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Abstract

This paper presents an attempt to solve the problem of choosing the best combination
among the M combinations of shortest paths in optical translucent networks. Fixed rout-
ing algorithms demands a single route to each pair of nodes. The existence of multiple
shortest paths to some pairs of nodes originates the problem of choose the shortest path
which fits better the network requests. The algorithm proposed in this paper is an adap-
tation of Ant Colony Optimization (ACO) metaheuristic and attempt to define the set of
routes that fits in an optimized way the network conditions, resulting in reduced number
of blocked requests and better adjusted justice in route distribution. A performance eval-
uation is conducted in real topologies by simulations, and the proposed algorithm shows
better performance between the compared algorithms.
Keywords: optical networks, routing, ant colony, simulation

1 Introduction

The emergence of new technologies for audio
and video services on demand, such as teleconfer-
ences and smart TVs, has led to a considerable in-
crease in the demand for bandwidth in transport
networks, which are the backbone components of
telecommunication service providers. Optical net-
work technology is a solution to this demand that
is capable of reaching high transmission rates [1].
The optical transport networks use wavelength di-
vision multiplexing (WDM) [1], which allows the
establishment of different parallel optical circuits in
the same optical fiber.

Circuit-switched WDM optical networks al-
low for the establishment of an optical circuit for

communication between the origin and destination
nodes [2]. To establish an optical circuit in an
WDM network, route selection and wavelength al-
location are required. In a network under dynamic
traffic in which there is no knowledge of the num-
ber of circuits that will be required, the routing and
wavelength allocation algorithms focus on meeting
the requests of the circuits by minimizing the block-
ing probability (BP) of future requests [3].

The BP is a commonly used metric to define the
quality of service (QoS) of a network [3, 4]. Many
of the connection requests of networks with high BP
rates are blocked, which prevents data from being
transferred between nodes. The main factor causing
such blockages is the lack of available wavelength
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to establish the circuit. The load balance between
the network links should be provided by the routing
algorithms because they define the links that will be
used to establish the circuit between the origin and
destination of a request. An improper routing solu-
tion can lead to the overload of network links.

Different routing solutions are used to deter-
mine the shortest route between the origin and des-
tination nodes [5, 6, 3]. For certain network topolo-
gies, there is more than one shortest route between
a given pair of nodes. Hence, the selection of the
shortest route can influence link congestion, which
can represent a higher BP. The need to select the
best existing shortest route between two nodes (ori-
gin and destination) is defined as the Problem of
Choosing the Best Combination among M Combi-
nations of Shortest Paths (MCSP) [5]. Solve this
problem implies finding the best combination of
routes which minimize the network blocking prob-
ability.

In transparent optical network, optical-
electrical-optical (OEO) converters, which converts
data from the optical to the electronic domain, are
not used during transmission; therefore, signal con-
version does not occur. The total transmission time
is reduced because there is no delay related to sig-
nal processing between the origin and destination
[7]. Futhermore, the financial cost associated with
OEO converters is reduced in transparent optical
networks.

Fixed routing algorithms provide lower com-
plexity for the Control Planes protocols because the
route computation for each sourcepair is not made
online, i.e., it is made during a networks planning
phase [1]. Thus, the complexity of fixed routing al-
gorithms do not interfere in network performance,
once their execution occur before network opera-
tional phase. According to the authors in [5], the
majority of studies in the literature that address the
routing and wavelength assignment (RWA) prob-
lem in transparent optical networks are based on
the fixed routing class. These studies considered
the use of shortest path algorithms to define a
fixed route for each pair of origin-destination nodes.
Among the shortest path algorithms, the Dijkstra al-
gorithm (DJK) [6] is one of the most cited. In this
study, the terminology shortest path will be used
to indicate the shortest path in terms of number of
loops in the route.

Authors [5] have defined the MCSP and pro-
posed the best among the shortest routes (BSR) al-
gorithm as a solution for the MCSP. Additionally, a
comparison is made in [5] among the BSR, RRT
(Resttricted Routing Algorithm) [4] and DJK [6]
algorithms. The RRT algorithm creates a routing
table for each pair of nodes, and critical links are
temporarily removed from the search space, forcing
the search for other routes disjoint from these links.
The results showed a better performance of the BSR
related to the BP for different network topologies.
The Best among the Shortest Routes using Decision
by Similarity (BSR-DS) algorithm is proposed in
[3] to solve the MCSP. BSR-DS assesses the simi-
larity between the shortest-path routes to perform a
better load balancing. This characteristic of BSR-
DS results in better performance compared with the
BSR in terms of the BP.

Acquire results for some computational prob-
lems require high processing power and large time
availability, making it infeasible to use traditional
methods. Thus, emerges the need to use another
ways to obtain results which are near of an opti-
mum point. Consequently, several studies apply
metaheuristics as attempt to obtain satisfactory re-
sults for their optimization problems [8, 9, 10]. The
ACO (Ant Colony Optimization) metaheuristic is
constantly present in current researches: in [8], is
used to find a fiber-optic online solution for mixed-
line-rate (MLR) networks, in [9], is used to min-
imize the total number of wavelength links used
in the whole physical topology, and [10], used to
solve the problem of routing and spectrum alloca-
tion (RSA) for elastic optical networks.

