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Abstract

Electromagnetism-like Mechanism (EM) method is known as one of metaheuristics. The
basic idea is one that a set of parameters is regarded as charged particles and the strength
of particles is corresponding to the value of the objective function for the optimization
problem. Starting from any set of initial assignment of parameters, the parameters con-
verge to a value including the optimal or semi-optimal parameter based on EM method.
One of its drawbacks is that it takes too much time to the convergence of the parameters
like other meta-heuristics. In this paper, we introduce hybrid methods combining EM
and the descent method such as BP, k-means and FIS and show the performance compar-
ison among some hybrid methods. As a result, it is shown that the hybrid EM method is
superior in learning speed and accuracy to the conventional methods.

1 Introduction

Metaheuristics are generally applied to prob-
lems for which there are few effective problem-
oriented algorithms to solve them. They are
widely used to solve complex problems in sci-
ence, engineering and so on [1]. Well-known
metaheuristics are random search (RS) by Matyas
(1965), the simulated annealing (SA) by Kirk-
patrick (1982), genetic algorithm (GA) by Goldberg
(1989), bee colonies (BC) by Walker (1993), parti-
cle swarm optimization (PSO) by Kennedy (1995),
electromagnetism-like mechanism (EM) (2005) and
so on [1, 2, 3, 5]. Any of those methods is not
always universal, so problem-oriented algorithm
must be selected for each problem. The difficult
points are to search effectively vast space to find
the optimal or semi-optimal solution of the objec-
tive function [1]. The criterion to select any method
of metaheuristics is how effective the search of the
solution is performed by using global and local

searches. It is well known that local search takes
too much time [1, 4]. In order to construct the ef-
fective algorithm, a fast local search with high ac-
curacy is required. Therefore, though many hybrid
methods combining metaheuristics and BP or FIS
method are introduced, the satisfactory method is
not always obtained [7, 8, 9, 15, 16, 17, 18]. RS,
PSO and EM methods are well known as meta-
heuristics and their convergence to a solution for
algorithms is guaranteed [2, 5, 7]. EM method is
more complicate than RS, but is fewer in the num-
ber of parameters than PSO. Further, it is known
that PSO and EM methods have the same capability
in accuracy [6] and they are superior in accuracy to
RS method. On the other hand, a lot of algorithms
based on the descend method are known such as BP,
vector quantization and FIS and some hybrid meth-
ods have been proposed [15, 16]. However, the gen-
eral hybrid methods combining EM and the descent
method are not introduced.
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In this paper, we introduce hybrid methods
combining EM method and steepest descent meth-
ods including BP and show the performance com-
parison among some hybrid methods. EM is known
as one of random search algorithms [5, 6, 10, 11].
The basic idea is that a set of parameters is regarded
as position of charged particles and the charge of
the particles is corresponding to the value of the ob-
jective function for the optimization problem. First,
a plural of charged particles are distributed in the
domain and the update of global and local searches
based on the strength of the charge is repeated. The
problem is one that it takes too much time to con-
vergence of the parameters like other random search
methods. In order to improve them, hybrid EM
methods combining EM with the descend methods
such as BP, k-means and FIS as local search are in-
troduced and are compared with the conventional
methods. Though we assume to use BP, k-means
and FIS methods, we can also consider hybrid EM
method based on other steepest descent methods
[12]. In the section 2, the conventional method of
metaheuristics as EM and RS, BP, k-means and FIS
are introduced. In the section 3, some hybrid EM
methods are introduced. In the section 4, the results
of some numerical simulations are shown and the
effectiveness of hybrid EM methods with descent
method is demonstrated.

2 Preliminaries

Let RRR be the set of all real numbers. Let Zi =
{1, · · ·, i} for positive integer i. Let J = [0,1] be the
set of all real numbers between 0 and 1. The prob-
lem is finding an optimal or semi-optimal solution
of a non-linear optimization problem with boundary
variables in the form;

min
LLL≤xxx≤UUU

f (xxx) (1)

where f (xxx) is the evaluation function to be mini-
mized, xxx∈RRRn is the variable vector (parameter), and
LLL = (l1, · · ·, ln) and UUU = (u1, · · ·,un) are the lower
and upper bounds of xxx, respectively.

