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Abstract

Constructive learning algorithms are an efficient way to train feedforward neural net-
works. Some of their features, such as the automatic definition of the neural network
(NN) architecture and its fast training, promote their high adaptive capacity, as well as
allow for skipping the usual pre-training phase, known as model selection. However,
such advantages usually come with the price of lower accuracy rates, when compared to
those obtained with conventional NN learning approaches. This is, perhaps, the reason for
conventional NN training algorithms being preferred over constructive NN (CoNN) algo-
rithms. Aiming at enhancing CoNN accuracy performance and, as a result, making them
a competitive choice for machine learning based applications, this paper proposes the use
of functionally expanded input data. The investigation described in this paper considered
six two-class CoNN algorithms, ten data domains and seven polynomial expansions. Re-
sults from experiments, followed by a comparative analysis, show that performance rates
can be improved when CoNN algorithms learn from functionally expanded input data.
Keywords: Constructive neural networks; Functional link artificial neural networks;
Functionally expanded input data.

1 Introduction

Conventional neural network training algo-
rithms (such as the Backpropagation [28]) require
the specification of the neural network (NN) archi-
tecture before training begins. Given that, the def-
inition of the NN architecture and its subsequent
training are two independent processes. However,
as pointed out in the literature (see [14], [30], [32]),
a modification in the NN architecture will also re-
quire changes in the training algorithm. The con-
ventional Backpropagation, for instance, has dif-
ficulties when training feedforward networks hav-
ing many hidden layers; such is the case also when

dealing with deep neural networks. Indeed, high
computational costs are associated with the process
of defining a NN architecture suitable to address a
given task. Frequently, a great number of different
NN architectures are tried prior to choosing a suit-
able configuration, for every considered domain, in
a process known as model selection.

The approach followed by the so called con-
structive neural network (CoNN) algorithms is
based on the establishment of a symbiotic relation
between the two processes: constructing the NN ar-
chitecture and training it. CoNN algorithms dynam-
ically construct the NN architecture along with (and
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as a consequence of) the training process avoiding,
in this way, the need for a model selection phase.
Taking into account that predefining a suitable NN
architecture for solving a certain problem can be a
hard task, CoNN algorithms can be a convenient
choice when compared to conventional algorithms
in that respect.

CoNN algorithms usually start with a NN hav-
ing the input layer and no hidden layers; the cons-
truction of the network’s hidden layer(s) occurs si-
multaneously with training. As pointed out in [26],
constructive algorithms overcome the limitation of
searching for a solution in the weight space of an a
priori fixed network architecture, by extending the
search, in a controlled fashion, to the entire space
of NN’s architectures ... Constructive algorithms
search for small solutions first and, by doing that,
have the potential for discovering a near-minimal
network that suitably matches the complexity of the
learning task.

An interesting type of NN called FLANN
(Functional Link Artificial Neural Networks), was
proposed by Pao in [24] (see also [25]) with
the intent to overcome the complexities associated
with multi-layer NNs, conventionally trained. The
FLANN proposal reduces the architecture of a NN
to a one-layer feedforward network, where the input
layer is a functional-expansion of the original input
data. As pointed out in [16], a functional-link NN
with a functional-expansion model can be used as a
tool for the approximation of nonlinear functions.

The work described in this paper investigates
how functionally expanded input data could (or
could not) contribute to constructive neural net-
work learning processes, either by improving their
performance or, then, producing more concise and
smaller NNs. For this purpose, six well-known
CoNN algorithms, namely Tower and Pyramid [12],
[13], Tiling [20], PTI and Shift [1] and Perceptron
Cascade (PC) [5] have been employed in learning
experiments using functional expanded input (see
Section 4).

The remainder of the paper is organized as fol-
lows. Section 2 presents a short introduction to
the CoNN research area. Section 3 briefly de-
scribes each of the six CoNN algorithms used in
the experiments, highlighting some of their distinc-
tive characteristics. Section 4 describes the seven
functional expansions employed namely Power Set

polynomials, Trigonometric, Chebyshev polynomi-
als of first class, Chebishev polynomials of sec-
ond class, Fibonacci polynomials, Lucas polyno-
mials and Boubaker polynomials [29]. Section 5
describes experimental setup and the learning ex-
periments conducted using ten knowledge domains,
two of them synthetic and eight from the UCI
Repository [18], as well as the seven functional ex-
pansions, with the intent of evaluating a possible
contribution of functionally expanded data input in
a context of CoNN based learning. Section 6 sum-
marizes the work done and presents some conclu-
sions. This paper is an extended version of a con-
ference paper [3].

2 Constructive Neural Networks
(CoNNs)

While conventional neural network algorithms
require the specification of the NN architecture be-
fore training begins, constructive neural network
(CoNN) algorithms dynamically construct the NN
architecture along with the training process [22].
CoNN algorithms dynamically combine two pro-
cesses: (1) the construction of the NN architec-
ture and (2) learning. Generally both processes al-
ternate and are dependent on each others’ perfor-
mance. CoNN algorithms basically implement two
tasks: (1) inserting a single neuron in the neural net-
work (NN) being constructed which, generally, is
a threshold logic unit (TLU), and (2) immediately
training it.

As commented in [21], “...the possibility of a-
dapting the network architecture to the given prob-
lem is one of the advantages of constructive tech-
niques... [This] has also important effects on the
convergence speed of the training process. In most
constructive methods, the addition of a new hid-
den unit implies the updating of a small portion of
weights, generally only those regarding the neuron
to be added”. Considering that the pre-definition of
a suitable architecture for a certain problem can be
a hard task, CoNN algorithms can be considered a
very convenient choice when compared with con-
ventional algorithms in that respect.
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ture and (2) learning. Generally both processes al-
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mance. CoNN algorithms basically implement two
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work (NN) being constructed which, generally, is
a threshold logic unit (TLU), and (2) immediately
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As commented in [21], “...the possibility of a-
dapting the network architecture to the given prob-
lem is one of the advantages of constructive tech-
niques... [This] has also important effects on the
convergence speed of the training process. In most
constructive methods, the addition of a new hid-
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As pointed out in [22, 23], in spite of sharing
the same basic mechanism, CoNN algorithms dif-
fer from each other in many different ways, such
as:

– Number of nodes they add per layer at each ite-
ration;

– Direction in which they grow the network: for-
ward, from input towards output nodes or back-
ward, from output towards input nodes;

– Functionality of the added neurons (do they all
play the same role?);

– Stopping criteria (when to stop the NN cons-
truction process?);

– Connectivity pattern of the newly added neuron
(how do they connect with the other neurons?);

– Algorithm used for training individual neuron,
such as the Pocket algorithm and the Pocket with
Ratchet Modification (PRM) [12, 13], MinOver
[17], Quickprop [7], AdaTron [2], Thermal Per-
ceptron [10], Loss minimization [15], Modified
Thermal algorithm [5], Maxover [31], Barycen-
tric Correction Procedure (BCP) [27];

– Type of input patterns they deal with: binary
(or bipolar) valued, categorical or real valued at-
tributes;

– Type of problems they solve: classification
(two-class or multi-class), where the input is as-
signed to one of two or a few classes; regression,
characterized by a continuous mapping from in-
puts to an output or clustering, where the pat-
terns are grouped according to some similarity
measure;

– Topology of the connections among neurons
(initially fixed or dynamically constructed);

– Shape of the feedforward architecture (e.g.
tower-like, cascade-like, etc).