This study proposes the Ant Colony Optimiza-
tion (ACO) BSR (ACO-BSR) algorithm to solve the
MCSP. This algorithm is used to define the set of
best routes between all the pairs of nodes accord-
ing to important metrics to enhance load balancing,
as the frequency of use for each link and similarity
between routes. The route solution is obtained by
applying and adapting a version of the ACO meta-
heuristics [11]. Furthermore, a comparative analy-
sis between the proposed technique and DJK, BSR
and BSR-DS algorithms is performed to real situa-
tions of transparent optical network topologies.

This study is organized as follows. Section 2
describes the problem related to the selection of
the best combination among the M combinations of
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shortest paths, and Section 3 presents the adapted
model of ACO meta-heuristic. An evaluation study
is presented in Section 4 that compares the perfor-
mance of the proposed algorithm with the perfor-
mance of other existing algorithms in terms of BP,
Fairness and Standard Deviation and Section 5 dis-
cusses the process of defining the parameters used
in the proposed algorithm to maximize the perfor-
mance. Finally, conclusions are presented in Sec-
tion 6.

2 Problem of Selection the Best
Combination Among M Combi-
nations of Shortest Path

In this Section, the problem of selecting the best
combination among the M combinations of short-
est paths (MCSP) is presented [5]. Given an opti-
cal network topology with N nodes, the number of
pairs of origin-destination nodes is N · (N −1). The
pair(o,d) notation is used to represent an ordered
pair of nodes with its origin in node o and desti-
nation in node d. To perform the fixed routing, it
is necessary to define a route for each pair(o,d).
In this study, pair(o,d) is assumed to use the same
route as pair(d,o), with only the direction of the
route changed; therefore, only routes in a single di-
rection must be determined. Hence, R = (N · (N −
1))/2 routes are required for a given topology of N
nodes, one for each pair(o,d).

In this study, it is also assumed that the short-
est path to a given pair(o,d) is the route with the
least amount of links between origin o and destina-
tion d, which results in a smaller number of hops.
Each link in the route is also called a hop. There-
fore, the cost of the path considers the number of
hops in the route. Each pair(o,d) can have more
than one shortest path. In this study, such routes are
called Candidate Routes (CR), and the set of CRs for
a pair(o,d) is represented by CRpair(o,d). The route
selected for pair(o,d) is named rpair(o,d). Figure 1
illustrates the CRpair(1,4) set for the R6NTL (Ring
With 6 Nodes and a Transversal Link) topology.

Figure 1. Candidate routes for pair(1,4).

Because each pair(o,d) can have more than one
shortest route (CR), there are M different solutions
for planning the fixed routes in a specific network
topology [5]. If only the shortest-path routes are
considered, the calculation of M, which represents
the number of possible solutions, is given by Eq.
(1).

M = ΠN,N
i=1, j=1|CRpair(i, j)|, (1)

where CRpair(i, j) is the amount of candidate routes
for pair(i, j) and i ̸= j. Table 1 shows the pairs
of nodes in the R6NTL topology according to their
numbers of shortest paths.

Table 1. Pair of nodes in the R6NTL topology
separated according to the number of candidate

routes

N. of Shortest
Paths

(Candidate Routes) 1 2 3

Pairs (1,2) (2,3) (1,5) (2,4) (1,4) (3,6)

(3,4) (4,5) (3,5) (2,6)

(5,6) (6,1)

(1,3) (1,5)

(4,6)

According to Eq. (1), the number of possible
solutions, represented by M, can be found through
the combination of all candidate routes. Thus, the
value of M is given by M = 19 ·24 ·32 = 144. For a
smaller topology, such as R6NTL, successive simu-
lations can be performed to determine the best solu-
tion among the 144 possible route solutions. How-
ever, real topologies usually exhibit a greater num-
ber of nodes and links, leading to a significant in-
crease in the value of M. Table 2 list the value of M
for some topologies.
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Table 2. Value of M for different topologies

Topology Nodes M

R6NTL 6 144

Abilene 11 9216

EON 19 1.2∗1032

USA 24 7.14∗1068

TORUS 25 4.7∗10101

The MCSP is used to identify a solution that
includes the shortest-path routes (Sk) that satisfies
1 ≤ k ≤ M and provides a combination of Sk that
results in better load distribution and smaller value
in terms of network BP. Therefore, defining the
Sk combination requires a definition of the short-
est path to be used by each pair(o,d) to establish a
circuit during the network operation phase.

3 Ant Colony Optimization

Ant algorithms [12] are computational models
inspired in the behavior of real ant colonies. Among
the studied behaviors of ants (task division, nest
building, foraging for food, etc.), the foraging for
food behavior is particularly relevant. Such behav-
ior allow the ants to find the shortest path between
the nest and food source [13]. This allows faster
food foraging, once the time spent on the route be-
tween the nest and food source is minimized, allow-
ing a faster gatering, and it also increase the qual-
ity of the food source [14]. ACO algorithms were
developed through studies on the food foraging be-
havior of ants. Initially, ACO algorithms were pro-
posed to address discrete (or combinatorial) op-
timization problems. Thus, a population of arti-
ficial ants cooperates to solve search/optimization
problems by exchanging information on the search
space through depositing artificial pheromone. As
an optimization technique based on intelligent (or
computational intelligence) systems, the applica-
tion of ACO algorithms has the following charac-
teristics:

– It does not require special properties for the
search space (objective function and equal-
ity/inequality constraints) such as convexity, ex-
istence of derivatives, continuity and unimodal-
ity;

– It is population-based, so the ACO algorithm

evolves a population of candidate solutions that
allows for sharing of information on the search
space to improve convergence and the quality of
the solutions;

– It includes stochastic (random) components to
update solutions among the iterations, so the
population evolution follows rules of probabilis-
tic (stochastic) transition that reduce its depen-
dence on the initial solution and the likelihood
of the search process stagnating at local minima.