For example, let us consider a neural network.
Given learning data, let us determine the weights of
neural network identifying the learning data. In the
case, the mean square error between learning data

and output of the network corresponds to evalua-
tion function and the weights of the network corre-
sponds to parameters.

In general, metaheuristics provide how to find
the optimum or semi-optimum solution effectively.
They consist of global and local searches. In the
following, some methods used for local and global
searches are introduced.

2.1 EM method

Algorithm EM(m, MAX , LS, δ)
{xxxi|i∈Zm}: the set of parameters
MAX : maximum number of iterations
LS: maximum number of iterations for local search
δ: local search parameter, δ∈J
1: Initialize()
2: iteration ←1
3: while iteration < MAX do
4: Local(LS, δ)
5: F←Calc F()
6: Move(F)
7: iteration ← iteration + 1
8: end while

Figure 1. Outline of EM method

EM algorithm simulates the interaction, attrac-
tion and repulsion, caused by electromagnetic force
between electrically charged particles. The general
scheme of EM method is shown as Fig.1 [5]. It con-
sists of four phases. In the step 1, a set of particles
is initialized. In the step 4, local search to find lo-
cal optimum is performed. In the step 5, the force
worked on each particle is calculated. In the step
6, each particle moves in the direction of the com-
pounded force.

In the Initialization step, the sample points,
MAX , LS, and δ are given. Fig. 2 shows the al-
gorithm of local search of the step 4 in Fig.1 [5].

Algorithm Local(LS, δ)
uk: the k-th element of upper bound for k∈Zn

lk: the k-th element of lower bound for k∈Zn

U(0,1): standard uniform distribution in [0,1]
1: counter ←1
2: Length ← δ (maxk{uk − lk})
3: for i = 1 to m do
4: for k = 1 to n do
5: λ1 ← U (0, 1)
6: while counter < LS do
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EM algorithm simulates the interaction, attrac-
tion and repulsion, caused by electromagnetic force
between electrically charged particles. The general
scheme of EM method is shown as Fig.1 [5]. It con-
sists of four phases. In the step 1, a set of particles
is initialized. In the step 4, local search to find lo-
cal optimum is performed. In the step 5, the force
worked on each particle is calculated. In the step
6, each particle moves in the direction of the com-
pounded force.

In the Initialization step, the sample points,
MAX , LS, and δ are given. Fig. 2 shows the al-
gorithm of local search of the step 4 in Fig.1 [5].

Algorithm Local(LS, δ)
uk: the k-th element of upper bound for k∈Zn

lk: the k-th element of lower bound for k∈Zn

U(0,1): standard uniform distribution in [0,1]
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3: for i = 1 to m do
4: for k = 1 to n do
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PERFORMANCE COMPARISON OF . . .

7: yyy ← xxxi

8: λ2 ← U (0, 1)
9: if λ1 > 0.5 then
10: yk←yk +λ2(Length)
11: else
12: yk←yk −λ2(Length)
13: end if
14: if f (yyy)< f (xxxi) then
15: xxxi←yyy
16: counter ← LS - 1 17: end if
18: counter ← counter + 1
19: end while
20: end for
21: end for
22: xxxbest←argmin

xxxi
{ f (xxxi)}

Figure 2. Local search of EM algorithm

In the algorithm Local(LS, δ), a neighbor point
yyy for the parameter xxx is given and f (xxx) is compared
with f (yyy). In the case of f (yyy)< f (xxx), xxx is set to yyy.
In other case, the same process for other neighbor yyy′′′

is repeated. After local searches for all parameters
are performed, xxxbest is updated.

Figs.3 and 4 show the algorithm of global
search that the new position of each particle in the
electromagnetic theory is computed [5].

