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Abstract

This paper presents an application of Cuckoo search algorithm to determine optimal lo-
cation and sizing of Static VAR Compensator. Cuckoo search algorithm is a modern
heuristic technique basing Cuckoo species’ parasitic strategy. The Lévy flight has been
employed to generate random Cuckoo eggs. Moreover, the objective function is a multi-
objective problem, which minimizes loss power, voltage deviation and investment cost
of Static VAR Compensator while satisfying other operating constraints in power sys-
tem. Cuckoo search algorithm is evaluated on three case studies and compared with the
Teaching-learning-based optimization, Particle Swarm optimization and Improved Har-
mony search algorithm. The results show that Cuckoo search algorithm is better than
other optimization techniques and its performance is also better.
Keywords: Cuckoo search algorithm, optimal placement and sizing, shunt VAR compen-
sator, optimal power flow, FACTS

1 Introduction

In reconfiguration of the electric power system,
Flexible AC transmission system (FACTS) devices
play an important role. FACTS give many bene-
fits of dynamic stability and steady-state controls
of a power system. Among FACTS devices, Static
VAR Compensator (SVC) is widely used because
of its low cost, easy control and good performance.
The first required problem to install SVC or other
FACTS devices in power system is to determine
place and size of them.

In literature, this problem has been mentioned
in various ways. For example, Y. Del Valle et al.
applied the particle swarm optimization for finding
size and location of a Static Compensator (STAT-

COM) to improve the voltage profile of Brazilian
power system [1]. In Taiwan, Huang C.H. et al.
employed four various FACTS devices to save ac-
tive power of generators and enhance voltage pro-
file. The optimal solution given by Harmony Search
algorithm is better than methods [2]. Another re-
search of Pisica et al. proposed a multi-objective
function to determine the optimal placement and
size of a SVC device [3]. The multi-objective func-
tion includes the power loss, the voltage deviation
and the investment cost of SVC. They solved this
problem by a version of genetic algorithm. Follow-
ing this approach, Reza Sirjani et al. proposed an
improved version of the Harmony search algorithm
to solve the problem [4, 5]. On summary, all of
above studies successfully use evolutionary meth-
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ods to determine optimal location and size of SVC
or other FACTS devices.

However, each method can solve some prob-
lems effectively. Thus, the requirement to develop a
new optimization technique and apply it for various
problems increasingly continues. Since 2009, Yang
and Deb have been developing a modern nature-
inspired method, it names Cuckoo search algorithm
[6, 7]. In 2013, a survey made by P. Civicioglu
and E. Besdok gives comparison of four methods:
Cuckoo search, particle swarm optimization, differ-
ential evolution and artificial bee colony algorithms
[8]. After obtaining 50 mathematical functions,
they conducted that differential evolution and the
Cuckoo search are quite better than particle swarm
optimization and artificial bee colony algorithm.
Furthermore, many researchers have applied this
method for solving optimized problems in power
system. For instance, Moravej, Z., & Akhlaghi, A.
basing on Cuckoo search give optimal location of
distributed generators in distribution network [9].
Vo D.N. et al. proposed optimal commitment of
thermal generators in power system [11]. Ahmed,
J., & Salam, Z. applied Cuckoo search for maxi-
mum power tracking for photovoltaic modules [10].

In this paper, we propose Cuckoo search algo-
rithm to solve the multi-objective function for op-
timal SVC devices in electrical power system. It
also gives a comparison between Cuckoo search al-
gorithm and other methods. Three systems of IEEE
tested cases are obtained to figure out the effect of
the proposed method when increasing search space.
The first benchmark is the modified IEEE 30-bus
system with five candidate SVC devices. The sec-
ond case study is the IEEE 57-bus system with
six candidate SVC devices. The last case study is
the IEEE 118-bus system considering 10 candidate
SVC devices.

This paper includes six parts. Current part pro-
vides a literature review about applications of SVC
in the electric power system and Cuckoo search al-
gorithm. The second part describes three objectives
and regular operational constraints of this prob-
lem. The next part shows original pseudo codes of
Cuckoo search algorithm. In the forth part, we de-
scribes our implementation of Cuckoo search algo-
rithm for this problem. Numerical results are shown
in the fifth part and the last part is our conclusion
and future work.

2 Objectives and operational con-
straints

2.1 Objectives

The problem of optimal placement and sizing
of SVC is described as a multi-objective problem.
This problem is to minimize power losses, voltage
deviations and investment cost. Where the objec-
tives of decreasing power losses and voltage devia-
tions are technical objectives, while the investment
cost is an economic one.