Taking into account that the basic step per-
formed by a CoNN algorithm is the addition to
the network architecture of a new neuron, usually
represented as a TLU (Threshold Logic Unit) and
its subsequent training, the choice of a suitable
TLU training algorithm has become an important

issue concerning CoNN algorithms. A great deal of
CoNN algorithms use variants of the basic Percep-
tron algorithm for training the TLU nodes; among
them, particularly the Pocket and the Pocket with
the Ratchet Modification (PRM) are the most pop-
ular. For the experiments described in Section 5 of
this paper, the PRM was chosen, due to its good re-
sults found in the literature (see for instance [13]).

There are also several CoNN algorithms suit-
able for two-class learning tasks, such as the
Tower and Pyramid [13], Tiling [20], Upstart [11],
Perceptron-Cascade [5], Offset [19], PTI and Shift
[1], BabCoNN [25], etc. A description of a few
well-known CoNN algorithms can be found in [10,
15, 26].

Nicoletti and co-authors in [23] present and dis-
cuss thirteen CoNN algorithms suitable for con-
structing feedforward architectures, aiming at clas-
sification tasks involving two classes; their work
also briefly approaches the multiclass versions of
several two-class algorithms, highlights some of
the most popular constructive algorithms for regres-
sion problems and refers to several other alterna-
tive constructive neural network algorithms scat-
tered among different publications. In [9] Franco
and co-workers present a detailed review on CoNN
algorithms as well as the descripption of several
new CoNN proposals, highlihting and discussing
the main achievements in the CoNN research area.

3 A Brief Description of Six CoNN
Algorithms

Among the many CoNN algorithms available in
the literature, the experiments with functionally ex-
panded training sets focused on six of them: the
Tower and the Pyramid [12, 13], the Tiling [20], the
PTI and the Shift [1] and the Perceptron Cascade
(PC) [5].

The choice of the Tower and the Pyramid al-
gorithms was motivated by the particular way both
carry on the constructive process – they only use
one hidden neuron per hidden layer.

The Tower and the Pyramid only differ from
each other in the way the newly added hidden neu-
ron is connected. The Tower iteratively grows a
NN by adding hidden layers where each new hidden
layer added has only one TLU, which is connected
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to all input neurons as well as to the only neuron
that defines the previous hidden layer added to the
NN. While in a Tower-NN each new hidden neuron
has connections with every input neuron as well as
with the last hidden neuron created, in a Pyramid-
NN a new hidden neuron has connections with ev-
ery input neuron as well as with all the previous hid-
den neurons created.

With the dynamic addition of neurons each al-
gorithm tends to correctly classify a greater num-
ber of training instances. A single neuron can learn
with 100% precision only from linearly separable
training sets. If that is not the case, during the train-
ing phase the Tower algorithm continues to add neu-
rons to the network (one per hidden layer) and to
train them, in an iterative process controlled by a
stopping condition. Generally one of three stopping
conditions is used: (1) if the NN correctly classifies
the training set; (2) if the addition of new hidden
neurons does not improve the NN accuracy and (3)
if a predefined maximum number of hidden neurons
has been reached. The Tower and Pyramid algo-
rithms have similar performances in classification
tasks (see [4]).

The Tiling algorithm [20] was originally pro-
posed for Boolean domains; the algorithm grows a
multilayer feedforward NN where hidden nodes are
added to a layer similarly to the process of laying
tiles. The neurons in each hidden layer have one
out of two functionalities and are named accord-
ingly. Each layer has a master neuron, that func-
tions as the output neuron for that layer. When the
master neuron does not correctly classify all train-
ing patterns, however, the algorithm starts to add
and train ancillary neurons, one at a time, aiming
at obtaining a faithful representation of the training
set. The output layer has only one master neuron.
The faithfulness criterion employed by the Tiling
algorithm establishes that no two training patterns,
belonging to different classes, should produce the
same outputs at any given layer. The Tiling con-
structs a NN as successive layer-by-layer assembly
such that each new layer has a smaller number of
neurons than the previous layer and the layer L only
receives connections from the layer L - 1.

As commented by Gallant in [13], “The role of
these units (ancillary) is to increase the number of
cells for layer L so that no two training examples
with different classifications have the same set of

activations in layer L. Thus each succeeding layer
has a different representation for the inputs, and no
two training examples with different classifications
have the same representation in any layer. Layers
with this property are termed faithful layers, and
faithfulness of layers is clearly a necessary condi-
tion for a strictly layered network to correctly clas-
sify all training examples... Assuming a finite train-
ing set with non-contradictory patterns, the Tiling
algorithm is guaranteed to converge to zero classi-
fication errors (under certain assumptions)”. The
original Tiling algorithm, as described in [20], uses
the same TLU training algorithm for each neuron
(master or ancillary) added to the NN; in the same
article the authors state and prove a theorem that
ensures its convergence.

The Partial Target Inversion (PTI) algorithm [1]
shares some similarities with the Tiling algorithm.
The PTI also grows a multi-layer network where
each layer has one master neuron and a few ancil-
lary neurons. PTI also adds ancillary neurons to a
layer in order to satisfy the faithfulness criteria; the
neurons in layer L are connected only to neurons
in layer L - 1. If the training of the master neu-
ron results in a weight vector that correctly classi-
fies all training patterns or if the master neuron of
layer L does not classify a larger number of patterns
than the master neuron of layer L - 1, the algorithm
stops. If a training pattern, however, was incorrectly
classified by the master neuron, and the master neu-
ron correctly classifies a greater number of patterns
than the master of the previous layer, the algorithm
starts adding ancillary neurons to the current layer
aiming at its faithfulness. When the current layer L
becomes faithful the algorithm adds a new layer, L
+ 1, initially only having the master neuron. The
process continues until stopping criteria are met,
such as when the number of master (or ancillary)
neurons has reached a pre-defined threshold. The
only noticeable difference between the Tiling and
the PTI is the way the training set, used for train-
ing the ancillary neurons in the process of turning a
layer faithful, is chosen.

Some CoNN algorithms are based on discrimi-
nating between two types of errors (wrongly-on and
wrongly-off ) and, as a side-effect of this approach,
they tend to grow the NN in a backward way, i.e.
from the output layer towards the input layer. That
is the case of both, the Shift [1] and the Perceptron
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Cascade (PC) [5] algorithms which, also, have been
chosen for the experiments.

An algorithm based on an error-correction stra-
tegy generally approaches the growing of the NN
as follows: let un be a neuron that classifies training
patterns but produces wrongly-off errors (i.e., posi-
tive training patterns are misclassified by un as neg-
ative). Generally algorithms deal with wrongly-off
errors by adding a wrongly-off corrector as a child
neuron, un+, which will try to correct the errors
made by its parent un. The main tasks of neuron un+

are 1) to correct the classification of positive train-
ing patterns that have been misclassified by un as
negative and 2) to keep unchanged the other classi-
fications made by un (i.e. un+ should be inactive for
any other pattern). The neuron un+ is trained with
the subset of training patterns that were wrongly-off
plus the set of negative patterns.

