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Abstract

Fuzzy signatures were introduced as special tools to describe and handle complex sys-
tems without their detailed mathematical models. The input parameters of these systems
naturally have uncertainties, due to human activities or lack of precise data. These un-
certainties influence the final conclusion or decision about the system. In this paper we
discuss the sensitivity of the weigthed general mean aggregation operator to the uncer-
tainty of the input values, then we analyse the sensitivity of fuzzy signatures equipped
with these aggregation operators. Finally, we apply our results to a fuzzy signature used
in civil enginnering.
Keywords: aggregation operators, generalized mean, sensitivity analysis, fuzzy signa-
tures, building diagnostics

1 Introduction

The problem of modelling and classification of
complex objects and systems often arises in many
fields of science and technology. Frequent difficulty
is that there appear not well-known or hidden inter-
dependencies between the variables. Moreover, in
many cases there are not known accurate mathemat-
ical models, and because of lack of reproducibility
the statistical tools can be used with large limita-
tions to check the assumptions about the system.

Fuzzy signatures are possible tools to describe
such complex systems and objects. In this kind of
approach, complex systems are described by a set of
qualitative measures, which are also arranged into

a hierarchical framework expressing interconnec-
tions and dependencies, and modelling the human
approach to the problem.

The fuzzy signature based modelling technique
can be applied for very different problems, for ex-
ample in economy, in the medical field [1], and in
several fields of engineering and informatics, for
example robotics [2], data mining [3] and civil en-
gineering [4].

In a mathematical point of view, fuzzy signa-
tures are hierarchical representations of data struc-
turing into vectors of fuzzy values [5]. A fuzzy
signature is defined as a special multidimensional
fuzzy data structure, which is a generalization of
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vector valued fuzzy sets [6]. Vector valued fuzzy
sets are special cases of L-fuzzy sets which were
introduced in [7]. A fuzzy signature is defined by

A : X → S(n), (1)

where X is the universe of discourse, 1 ≤ n and

S(n) =×n
i=1Si, Si =

{
[0,1]
S(m).

(2)

We can represent a fuzzy signature by nested vector
value fuzzy sets and also by a tree graph (see Figure
1), which is much more understandable [6].
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Figure 1. A fuzzy signature graph and the
corresponding nested vectors.

The input values (µ-s) of the fuzzy signature
usually given by human experts or estimation meth-
ods. The final output (at the root of the tree graph)
is computed from the inputs applying suitable ag-
gregation functions, this is the membership value
of the whole fuzzy signature. Since different hu-
man experts could assign slightly different values
to the same situation, a usable fuzzy signature based
model should not be too sensitive to the input val-
ues.

The goal of this article is to discuss how the
membership value of the whole fuzzy set changes
if the membership values in the nested vectors
change. In other words, if we think of the tree

graph representation, how the membership value of
the root changes if the membership values of leaves
change. To answer this question we have to know
how to compute a membership value of a subgraph
from the leaves.

In this article we assume that all the operators
applied on membership values in the signature are
from the class of weighted generalized mean aggre-
gation operators (WGMs). A similar question was
investigated in [8], but for different cases and by
different mathematical tools.

There are several approaches discussing the
sensitivity of aggregation operators with different
weights, for example [9] discusses the sensitivity of
weighted fuzzy aggregation, [10] and [11] discuss
the sensitivity of ordered weighted aggregation op-
erators.

The paper is organized as follows: in Section 2
we recall some mathematical tools, in Section 3 the
sensitivity of WGM is discussed, in Section 4 we
examine the sensitivity of fuzzy signatures in gen-
eral and in special cases, and finally in Section 5 we
discuss the sensitivity of a concrete fuzzy signature
used in civil engineering.

2 Mathematical Background

The generalized mean and its generalization,
the weighted generalized mean form a very large
class of aggregation operators. Their various spe-
cial cases often arise also in theoretical and practi-
cal problems.

Definition 1 (Generalized mean) (see for exam-
ple [12] or [13]) Let x1, . . . ,xn be nonnegative real
numbers and p ∈R (p ̸= 0). Then their generalized
mean with parameter p:

Mp(x1, . . . ,xn) =

[
1
n

n

∑
k=1

xp
k

] 1
p

(3)

Some special cases in p:

– p = 1 arithmetic mean

– p = 2 quadratic mean

– p =−1 harmonic mean
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the weighted generalized mean form a very large
class of aggregation operators. Their various spe-
cial cases often arise also in theoretical and practi-
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Definition 2 (Weighted generalized mean; WGM)
Let x1, . . . ,xn and w1, . . . ,wn be nonnegative real

numbers, wi ≥ 0,
n

∑
i=1

wi = 1 and p ∈ R (p ̸= 0).

Then the weighted generalized mean of x1, . . . ,xn

with weights w1, . . . ,wn and with parameter p:

Mw
p (x1, . . . ,xn) =

[
n

∑
k=1

wkxp
k

] 1
p

. (4)

We note here that the weighted generalized mean
sometimes refered as ’scaled norm’. We do not use
this terminology because of the possible missunder-
standing: the properties of the norm are fulfilled
only when p ≥ 1, but the WGM is defined for every
p ∈ R.