An ACO algorithm alternates the application of
two basic principles:

– a procedure for creating solutions for the prob-
lem, where a set of n ants builds in parallel n
solutions;

– a procedure for updating the pheromone trail, in
which the pheromone concentration is changed
(updated).

The main characteristics of the ACO algorithms
are based on the following [15]:

– a colony of cooperative agents (artificial ants) to
build solutions for the problem;

– a pheromone trail for indirect local communica-
tion;

– heuristic information that is dependent on the
problem and influences the building of solu-
tions;

– probabilistic decision (transition) rules to deter-
mine the next move of the ant.

Before presenting the ACO meta-heuristic in
its adapted form, the concept of similarity between
routes, which is used in the BSR-DS and ACO-BSR
algorithms, must be clarified.

For the analysis of similarity, the shortest-path
routes are analyzed in pairs. The calculation of the
similarity between two routes a and b, which are
CRs for a given pair(o,d), is performed using Eq.
(2).

Sml(a,b) =
NEcommon(a,b)

H
, (2)
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where H is the number of links in route a and
NEcommon(a,b) is the number of common links be-
tween routes a and b. It is important to highlight
that the number of hops in route a is the same as in
route b because both routes are shortest-path routes.
Based on the concept of similarity between two
routes, the similarity between all CRs for a given
pair(o,d) is provided by Eq. (3),

Smlpair(o,d) =
γ

C2
|CRpair(o,d)|

, (3)

where γ is the sum of similarity (Sml(a,b)) of all of
the combinations of CRs for pair(o,d); and C is the
number of CR combinations for pair(o,d).

Figure 2 shows the calculation of similarity be-
tween the CRs for pair(1,4).

Figure 2. Candidate routes for pair(1,4).

As observed in Figure 2, pair(1,4) is composed
of three alternative shortest-path routes: route a =
nodes 1, 2, 3 and 4; route b = nodes 1, 2, 5 and
4; route c = nodes 1, 6, 5 and 4. In Figure 2,
Sml(a,b) = 1/3 because routes a and b have only
one link in common (from node 1 to node 2) and
both have three hops; Sml(a,c) = 0/3 because the
routes do not have links in common; Sml(b,c) =
1/3 because routes b and c only have one common
link (from node 5 to node 4). Hence, the example
of Figure 2 shows Smlpair(1,4) = ((1/3) + (0/3) +
(1/3))/3 = 2/9.

To apply the ACO meta-heuristic, the MCSP
was modeled similarly to the travelling salesman
problem [12]. Figure 3 shows an example of a graph
(topology) for finding a solution to the MCSP. Ini-
tially, for each pair of nodes, the set of correspond-
ing shortest paths is identified. Table 3 lists the set
of shortest paths for the graph in Figure 3 (a).

Figure 3. (a) Graph used to exemplify the
application of the modified ACO meta-heuristics

which generates graph in (b).

Table 3. Set of shortest routes for each pair of
nodes in the topology

Pair 1-2 1-3 1-4 2-3 2-4 3-4

Shortest 1-2 1-2-3 1-4 2-3 2-1-4 3-4

route 1-4-3 2-3-4

Next, a new graph is created with vertices that
represent each pair(o,d) of the topology. Addition-
ally, an initial vertex S is inserted from which all
ants start. Therefore, this artificial vertex plays the
role of a starting node. The generated graph has
edges between all vertices that are identified as the
shortest-path routes in the table for pair(o,d), to-
wards which the edge is oriented. For example, be-
tween node S and node 1-3 the edges are 1,2,3 and
1,4,3, which are both possible shortest-path routes
for pair(1,3). Both edges are oriented towards
node 1-3. Arcs 2,1,4 and 2,3,4 between S and node
2-4 represent the existing shortest routes between
pair(2,4) in the original graph (must be oriented to-
wards node 2-4 in the generated graph). Figure 3(b)
illustrates the new graph generated for the graph
shown in Figure 3(a). In Figure 3(b), although the
edges representing paths with single hops are not
inserted (to provide a better visualization), they are
considered (nodes 1-2, 1-4, 2-3 and 3-4).

Therefore, the graph that represents the search
space that will be covered by the artificial ants is
the graph generated from the topology under study;
therefore, a solution for the travelling salesman
problem in this graph is equivalent to a route so-
lution for the topology in Figure 3. For instance, an
ant positioned at the initial node S can go through
the graph using the links 1;2;3 and 2;1;4. Along
with the single-hop paths, which are not illustrated
in the graph of Figure 3(b), such CRs will form a
viable solution for the problem.
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The application of the ACO meta-heuristics is
based on [12]; when the ACO meta-heuristics are
applied to the travelling salesman problem, it fol-
lows the steps, which are displayed in Figure 4.

Step 1: Initialization. The following values
are defined: initial pheromone concentration; pa-
rameters (α, β and γ, explained in this Section);
pheromone evaporation rate ρ, maximum t num-
ber of iterations to be performed; and n amount of
ants. The n ants are positioned on the initial node S,
which is representative of the starting point for the
ant movement.

Step 2: Iterative process.