2.1.1 The active power losses

The total power loss in a power system is given
in literature as:

Ploss =
br
∑

l=1
RlI2

l =
b
∑

i=1

b
∑
j=1
i̸= j

[
V 2

i +V 2
j −

−2ViVj cos(δi −δ j)Yii cosφi j

(1)

where br and b are the number of lines and buses,
respectively; Rl is the resistance of line lth; Il is the
current through line lth; Vi and δi are the magnitude
and angle of voltage at the ith bus, respectively; Yi j

and φi j are the magnitude and angle of the line ad-
mittance between bus ith and bus jth, respectively.

2.1.2 The voltage deviation

The voltage deviation is a sum of voltage devi-
ations at all buses in the power system from refer-
ence values. The below formula defines the voltage
deviation objective:

∆VΣ =
b

∑
i=1

(
Vre f ,i −Vi

Vre f ,i

)2

(2)

where Vre f ,i is the reference voltage at the ith bus.

2.1.3 The investment cost

The investment cost of each SVC device is a
quadratic function of reactive power [12]. Thus, the
total investment cost as below:

CSVC =
n

∑
k=1

0.0003Q2
k −0.3051Qk +127.38 (3)

where n is the number of installed SVC, Qk is in-
jected reactive power of the kth SVC.
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2.2 Operational constraints

Optimizing placement and sizing of SVC needs
to satisfy all of operational constraints such as the
power balance constraint, limitation of bus voltages
and limitation of transmission lines.

2.2.1 Power balance constraint

As other problems for operation in a power sys-
tem, the balance of generating and demand powers
must be satisfied at each node. Two below equa-
tions describe the balance of active and reactive
powers in a power system:

PG,i −PD,i =Vi
b
∑

i=1
[Vj [Gi j cos(δi −δ j)+

+Bi j sin(δi −δ j)
(4)

QG,i −QD,i =Vi
b
∑

i=1
[Vj [Gi j sin(δi −δ j)−

−Bi j sin(δi −δ j)
(5)

where PG,i and QG,i are the active and reactive gen-
erating powers at the ith bus, respectively; PD,i and
QD,i are the active and reactive of demand powers
at the ith bus, respectively. Gi j and Bi j represent the
real and imaginary components of element Yi j of the
admittance matrix, respectively.

2.2.2 Limitation of SVC devices

Each SVC device only works in a range of re-
active power:

Qi,min ≤ Qi ≤ Qi,max (6)

2.2.3 Limitation of bus voltages

In order to keep the power system operate in sta-
bility and commit power quality, bus voltage at each
bus must be maintained around a nominal value.

Vi,min ≤Vi ≤Vi,max (7)

3 Cuckoo search algorithm

Basing on the parasitic reproduction strategy of
Cuckoo species in nature, Yang and Deb developed
a population-based optimization algorithm, named
Cuckoo search algorithm. This method simulates
the actions of the female Cuckoo bird to lay her egg

into the neighbor’s nest. This method also consid-
ers the probability that the host bird finds out and
abandons the Cuckoo egg.

The process of Cuckoo search algorithm in-
cludes two separate stages. In the first stage,
Cuckoo eggs are created and laid into the host bird’s
nest. Yang and Deb used the Lévy flight to create
the Cuckoo eggs. The other stage is the probability
of abandonment of Cuckoo eggs.

Using the Levy flight for Cuckoo search algo-
rithm is the key distribution of Yang and Deb. The
Lévy flight provides a random walk while the ran-
dom step length is drawn from the Lévy distribu-
tion. The Lévy distribution is a continuous proba-
bility distribution for non-negative random variable.
The formula of the Lévy distribution is below and
Figure 1 shows the cumulative of the Lévy distribu-
tion with various values of c and µ is zero.

f (x;µ,c) =
√

c
2π

e−
c

2(x−µ)

(x−µ)3/2 (8)

where µ is the location parameter and c is the scale
parameter.

Figure 1. Cumulative of the Lévy distribution

Figure 2. Pseudo code of Cuckoo search algorithm

However, it is too tricky to generate the step
length for the Lévy flight. One of good strategies to
generate the step length is the Mantegnas equations
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[13]. Following equations formulate the Mantegnas
algorithm to generate the step length for Lévy flight
and Figure 2 describes the pseudo code of Cuckoo
search algorithm:

step =
u

v
1
β

; (9)

u = rand().σ;v = rand() (10)

σ =


Γ(1+β).sin

(
π.β
2

)

Γ
(

1+β
2

)
.β.2

β−1
2




1
β

;β =
3
2

(11)

where Γ() is the gamma function.