The generalized mean is a special case of the
weighted generalized mean with weights wk = 1

n .
The limits at ±∞ regardless to the weight:

lim
p→∞

[
n

∑
k=1

wkxp
k

] 1
p

= max(xi), (5)

lim
p→−∞

[
n

∑
k=1

wkxp
k

] 1
p

= min(xi). (6)

The limit if p → 0 is the weighted geometric mean:

lim
p→0

[
n

∑
k=1

wkxp
k

] 1
p

=
n

∏
i=1

xwi
i . (7)

Our aim is to give upper bound on the change of the
weighted generalized mean if we know the change
of the input values x1, . . . ,xn. In Section 3 we search
for such a bound for |∆M| which depends on ∆x or
on a kind of vector norm of ∆x, and on the basis of
these results we give upper bounds for the change
of the whole fuzzy signature in Section 4.

First we recall the definition of the p-norm (see
for example [14]).

Definition 3 (p-norm) Let p ≥ 1 a real number
and x = (x1, . . . ,xn) ∈ Rn. Then the p-norm of x

∥x∥p =

(
n

∑
k=1

|xk|p
) 1

p

. (8)

Some widely used p-norms:

– p = 1 (taxicab norm) ∥x∥1 = |x1|+ . . .+ |xn|,

– p = 2 (euclidean norm) ∥x∥2 =
√

x2
1 + . . .+ x2

n,

– p = ∞ (maximum norm),
∥x∥∞ = max(|x1|, . . . , |xn|).

Two important properties of the p-norm:

– If 1 ≤ p ≤ q ≤ ∞ then ∥x∥q ≤ ∥x∥p,

– If 1 ≤ p ≤ q ≤ ∞ then ∥x∥p ≤ ∥x∥q ·n1/p−1/q.

We will use the generalization of the triangular in-
equality, the so called Minkowski’s inequality.

Theorem 1 (Minkowski’s inequality) (see for ex-
ample [12] or [13]) Let a, b ∈ Rn, p ≥ 1, then the
following inequality holds:

∥a+b∥p ≤ ∥a∥p +∥b∥p. (9)

The generalization of the reverse triangular in-
equalty also holds:

Corollary 1 If a, b ∈ Rn, p ≥ 1, then,
��∥a∥p −∥b∥p

��≤ ∥a−b∥p. (10)

3 Sensitivity of the Weighted Gen-
eral Mean for p ≥ 1

In this Section we analyse the change of the
WGM under the change of its input vector. Note
that we examine the case p ≥ 1. Let us use the fol-
lowing notations:

w1/p =
(

w1/p
1 , . . . ,w1/p

n

)
, (11)

w1/p · x =
(

w1/p
1 · x1, . . . ,w

1/p
n · xn

)
. (12)

If the input vector is x = (x1, . . . ,xn), the vector if
the weights is w = (w1, . . . ,wn), then the weighted
generalized mean with parameter p is

M =

[
n

∑
i=1

wix
p
i

] 1
p

=

[
n

∑
i=1

(
w1/p

i xi

)p
] 1

p

, (13)

=
���w1/p · x

���
p
. (14)

If the new (maybe perturbed) input vector is
x∗ = (x∗1, . . . ,x

∗
n), then the new output is M∗ =��w1/p · x∗

��
p. So the change of the input is ∆x =
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x∗−x, the change of the output is ∆M =M∗−M. In
the following we give upper estimations for |∆M|.

|∆M|=

�����
���w1/p · x∗

���
p
−
���w1/p · x

���
p

�����, (15)

≤
���w1/p · x∗ −w1/p · x

���
p
, (16)

=
���w1/p · (x∗ − x)

���
p
=
���w1/p ·∆x

���
p
, (17)

=

[
n

∑
i=1

(
w1/p

i |∆xi|
)p

] 1
p

=

[
n

∑
i=1

wi · |∆xi|p
] 1

p

.

(18)

We can use this formula when the precision of the
inputs are known. For example if we know that the
absolute value of the change is less than ε for all i
(|∆xi|< ε) then we have

|∆M| ≤

[
n

∑
i=1

(
w1/p

i ε
)p

] 1
p

=

[
n

∑
i=1

wiεp

] 1
p

, (19)

= ε ·

[
n

∑
i=1

wi

] 1
p

= ε, (20)

so in this case the output value is less than ε also.
Another way when we give upper bounds with the
norm of the change of the input vector. Based on
the previous upper estimation we get that

|∆M| ≤

[
n

∑
i=1

wi · |∆xi|p
] 1

p

, (21)

≤

[
n

∑
i=1

(
max(wi)

1/p|∆xi|
)p

] 1
p

, (22)

= max(wi)
1/p · ∥∆x∥p , (23)

= ∥w1/p∥∞ · ∥∆x∥p . (24)

We note that in this case some information is lost
because only the norm of the change is used, but
not the whole vector. As in the previous example
if we know that the absolute value of the change is
less then ε for all i (|∆xi| < ε), now we get weaker
estimation:

|∆M| ≤

[
n

∑
i=1

εp

] 1
p

= [n · εp]
1
p = n1/p · ε. (25)

If the parameter of the aggregation operator is p,
but we would like to measure the change of the in-
put vector in q norm, then we have to switch form p

to q using the properties of p-norm. We handle the
two kind of upper estimations on |∆M| as different
cases.