Similarly, to deal with wrongly-on errors (i.e.
negative training patterns that are misclassified by
un as positive) the algorithm creates a wrongly-on
corrector as a child neuron un−, aiming at both:
to correct the classification of the wrongly-on train-
ing patterns and to keep unchanged the other clas-
sifications made by un (i.e., un− should stay inac-
tive for any other pattern). The neuron un− is then
trained with the subset of training patterns that were
wrongly-on plus the set of positive patterns. For a
child neuron (either a wrongly-on or a wrongly-off
corrector) that has been added in order to correct
misclassifications made by its parent, it is manda-
tory that this child only changes the activations of
patterns that provoked the error; for this reason, the
inactive output of the neuron should be 0.

The Perceptron Cascade (PC) algorithm [5]
adopts the error-correction strategy just described;
PC also adopts the architecture of NNs created by
the Cascade Correlation algorithm [8]. The PC be-
gins the construction of the network by training the
output neuron. If this neuron does not classify all
training patterns correctly, the algorithm begins to
add hidden neurons to the network. Each new added
hidden neuron is connected to all previous hidden
neurons as well as to the input neurons. The new
hidden neuron is then connected to the output neu-
ron; each time a hidden neuron is added, the output
neuron needs to be retrained.

The addition of a new hidden neuron enlarges
the space in one dimension. The algorithm has

three stopping criteria: 1) the network converges
i.e., correctly classifies all training patterns; 2) a
pre-defined maximum number of hidden neurons
has been achieved and 3) the most common, the
addition of a new hidden neuron degrades the net-
works performance.

The PC adds hidden neurons to correct wrongly-
on and wrongly-off errors. For the algorithm,
what distinguishes a neuron created for correcting
wrongly-on or for correcting wrongly-off errors is
the training set used for training the neuron. To cor-
rect wrongly-on errors the training set used should
have all negative patterns plus the patterns which
produce wrongly-on errors. For correcting wrongly-
off errors, the training set should have all posi-
tive patterns plus the negative patterns which pro-
duce wrongly-of patterns. The PC algorithm only
adds and trains one neuron at a time to correct the
most frequent error, between the wrongly-on and
wrongly-off errors produced by the output neuron.

Similarly to the PC algorithm, the Shift algo-
rithm [1] also constructs the network beginning
with the output neuron. The algorithm, however,
creates only one hidden layer, iteratively adding
neurons to it; each added neuron is connected to the
input neurons and to the output neurons. The error
correcting procedure used by the Shift also identi-
fies wrongly-on and wrongly-off errors. However, it
adds and trains a hidden neuron to correct the most
frequent between these two types of errors.

4 Functional Expansions Used

In learning experiments a functional expansion
can be approached as a pre-processing task which
‘horizontally’ enlarges a given training set, by in-
troducing functionally expanded attribute values. In
this paper the functional explansion of the training
data has been implemented using seven polynomial
expansions, as described in this section. For each of
the expansions it is shown up to its seventh term.

For the experiments conducted in this study, the
following expansions were used: (1) Power Series
(PW); (2) Trigonometric (TR); (3) Chebyshev poly-
nomials (1st class) (CH1); (4) Chebyshev polyno-
mials (2nd class) (CH2); (5) Fibonacci (FI); (6) Lu-
cas (LU) and (7) Boubaker (BO). In what follows,
each original data set, without being pre-processed
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to be functionally expanded, is referred in the text
as Original (OG). Figure 1 presents a diagram of a
generic functional expansion process.

Figure 1. A view of a generic functional expansion
of the input layer, considering an expansion of N =

3 values

Power Series(PW )

F1(x) = 1
F2(x) = x
F3(x) = x2

F4(x) = x3

F5(x) = x4

F6(x) = x5

F7(x) = x6

Trigonometric(T R)
F1(x) = x
F2(x) = cos(πx)
F3(x) = sin(πx)
F4(x) = cos(2πx)
F5(x) = sin(2πx)
F6(x) = cos(3πx)
F7(x) = sin(3πx)

Chebyshev 1st class (CH1)
F1(x) = x
F2(x) = 2x2 −1
F3(x) = 4x3 −3x
F4(x) = 8x4 −8x2 +1
F5(x) = 16x5 −30x3 +5x
F6(x) = 32x6 −48x4 +18x2 −1
F7(x) = 64x7 −112x5 +56x3 −7x

Chebyshev 2nd class (CH2)
F1(x) = 2x
F2(x) = 4x2 −1
F3(x) = 8x3 −4x
F4(x) = 16x4 −12x2 +1
F5(x) = 32x5 −32x3 +6x
F6(x) = 64x6 −80x4 +24x2 −1
F7(x) = 128x7 −192x5 +80x3 −8x

Fibonacci(FI)
F1(x) = 1
F2(x) = x
F3(x) = x2 +1
F4(x) = x3 +2x
F5(x) = x4 +3x2 +1
F6(x) = x5 +4x3 +3x
F7(x) = x6 +5x4 +6x2 +1

Lucas(LU)

F1(x) = x
F2(x) = x2 +2
F3(x) = x2 +3x
F4(x) = x4 +4x2 +2
F5(x) = x5 +5x3 +5x
F6(x) = x6 +6x4 +9x2 +2
F7(x) = x7 +7x5 +14x3 +7x

Boubaker(BO)

F1(x) = x
F2(x) = x2 +2
F3(x) = x3 + x
F4(x) = x4 −2
F5(x) = x5 − x3 −3x
F6(x) = x6 −2x4 −3x2 +2
F7(x) = x7 −3x5 −2x3 +5x

5 Experiments and Results

For the experiments a total of 10 data sets have
been chosen; 2 of them (named Artificial and Spi-
rals) were artificially generated and are shown in
Figure 2. The other 8 were downloaded from the
UCI repository [18]. The chosen UCI data sets are
typically data sets for supervised learning tasks and
have been employed in a great number of machine
learning related tasks reported in the literature. Ta-
ble 1 presents a summary of their main characteris-
tics. The chosen data sets have a variable number
of data patterns and they all have their data patterns
described by numerical attributes. The algorithms
were implemented using Java and all the experi-
ments were run under a Windows environment.
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Figure 1: A view of a generic functional expansion
of the input layer, considering an expansion of N = 3
values.
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Trigonometric(T R)
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F3(x) = sin(πx)
F4(x) = cos(2πx)
F5(x) = sin(2πx)
F6(x) = cos(3πx)
F7(x) = sin(3πx)

Chebyshev 1st class (CH1)
F1(x) = x
F2(x) = 2x2 −1
F3(x) = 4x3 −3x
F4(x) = 8x4 −8x2 +1
F5(x) = 16x5 −30x3 +5x
F6(x) = 32x6 −48x4 +18x2 −1
F7(x) = 64x7 −112x5 +56x3 −7x

Chebyshev 2nd class (CH2)
F1(x) = 2x
F2(x) = 4x2 −1
F3(x) = 8x3 −4x
F4(x) = 16x4 −12x2 +1
F5(x) = 32x5 −32x3 +6x
F6(x) = 64x6 −80x4 +24x2 −1
F7(x) = 128x7 −192x5 +80x3 −8x

Fibonacci(FI)
F1(x) = 1
F2(x) = x
F3(x) = x2 +1
F4(x) = x3 +2x
F5(x) = x4 +3x2 +1
F6(x) = x5 +4x3 +3x
F7(x) = x6 +5x4 +6x2 +1