4 Implementation and the fitness
function

4.1 Solution vector

A solution for this problem is a vector with 2n
elements; where n is the number of candidate SVC
devices. The first n elements are positions of SVC
devices. Each element is a natural number that rep-
resents the bus number where a SVC device is con-
nected. The other elements are continuing values
that represent optimal installed reactive power of
SVC devices. Figure 3 shows the structure of a so-
lution vector.

Figure 3. Structure of solution vector

With above structure of solution, it may lead
the search engine to duplicated solutions. Table 1
shows an example of duplicated solutions. Two so-
lutions actually give the same result that we need
to install SVC at three buses {2, 4 and 7} with the
same amount of injected reactive powers. Hence,
to prevent this case, we proposed another constraint
for positions of SVC as x1 < x2 < .. . < xn.

Table 1. Example of duplicated solutions

Selected Injected reactive
buses power (MW)

Solution 1 2 4 7 44.95 40.69 23.76
Solution 2 4 7 2 40.69 23.76 44.95

4.2 Fitness function

In order to describe three various objectives in
a same mathematical function, we normalize each
objective in a comparative manner with the base
case (the system without SVC) and connect them
together by weights. Equation (12) is the fitness
function for this problem. With opinion that tech-
nical objectives are more important than economic
one, the corresponding weights are set as α = 0.4, β
= 0.4, η = 0.2.

In order to handle operational constraints, we
use penalty factors to combine with objective func-
tions. The element balance f lag is a factor that
equals to 0 if the power balance constraint is not
violated and 1 otherwise. With the limits of bus
voltages, we use a limited function, V lim(x) . Equa-
tion (13) describes the limited function. With the
constraint for positions, we use a counter to find out
the number of positions are violated. Through all
tested cases, all penalty factors are 100.

FF = α Ploss
Ploss,base

+β ∆V
∆Vbase

+ηCSVC
Cmax

+

Kp.counter+Kp.balance f lag+

Kp.
b
∑

i=1

[
Vi −V lim

i (Vi)
]2

(12)

V lim(x) =




xmax, ifx > xmax
x, ifxmin ≤ x ≤ xmax
xmin, ifx < xmin

(13)

where:

– Ploss: active power loss

– ∆V : voltage deviation index

– CSVC: total SVC cost

– Ploss,base, ∆Vbase and Cmax are the total base case
active power loss in the network, the total base
case voltage deviation and the maximum invest-
ment cost, respectively.

– Kp: penalty factor
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4.3 Limitation of solution vector and ini-
tialization

According to the structure of solution vector,
the positions of candidate SVC devices cannot ex-
ceed the number of buses in the power system.
Thus, xmax is the number of buses and xmin is equal
to one. On the other hand, the injected reactive
power of SVC devices cannot exceed its capacitor
in the constraint (6). Similar to other population-
based methods, in the Cuckoo search algorithm, the
nests also lay randomly between upper and lower
bounds. However, for this problem, the first n ele-
ments of nests are natural numbers. Hence, we use
the round function round(x) to return the value x to
the nearest natural number. Equation (14) and (15)
describe the initialization of search space:

Nesti =U pB+ rand().(U pB−LowB) (14)

Nesti (1 : n) = round (Nesti(1 : n)) (15)

where:

– Nesti is the ith nest in populations.

– U pB and LowB are the upper and lower bound
vectors, as following:

U pB = {xmax, . . . ,xmax,Qmax, . . . ,Qmax} (16)

LowB = {xmin, . . . ,xmin,Qmin, . . . ,Qmin} (17)

4.4 Generation of Cuckoo eggs via Lévy
flight and discovery alien eggs

As our above mention, the Cuckoo search algo-
rithm includes two separate randomized processes.
One of them is to generate Cuckoo eggs and another
is to abandon alien eggs from the nests. In the first
stage, from (9)– (11), a random step is created via
Lévy flight. Following equations describe the pro-
cess of laying Cuckoo eggs into nests.

newNesti = Nesti + rand().∆Xi (18)

∆Xi = K1.step.(Nestbest −Nesti) (19)

where:

– K1: step-size factor

– step is the flying step generated by Lévy flight
in (9).

– Nestbest is the best solution.

In the discovering-alien-eggs stage, a new nest
is generated randomly from populations. There is a
probability rate pa to discover alien eggs. The new
solutions can be found out as following way:

newNesti = Nesti +K.∆Xdis
i (20)

K =

{
1, ifrand()< pa

0,otherwise
(21)

∆Xdis
i = rand() [rand perm(Nesti)−

−rand perm(Nesti)
(22)

where rand perm(Nesti) is the random perturbation
for nests positions.