If the starting point is that |∆M| ≤
��w1/p ·∆x

��
p

then

– if p ≤ q then

|∆M| ≤
���w1/p ·∆x

���
p
≤ n1/p−1/q ·

���w1/p ·∆x
���

q
,

(26)

≤ n1/p−1/q ·
���w1/p

���
∞
· ∥∆x∥q . (27)

– if p > q then

|∆M| ≤
���w1/p ·∆x

���
p
≤
���w1/p ·∆x

���
q
, (28)

≤
���w1/p

���
q
· ∥∆x∥q . (29)

If use the estimation |∆M| ≤max(wi)
1/p ·∥∆x∥p

then

– if p ≤ q then

|∆M| ≤ max(wi)
1/p · ∥∆x∥p , (30)

≤ max(wi)
1/p ·n1/p−1/q · ∥∆x∥q , (31)

= ∥w1/p∥∞ ·n1/p−1/q · ∥∆x∥q . (32)

– if p > q then

|∆M| ≤ max(wi)
1/p · ∥∆x∥p , (33)

≤ max(wi)
1/p · ∥∆x∥q , (34)

= ∥w1/p∥∞ · ∥∆x∥q . (35)

It is easy to check that the bounds from the second
estimation are weaker.

3.1 Special case: equal weights

A special case worth mentioning is when wi =
1/n for all i. The computations and the final formu-
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x∗−x, the change of the output is ∆M =M∗−M. In
the following we give upper estimations for |∆M|.

|∆M|=

�����
���w1/p · x∗

���
p
−
���w1/p · x

���
p

�����, (15)

≤
���w1/p · x∗ −w1/p · x

���
p
, (16)

=
���w1/p · (x∗ − x)

���
p
=
���w1/p ·∆x

���
p
, (17)

=

[
n

∑
i=1

(
w1/p

i |∆xi|
)p

] 1
p

=

[
n

∑
i=1

wi · |∆xi|p
] 1

p

.

(18)

We can use this formula when the precision of the
inputs are known. For example if we know that the
absolute value of the change is less than ε for all i
(|∆xi|< ε) then we have

|∆M| ≤

[
n

∑
i=1

(
w1/p

i ε
)p

] 1
p

=

[
n

∑
i=1

wiεp

] 1
p

, (19)

= ε ·

[
n

∑
i=1

wi

] 1
p

= ε, (20)

so in this case the output value is less than ε also.
Another way when we give upper bounds with the
norm of the change of the input vector. Based on
the previous upper estimation we get that

|∆M| ≤

[
n

∑
i=1

wi · |∆xi|p
] 1

p

, (21)

≤

[
n

∑
i=1

(
max(wi)

1/p|∆xi|
)p

] 1
p

, (22)

= max(wi)
1/p · ∥∆x∥p , (23)

= ∥w1/p∥∞ · ∥∆x∥p . (24)

We note that in this case some information is lost
because only the norm of the change is used, but
not the whole vector. As in the previous example
if we know that the absolute value of the change is
less then ε for all i (|∆xi| < ε), now we get weaker
estimation:

|∆M| ≤

[
n

∑
i=1

εp

] 1
p

= [n · εp]
1
p = n1/p · ε. (25)

If the parameter of the aggregation operator is p,
but we would like to measure the change of the in-
put vector in q norm, then we have to switch form p

to q using the properties of p-norm. We handle the
two kind of upper estimations on |∆M| as different
cases.

If the starting point is that |∆M| ≤
��w1/p ·∆x

��
p

then

– if p ≤ q then

|∆M| ≤
���w1/p ·∆x

���
p
≤ n1/p−1/q ·

���w1/p ·∆x
���

q
,

(26)

≤ n1/p−1/q ·
���w1/p

���
∞
· ∥∆x∥q . (27)

– if p > q then

|∆M| ≤
���w1/p ·∆x

���
p
≤
���w1/p ·∆x

���
q
, (28)

≤
���w1/p

���
q
· ∥∆x∥q . (29)

If use the estimation |∆M| ≤max(wi)
1/p ·∥∆x∥p

then

– if p ≤ q then

|∆M| ≤ max(wi)
1/p · ∥∆x∥p , (30)

≤ max(wi)
1/p ·n1/p−1/q · ∥∆x∥q , (31)

= ∥w1/p∥∞ ·n1/p−1/q · ∥∆x∥q . (32)

– if p > q then

|∆M| ≤ max(wi)
1/p · ∥∆x∥p , (33)

≤ max(wi)
1/p · ∥∆x∥q , (34)

= ∥w1/p∥∞ · ∥∆x∥q . (35)

It is easy to check that the bounds from the second
estimation are weaker.