Lucas(LU)

F1(x) = x
F2(x) = x2 +2
F3(x) = x2 +3x
F4(x) = x4 +4x2 +2
F5(x) = x5 +5x3 +5x
F6(x) = x6 +6x4 +9x2 +2
F7(x) = x7 +7x5 +14x3 +7x

Boubaker(BO)

F1(x) = x
F2(x) = x2 +2
F3(x) = x3 + x
F4(x) = x4 −2
F5(x) = x5 − x3 −3x
F6(x) = x6 −2x4 −3x2 +2
F7(x) = x7 −3x5 −2x3 +5x
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to be functionally expanded, is referred in the text
as Original (OG). Figure 1 presents a diagram of a
generic functional expansion process.
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5 Experiments and Results

For the experiments a total of 10 data sets have
been chosen; 2 of them (named Artificial and Spi-
rals) were artificially generated and are shown in
Figure 2. The other 8 were downloaded from the
UCI repository [18]. The chosen UCI data sets are
typically data sets for supervised learning tasks and
have been employed in a great number of machine
learning related tasks reported in the literature. Ta-
ble 1 presents a summary of their main characteris-
tics. The chosen data sets have a variable number
of data patterns and they all have their data patterns
described by numerical attributes. The algorithms
were implemented using Java and all the experi-
ments were run under a Windows environment.

ENHANCING CONSTRUCTIVE NEURAL NETWORK PERFORMANCE . . .

Figure 2. Scatter plots of the artificially generated
data. (a) Artificial (b) Spirals. In both, stars (black)

stand for class 1 and left-pointing triangles (red)
for class 2

Table 1. Summary of data domains, where #NA:
number of attributes; #C: number of classes and

#NI: number of instances

Domain #NA #C #NI

Artificial 2 2 500

Spiral 2 2 500

WPBC 34 2 198

Liver 6 2 345

Pima 8 2 768

Heart 13 2 270

Mammography 5 2 961

Blood 5 2 748

Ionosphere 32 2 351

Credit (German) 20 2 1,000

In the experiments each functional expansion
was ran for a varying number of terms {N =
3,4, . . . ,7} and the best result was selected. The
results from the experiments have been organized
in ten tables, Table 2 to 11, each of them associ-
ated to a particular data domain. The tables show
the average classification results as well as the aver-
age number of neurons obtained through a repeated
30 time cross-validation process; both numbers are
followed by the associated standard deviation val-
ues. Each result also shows, inside parentheses, the
number of terms which yielded the best result. In
the tables, the best result for each CoNN algorithm
is bold faced.

Based on results it can be said that some im-
provement has been obtained in practically every
single domain enlarged by a functional expansion.
In spite of that, the results also show that some do-
mains are more sensitive to the enlargement by a
functional expansion than others. Moreover, a par-
ticular expansion may work better for certain do-

mains than that for others. For example, the Spi-
ral domain (Table 3) was the one with the highest
enhancement in performance, when any functional
expansion was used. On the other hand, the ex-
periments with the WPBC (Table 4) have shown
no significant difference whether the training data
had been functionally expanded or not. Now, in
the experiments concerning the Mammography and
the Blood transfusion domains (Table 8 and 9), a
particular functional expansion worked better than
the others, namely the Trigonometric and the Fi-
bonacci, respectively.

To aid further analyses, Figure 5 groups the
results by domain vs. functional expansions, by
CoNN learning algorithm vs. functional expansions
and by CoNN vs. domain, respectively. In Fig-
ure 5 among the UCI domains, the Liver domain
was the one that most benefited from the expan-
sions, presenting over than 4%, on average, bet-
ter performance than when considering the original
data. Good results have also been observed in the
domains Heart, Mammography, Blood, Ionosphere
and Credit. As far as functional expansions are con-
cerned, it can be said that the Trigonometric not
only has yielded the highest variation among all the
expansions considered, but also was the expansion
which produced the highest accuracy values.

Figure 3. Mean accuracy variation between the
results obtained when considering functional
expansions and the results obtained with the

original data. The results are grouped by domains
and functional expansions

Figure 5 shows the impact of functional ex-
pansions on each of the CoNN algorithms, taking
into account each data domain. It can be seen that
the Tiling was one with the highest improvement;
functional expansions usually help the algorithm to
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 5. Liver
CoNN OG PW TR CH CH2 FI BO LU

Tower 69.2±7.2 71.0±8.3(3) 71.6±6.5(5) 71.0±7.9(5) 70.7±7.7(5) 71.7±7.9(3) 70.8±8.5(3) 71.2±6.8(4)

9.9±2.7 9.1±2.4 8.1±4.3 7.8±2.6 8.6±2.8 9.7±2.4 8.6±2.5 8.4±2.4

Pyramid 69.6±7.4 71.6±9.0(4) 71.4±8.5(3) 71.6±6.0(4) 71.7±8.0(3) 70.9±7.4(3) 71.1±8.9(3) 71.6±7.1(5)

11.7±3.8 9.6±3.3 8.0±2.9 10.0±3.4 9.7±3.1 10.4±2.7 9.8±3.5 9.8±3.7

Tiling 60.4±9.0 64.2±8.4(4) 70.4±7.4(4) 64.9±7.4(7) 65.0±8.5(7) 64.3±6.6(4) 64.0±8.1(7) 64.6±7.2(3)

133.4±35.3 131.8±26.8 1.0±0.0 127.8±37.8 117.8±38.7 125.3±27.8 118.8±31.4 129.6±29.7

PTI 68.6±7.3 72.6±8.2(5) 70.6±7.4(4) 72.9±7.9(5) 72.1±6.6(6) 72.5±7.6(4) 72.4±6.2(6) 72.2±6.7(5)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 68.1±6.9 71.4±7.0(4) 70.9±6.4(3) 71.9±6.9(4) 72.6±8.4(4) 71.5±6.0(4) 71.7±7.6(3) 71.3±8.1(3)

3.0±1.4 2.6±1.9 3.6±2.7 2.4±1.4 2.5±1.5 2.7±1.3 2.2±1.5 2.7±1.9

Shift 68.9±7.9 70.8±6.0(5) 70.4±6.5(6) 70.4±7.1(4) 70.8±7.3(5) 70.9±8.6(4) 71.1±6.5(6) 70.7±5.9(5)

6.2±2.4 7.4±3.6 8.7±3.3 8.6±4.2 8.7±3.8 7.3±3.8 10.2±3.8 9.3±4.5

Table 6. Pima
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.1±4.4 76.3±3.7(4) 77.0±5.1(5) 75.8±4.7(5) 76.2±4.2(3) 76.2±4.9(7) 76.3±4.4(6) 76.1±5.4(3)

14.8±3.4 12.0±4.3 4.9±2.3 11.0±4.0 13.3±4.2 9.4±3.0 9.8±3.7 12.6±4.1

Pyramid 76.1±5.0 76.4±5.2(3) 76.5±4.5 76.3±4.8(6) 76.8±4.2(4) 76.1±5.7(4) 76.0±5.2(4) 76.0±4.8(4)