4.5 Overall procedure

The overall procedure for the implementation of
the Cuckoo search algorithm to determine optimal
placement and sizing of SVC devices:

– Step 1: Choose controlling parameters for the
Cuckoo search algorithm, such as: the probabil-
ity of discovering Cuckoo eggs, the number of
nests NP and the number of iterations Itmax.

– Step 2: Create randomly initial nests
currentNest.

– Step 3: Evaluate value of the fitness func-
tion FF in (12), while using Newton-Raphson
method for calculating the power flow.

– Step 4: Determine the best value of the fitness
function FFbest and the best nest Nestbest. Set
the iteration counter k = 1.

– Step 5: Create Cuckoo eggs via Lévy flight, us-
ing (9)- (11), and new nests newNest as (18)-
(19).

– Step 6: Modify the eggs that violate the limita-
tions of SVC device constraints and the limita-
tion of bus numbers.

– Step 7: Evaluate the fitness function for new
nests FFnew

– Step 8: Compare the new values FFnew to the
current ones FF to pick up the better nests. Up-
date the currentNest, the best value of fitness
function FFbest and the best nest Nestbest.
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– Step 9: Discovery Cuckoo eggs by random bi-
ased walks, create new nests newNest as (20)-
(22).

– Step 10: Modify the eggs that violate the limi-
tations of SVC device constraints and the limi-
tation of bus numbers.

– Step 11: Once again, evaluate the fitness func-
tion FFnew for new nests newNest

– Step 12: Update values of the fitness function
FF the currentNest, the best value of fitness
function FFbest and the best nest Nestbest.

– Step 13: Check if the iteration counter k is lower
than the maximum iteration Itmax, increase k and
return step 5. Otherwise, stop.

5 Simulation results

Cuckoo search algorithm has been applied to
identify optimal placement and sizing of SVC de-
vices in three various IEEE power systems. The
first tested system is the modified IEEE 30-bus sys-
tem. This system consists of six generators, 41
transmission lines and transformers. It supplies
for 189.2 MW load power. Another larger system
is also a standard IEEE system with 7 generators,
57 buses and 80 transmission lines-transformers.
The last benchmark is the standard IEEE 118-
bus system. This system has 54 generators, 118
buses and 186 transmission lines-transformers.The
obtained numerical results are compared with the
Teaching-learning-based optimization (TLBO) [15,
16], self-organizing hierarchical particle swarm op-
timization with time-varying acceleration coeffi-
cients (SOHPSO-TVAC) [17] and Improved Har-
mony search algorithm (IHS) [18]. All applications
are coded in Matlab 2015a and run in a personal
computer with a 3Ghz Core 2Duo processor and
4GB RAM. For each method, each benchmark is
run 100 independent trials. In order to calculate
power flow, we used the Newton-Raphson method
by the Matpower toolbox [14]. Table 2 shows the
dimension, size of population, number of iterations
and selected parameters of Cuckoo search algo-
rithm for each benchmark.

Table 2. Size of search space and number of
iterations

30-bus 57-bus 118-bus
case case case

Number of can-
didate SVC

5 6 10

Number of pop-
ulation

30 50 50

Iteration 500 5000 1000
Probability pa 0.8 0.7 0.9

5.1 Case study 1: IEEE 30-bus system

Table 3. Numerical results of CSA and TLBO for
IEEE 30-bus system

CSA TLBO SOHPSO IHS
TVAC

Best 1.4502 1.4502 1.4783 1.4626
Mean 1.4630 1.4810 1.5217 1.4764
Worst 1.4924 1.5089 1.5217 1.5139

SD 0.0080 0.0139 0.0165 0.0160

Table 4. Optimal solution of CSA in IEEE 30-bus
case study

Selected bus Reactive power [MVar]
8 46.8054
12 29.1442
19 11.8746
26 4.6557
30 7.1452

Figure 4. Voltage profiles of the best solution
proposed by CSA in IEEE 30-bus case study
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Worst 1.4924 1.5089 1.5217 1.5139

SD 0.0080 0.0139 0.0165 0.0160

Table 4. Optimal solution of CSA in IEEE 30-bus
case study

Selected bus Reactive power [MVar]
8 46.8054
12 29.1442
19 11.8746
26 4.6557
30 7.1452

Figure 4. Voltage profiles of the best solution
proposed by CSA in IEEE 30-bus case study
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Figure 5. Comparison about convergences of
proposed methods

Figure 6. Zoomed image of convergences at the
end of search process

According to numerical results in Table 3,
Cuckoo search algorithm and TLBO give the same
optimal solution and it is better than those given by
SOHPSO-TVAC and IHS. However, in general, the
Cuckoo search is better performance with lower av-
erage value and lower standard deviation.