3.1 Special case: equal weights

A special case worth mentioning is when wi =
1/n for all i. The computations and the final formu-

MINKOWSKI’S INEQUALITY BASED . . .

las are much more simpler than in general case.

|∆M|=

�����

[
n

∑
i=1

1
n

x∗i
p

] 1
p

−

[
n

∑
i=1

1
n

xp
i

] 1
p
�����, (36)

=

(
1
n

)1/p

·

�����

[
n

∑
i=1

x∗i
p

] 1
p

−

[
n

∑
i=1

xp
i

] 1
p
�����, (37)

=

(
1
n

)1/p

·
���∥x∗∥p −∥x∥p

���, (38)

≤
(

1
n

)1/p

· ∥∆x∥p . (39)

If the change of the input vector is measured in
other norm (q) then

– if p ≤ q then

|∆M| ≤
(

1
n

)1/p

· ∥∆x∥p , (40)

≤
(

1
n

)1/p

·n1/p−1/q · ∥∆x∥q , (41)

= n−1/q · ∥∆x∥q . (42)

– if p > q then

|∆M| ≤
(

1
n

)1/p

· ∥∆x∥p ≤ n−1/p · ∥∆x∥q . (43)

So the general form is

|∆M| ≤ n−min(1/p,1/q) · ∥∆x∥q (44)

4 Sensitivity of a Fuzzy Signature

4.1 General case

Applying the results of the previous Section we
can analyse the sensitivity of fuzzy signatures in
which the values are determined by a WGM op-
erator in every nodes. The sensitivity bound of
the whole fuzzy signature can be derived from the
bounds of the WGM-s, according to the graph struc-
ture of the signature. The whole computation can
be carried out from the leaves of the signature to
the root.

�
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��
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���������

M2, p2

u2

...
...

�
�

�
�

�
�

�
��

M1, p1u1

Figure 2. A part of a fuzzy signature.

Let us denote the inputs of Mi by xi j, j =
1, . . . ,ni, and the weights of the inputs by wi j, j =
1, . . . ,ni, so we have

Mi =

[
ni

∑
j=1

wi j · xpi
i j

]1/pi

. (45)

Then upper estimation of the change of Mi is given
by the previous Section:

|∆Mi| ≤

[
ni

∑
j=1

wi j ·∆xpi
i j

]1/pi

= ∥wi
1/pi ·∆xi∥pi (46)

Let us denote the minimum of p1, p2, . . . , pk by p∗.
Then, because of the properties of the p-norm the
following holds for any i = 1, 2, . . . , k:

∥wi
1/pi ·∆xi∥pi ≤ ∥wi

1/pi ·∆xi∥p∗ . (47)

Moreover

∥wi
1/pi ·∆xi∥p∗ ≤ ∥wi

1/pi∥p∗ · ∥∆xi∥p∗ . (48)

Using the above upper estimations we get an upper
estimation for the change of the next stage (N, see
Figure 2), where

u1/q = (u1/q
1 , . . . ,u1/q

k ), (49)

∆M = (∆M1, . . . ,∆Mk), (50)

u1/q ·∆M = (u1/q
1 ·∆M1, . . . ,u

1/q
k ·∆Mk). (51)
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The upper bound is

|∆N| ≤ ∥u1/q ·∆M∥q =

[
k

∑
i=1

ui · |∆Mi|q
]1/q

(52)

≤

[
k

∑
i=1

ui · ∥wi
1/pi ·∆xi∥q

pi

]1/q

(53)

≤

[
k

∑
i=1

ui · ∥wi
1/pi ·∆xi∥q

p∗

]1/q

(54)

=

[
k

∑
i=1

(
u1/q

i · ∥wi
1/pi ·∆xi∥p∗

)q
]1/q

(55)

=
���u1/q · ∥w1/pi ·∆x∥p∗

���
q
. (56)

Here the last term is the q-norm of a vector whose
ith element is

u1/q
i ·

[
ni

∑
j=1

(
w1/pi

i j ·∆xi j

)p∗
]1/p∗

. (57)

As we can see, in general case a closed, elegant for-
mula couldn’t be given, but only recursive method
which can be applied from level to level.

4.2 Special cases

The sensitivity and complexity of a fuzzy signa-
ture mostly depend on the structure of the graph and
on the aggregation operators applied in the nodes.
According to this fact several special cases can be
distinguished. In this Section we examine the case
when the fuzzy signature is equipped with very sim-
ilar aggregation operators and the case when the
graph is a (maybe not perfect) full n-ary graph.

4.2.1 Homogeneous fuzzy signatures

The sensitivity analysis of a fuzzy signature be-
comes much more simple if the value of the param-
eter p is the same for all of the WGM operators ap-
plied in the nodes. If this condition holds, the out-
put vale of the signature is the weighted generalized
mean of the input values with parameter p, where
the weights are the product of the weights form the
root to the leaves.

Definition 4 A fuzzy signature is called homoge-
neous if all of the aggregation operators in the
nodes are weighted generalized mean operators
with the same value of p.

Lemma 2 The WGM of y1, . . . ,yk with weights
v1, . . . ,vk and with parameter p where all of the yi-
s are WGM’s of x ji-s with weights w1i, . . . ,wnii and
with the same parameter of p, is the WGM of the
x-s with weights vi ·w ji

Proof:

[
k

∑
i=1

vi · yp
i

] 1
p

=


 k

∑
i=1

vi ·



[

ni

∑
j=1

w ji · xp
ji

] 1
p



p


1
p

(58)

=

[
k

∑
i=1

ni

∑
j=1

vi ·w ji · xp
ji

] 1
p

=

[
∑ni

∑
l=1

cl · xp
l

] 1
p

. (59)

So the sensitivity analysis of a homogeneous fuzzy
signature is nothing else but the simple sensitivity
analysis of only one weighted generalized mean ag-
gregation operator, which was discussed in details
in Section 3.