1. Building the solution. Step by step, the n ants
select the next node to visit based on the follow-
ing:

– Pheromone concentration (τ);

– Similarity (Sml), which is an important met-
ric because it defines the routes that have
the lowest degree of similarity and exhibit a
lower probability of simultaneously compos-
ing two different circuits;

– Link Utilization(u), which is a value that in-
dicates the amount of routes that cross a link.
Each link has a counter, which is increased
by 1 everytime it is selected by a new route.
The counter is reset to 0 in each colony iter-
ation.

Determining the node to visit at iteration t re-
quires the use of a selection method. Hence,
each ant performs a selection based on the
roulette wheel method [16] among the existing
elements of the routing table Ai= [ai j(t)] in each
network node, which stores the values of ai j for
each neighbor j of the current node i:

ai j =
[τi j(t)]

α[1/ui j(t)]
β[Slmi j]

γ

∑l∈Ni [τil(t)]
α[1/iil(t)]

β[Smlil]
γ ,∀ j ∈ Ni, (4)

where τi j indicates the amount of pheromones
present in the arc i- j during iteration t; ui j value
indicates the use of the link, which has an in-
verse value, so lower ui j values can have a higher
chance on the roulette wheel; Smli j is the simi-
larity between the candidate routes for pair(i, j);

and parameters α, β and γ are the weights used
in the ants’ decision-making process when de-
termining the different levels of influence for the
pheromone, frequency of use and similarity, re-
spectively.

2. Pheromone updating

After building the solution, each artificial ant
sends its route solution to the analytical model
[17], which calculates, through matematical for-
mulations, the BP value for each of the solu-
tions. The BP values return to the ants, which
use them as parameter for the calculation of
pheromone deposition. Each ant returns to the
origin through the path found, depositing on
each link an amount of pheromone (∆τi j) that
is inversely proportional to the BP of that route.
Thus, a route with high BP will have a smaller
amount of pheromone deposited on its links,
which reduces the probability of being drawn in
the roulette wheel (during step 2).

It should be emphasized that pheromone evap-
oration occurs simultaneously with pheromone
deposition, and it is mathematically represented
as follows:

τi j(t +1) = (1−ρ)∗ τi j +∆τi j(t), (5)

where ρ represents the pheromone evaporation
rate.

Step 3: Stop criteria. The route building (search
for a solution) and pheromone concentration updat-
ing processes are performed until the stop criterion
is met. If the stop criterion is met, the iterative pro-
cess is interrupted and the best obtained route solu-
tion up to that moment is defined as the final solu-
tion.

In ACO-BSR, the stop criterion is defined by
the establishment of a maximum number of itera-
tions. If a new set of routes with a better perfor-
mance is found in any iteration, this set should be
maintained because it will be a partial solution that
will then be compared to future solutions or consid-
ered a final solution if results with a better perfor-
mance are not found. Figure 4 displays the ACO-
BSR operation flow.
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Step 1: Initialization. The following values
are defined: initial pheromone concentration; pa-
rameters (α, β and γ, explained in this Section);
pheromone evaporation rate ρ, maximum t num-
ber of iterations to be performed; and n amount of
ants. The n ants are positioned on the initial node S,
which is representative of the starting point for the
ant movement.

Step 2: Iterative process.

1. Building the solution. Step by step, the n ants
select the next node to visit based on the follow-
ing:

– Pheromone concentration (τ);

– Similarity (Sml), which is an important met-
ric because it defines the routes that have
the lowest degree of similarity and exhibit a
lower probability of simultaneously compos-
ing two different circuits;

– Link Utilization(u), which is a value that in-
dicates the amount of routes that cross a link.
Each link has a counter, which is increased
by 1 everytime it is selected by a new route.
The counter is reset to 0 in each colony iter-
ation.

Determining the node to visit at iteration t re-
quires the use of a selection method. Hence,
each ant performs a selection based on the
roulette wheel method [16] among the existing
elements of the routing table Ai= [ai j(t)] in each
network node, which stores the values of ai j for
each neighbor j of the current node i:

ai j =
[τi j(t)]

α[1/ui j(t)]
β[Slmi j]

γ

∑l∈Ni [τil(t)]
α[1/iil(t)]

β[Smlil]
γ ,∀ j ∈ Ni, (4)

where τi j indicates the amount of pheromones
present in the arc i- j during iteration t; ui j value
indicates the use of the link, which has an in-
verse value, so lower ui j values can have a higher
chance on the roulette wheel; Smli j is the simi-
larity between the candidate routes for pair(i, j);

and parameters α, β and γ are the weights used
in the ants’ decision-making process when de-
termining the different levels of influence for the
pheromone, frequency of use and similarity, re-
spectively.

2. Pheromone updating

After building the solution, each artificial ant
sends its route solution to the analytical model
[17], which calculates, through matematical for-
mulations, the BP value for each of the solu-
tions. The BP values return to the ants, which
use them as parameter for the calculation of
pheromone deposition. Each ant returns to the
origin through the path found, depositing on
each link an amount of pheromone (∆τi j) that
is inversely proportional to the BP of that route.
Thus, a route with high BP will have a smaller
amount of pheromone deposited on its links,
which reduces the probability of being drawn in
the roulette wheel (during step 2).

It should be emphasized that pheromone evap-
oration occurs simultaneously with pheromone
deposition, and it is mathematically represented
as follows:

τi j(t +1) = (1−ρ)∗ τi j +∆τi j(t), (5)

where ρ represents the pheromone evaporation
rate.