Algorithm Calc F()
||aaa − bbb||: the distance between aaa and bbb, where

||aaa||=
√

∑m
i=1 a2

i for aaa = (a1, · · ·,an)

1: for i=1 to m
2: qi←exp

(
−n ( f (xxxi)− f (xxxbest))

∑n
k=1( f (xxxk)− f (xxxbest))

)

3: Fi ← 0
4: end for
5: for i=1 to m
6: for j=0 to m
7: if f (xxxi)< f (xxx j) then
8: Fi ← Fi + (xxxi − xxx j) qiq j

||xxxi−xxx j||2
9: else
10: Fi ← Fi - (xxxi − xxx j) qiq j

||xxxi−xxx j||2
11: end if
12: end for
13: end for

Figure 3. The force of each particle in EM

Algorithm Move (F)
1: for i=1 to m
2: if i̸=best then

3: α ← U(0,1)
4: Fi ← Fi

||Fi||
5: for k=1 to N
6: if Fi

k > 0 then
7: xi = xi +αFi

k(uk − xi
k)

8: else
9: xi = xi +αFi

k(x
i
k − lk)

10: end if
11: end for
12: end if
13: end for

Figure 4. The movement of each particle in EM

2.2 Three-layered neural network and BP
method

Let us consider the case of n inputs and one
output without loss of generality. Let zzzi∈Jn

for i∈Zl and d : Jn→J. Giving learning data
{(zzzi,d(zzzi))|i∈Zl}, let us determine the three-layered
neural network identifying the learning data by BP
method [12]. Let h = g◦e : Jn→J be the function
defined by a neural network. Let the number of el-
ements in second layer be p. Let www j for j∈Zp and
vvv be weights for the second and output layers, re-
spectively. Then g and e are defined as follows (See
Fig.5):

y j = e j(zzz) = τ

(
n

∑
i=0

wi jzi

)
,

z0 = 1,

τ(u) =
1

1+ exp(−u)

where

zzz = (z1, · · ·,zn)∈Jn

yyy = (y1, · · ·,yp)∈Jp

and w0 j means the threshold value.

Further,

g(yyy) = τ

(
p

∑
j=0

v jy j

)
,

y0 = 1,

where v0 means the threshold value.
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Then, the evaluation function is defined as fol-
low:

E =
1
2l

l

∑
i=1

||h(zzzi)−d(zzzi)||2 (2)

The weights www and vvv are updated based on BP
method as follow [12]:

△vi =−α1

l

l

∑
k=1

δ2k(zzzk)ei(zzzk) (3)

△wi j =−α2

l

l

∑
k=1

δ1 j(zzzk)zk
i (4)

(i = 0, · · ·, p, j = 1, · · ·,n)

where α1 and α2 are learning coefficients,

δ2 j(zzz) = (h(zzz)−d(zzz))h(zzz)(1−h(zzz))e j(zzz) (5)

and

δ1 j(zzz) = δ2 jv je j(zzz)(1− e j(zzz)). (6)

Figure 5. Three-layered neural network

2.3 Clustering by k-means method

Vector quantization techniques encode a data
space, e.g., a subspace V⊆RRRn, utilizing only a finite
set W = {wwwi|i∈Zr} of reference vectors (also called
cluster centers), which n and r are positive integers.
Let us introduce k-means method as one of vector
quantization techniques [13].

Let the winner vector wwwi(vvv) be defined for any
vector vvv∈V as follows:

i(vvv) = argmin
i∈Zr

||vvv−wwwi|| (7)

From the finite set W,V is partitioned as follows:

Vi = {vvv∈V |||vvv−wwwi||≤||vvv−www j|| f or j∈Zr} (8)

The evaluation function for the partition is defined
as follows:

E =
r

∑
i=1

∑
vvv∈Vi

||vvv−wwwi(vvv)||2 (9)

Each parameter www is updated based on the steepest
descent method as follow [13]:

△wwwi = εδi j(vvv(t))(vvv(t)−wwwi) (10)

where t is the step, ε is learning constant and δi j is
Kronecker Delta. vvv(t) means data selected from V
randomly at step t. The k-means method is denoted
by KM.