4.2.2 Full n-ary fuzzy signatures with equal
weights

The n-ary fuzzy signature is a fuzzy signature
which has an n-ary tree graph representation. An
n-ary tree is a tree graph in which each node has no
more than n children. A full n-ary tree is an n-ary
tree where within each level every node has either 0
or n children; a perfect n-ary tree is a full n-ary tree
in which all leaf nodes are at the same depth (the
distance from the leaf to the root is the same).

We consider the case when the weights are
equal, so for a full n-ary fuzzy signature the weights
are 1/n for all of the nodes.

If the signature is homogeneous, then (accord-
ing to the previous subsection) it can be transformed
into one simple weighted generalized mean of the
inputs. For example, if we think of the tree graphs
from Figure 3 as homogeneous fuzzy signatures,
then the weights on l.h.s. are 1/9 for all of the in-
puts, and 1/3,1/9, . . . ,1/9 on r.h.s.

In general, a perfect homogeneous n-ary fuzzy
signature with k levels is equivalent to a weighted
general mean where the weights are 1/nk for all of
the inputs. Then the upper bound of the change of
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The upper bound is

|∆N| ≤ ∥u1/q ·∆M∥q =

[
k

∑
i=1

ui · |∆Mi|q
]1/q

(52)

≤

[
k

∑
i=1

ui · ∥wi
1/pi ·∆xi∥q

pi

]1/q

(53)

≤

[
k

∑
i=1

ui · ∥wi
1/pi ·∆xi∥q

p∗

]1/q

(54)

=

[
k

∑
i=1

(
u1/q

i · ∥wi
1/pi ·∆xi∥p∗

)q
]1/q

(55)

=
���u1/q · ∥w1/pi ·∆x∥p∗

���
q
. (56)

Here the last term is the q-norm of a vector whose
ith element is

u1/q
i ·

[
ni

∑
j=1

(
w1/pi

i j ·∆xi j

)p∗
]1/p∗

. (57)

As we can see, in general case a closed, elegant for-
mula couldn’t be given, but only recursive method
which can be applied from level to level.

4.2 Special cases

The sensitivity and complexity of a fuzzy signa-
ture mostly depend on the structure of the graph and
on the aggregation operators applied in the nodes.
According to this fact several special cases can be
distinguished. In this Section we examine the case
when the fuzzy signature is equipped with very sim-
ilar aggregation operators and the case when the
graph is a (maybe not perfect) full n-ary graph.

4.2.1 Homogeneous fuzzy signatures

The sensitivity analysis of a fuzzy signature be-
comes much more simple if the value of the param-
eter p is the same for all of the WGM operators ap-
plied in the nodes. If this condition holds, the out-
put vale of the signature is the weighted generalized
mean of the input values with parameter p, where
the weights are the product of the weights form the
root to the leaves.

Definition 4 A fuzzy signature is called homoge-
neous if all of the aggregation operators in the
nodes are weighted generalized mean operators
with the same value of p.

Lemma 2 The WGM of y1, . . . ,yk with weights
v1, . . . ,vk and with parameter p where all of the yi-
s are WGM’s of x ji-s with weights w1i, . . . ,wnii and
with the same parameter of p, is the WGM of the
x-s with weights vi ·w ji

Proof:

[
k

∑
i=1

vi · yp
i

] 1
p

=


 k

∑
i=1

vi ·



[

ni

∑
j=1

w ji · xp
ji

] 1
p



p


1
p

(58)

=

[
k

∑
i=1

ni

∑
j=1

vi ·w ji · xp
ji

] 1
p

=

[
∑ni

∑
l=1

cl · xp
l

] 1
p

. (59)

So the sensitivity analysis of a homogeneous fuzzy
signature is nothing else but the simple sensitivity
analysis of only one weighted generalized mean ag-
gregation operator, which was discussed in details
in Section 3.

4.2.2 Full n-ary fuzzy signatures with equal
weights

The n-ary fuzzy signature is a fuzzy signature
which has an n-ary tree graph representation. An
n-ary tree is a tree graph in which each node has no
more than n children. A full n-ary tree is an n-ary
tree where within each level every node has either 0
or n children; a perfect n-ary tree is a full n-ary tree
in which all leaf nodes are at the same depth (the
distance from the leaf to the root is the same).

We consider the case when the weights are
equal, so for a full n-ary fuzzy signature the weights
are 1/n for all of the nodes.

If the signature is homogeneous, then (accord-
ing to the previous subsection) it can be transformed
into one simple weighted generalized mean of the
inputs. For example, if we think of the tree graphs
from Figure 3 as homogeneous fuzzy signatures,
then the weights on l.h.s. are 1/9 for all of the in-
puts, and 1/3,1/9, . . . ,1/9 on r.h.s.

In general, a perfect homogeneous n-ary fuzzy
signature with k levels is equivalent to a weighted
general mean where the weights are 1/nk for all of
the inputs. Then the upper bound of the change of
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this WGM is following:

|∆M| ≤
(

1
n

)k/p

· ∥∆x∥p. (60)

If the tree graph is not perfect (but still full) then
an input value xi has the weight 1/nli , where li de-
notes the level of xi, the number of inputs is m. Then
the upper bound of the change of the corresponding
WGM is

|∆M| ≤

[
m

∑
i=1

(
1
n

)li
· |∆xi|p

]1/p

(61)

≤
(

1
n

)l∗/p

· ∥∆x∥p, (62)

where l∗ denotes the minimum of the levels.
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Figure 3. A perfect ternary fuzzy signature graph
(left), and a not perfect ternary fuzzy signature

graph (right).