18.4±4.5 18.4±5.0 6.0±2.7 14.7±6.6 15.1±5.9 17.6±5.3 16.5±5.5 17.6±7.6

Tiling 68.3±5.9 67.8±5.4(5) 66.1±6.5(3) 67.8±5.8(4) 67.9±6.2(5) 69.9±7.4(3) 67.9±6.2(7) 68.6±6.0(4)

323.8±101.3 321.9±75.0 297.3±149.9 313.7±99.6 310.7±101.3 303.7±109.8 288.8±130.6 300.8±121.5

PTI 76.8±4.8 76.5±4.6(3) 75.0±5.9(7) 77.0±3.8(5) 76.5±4.9(4) 76.0±4.5(3) 76.1±5.2(3) 76.1±5.0(3)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 76.3±4.7 76.1±5.3(4) 76.7±4.7(3) 75.8±5.1(5) 76.4±4.9(5) 76.3±4.3(7) 76.2±4.3(3) 75.7±5.0(6)

2.4±1.2 4.9±2.8 2.5±1.6 5.8±3.0 4.7±2.5 4.8±3.1 3.4±2.0 5.0±2.5

Shift 75.5±4.3 76.2±4.9(4) 77.2±4.4(5) 75.5±4.7(3) 75.5±4.2(5) 75.8±4.2(3) 75.7±5.0(4) 75.8±4.2(5)

8.6±2.7 22.5±9.5 12.2±4.6 19.6±11.5 26.6±12.4 14.8±8.0 22.1±11.8 24.1±12.7

Table 7. Heart
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 81.0±7.6 82.3±6.7(3) 82.9±8.2(5) 82.3±6.7(6) 81.0±8.2(4) 82.2±8.4(3) 81.4±6.9(6) 83.2±8.8(4)
11.8±4.7 11.0±4.5 4.4±2.1 9.6±4.1 10.6±3.8 11.8±4.6 9.9±3.8 10.3±4.4

Pyramid 81.7±7.4 82.4±6.4(3) 83.7±8.0(4) 81.8±7.4(3) 83.2±7.2(4) 81.7±7.6(5) 82.0±7.6(3) 82.0±7.0(5)

9.4±2.6 10.1±3.2 4.0±1.5 10.6±2.9 10.2±3.4 10.8±3.1 11.0±3.7 10.0±3.5

Tiling 80.6±9.1 79.4±6.0(6) 81.9±6.5(3) 79.4±7.1(6) 79.5±8.5(3) 80.1±7.5(3) 79.7±6.4(3) 79.4±7.0(5)

30.8±13.9 93.5±34.6 38.1±24.5 95.4±33.2 79.8±40.6 93.4±37.3 74.5±38.9 83.9±41.8

PTI 81.1±7.6 82.7±6.6(7) 83.3±7.2(6) 83.4±6.0(4) 83.8±6.4(4) 82.8±6.8(3) 83.1±6.5(5) 83.1±7.5(5)

2.1±5.0 1.0±0.0 7.9±11.6 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 79.9±7.9 82.5±6.2(6) 84.2±6.3(3) 83.0±6.5(4) 81.9±8.8(6) 82.6±7.1(6) 82.7±7.4(4) 82.4±5.7(3)

4.6±2.9 1.8±0.8 2.2±1.2 2.3±1.1 2.0±0.9 2.4±1.1 2.1±1.0 2.4±1.3

Shift 80.7±7.0 82.7±7.9(3) 83.4±7.2(6) 82.8±8.3(4) 83.6±8.1(3) 83.1±8.1(5) 82.6±7.6(6) 82.7±7.4(7)

13.0±4.8 6.8±2.5 9.7±3.9 7.3±2.7 7.1±2.2 7.0±2.7 7.2±2.4 6.7±2.5
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Table 2. Artificial
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 66.5±6.6 63.8±6.9(3) 57.2±7.4(3) 63.7±7.2(3) 62.8±6.3(3) 64.6±7.4(3) 62.6±7.4(3) 64.2±8.0(3)

11.8±4.0 11.8±6.3 5.6±3.2 11.3±7.0 11.6±5.8 12.8±7.0 11.0±5.7 11.0±6.3

Pyramid 65.2±6.3 65.3±7.1(4) 61.9±9.8(5) 64.0±6.3(3) 63.6±8.3(3) 65.2±8.0(4) 63.6±7.0(3) 63.0±7.6(3)

12,6±4,8 16.6±8.7 10.4±8.2 16.6±7.7 17.6±6.4 15.9±7.6 14.9±7.4 16.2±7.1

Tiling 65.2±6.9 62.8±7.2(7) 57.2±7.5(5) 63.3±6.0(4) 63.3±5.6(4) 60.6±7.2(7) 62.7±8.0(7) 63.0±6.7(3)

219.3±62.9 216.7±82.1 156.9±106.6 208.4±83.5 233.2±71.4 232.4±82.4 252.2±78.2 230.3±55.7

PTI 53.8±7.6 54.7±5.6(4) 56.2± .94(7) 54.1±6.5(5) 53.0±8.2(7) 55.0±6.0(5) 53.2±9.0(5) 53.6±9.3(7)

1.0±0.0 1.0±0.0 22.4±24.6 1.7±4.3 4.8±14.7 2.2±7.9 3.0±7.1 9.0±19.6

PC 67.8±6.8 68.8±6.7(6) 62.6±8.8(6) 67.4±7.8(4) 68.6±8.6(4) 70.8±6.1(3) 68.2±7.9(3) 68.8±6.3(3)

3.4±1,5 6.2±3.1 5.4±3.1 5.3±2.6 5.8±3.4 6.0±3.8 5.8±3.3 6.4±3.6

Shift 65.8±6,6 73.1±6.8(3) 70.0±7.1(7) 70.5±7.9(3) 71.2±5.8(3) 73.6±6.1(3) 72.2±7.0(3) 70.4±5.0(4)

7.2±3.0 26.8±7.3 31.6±8.2 30.3±10.6 32.8±10.8 27.4±7.1 27.5±5.7 32.8±9.5

Table 3. Spirals

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 58.3±6.2 85.7±9.3(3) 89.2±7.6(4) 78.3±9.8(7) 77.8±11.0(5) 86.5±8.1(3) 86.2±10.6(3) 80.5±11.7(7)

4.5±1.3 7.2±1.8 7.5±2.3 5.7±3.1 5.7±2.7 6.8±2.1 7.2±2.4 5.8±2.6

Pyramid 60.0±7.3 88.7±13.1(3) 88.8±7.8(4) 79.0±13.1(3) 82.1±13.2(7) 90.2±7.7(3) 92.6±9.0(4) 79.1±10.7(7)

5.2±2.7 10.2±4.0 9.0±2.8 8.8±5.4 7.1±2.9 10.3±4.1 10.9±2.8 6.6±3.3

Tiling 73.6±20.6 95.2±12.6(3) 95.1±12.7(6) 94.7±9.3(4) 93.5±9.7(5) 96.2±8.2(6) 97.2±7.5(3) 96.8±7.1(7)

24.5±32.2 20.9±13.7 57.8±34.2 24.3±13.2 27.0±17.3 29.3±14.8 24.2±16.6 26.6±12.3

PTI 57.2±5.5 82.3±14.2(4) 72.4±14.2(5) 80.7±15.1(3) 82.8±15.3(6) 78.7±14.3(7) 83.2±14.4(6) 78.6±13.6(7)