Step 3: Stop criteria. The route building (search
for a solution) and pheromone concentration updat-
ing processes are performed until the stop criterion
is met. If the stop criterion is met, the iterative pro-
cess is interrupted and the best obtained route solu-
tion up to that moment is defined as the final solu-
tion.

In ACO-BSR, the stop criterion is defined by
the establishment of a maximum number of itera-
tions. If a new set of routes with a better perfor-
mance is found in any iteration, this set should be
maintained because it will be a partial solution that
will then be compared to future solutions or consid-
ered a final solution if results with a better perfor-
mance are not found. Figure 4 displays the ACO-
BSR operation flow.
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Figure 4. ACO-BSR application flow.

4 Performance Evaluation

This Section presents an evaluation that com-
pares the performance of routing solutions obtained
with the ACO (ACO-BSR) heuristic and three fixed
routing algorithms: the DJK, BSR and BSR-DS al-
gorithms. To apply the ACO-BSR, 20 ants and 400
iterations were used, and the determination of such
values is explained in next Section. The presented
analytical model [17] was used to obtain the net-
work BP, which was used as an evaluation function
(objective function) in the process of searching for
the MCSP solution. Then, all four routing solutions
obtained with the DJK, BSR, BSR-DS and ACO-
BSR strategies were simulated using the TONetS
(Transparent Optical Network Simulator), a simu-
ation tool developed to study RWA algorithms,
survivability techniques and wavelength converter
placement in all-optical networks [3, 5, 7, 18]. The
traffic load was uniformly distributed among all of
the pairs(o,d), and the requests were generated
following a Poisson process with mean λ and an
exponentially distributed time retention with mean

1/µ. The network traffic intensity was given by ρ =
λ/µ. All of the network links were two-directional
and had 40 wavelengths in each direction. The
Random algorithm was used for the wavelength al-
location. For each simulation, 10 replications were
performed with different seeds for the creation of
random variables. For each replication, 100,000 op-
tical circuit requests were generated. The topolo-
gies selected for the performance of the experiment
were Abilene and USA, ilustrated in Figure 5. Both
are real topologies located in US territory. Because
the topologies occupy an extensive area and have an
increasing number of users spread all around the US
territory, both are frequently used in studies [2, 4, 5,
18]. Table 4 shows the values used for ACO-BSR
parameters.

Figure 5. Abilene and USA topologies.

Table 4. Set of values used by the meta-heuristics
parameters

Number of Ants 20

Number of Iterations 400

Evaporation Rate 0.25

α 1

β 0.1

γ 0.1

Figure 6 illustrates the variation of BP as a func-
tion of the increase in total network load for the
Abilene and USA topologies. The results exhibit
a confidence interval of 95%.
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Figure 6. Variation of the BP for (a) USA and (b)
Abilene topologies, with an increasing network

load (in Erlangs).

The results for the Abilene topology show an
inferior performance of the BSR compared with
the results of the BSR-DS and ACO-BSR. There is
a similarity between the graphical behavior of the
BSR-DS and ACO-BSR. Because the Abilne topol-
ogy displays a less robust structure, the quality of
the solution obtained by the two algorithms can be
close to a point where no significant improvement
is possible, suggesting that the BSR-DS and ACO-
BSR are the most indicated solutions for application
in real scenarios of transparent optical networks.

For the USA topology, the ACO-BSR showed
a better performance than the BSR-DS BSR and
DJK, with the latter showing the worst perfor-
mance. These results were related to the higher
complexity of the USA topology and greater num-
ber of nodes and links, compared with the Abi-
lene topology. Thus, the greater number of pos-
sible solutions was best analyzed by ACO-BSR,
which had a Pb value 74.61% lower than that of
the BSR and 39.48% lower than that of the BSR-
DS. Another metric used to measure the quality
of the route solution is fairness (Fr), which is de-
fined in [7]. Considering BP(o,d), which is the
BP for a pair of nodes pair(o,d), the value indi-
cated by 1−BP(o,d) represents the probability that
a pair(o,d) will not suffer blocking. The Fr for a
given topology is the proximity of a given value to
the lowest and highest probability of not suffering
blocking between all pairs of nodes. Reduction in
Fairness value implies in more difficult to attend all
users with similar BP rate. Equation (6) defines the
Fr value.

Fr =
1− (maxBP(o,d))
1− (minBPo,d)

(6)

Figure 7 illustrates the variation of the Fr value
with an increase in the network load for the USA(a)
and Abilene(b) topologies.

Figure 7. Fairness (Fr) as a function of the total
network load (in Erlangs) to (a) USA and (b)

Abilene topologies.

An analysis of the Fr value shows that the
ACO-BSR has a better performance than the other
three algorithms for both topologies. The algo-
rithms DJK, BSR-DS and BSR do not provide si-
multaneous analyses of links similarity and fre-
quency of use. Considering both heuristics, the
ACO-BSR displays a more refined ability to select
the lowest-cost route.

Although the BP values of the ACO-BSR are
close to the values of the BSR-DS for the Abilene
topology, the ACO-BSR has the advantage of ex-
hibiting a more fair behavior, so it is more suitable
for application in this topology.

Finally, a study based on the standard deviation
values was also conducted. After calculating the
average value of blocking probability for each load
point, the standard deviation of the blocking proba-
bility value of all pairs was observed for each load
point. Figure 8 shows the standard deviation values
for USA and Abilene topologies.