If the fuzzy signature is not homogeneous, then
the computation can be carried out as in 4.1, but the
weights are everywhere 1/n:

|∆N| ≤

[
n

∑
i=1

1
n
· |∆Mi|q

]1/q

(63)

≤
���1/n1/q · ∥1/n1/pi ·∆x∥p∗

���
q
, (64)

where the last term is the q-norm of a vector whose
ith element is

(
1
n

)1/q

·

[
n

∑
j=1

((
1
n

)1/pi

·∆xi j

)p∗]1/p∗

, (65)

and p∗ denotes the minimum of p1, . . . , pn.

5 Example From Civil Engineering

In this Section we discuss the sensitivity of
a fuzzy signature which was applied for status-
determining and ranking buildings of similar age
and structural arrangement.

In Budapest city a lot of old residential build-
ings are available of similar age and structural ar-
rangement. At the end of the 19th and at the begin-
ning of the 20th centuries the number of inhabitants
increased from 280000 to 730000. In this time pe-
riod new city districts were constructed with the ap-
plication of the technological methods, which were
known at that time. A significant part of these res-
idential buildings still constitutes the dominant el-
ement of the current townscape. It is one of the
most pressing issues of the Hungarian capital that a
considerable part of these buildings are in degraded
condition. The modernization and renovation of
these buildings and their ranking from the aspect of
the urgency of their renovation are significant task
due to the limited financial possibilities.

A decision-supporting model was created by
applying the fuzzy signature [15]. This model is
suitable for the ranking and qualification of resi-
dential buildings. The model was used for the first
time on a database, which is based on expert opin-
ions. After that a tree-structure, necessary for the
examination of the load-bearing structures of build-
ings, were prepared. Primary structures (main load-
bearing structures) and secondary structures (so not
main load-bearing structures which play an impor-
tant role in the protection of the main load bearing
structures) were differentiate during the research,
in this article we deal only with the branch of the
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primary structures. With the help of this branch it
is possible to make a ranking of the load bearing
structures of the examined buildings based on their
arrangement, materials and conditions. The exam-
ined load bearing structures used in the model are
as follows: foundation structures, wall structures,
floor structures, side corridor structures, step struc-
tures and roof structures. The database was pre-
pared on the basis of the research of more than hun-
dred buildings, typical in Budapest, so the results
achieved, well reflect the actual conditions of this
type of residential buildings.

The structure of the signature is shown in Fig-
ure 4. The names and meanings of the input and
internal variables are listed below.

The input variables:

x1 : foundation structures

x2 : wall structures

x3 : cellar floor

x4 : intermediate floor

x5 : cover floor

x6 : side corridor structures

x7 : step structures

x8 : facade

x9 : footing

x10 : roof structures

x11 : roof covering

x12 : tin structures

x13 : insulation against soil moisture and ground water

The internal variables:

h1 : floor structures

h2 : vertical load-bearing structures

h3 : horisontal load-bearing structures

h4 : primary structures

h5 : surface formation

h6 : secondary structures

h7 : primary and secondary structures

This is a homogeneous fuzzy signatures with
parameter p = 1 and with the following weights:

w1,1 = 0.75, w1,2 = 0.25,

w2,1 = 0.4, w2,2 =
0.6 ·n
n+1

,

w2,3 =
0.6

n+1
, w2,4 =

0.4
0.8+0.2 ·n

,

w2,5 =
0.2 ·n

0.8+0.2 ·n
, w2,6 =

0.2
0.8+0.2 ·n

,

w2,7 =
0.2

0.8+0.2 ·n
, w3,1 = 0.55−0.05 ·n,

w3,2 = 0.45+0.05 ·n, w3,3 =
0.65

0.8+0.2 · f
,

w3,4 =
0.2 · f

0.8+0.2 · f
, w3,5 =

0.15
0.8+0.2 · f

,

w3,6 = 1− 0.5
n
, w3,7 =

0.5
n
,

w4,1 =
0.35 ·m

0.2+0.45 · (n−1)+0.35 ·m
,

w4,2 =
0.45 · (n−1)

0.2+0.45 · (n−1)+0.35 ·m
,

w4,3 =
0.2

0.2+0.45 · (n−1)+0.35 ·m
.
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Figure 4. A fuzzy signature for status-determining
and ranking buildings.
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primary structures. With the help of this branch it
is possible to make a ranking of the load bearing
structures of the examined buildings based on their
arrangement, materials and conditions. The exam-
ined load bearing structures used in the model are
as follows: foundation structures, wall structures,
floor structures, side corridor structures, step struc-
tures and roof structures. The database was pre-
pared on the basis of the research of more than hun-
dred buildings, typical in Budapest, so the results
achieved, well reflect the actual conditions of this
type of residential buildings.

The structure of the signature is shown in Fig-
ure 4. The names and meanings of the input and
internal variables are listed below.