2.4 Fuzzy inference system and learning
algorithm

The conventional fuzzy inference system (FIS)
using delta rule is described[12, 15, 19]. Let
{
(
zzzi,d(zzzi)

)
} be the set of learning data. The rule

of simplified FIS is expressed as

R j if z1 is M1 j and · · · zn is Mn j then y is w j (11)

where j ∈ Zc is a rule number, i∈Zn is a variable
number, Mi j is a membership function of the an-
tecedent part, and w j is the weight of the consequent
part.

A membership value of the antecedent part µi

for input zzz is expressed as

µ j =
n

∏
i=1

Mi j(zi) (12)

where Mi j is the membership function of the an-
tecedent part. Let ci j and bi j denote the center and
the wide values of Mi j, respectively.
If Gaussian membership function is used, then Mi j

is expressed as follow:

Mi j = exp

(
−1

2

(
z j − ci j

bi j

)2
)
. (13)

The output y∗ of fuzzy inference is calculated
by the following equation.

y∗ =
∑c

i=1 µi ·wi

∑c
i=1 µi

(14)

Algorithm Move (F)
1: for i=1 to m
2: if i̸=best then
3: α ← U(0,1)
4: Fi ← Fi

||Fi||
5: for k=1 to N
6: if Fi

k > 0 then
7: xi = xi +αFi

k(uk − xi
k)

8: else
9: xi = xi +αFi

k(x
i
k − lk)

10: end if
11: end for
12: end if
13: end for

Figure 4: The movement of each particle in EM
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where
zzz = (z1, · · ·,zn)∈Jn

yyy = (y1, · · ·,yp)∈Jp

and w0 j means the threshold value.
Further,

g(yyy) = τ

(
p

∑
j=0

v jy j

)
,

y0 = 1,

where v0 means the threshold value.
Then, the evaluation function is defined as follow:

E =
1
2l

l

∑
i=1

||h(zzzi)−d(zzzi)||2 (2)

The weights www and vvv are updated based on BP
method as follow [12]:
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2
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PERFORMANCE COMPARISON OF . . .

The evaluation function E is defined to evalu-
ate the inference error between the desirable output
yr (= d(zzz)) and the inference output y∗.

E =
1
2
(y∗ − yr)2 (15)

In order to minimize the objective function E,
each parameter α ∈ {ci j,bi j,w j} is updated based
on descent method.

α(t +1) = α(t)−Kα
∂E
∂α

(16)

where t is iteration time and Kα is a constant.

∂E
∂ci j

= (y∗ − yr)(wi − y∗)
µi

∑c
i=1µi

(z j − ci j)

b2
i j

(17)
∂E
∂bi j

= (y∗ − yr)(wi − y∗)
µi

∑c
i=1µi

(z j − ci j)
2

b3
i j

(18)
∂E
∂wi

= (y∗ − yr)
µi

∑c
i=1µi

(19)

3 Hybrid EM algorithms

EM method [1] is an effective method of meta-
heuristics to solve the optimization problem. On the
other hand, it takes too much time to converge to an
optimum or semi-optimum solution. Therefore, we
propose hybrid algorithms combining EM method
with the steepest decent methods such as k-means
and BP methods.

Figure 6. The figure to explain hybrid EM
algorithm

Why is the hybrid algorithm needed? Let us
explain the reason using EM and BP methods. As
shown in Fig.6, the evaluation value E(www,vvv) is de-
termined based on the parameters www and vvv. The ini-
tial vectors are selected randomly and the vectors
are updated by local search. Since BP method is
based on the steepest descent method, E(www,vvv) al-
ways decreases. On the other hand, local search
in the conventional EM and other methods needs
to find a new vector which decreases E(www,vvv) and
it takes too much time. Further, if E(www,vvv) does
not decrease so much, then the vector moves to
a new position by using the force F . Then, the
evaluation value E(wwwnew,vvvnew) for new parameters,
wwwnew and vvvnew, is lower than or equal to the eval-
uation value E(wwwold ,vvvold) for old parameters, wwwold

and vvvold . Continuing the processes, the vector is up-
dated so as to improve the function E(www,vvv). In the
case of BP algorithm, it is possible only to search
the vectors (parameters) locally and is difficult to
search them globally. Hence, global search such
as moving by F in the proposed method is needed.
Likewise, the other hybrid methods using the steep-
est descent methods are also interpreted.