Figure 8. Standard Deviation values to (a) USA
and (b) Abilene topologies.
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Figure 6. Variation of the BP for (a) USA and (b)
Abilene topologies, with an increasing network

load (in Erlangs).

The results for the Abilene topology show an
inferior performance of the BSR compared with
the results of the BSR-DS and ACO-BSR. There is
a similarity between the graphical behavior of the
BSR-DS and ACO-BSR. Because the Abilne topol-
ogy displays a less robust structure, the quality of
the solution obtained by the two algorithms can be
close to a point where no significant improvement
is possible, suggesting that the BSR-DS and ACO-
BSR are the most indicated solutions for application
in real scenarios of transparent optical networks.

For the USA topology, the ACO-BSR showed
a better performance than the BSR-DS BSR and
DJK, with the latter showing the worst perfor-
mance. These results were related to the higher
complexity of the USA topology and greater num-
ber of nodes and links, compared with the Abi-
lene topology. Thus, the greater number of pos-
sible solutions was best analyzed by ACO-BSR,
which had a Pb value 74.61% lower than that of
the BSR and 39.48% lower than that of the BSR-
DS. Another metric used to measure the quality
of the route solution is fairness (Fr), which is de-
fined in [7]. Considering BP(o,d), which is the
BP for a pair of nodes pair(o,d), the value indi-
cated by 1−BP(o,d) represents the probability that
a pair(o,d) will not suffer blocking. The Fr for a
given topology is the proximity of a given value to
the lowest and highest probability of not suffering
blocking between all pairs of nodes. Reduction in
Fairness value implies in more difficult to attend all
users with similar BP rate. Equation (6) defines the
Fr value.

Fr =
1− (maxBP(o,d))
1− (minBPo,d)

(6)

Figure 7 illustrates the variation of the Fr value
with an increase in the network load for the USA(a)
and Abilene(b) topologies.

Figure 7. Fairness (Fr) as a function of the total
network load (in Erlangs) to (a) USA and (b)

Abilene topologies.

An analysis of the Fr value shows that the
ACO-BSR has a better performance than the other
three algorithms for both topologies. The algo-
rithms DJK, BSR-DS and BSR do not provide si-
multaneous analyses of links similarity and fre-
quency of use. Considering both heuristics, the
ACO-BSR displays a more refined ability to select
the lowest-cost route.

Although the BP values of the ACO-BSR are
close to the values of the BSR-DS for the Abilene
topology, the ACO-BSR has the advantage of ex-
hibiting a more fair behavior, so it is more suitable
for application in this topology.

Finally, a study based on the standard deviation
values was also conducted. After calculating the
average value of blocking probability for each load
point, the standard deviation of the blocking proba-
bility value of all pairs was observed for each load
point. Figure 8 shows the standard deviation values
for USA and Abilene topologies.

Figure 8. Standard Deviation values to (a) USA
and (b) Abilene topologies.
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For the USA topology, it is noted that the ACO-
BSR presents a lower deviation between the aver-
age value and the blocking probability value of each
pair, representing more uniform load distribution
on the network. For the Abilene topology, there is
a closeness of deviation values between the ACO-
BSR and BSR-DS, demonstrating that both may ex-
hibit similar behavior when evaluated in less com-
plex topologies.

5 Impact of the ACO-BSR Heuris-
tics Parameters in the MCSP
Problem

To apply the ACO-BSR meta-heuristic, it is
necessary to establish the values of certain pa-
rameters: weights of α (pheromone), heuristics β
(frequency of use) and γ (similarity), total num-
ber of ants, maximum amount of iterations and
pheromone evaporation rate. The performance
achieved with variations of parameters is presented
next and is based on the USA topology.

5.1 Number of Ants

Figure 9. Variation of the BP with an increasing
number of ants.

It is necessary to define the number of ants to be
considered in the ACO-BSR algorithm. A greater
number of ants tends to determine better results be-
cause it implies a better analysis of the set of routes
(search space). Inversely, a great number of ants
leads to an increase in the consumption of compu-
tational resources and execution time of the ACO
meta-heuristic. Figure 9 shows the variation in the
BP as a function of the number of ants. Notice that
the value of BP tends to decrease with an increas-

ing number of ants. The reduction of BP value does
not occur linearly due to complexity of the problem.
Additionally, the BP value tends to stabilize, sug-
gesting that an increase in the number of ants does
not provide further improvement of the solution.

The number of ants should vary according to the
network size. For topologies with a greater number
of nodes and links, a more refined analysis of all
possible routes is required. During the experiment,
20 ants were used, which is a value that does not
require great computational cost and has a BP value
close to the value found by simulations with greater
numbers of ants. Furthermore, an analysis of other
studies that have employed the ACO algorithm sug-
gests that 20 ants is an low cost number.

5.2 Number of Iterations

A greater number of iterations increases the
chances of finding best-solution routes, although it
implies a longer execution time. The BP exhibits
greater variations in executions with less iterations
(50, 100 and 150) because the BP is not as stable
as it is in executions with more iterations (400, 450
and 500). Figure 10 shows the effect of the num-
ber of iterations on the BP value. Notice that af-
ter a maximum number of iterations, approximately
250, the optimization process stabilizes; therefore,
400 is a valid number for the maximum number of
iterations.

Figure 10. Variation of the BP with an increasing
number of iterations.