The input variables:

x1 : foundation structures

x2 : wall structures

x3 : cellar floor

x4 : intermediate floor

x5 : cover floor

x6 : side corridor structures

x7 : step structures

x8 : facade

x9 : footing

x10 : roof structures

x11 : roof covering

x12 : tin structures

x13 : insulation against soil moisture and ground water

The internal variables:

h1 : floor structures

h2 : vertical load-bearing structures

h3 : horisontal load-bearing structures

h4 : primary structures

h5 : surface formation

h6 : secondary structures

h7 : primary and secondary structures

This is a homogeneous fuzzy signatures with
parameter p = 1 and with the following weights:

w1,1 = 0.75, w1,2 = 0.25,

w2,1 = 0.4, w2,2 =
0.6 ·n
n+1

,

w2,3 =
0.6

n+1
, w2,4 =

0.4
0.8+0.2 ·n

,

w2,5 =
0.2 ·n

0.8+0.2 ·n
, w2,6 =

0.2
0.8+0.2 ·n

,

w2,7 =
0.2

0.8+0.2 ·n
, w3,1 = 0.55−0.05 ·n,

w3,2 = 0.45+0.05 ·n, w3,3 =
0.65

0.8+0.2 · f
,

w3,4 =
0.2 · f

0.8+0.2 · f
, w3,5 =

0.15
0.8+0.2 · f

,

w3,6 = 1− 0.5
n
, w3,7 =

0.5
n
,

w4,1 =
0.35 ·m

0.2+0.45 · (n−1)+0.35 ·m
,

w4,2 =
0.45 · (n−1)

0.2+0.45 · (n−1)+0.35 ·m
,

w4,3 =
0.2

0.2+0.45 · (n−1)+0.35 ·m
.
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Figure 4. A fuzzy signature for status-determining
and ranking buildings.

MINKOWSKI’S INEQUALITY BASED . . .

The possible values of the parameters:

– n = 2,3,4,5 (number of the storeys of the build-
ing),

– 0 ≤ m ≤ 1 (extend of the cellar built),

– f = 0 or 1 (building with or without side corri-
dor).

The input values (xi-s) are real numbers be-
tween 0 and 1 according to the opinion of a human
expert about the status of the i-th partial structure.
The final output is the membership value of h7. If a
building is surveyed by different experts, then their
opinion about the status of partial structures may
result in different values of h7. The following ques-
tion arises: if there are small differences between
the ratings given by the experts to the partial struc-
tures, then how large can be the deviation between
the final scores of a building? In other words, how
sensitive is this fuzzy signature to small perturba-
tions?

This is a homogeneous fuzzy signature, so we
can analyse it as a simple WGM. From the results
of Section 4 it follows that

|∆h7| ≤
13

∑
i=1

vi · |∆xi|, (66)

where vi is the weight of the ith input, computed
as the product of the weights from the root to the
ith leaf (for example with the notations of Figure 4
v1 = w1,1 ·w2,1 ·w3,1). If we measure the sensitiv-
ity in one of the well-known vector norms of the
change, then

|∆h7| ≤ max(vi) · ∥∆x∥1, (67)

|∆h7| ≤
√

13 ·max(vi) · ∥∆x∥2, (68)

|∆h7| ≤ 13 ·∆∥x∥∞. (69)

Actual values of the vi-s depend on the actual values
of the parameters (m, n, f ), as it is shown in Table
1.

We can conclude that this signature is not too
sensitive, namely a small change in the partial opin-
ions do not yields a large difference between the
final conclusions. If the absolute values of the dif-
ferences of the ratings given by the human experts

are than ε for all of the variables, then the difference
between the final conclusions are less ε, too.

Table 1. Examples for the weights of the input
variables for different values of the parameters

(rounded to four decimals).

n = 3, f = 1, n = 4, f = 0,
m = 1 m = 0.5

x1 0.1200 0.1050
x2 0.1800 0.1950
x3 0.0530 0.0297
x4 0.1362 0.2289
x5 0.0303 0.0339
x6 0.0675 0.0000
x7 0.0506 0.0675
x8 0.1125 0.0900
x9 0.0714 0.0625
x10 0.0893 0.1094
x11 0.0179 0.0156
x12 0.0357 0.0312
x13 0.0357 0.0312

6 Conclusions

The sensitivity of the weighted generalized
mean aggregation operator for parameter value p ≥
1 was discussed via Minkowski’s inequality and in
terms of various vector norms of the input vector.
Applying these results the sensitivity of fuzzy sig-
natures equipped with WGMs was also discussed.
In general case a recursive estimation can be given,
but in the special case when the WGMs have the
same parameter, the sensitivity analyses of a fuzzy
signature simplified to a sensitivity analyses of a
single WGM. The complexity of the fuzzy signature
is influenced by the structure and the aggregation
operators also, but the aggregation operators play
the main role: complexity can be highly reduced if
we use the same kind of aggregation operators.