1.0±0.0 11.3±11.0 8.4±11.9 9.7±10.6 11.2±11.2 8.1±10.2 9.9±10.7 9.5±10.6

PC 59.8±7.1 90.3±9.3(3) 91.6±5.8(6) 90.4±7.3(4) 89.3±8.5(4) 90.5±7.9(3) 90.0±9.7(4) 87.7±10.2(4)

3.0±1.1 7.8±3.0 9.2±2.9 8.3±2.9 8.4±3.6 7.0±3.2 7.6±3.4 9.1±3.9

Shift 58.0±5.4 88.5±8.5(3) 90.8±5.0(6) 90.2±7.5(5) 91.4±8.1(6) 92.7±6.9(3) 91.8±7.8(6) 89.3±9.5(6)

3.6±1.6 7.3±2.3 8.9±2.7 6.2±1.7 6.6±2.0 7.9±1.9 7.1±1.9 5.9±1.9

Table 4. WPBC
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 76.8±9.8 75.8±9.9(7) 77.1±9.2(3) 75.2±9.8(4) 75.7±9.3(4) 76.7±10.4(7) 75.7±8.7(4) 75.4±11.5(3)

7.9±2.5 8.9±2.4 9.2±3.1 8.6±2.8 9.2±3.0 8.0±2.4 7.7±2.7 7.8±2.8

Pyramid 76.2±10.5 74.4±11.2(3) 76.3±8.8(5) 75.0±8.8(6) 76.7±8.7(5) 76.4±10.9(3) 76.5±8.9(5) 74.8±11.2(6)

8.0±2.4 7.8±2.2 2.5±0.5 9.6±2.8 8.5±2.8 7.6±2.4 8.7±2.7 8.3±2.6

Tiling 75.6±8.5 76.7±9.2(3) 78.1±9.0(7) 76.8±10.1(5) 75.4±9.8(5) 76.9±8.0(4) 77.2±11.2(4) 76.6±8.4(6)

14.0±8.9 10.7±7.3 5.3±6.1 15.5±12.7 16.6±9.1 12.1±8.3 13.9±8.0 13.2±9.9

PTI 77.8±8.5 78.4±7.8(6) 78.3±9.3(3) 78.3±8.3(4) 77.2±9.3(5) 77.3±9.5(3) 78.3±10.4(4) 77.9±8.3(3)

1.0±0.0 1.4±2.5 1.7±4.3 2.8±5.5 3.5±7.6 2.6±5.1 1.9±4.1 4.0±6.4

PC 77.6±8.9 75.3±9.8(4) 80.4±9.2(3) 76.9±9.4(7) 76.4±10.4(5) 74.8±10.7(7) 75.3±8.1(5) 76.6±9.4(7)

4.7±2.8 6.0±2.4 3.4±1.6 5.2±2.4 5.8±2.6 6.0±2.5 6.2±3.0 4.9±2.3

Shift 76.7±7.0 76.3±9.5(5) 78.4±6.8(3) 77.3±9.0(3) 77.4±9.1(4) 78.2±9.6(3) 78.0±8.5(3) 77.9±9.0(3)

5.7±2.8 8.6±2.1 4.6±1.7 7.7±2.5 6.1±2.8 8.2±2.6 8.4±2.7 8.3±2.4
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Table 8. Mammography

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 81.6±3.6 81.6±4.2(3) 83.7±3.8(7) 81.4±3.7(3) 81.7±3.6(3) 81.5±3.7(3) 81.5±4.9(3) 81.7±4.0(7)

7.2±2.3 7.3±2.5 5.8±1.8 6.8±2.1 6.8±2.3 7.3±2.4 6.8±2.4 4.5±1.8

Pyramid 81.6±4.3 81.6±4.7(5) 83.7±3.5(5) 81.4±2.8(5) 81.6±3.2(3) 81.6±4.5(6) 81.5±3.2(7) 81.7±4.0(3)

6.3±1.8 5.4±2.0 7.0±2.7 5.7±2.4 6.0±2.2 5.8±2.2 4.2±1.9 6.0±2.3

Tiling 81.2±3.7 81.5±3.9(7) 84.1±3.0(7) 81.5±3.7(5) 81.7±3.4(4) 81.9±3.5(3) 81.5±4.6(3) 81.4±4.1(3)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PTI 81.0±4.1 81.9±3.5(3) 83.6±4.3(5) 81.8±4.6(3) 81.7±4.3(4) 81.6±4.3(3) 81.8±5.1(4) 81.4±3.1(7)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 81.1±3.3 81.6±4.1(4) 83.3±3.4(6) 81.7±3.7(4) 81.6±4.1(5) 81.6±3.8(3) 81.5±3.1(4) 81.9±4.0(3)

2.3±1.2 2.2±1.1 2.4±1.3 2.2±1.0 2.3±0.9 2.5±1.2 2.2±1.3 2.5±1.2

Shift 81.3±4.2 81.9±4.2(3) 83.3±4.1(5) 82.1±2.9(7) 82.1±3.1(6) 82.0±3.6(4) 82.2±3.8(6) 81.9±4.2(4)

3.9±1.3 6.7±2.9 4.9±1.6 4.8±1.3 4.0±1.3 5.0±1.8 5.0±1.9 4.5±1.4

Table 9. Blood
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 78.0±4.3 78.9±5.1(5) 77.9±5.0(4) 78.7±4.4(4) 78.7±4.3(3) 79.0±3.6(5) 78.8±3.5(4) 78.8±4.9(5)

4.1±1.0 4.9±1.6 8.6±2.9 4.3±1.5 4.9±1.4 5.2±1.8 4.9±1.3 4.8±1.4

Pyramid 77.5±4.6 78.6±5.0(7) 78.0±5.1(6) 78.7±3.8(7) 78.7±5.1(7) 78.9±4.0(6) 78.6±4.5(4) 78.7±4.2(3)

4.6±1.2 4.8±1.7 7.8±2.2 4.5±1.7 4.7±1.6 4.7±1.4 4.6±1.3 4.9±1.6

Tiling 78.1±4.2 78.6±4.6(4) 77.9±4.3(6) 78.6±4.1(5) 78.8±5.4(6) 79.0±4.5(6) 78.6±5.1(3) 78.5±4.2(6)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PTI 77.7±4.3 78.7±4.4(6) 77.8±4.8(4) 78.7±3.8(7) 78.5±4.4(5) 78.8±4.9(4) 78.4±3.8(7) 78.6±3.8(6)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 77.2±4.1 78.7±5.1(7) 77.9±4.8(7) 78.4±4.4(5) 78.7±4.3(3) 78.4±4.5(3) 78.9±5.3(6) 78.6±4.4(4)

1.9±0.7 1.8±1.0 2.3±1.4 2.0±0.7 1.8±0.9 1.7±0.7 2.2±1.0 2.0±0.8

Shift 77.5±4.4 78.6±3.9(5) 77.3±4.8(6) 78.6±6.1(3) 78.7±4.7(4) 78.5±5.2(3) 78.3±4.8(5) 78.5±4.6(6)

