ration matrix (D+) and negative ideal separation
matrix (D−) are defined as follows Eq. 3 and 4:

Step 5. Calculate the relative closeness (RC) of
each alternative to the ideal solution as follows:

RC(Ai) =
D−

i

D+
i +D−

i
, i = 1,2, . . . ,m,

where D−
i =n

j=1 d(xi j,Ṽ−
j )

and D+
i =n

j=1 d(xi j,Ṽ+
j ).

Step 6. Rank all the alternatives Ai (i =
1,2, . . . ,m) according to the closeness coeffi-
cient RC(Ai), the greater the value RC(Ai), the
better the alternative Ai.

4 Example

In this Section, we give an example to illustrate the
usefulness of the method proposed in Section 3 to
get the best alternative.There is an investment com-
pany, which wants to invest money in the best op-
tion (adapted from [10]). There are five possible
alternatives in which to invest the money: A1 is a
car industry, A2 is a food company, A3 is a com-
puter company, A4 is an arms company, A5 is a TV
company. The investment company must take a de-
cision according to the following four criteria: C1
is the risk analysis; C2 is the growth analysis; C3
is the social-political impact analysis, C4 is the en-
vironmental impact analysis. The decision is to be
taken by company board of directors i.e. decision
makers eK (K = 1, 2, . . . , 10).

Step 1. The five possible alternatives Ai (i = 1,
2, 3, 4, 5) are to be evaluated using the HFS by
ten decision makers eK (K = 1, 2, . . . , 10), as
listed in Table 1-3.

Step 2. The decision matrix constructed by uti-
lize Table 1-3 is listed in Table 4;

Step 3. For cost criteria C1, C4 and benefit cri-
teria C2, C3 HFS-PIS A+ and HFS-NIS A− is as
follows Eq. 5:

Step 4. Positive ideal matrix (D+) Eq. 6. Nega-
tive ideal matrix (D−) Eq. 7:
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Ã+ = (Ṽ+
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n )

(1)
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∀iãnd

K
min
l=1

(
min

i
(minHl

Si j
)

)
≤ x ≤

K
min
l=1

(
min

i
(maxHl

Si j
)

)
| j ∈ Ωb

]

i=1, 2, . . . , m, and j = 1, 2, . . . , n.
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1 Ṽ+
2 . . . Ṽ+
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D+ =




d(x11,Ṽ+
1 ) + d(x12,Ṽ+

2 ) + · · · + d(x1n,Ṽ+
n )

d(x21,Ṽ+
1 ) + d(x22,Ṽ+

2 ) + · · · + d(x2n,Ṽ+
n )

...
...

...
...

d(xm1,Ṽ+
1 ) + d(xm2,Ṽ+

2 ) + · · · + d(xmn,Ṽ+
n )


 (3)

D− =




d(x11,Ṽ−
1 ) + d(x12,Ṽ−

2 ) + · · · + d(x1n,Ṽ−
n )

d(x21,Ṽ−
1 ) + d(x22,Ṽ−

2 ) + · · · + d(x2n,Ṽ−
n )

...
...

...
...

d(xm1,Ṽ−
1 ) + d(xm2,Ṽ−

2 ) + · · · + d(xmn,Ṽ−
n )


 (4)

Table 1. Decision matrix (X̃1) with respect to e1,e2,e3 and e4.

C1 C2 C3 C4

A1 {0.5,0.6,0.8} {0.6,0.8} {0.1,0.3} {0.1,0.3}
A2 {0.1,0.3} {0.5,0.7,0.8} {0.5,0.6} {0.5,0.6}
A3 {0.5,0.7} {0.5,0.6} {0.7,0.9} {0.1,0.2}
A4 {0.7,0.9} {0.1,0.2} {0.1,0.3} {0.5,0.6,0.7}
A5 {1} {0.1,0.3} {0,0.2} {0.4,0.7}

Table 2. Decision matrix (X̃2) with respect to e5,e6 and e7.

C1 C2 C3 C4

A1 {0.1,0.2} {0.4,0.9} {0,0.2} {0.4,0.6}
A2 {0,0.2} {0.1,0.3} {0.4,0.5} {0.6,1}
A3 {0.4,0.6} {0.1,0.2} {0.4,0.6} {0,0.2}
A4 {0.6,1} {0.4,0.7} {0,0.1} {0.5,0.7}
A5 {0.5,0.7} {0.4,0.6} {0,0.1} {0.6,1}

Table 3. Decision matrix (X̃3) with respect to e8,e9 and e10.

C1 C2 C3 C4

A1 {0.4,0.6} {0.6,1} {0.3,0.5} {0,0.3}
A2 {0.3,0.6} {0.1,0.3} {0.5,0.9} {0.3,0.5}
A3 {0.1,0.3} {0.6,0.9} {0.3,0.7} {0,0.1}
A4 {0.6,0.9} {0.5,0.7} {0,0.2,0.4} {0.5,0.6,0.8}
A5 {0.5,0.6} {0.1,0.3} {0.2,0.4} {1}

Table 4. Decision matrix (X).

C1 C2 C3 C4

A1 {0.2,0.4,0.5} {0.6,0.8} {0.2,0.3} {0.3,0.4}
A2 {0.2,0.3} {0.3,0.5} {0.5} {0.5,0.6}
A3 {0.3,0.4,0.5} {0.2,0.5,0.6} {0.6,0.7} {0.1}
A4 {0.7,0.9} {0.2,0.4,0.5} {0.1} {0.5,0.6,0.7}
A5 {0.6,0.7,1} {0.3,0.4} {0.1,0.2} {0.7,1}

A+ = [ {0,0.1,0.2} {0.6,0.7,0.8,0.9,1} {0.7,0.8,0.9} {0,0.1} ]
A− = [ {0.7,0.8,0.9} {0.1,0.2} {0,0.1} {1} ]

(5)
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D+ =




0.3 + 0.2 + 0.6 + 0.3
0.2 + 0.5 + 0.4 + 0.5
0.3 + 0.4 + 0.2 + 0.1
0.7 + 0.5 + 0.8 + 0.6
0.8 + 0.6 + 0.7 + 0.9



=




1.4
1.6
1.0
2.6
3.0




(6)

D− =




0.5 + 0.6 + 0.2 + 0.7
0.6 + 0.3 + 0.5 + 0.5
0.4 + 0.4 + 0.6 + 0.9
0.1 + 0.3 + 0.1 + 0.5
0.1 + 0.2 + 0.1 + 0.3



=




2.0
1.9
2.3
1.0
0.7




(7)

Step 5. Relative closeness (RC) of each alterna-
tive to the ideal solutions:

RC(A1) = 2/(1.4+2) = 0.5882;

RC(A2) = 1.9/(1.9+1.6) = 0.5429;

RC(A3) = 2.3/(2.3+1) = 0.6970;

RC(A4) = 1.0/(1.0+2.6) = 0.2778;

RC(A5) = 0.7/(0.7+3) = 0.1892.

Step 6. Rank all the alternatives Ai(i =
1,2, . . . ,5) according to the closeness coefficient
RC(Ai) :

A3 ≻ A1 ≻ A2 ≻ A4 ≻ A5.

So the most suitable alternative is A3.
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