5.3 Vary the weights of α, β and γ

The values of the weights (α for pheromone, β
for frequency of use and γ for similarity) are nor-
malized; therefore, to associate α, β or γ with a
greater influence, an exponent with a value close to
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zero should be used. Providing the pheromone pa-
rameter with a high weight increases its influence
on the value of Ai j and reduces the participation of
both heuristics the constitution of the value for Ai j.
This results in an improved probability of select-
ing routes with a greater frequency of use or sim-
ilarity, which can affect the final result. To avoid
such a scenario, the value of 1 is associated with
the weight of the pheromone parameter. Figures 11
and 12 display the BP values when the weights of
the other two heuristics (frequency of use and simi-
larity, respectively) are changed. It is clear that the
variation in the weight of the parameters does not
exhibit a behavioral pattern. Therefore, to define the
values that implies better performance, it is neces-
sary to conduct initial experiments, which reaffirms
the importance of the analytical model.

Figure 11. Variation of the BP caused by variation
in the weights of frequency of use.

Figure 12. Variation of the BP caused by variation
in the weights of similarity.

The plots in Figs. 13 and 14 compare the results
(in BP) when the algorithms ACO-BSR and BSR-
DS were applied to the USA and Abilene topolo-
gies, respectively. They also show the difference
between the worst and best results found with vari-
ations of the weight for frequency of use (weight
0.05 for the worst and 0.1 for the best) and simi-
larity (weight 1 for the worst and 0.1 for the best).
The difference between the worst and best case is

smaller compared to the variation of both parame-
ters produced by the BSR-DS for the two topolo-
gies.

Figure 13. Best case, worst case and results of the
BSR-DS obtained by the application of the

analytical method to the USA topology.

Figure 14. Best case, worst case and results of the
BSR-DS obtained by the application of the
analytical method to the Abilene topology.

6 Conclusions

Currently, the number of electronic devices
with access to the internet has grown consider-
ably. The popularity of such devices, along with
the widespread use of robust applications, has cre-
ated the need for greater bandwidth in transport
networks. Hence, it is necessary to establish re-
source optimization strategies to guarantee a min-
imum level of QoS for the network users and avoid
a greater number of blocked requests.

With the emergence of optical networks, new
problems have occurred that must be addressed to
optimize the network resources. One problem con-
sists of selecting the best set of routes to estab-
lish circuits during network transmissions and de-
termining the shortest route for a pair(o,d) when
more than one shortest route is presented. Consid-
ering the MCSP problem, this study proposes an al-
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zero should be used. Providing the pheromone pa-
rameter with a high weight increases its influence
on the value of Ai j and reduces the participation of
both heuristics the constitution of the value for Ai j.
This results in an improved probability of select-
ing routes with a greater frequency of use or sim-
ilarity, which can affect the final result. To avoid
such a scenario, the value of 1 is associated with
the weight of the pheromone parameter. Figures 11
and 12 display the BP values when the weights of
the other two heuristics (frequency of use and simi-
larity, respectively) are changed. It is clear that the
variation in the weight of the parameters does not
exhibit a behavioral pattern. Therefore, to define the
values that implies better performance, it is neces-
sary to conduct initial experiments, which reaffirms
the importance of the analytical model.

Figure 11. Variation of the BP caused by variation
in the weights of frequency of use.

Figure 12. Variation of the BP caused by variation
in the weights of similarity.

The plots in Figs. 13 and 14 compare the results
(in BP) when the algorithms ACO-BSR and BSR-
DS were applied to the USA and Abilene topolo-
gies, respectively. They also show the difference
between the worst and best results found with vari-
ations of the weight for frequency of use (weight
0.05 for the worst and 0.1 for the best) and simi-
larity (weight 1 for the worst and 0.1 for the best).
The difference between the worst and best case is

smaller compared to the variation of both parame-
ters produced by the BSR-DS for the two topolo-
gies.

Figure 13. Best case, worst case and results of the
BSR-DS obtained by the application of the

analytical method to the USA topology.

Figure 14. Best case, worst case and results of the
BSR-DS obtained by the application of the
analytical method to the Abilene topology.

6 Conclusions

Currently, the number of electronic devices
with access to the internet has grown consider-
ably. The popularity of such devices, along with
the widespread use of robust applications, has cre-
ated the need for greater bandwidth in transport
networks. Hence, it is necessary to establish re-
source optimization strategies to guarantee a min-
imum level of QoS for the network users and avoid
a greater number of blocked requests.

With the emergence of optical networks, new
problems have occurred that must be addressed to
optimize the network resources. One problem con-
sists of selecting the best set of routes to estab-
lish circuits during network transmissions and de-
termining the shortest route for a pair(o,d) when
more than one shortest route is presented. Consid-
ering the MCSP problem, this study proposes an al-
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gorithmic solution based on the Ant Colony Opti-
mization, denominated ACO-BSR.

The search for the best combination of the
shortest routes performed by the ACO-BSR consid-
ers three parameters that are essential for the proper
functioning of the network: similarity, frequency
of use and pheromone. The value of the similar-
ity parameter depends on the degree of similarity
between different shortest-path routes for the same
pair of links. The value for the frequency of use pa-
rameter for a link is defined by the number of routes
that cross it. Finally, the parameter pheromone has
its value defined during the iterations of the ACO-
BSR algorithm, and it exhibits higher results for the
routes that provide better performance in terms of
BP.