1.6±0.7 2.6±1.2 6.7±2.2 2.4±1.0 2.2±0.9 2.3±1.0 2.5±1.1 2.9±1.3

Table 10. Ionosphere

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 88.4±5.3 91.2±3.9(5) 91.4±5.2(6) 90.1±5.1(6) 90.0±5.2(3) 90.6±5.1(7) 90.9±4.9(5) 92.2±4.4(5)
5.8±1.0 3.1±0.7 1.1±0.3 2.0±0.6 3.2±0.8 3.0±0.5 3.2±0.6 2.8±0.7

Pyramid 88.2±5.3 91.2±4.5(4) 91.7±4.2(6) 91.0±4.7(6) 90.5±4.9(3) 91.5±3.2(4) 91.0±4.0(3) 91.7±4.1(7)
5.9±1.1 3.3±0.6 1.0±0.2 2.0±0.6 3.2±0.9 3.3±0.6 3.2±0.6 3.0±0.7

Tiling 86.5±4.6 91.2±4.5(4) 91.7±4.2(6) 90.4±5.6(7) 91.1±5.1(3) 91.2±4.8(7) 90.9±4.4(5) 91.5±3.9(5)

3.7±12.4 11.4±8.1 1.0±0.3 2.0±1.0 8.0±6.0 10.6±5.6 8.7±4.3 11.4±6.1

PTI 86.4±5.1 86.4±5.8(3) 87.1±6.0(3) 86.7±5.4(3) 87.1±5.0(3) 87.5±4.9(3) 86.8±5.5(3) 86.6±5.4(3)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.5±3.3 1.0±0.0 1.0±0.0 1.0±0.0

PC 90.7±5.3 89.3±5.3(3) 91.6±4.8(3) 90.2±3.7(3) 90.7±5.1(3) 91.5±4.8(3) 90.4±4.2(3) 91.2±5.0(3)

5.0±1.5 4.4±1.2 4.8±1.4 4.6±1.2 4.6±1.5 4.5±1.2 4.4±0.9 4.7±1.5

Shift 90.0±5.1 89.7±4.3(3) 89.2±4.8(3) 89.0±5.2(3) 88.4±4.4(3) 89.0±4.9(3) 89.7±5.1(3) 90.1±5.3(3)
4.1±1.5 3.6±1.1 3.7±1.3 3.7±1.1 3.8±1.3 3.7±1.1 3.8±1.2 3.8±1.4
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Table 8. Mammography

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 81.6±3.6 81.6±4.2(3) 83.7±3.8(7) 81.4±3.7(3) 81.7±3.6(3) 81.5±3.7(3) 81.5±4.9(3) 81.7±4.0(7)

7.2±2.3 7.3±2.5 5.8±1.8 6.8±2.1 6.8±2.3 7.3±2.4 6.8±2.4 4.5±1.8

Pyramid 81.6±4.3 81.6±4.7(5) 83.7±3.5(5) 81.4±2.8(5) 81.6±3.2(3) 81.6±4.5(6) 81.5±3.2(7) 81.7±4.0(3)

6.3±1.8 5.4±2.0 7.0±2.7 5.7±2.4 6.0±2.2 5.8±2.2 4.2±1.9 6.0±2.3

Tiling 81.2±3.7 81.5±3.9(7) 84.1±3.0(7) 81.5±3.7(5) 81.7±3.4(4) 81.9±3.5(3) 81.5±4.6(3) 81.4±4.1(3)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PTI 81.0±4.1 81.9±3.5(3) 83.6±4.3(5) 81.8±4.6(3) 81.7±4.3(4) 81.6±4.3(3) 81.8±5.1(4) 81.4±3.1(7)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 81.1±3.3 81.6±4.1(4) 83.3±3.4(6) 81.7±3.7(4) 81.6±4.1(5) 81.6±3.8(3) 81.5±3.1(4) 81.9±4.0(3)

2.3±1.2 2.2±1.1 2.4±1.3 2.2±1.0 2.3±0.9 2.5±1.2 2.2±1.3 2.5±1.2

Shift 81.3±4.2 81.9±4.2(3) 83.3±4.1(5) 82.1±2.9(7) 82.1±3.1(6) 82.0±3.6(4) 82.2±3.8(6) 81.9±4.2(4)

3.9±1.3 6.7±2.9 4.9±1.6 4.8±1.3 4.0±1.3 5.0±1.8 5.0±1.9 4.5±1.4

Table 9. Blood
CoNN OG PW TR CH1 CH2 FI BO LU

Tower 78.0±4.3 78.9±5.1(5) 77.9±5.0(4) 78.7±4.4(4) 78.7±4.3(3) 79.0±3.6(5) 78.8±3.5(4) 78.8±4.9(5)

4.1±1.0 4.9±1.6 8.6±2.9 4.3±1.5 4.9±1.4 5.2±1.8 4.9±1.3 4.8±1.4

Pyramid 77.5±4.6 78.6±5.0(7) 78.0±5.1(6) 78.7±3.8(7) 78.7±5.1(7) 78.9±4.0(6) 78.6±4.5(4) 78.7±4.2(3)

4.6±1.2 4.8±1.7 7.8±2.2 4.5±1.7 4.7±1.6 4.7±1.4 4.6±1.3 4.9±1.6

Tiling 78.1±4.2 78.6±4.6(4) 77.9±4.3(6) 78.6±4.1(5) 78.8±5.4(6) 79.0±4.5(6) 78.6±5.1(3) 78.5±4.2(6)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PTI 77.7±4.3 78.7±4.4(6) 77.8±4.8(4) 78.7±3.8(7) 78.5±4.4(5) 78.8±4.9(4) 78.4±3.8(7) 78.6±3.8(6)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 77.2±4.1 78.7±5.1(7) 77.9±4.8(7) 78.4±4.4(5) 78.7±4.3(3) 78.4±4.5(3) 78.9±5.3(6) 78.6±4.4(4)

1.9±0.7 1.8±1.0 2.3±1.4 2.0±0.7 1.8±0.9 1.7±0.7 2.2±1.0 2.0±0.8

Shift 77.5±4.4 78.6±3.9(5) 77.3±4.8(6) 78.6±6.1(3) 78.7±4.7(4) 78.5±5.2(3) 78.3±4.8(5) 78.5±4.6(6)

1.6±0.7 2.6±1.2 6.7±2.2 2.4±1.0 2.2±0.9 2.3±1.0 2.5±1.1 2.9±1.3

Table 10. Ionosphere

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 88.4±5.3 91.2±3.9(5) 91.4±5.2(6) 90.1±5.1(6) 90.0±5.2(3) 90.6±5.1(7) 90.9±4.9(5) 92.2±4.4(5)
5.8±1.0 3.1±0.7 1.1±0.3 2.0±0.6 3.2±0.8 3.0±0.5 3.2±0.6 2.8±0.7

Pyramid 88.2±5.3 91.2±4.5(4) 91.7±4.2(6) 91.0±4.7(6) 90.5±4.9(3) 91.5±3.2(4) 91.0±4.0(3) 91.7±4.1(7)
5.9±1.1 3.3±0.6 1.0±0.2 2.0±0.6 3.2±0.9 3.3±0.6 3.2±0.6 3.0±0.7

Tiling 86.5±4.6 91.2±4.5(4) 91.7±4.2(6) 90.4±5.6(7) 91.1±5.1(3) 91.2±4.8(7) 90.9±4.4(5) 91.5±3.9(5)