Table 4 shows the best solutions proposed by
Cuckoo search algorithm. Five selected buses are
8th, 12th, 19th, 26th and 30th buses. After installing
SVC, voltage magnitudes at these buses has been
enhanced as Figure 4.

Figure 5 and 6 consider the convergence of
these methods, where Figure 6 is a zoom image of
Figure 5 at the end of calculating process. Cuckoo
search algorithm starts slower than other methods.
However, it reaches the best solution at the end of
process. Its solution is slightlt better than the ones
proposed by Teaching-learning-based optimization
and Improved Harmony search.

5.2 Case study 2: IEEE 57-bus system

Table 5. Numerical results of compared methods
for IEEE 57-bus system

CSA TLBO SOHPSO IHS
TVAC

Best 62.593 63.555 70.758 66.208
Mean 68.119 70.279 91.184 101.794
Worst 73.169 76.809 105.642 188.203

SD 3.141 4.520 8.259 42.231

Table 6. Optimal solution of CSA in IEEE 57-bus
case study

Selected bus Reactive power [MVar]
20 7.6985
31 5.0549
35 22.1316
42 6.5069
47 -49.9728
51 -31.7249

Figure 8. Comparison about convergences of CSA
and TLBO

Table 5 shows the Monte Carlo numerical re-
sults. The Cuckoo search algorithm is clearly better
than other compared search engines. The Cuckoo
search algorithm does not only give better solu-
tions, but its performance also is higher than the
others. The best solution of CSA is given in Table 6.
Cuckoo search algorithm suggests to inject reactive
power at the 20th, 31th, 35th and 42th buses and ab-
sorb reactive power at the 47th and 51th buses. After
installing SVC, voltage magnitudes at the 31th and
47th buses have been enhanced as Figure 7.



66 Khai Phuc Nguyen, Goro Fujita, Vo Ngoc Dieu

Figure 7. Voltage profiles of proposed methods in the IEEE 57-bus system

Table 7. Best results of compared methods for IEEE 118-bus system

No. of CSA TLBO SOHPSO-TVAC IHS
installed SVC Selected Reactive Selected Reactive Selected Reactive Selected Reactive

bus power bus power bus power bus power
1 2 50 2 50 21 41.0593 2 50
2 13 50 13 50 37 -2.5962 13 50
3 20 50 14 32.4255 48 0.1190 14 50
4 28 50 20 50 52 40.2274 20 39.5373
5 53 50 28 50 53 9.8975 28 50
6 58 50 39 50 57 19.4900 39 -43.75
7 95 50 52 50 58 37.3924 52 50
8 106 50 109 50 75 27.9348 109 45.0496
9 109 50 115 50 79 -17.0275 115 41.1726

10 115 50 118 50 84 11.8723 118 50
Best 23.2405 23.9943 30.7140 31.6174
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Table 7. Best results of compared methods for IEEE 118-bus system
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installed SVC Selected Reactive Selected Reactive Selected Reactive Selected Reactive

bus power bus power bus power bus power
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According to Figure 8, it clearly shows that
Cuckoo search algorithm is better than other meth-
ods to find the global optimum. All of TLBO,
SOHPSO-TVAC and IHS are easily stuck in local
optima.

5.3 Case study 3: IEEE 118-bus system

Once again, Cuckoo search algorithm gives bet-
ter solution than the other methods. Detailed best
solutions of compared methods are shown in Ta-
ble 7. Both of the proposed method and the TLBO
try to inject reactive power as much as possible but
their proposed locations are different. However, the
solution of Cuckoo search algorithm is slightly bet-
ter than the one of TLBO, and clearly better than
SOHPSO-TVAC and IHS.

Conclusions

The Cuckoo search algorithm is totally power-
ful and effective for determining location and size
of SVC devices. Optimizing location and size
of SVC devices is a complex problem. It com-
bines continuous and discrete numbers with many
equal and unequal constraints. It is easy to let the
search engine to local optimums. However, ac-
cording to three case studies, the Cuckoo search
always gives the better solution with the higher
performance. Comparing with Teaching-learning-
based optimization, Cuckoo search algorithm may
converge slower at the beginning, but it always
give better solution at the end of search process.
Comparing with SOHPSO-TVAC and IHS, Cuckoo
search algorithm totally gives better solutions. On
summary, the Cuckoo search algorithm is an effec-
tive optimization strategy to optimize location and
size of SVC devices in a bulk power system. Fur-
thermore, it is also favorable for the problem that
combines continuous and discrete numbers.
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