The ACO-BSR algorithm was applied to USA
and Abilene topologies, and its performance was
compared with the results obtained by the BSR-DS
and BSR algorithms. For the USA topology, the
ACO-BSR displayed better performance compared
to the other two algorithms and provided a better
mean value of network BP. The analysis of the Abi-
lene topology showed that there was a similarity in
BP values between the performance of the ACO-
BSR and BSR-DS algorithms. However, the analy-
sis of the Fairness parameter showed that there was
more fair behavior when the ACO-BSR algorithm
was used, implying that its use results in a better
network load balance. A network with better load
balance displays well-distributed routes among its
links and allows for a better use of the networks ca-
pacity.

The use of the ACO-BSR algorithm does not
require special properties for the search space; in
addition, it is population-based and uses stochastic
components for updating the solutions among its it-
erations. These main characteristics, along with the
results of experiments performed for a scenario of
transparent optical networks, show that the ACO-
BSR algorithm can be as an alternative for fixed
routing algorithms and indicate that it is adequate
and efficient at solving the MCSP; therefore, it can
be used and applied for real scenarios of transparent
optical networks.
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242 Ítalo Brasileiro, Iallen Santos, André Soares, Ricardo Rabêlo, Felipe Mazullo

[11] M. Dorigo, M. Birattari, and T. Stutzle, Ant colony
optimization, Computational Intelligence Maga-
zine, IEEE, vol. 1, no. 4, pp. 28–39, 2006.

[12] M. Dorigo, E. Bonabeau, and G. Theraulaz, Ant
algorithms and stigmergy, Future Generation Com-
puter Systems, vol. 16, no. 8, pp. 851–871, 2000.

[13] A. P. Engelbrecht, Computational intelligence: an
introduction. John Wiley & Sons, 2007.

[14] L. N. De Castro, Fundamentals of natural comput-
ing: basic concepts, algorithms, and applications.
CRC Press, 2006.

[15] A. P. Engelbrecht, Fundamentals of computational
swarm intelligence. John Wiley & Sons, 2006.

[16] L. Zhang, H. Chang, and R. Xu, Equal-width par-
titioning roulette wheel selection in genetic algo-

rithm, in Technologies and Applications of Ar-
tificial Intelligence (TAAI), 2012 Conference on.
IEEE, 2012, pp. 62–67.

[17] X. Chu, J. Liu, and Z. Zhang, Analysis of sparse-
partial wavelength conversion in wavelength-
routed wdm networks, in INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 2.
IEEE, 2004, pp. 1363–1371.

[18] A. Fontinele, I. Santos, G. Duraes, J. Maranhao,
and A. Soares, Regenerator preventive allocation
in translucent optical networks (in portuguese), in
SBRC - Brazilian Symposium on Computer Net-
works and Distributed Systems, 2014, pp. 721–
734.

Ítalo Barbosa Brasileiro is in the 
Pos-graduation in Computer Science’s 
Program at Federal University of Piaui 
and holds a BA in Computer Science 
course at Federal University of Piaui 
(UFPI). Participate of the Distributed 
Systems and Computer Network Lab-
oratory (DisNeL) as researcher. Cur-
rently researches in computer network 

area, with emphasis on optical networks.

  Iallen Gábio de Sousa Santos holds a 
degree in Computer Science from the 
Federal University of Piauí, currently 
in the Post-graduation in Computer 
Science’s Program at Federal Universi-
ty of Piauí and member of Distributed 
Systems and Computer Network Labo-
ratory (DiSNeL). Works in the area of 
computer networks with experience in 

area of vehicular networks and currently focused in the area 
of optical networks.

André Castelo Branco Soares was 
born in Teresina, Brazil. He received 
the BSc degree in Computer Science 
in 2001 from the Federal University 
of Piaui (UFPI), Teresina, Brazil; MSc 
degree in Computer Network in 2004 
from the Salvador University, Salva-
dor, Brazil; and PhD degree in Com-
puter Science in 2009 from the Federal 

University of Pernambuco, Recife, Brazil. He is professor of 
the Computer Department at UFPI. Professor Soares coordi-

nates the Distributed Systems and Network Computer Labo-
ratory - DisNeL at UFPI. Currently, his research interest in-
cludes topics like optical network, survivability, RWA, RSA 
and hybrid optical switching.

Ricardo de Andrade Lira Rabelo 
received a PhD. degree in Power Sys-
tems from Sao Carlos Engineering 
School, University of Sao Paulo, Bra-
zil in 2010. His areas of research inter-
est are intelligent systems, power sys-
tem planning and operation and power 
quality.

Felipe Eduardo do Nascimento Ma-
zullo received the BE degree in Com-
puter Science from the Universidade 
Federal do Piaui, Brazil, in 2011. In 
2012, worked as a volunteer researcher 
at the Laboratory of Networks and 
Distributed Systems from Universi-
dade Federal do Piaui. He joined as 
researcher student at the University of 

Tsukuba in Department of Systems and Information Engi-
neering in 2013. He is currently a master’s student in Gradu-
ate School of Systems and Information Engineering at the 
University of Tsukuba where he works developing research 
in the field of Optical Networks Elastic through the MEXT 
scholarship program of the Japanese Ministry of Education. 
His research focuses on routing algorithms and spectrum al-
location. His research interests include, routing algorithms, 
MAC protocols, optical networks, wireless sensor networks, 
vehicular networks, distributed computing, simulation, big 
data.