3.7±12.4 11.4±8.1 1.0±0.3 2.0±1.0 8.0±6.0 10.6±5.6 8.7±4.3 11.4±6.1

PTI 86.4±5.1 86.4±5.8(3) 87.1±6.0(3) 86.7±5.4(3) 87.1±5.0(3) 87.5±4.9(3) 86.8±5.5(3) 86.6±5.4(3)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.5±3.3 1.0±0.0 1.0±0.0 1.0±0.0

PC 90.7±5.3 89.3±5.3(3) 91.6±4.8(3) 90.2±3.7(3) 90.7±5.1(3) 91.5±4.8(3) 90.4±4.2(3) 91.2±5.0(3)

5.0±1.5 4.4±1.2 4.8±1.4 4.6±1.2 4.6±1.5 4.5±1.2 4.4±0.9 4.7±1.5

Shift 90.0±5.1 89.7±4.3(3) 89.2±4.8(3) 89.0±5.2(3) 88.4±4.4(3) 89.0±4.9(3) 89.7±5.1(3) 90.1±5.3(3)
4.1±1.5 3.6±1.1 3.7±1.3 3.7±1.1 3.8±1.3 3.7±1.1 3.8±1.2 3.8±1.4
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Table 11. Credit (German)

CoNN OG PW TR CH1 CH2 FI BO LU

Tower 75.2±3.5 75.8±4.2(6) 74.0±3.5(6) 75.3±3.9(3) 75.5±5.4(3) 75.6±4.0(6) 75.6±4.3(4) 75.6±4.9(7)

3.6±1.1 2.0±1.0 2.8±1.2 2.5±1.1 2.6±1.1 2.4±1.1 2.3±0.9 2.1±0.9

Pyramid 74.7±4.0 75.4±3.7(6) 74.7±4.2(7) 75.6±3.4(4) 75.6±4.4(3) 75.2±4.0(6) 75.4±3.6(6) 75.8±4.2(6)
4.6±1.9 2.8±1.3 3.0±1.4 3.0±1.8 2.9±1.4 3.1±1.7 2.4±1.4 3.2±1.6

Tiling 73.0±4.0 73.9±3.5(3) 73.0±5.0(7) 74.5±4.7(7) 73.7±4.7(3) 73.6±4.5(7) 73.7±4.3(7) 73.8±4.4(5)

124.2±109.0 92.3±98.1 65.0±81.3 60.8±80.4 85.4±82.3 69.1±72.1 69.6±75.4 64.0±77.5

PTI 74.6±4.5 74.8±3.1(5) 74.2±3.1(5) 75.0±3.4(3) 75.2±4.0(6) 75.6±4.9(4) 75.5±4.4(4) 74.7±4.2(6)

1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

PC 74.3±5.1 75.3±4.5(5) 74.2±4.1(7) 75.8±4.4(3) 75.6±3.9(3) 75.3±4.5(3) 75.3±3.2(4) 75.2±4.8(3)

2.4±1.7 2.1±1.4 2.4±1.2 2.3±1.6 2.0±1.0 2.6±1.5 2.1±1.2 2.1±1.3

Shift 74.6±3.7 74.6±4.1(3) 74.1±3.9(3) 74.3±4.1(3) 73.9±3.9(3) 74.3±4.9(3) 74.2±4.6(3) 74.3±3.9(3)

24.4±8.2 23.6±7.3 25.0±7.4 24.9±7.3 23.5±8.2 23.0±8.6 24.2±5.9 22.8±7.6

satisfy the faithfulness criterion and this may led
to more robust NN. However, sometimes the same
bias may lead to overfitting, by growing oversized
NNs with poor generalization performance, as hap-
pened in the Artificial, Pima and Credit domains.
The PTI algorithm also depends on a faithfulness
criterion to build the NN; however its faithfulness
criteria is frequently harder to be fulfilled than the
one required by the Tiling. It is important to point
out that there is no single CoNN learning algorithm
that has the best results in all domains; but there is
always one algorithm that has higher accuracy us-
ing functionally expanded data than when using the
original data.

Figure 4. Mean accuracy variation between the
results obtained when considering functional
expansions and the results obtained with the

original data. The results are grouped by CoNN
learning algorithms and functional expansions

Finally in Figure 5 the results for the real data
domains are grouped by CoNN and function expan-
sion, aiming to uncover which CoNN algorithms
presented the best results and which are the best

functional expansion for each of them. Notice that,
Tiling, again, was the most favored algorithm by the
use of a functional expansion, again due to the sat-
isfiability of the faithfulness criterion. The Trigono-
metric expansion has given good results, especially
for Tiling and PC; however, compared to the other
expansions, it did not seem a good option for the
PTI. The Fibonacci and Boubaker functional expan-
sions had the most consistent results. When using
either of them, the results on average accuracy in-
crease in 1%, when compared with results obtained
with the original data.

Figure 5. Mean accuracy variation between the
results obtained when considering functional
expansions and the results obtained with the

original data. The results are grouped by CoNN
learning algorithms and functional expansions

The results presented in this paper were ob-
tained through a consistent and standard process
aiming to establish a fair comparison among differ-
ent functional expansions. It is important to men-
tion that the adopted conditions may not be the best
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for all of the presented situations. For example,
if more iterations of the PRM algorithm had been
used, not all the results would be enhanced due to
overfitting in some cases or, if a different stopping
condition was employed for the CoNN learning al-
gorithms, it would also affect differently each of
them. Therefore, in practical situations, all these
details need to be taken into account when select-
ing a definitive NN model. Nonetheless, this work
corroborates and completes the work presented in
[3] by providing more empirical evidence for stat-
ing that the use of functionally expanded input data,
when learning with CoNN, enhances the quality of
the induced NN.

6 Conclusion

This paper aimed to verify whether, and up to
what extent, CoNN accuracy performance can be
enhanced by functionally extending the input data,
prior to training and classification. For the expe-
riments, seven different functions were chosen to
implement the functional expansions and a compar-
ison among them was conducted. The experiments
also considered six CoNN learning algorithms and
ten data domains. The obtained results confirm
the previous work conclusions, showing that the
performance of CoNN algorithms can be enhanced
through functional expansion. However, the extent
of the possible enhancement is domain dependent
and some particular function may work better than
others on different data domains.
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for all of the presented situations. For example,
if more iterations of the PRM algorithm had been
used, not all the results would be enhanced due to
overfitting in some cases or, if a different stopping
condition was employed for the CoNN learning al-
gorithms, it would also affect differently each of
them. Therefore, in practical situations, all these
details need to be taken into account when select-
ing a definitive NN model. Nonetheless, this work
corroborates and completes the work presented in
[3] by providing more empirical evidence for stat-
ing that the use of functionally expanded input data,
when learning with CoNN, enhances the quality of
the induced NN.

6 Conclusion

This paper aimed to verify whether, and up to
what extent, CoNN accuracy performance can be
enhanced by functionally extending the input data,
prior to training and classification. For the expe-
riments, seven different functions were chosen to
implement the functional expansions and a compar-
ison among them was conducted. The experiments
also considered six CoNN learning algorithms and
ten data domains. The obtained results confirm
the previous work conclusions, showing that the
performance of CoNN algorithms can be enhanced
through functional expansion. However, the extent
of the possible enhancement is domain dependent
and some particular function may work better than
others on different data domains.
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