A real-life example from civil engineering was
also discussed, we analysed the sensitivity of a
method for status-determining and ranking build-
ings. It was concluded that the applied fuzzy sig-
nature is not too sensitive: if the opinions of the ex-
perts about the partial structures are relatively close
to each other, then the final evaluations of the whole
building will be close to each other, too.
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[2] Á. Ballagi, L. T. Kóczy, T. D. Gedeon, Robot co-
operation without explicit communication by fuzzy
signatures and decision trees, in: Proceedings of
theJoint 2009 International Fuzzy Systems Asso-
ciation World Congress and 2009 European Soci-
ety of Fuzzy Logic and Technology Conference
(IFSA-EUSFLAT2009), Lisbon, Portugal, 2009,
pp.1468-1473.
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[4] G. Molnárka, L. T. Kóczy, Decision Support Sys-
tem for Evaluating Existing Apartment Buildings
Based on Fuzzy Signatures, Int. J. of Computers ,
Communications & Control, 2011, No. 3, pp. 442-
457.

[5] C. Pozna, N. Minculete, R. E. Precup, L. T. Kóczy,
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tivity Analysis of the Weighted Generalized Mean
Aggregation Operator and its Application to Fuzzy
Signatures, IEEE World Congress on Computa-
tional Intelligence (WCCI 2014 - FUZZ-IEEE
2014). Peking, Kna, 2014.07.06-2014.07.11. New
York: IEEE, 2014. pp. 1327-1332.

[9] U. Kaymak, H.R. van Nauta Lemke, T. Boer: A
sensitivity-based analysis of weighted fuzzy ag-
gregation, In: Proceedings of the IEEE World
Congress on Computational Intelligence, IEEE In-
ternational Conference on Fuzzy Systems, IEEE,
1998. pp. 755-760.

[10] V. Torra: Sensitivity analysis for WOWA, OWA
and WM operators, In: Proceedings of ISIE 2001,
IEEE International Symposium on Industrial Elec-
tronics, IEEE, 2001. pp. 134-137.

[11] M. Zarghami, F. Szidarovszky: Fuzzy quantifiers
in sensitivity analysis of OWA operator, Comput-
ers & Industrial Engineering 54 (2008), pp. 1006-
1018.

[12] G. H. Hardy, J. E. Littlewood, G. Pólya: Inequali-
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MINKOWSKI’S INEQUALITY BASED . . .

The possible values of the parameters:

– n = 2,3,4,5 (number of the storeys of the build-
ing),

– 0 ≤ m ≤ 1 (extend of the cellar built),

– f = 0 or 1 (building with or without side corri-
dor).

The input values (xi-s) are real numbers be-
tween 0 and 1 according to the opinion of a human
expert about the status of the i-th partial structure.
The final output is the membership value of h7. If a
building is surveyed by different experts, then their
opinion about the status of partial structures may
result in different values of h7. The following ques-
tion arises: if there are small differences between
the ratings given by the experts to the partial struc-
tures, then how large can be the deviation between
the final scores of a building? In other words, how
sensitive is this fuzzy signature to small perturba-
tions?

This is a homogeneous fuzzy signature, so we
can analyse it as a simple WGM. From the results
of Section 4 it follows that

|∆h7| ≤
13

∑
i=1

vi · |∆xi|, (66)

where vi is the weight of the ith input, computed
as the product of the weights from the root to the
ith leaf (for example with the notations of Figure 4
v1 = w1,1 ·w2,1 ·w3,1). If we measure the sensitiv-
ity in one of the well-known vector norms of the
change, then

|∆h7| ≤ max(vi) · ∥∆x∥1, (67)

|∆h7| ≤
√

13 ·max(vi) · ∥∆x∥2, (68)

|∆h7| ≤ 13 ·∆∥x∥∞. (69)

Actual values of the vi-s depend on the actual values
of the parameters (m, n, f ), as it is shown in Table
1.

We can conclude that this signature is not too
sensitive, namely a small change in the partial opin-
ions do not yields a large difference between the
final conclusions. If the absolute values of the dif-
ferences of the ratings given by the human experts

are than ε for all of the variables, then the difference
between the final conclusions are less ε, too.

Table 1. Examples for the weights of the input
variables for different values of the parameters

(rounded to four decimals).

n = 3, f = 1, n = 4, f = 0,
m = 1 m = 0.5

x1 0.1200 0.1050
x2 0.1800 0.1950
x3 0.0530 0.0297
x4 0.1362 0.2289
x5 0.0303 0.0339
x6 0.0675 0.0000
x7 0.0506 0.0675
x8 0.1125 0.0900
x9 0.0714 0.0625
x10 0.0893 0.1094
x11 0.0179 0.0156
x12 0.0357 0.0312
x13 0.0357 0.0312

6 Conclusions

The sensitivity of the weighted generalized
mean aggregation operator for parameter value p ≥
1 was discussed via Minkowski’s inequality and in
terms of various vector norms of the input vector.
Applying these results the sensitivity of fuzzy sig-
natures equipped with WGMs was also discussed.
In general case a recursive estimation can be given,
but in the special case when the WGMs have the
same parameter, the sensitivity analyses of a fuzzy
signature simplified to a sensitivity analyses of a
single WGM. The complexity of the fuzzy signature
is influenced by the structure and the aggregation
operators also, but the aggregation operators play
the main role: complexity can be highly reduced if
we use the same kind of aggregation operators.

A real-life example from civil engineering was
also discussed, we analysed the sensitivity of a
method for status-determining and ranking build-
ings. It was concluded that the applied fuzzy sig-
nature is not too sensitive: if the opinions of the ex-
perts about the partial structures are relatively close
to each other, then the final evaluations of the whole
building will be close to each other, too.