3.1 Hybrid EM method with BP

A hybrid EM method with BP (HEM-BP) em-
ploys BP method [12] which is one of the steep-
est descent ones. In HEM-BP, the parameter xxx of
EM method represents a set of the weights www and vvv
for three layered neural network. For the algorithm
of HEM-BP, Local(LS, δ) in Fig.1 is replaced with
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time. Further, if E(www,vvv) does not decrease so much,
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force F . Then, the evaluation value E(wwwnew,vvvnew)
for new parameters, wwwnew and vvvnew, is lower than or
equal to the evaluation value E(wwwold ,vvvold) for old pa-
rameters, wwwold and vvvold . Continuing the processes,
the vector is updated so as to improve the function
E(www,vvv). In the case of BP algorithm, it is possible
only to search the vectors (parameters) locally and
is difficult to search them globally. Hence, global
search such as moving by F in the proposed method
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based on the steepest descent method with the learn-
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MAX , LS and ε, and it will be denoted as HEM-
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A hybrid EM method with FIS (HEM-FIS) employs
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for FIS. In HEM-FIS, X = {xxxi|i∈Zm} means the set
of parameters of FIS, ccc, bbb and www (or only www). For
the algorithm of HEM-FIS, Local(LS, ε) in Fig.1
is replaced with a FIS procedure FIS(LS, ε) whose
flowchart is shown in Fig.9, where LS and ε are the
number of learning and the the threshold for local
search, respectively. The FIS procedure receives the
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in X from the calling side. According to the proce-
dure, they are updated based on the descent method
with the learning data {(zzzi,d(zzzi)|i∈Zl} and given to
the calling side. HEM-FIS involves additional pa-
rameters MAX , LS and ε, and it will be denoted as
HEM-FIS(MAX , LS, ε).
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3.4 Hybrid Random Search Algorithm with
BP

In order to compare the proposed hybrid EM method
with the conventional hybrid one, let us consider
the hybrid random search algorithm with BP [4, 8].
The method is well known as one of hybrid meth-
ods and is composed of random search algorithm
and BP method, which are used for global and lo-
cal searches, respectively. The method will be de-
noted as HRS-BP(MAX , LS, RS, ε0, ε1), where
MAX , LS and RS are the maximum learning times
for global, local and random searches, respectively,
and ε0 and ε1 are the threshold for random search and
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FIS procedure receives the set of parameters X
and the best parameters xxxbest in X from the call-
ing side. According to the procedure, they are up-
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3.4 Hybrid Random Search Algorithm
with BP

Figure 10. The flowchart of HRS-BP(MAX , LS,
rs, ε0, ε1)

In order to compare the proposed hybrid EM
method with the conventional hybrid one, let us
consider the hybrid random search algorithm with
BP [4, 8]. The method is well known as one of hy-
brid methods and is composed of random search al-
gorithm and BP method, which are used for global
and local searches, respectively. The method will
be denoted as HRS-BP(MAX , LS, RS, ε0, ε1), where
MAX , LS and RS are the maximum learning times
for global, local and random searches, respectively,
and ε0 and ε1 are the threshold for random search
and BP method, respectively. Fig. 10 shows the
flowchart of HRS-BP(MAX , LS, rs, ε0, ε1), where
D is the constrained domain of parameters.

Figure 9: The flowchart of FSI(LS, ε)

BP method, respectively. Fig.10 shows the flowchart
of HRS-BP(MAX , LS, rs, ε0, ε1), where D is the con-
strained domain of parameters.

3.5 Hybrid PSO method with BP

In order to compare the proposed hybrid EM method
with the conventional hybrid one, let us introduce hy-
brid PSO method with BP(HPSO-BP) as the same
method as section 3.1. PSO is well known as the
popular one of metaheuristic methods [9, 18]. Figs.
11 and 12 show the basic PSO algorithm and the out-
line of HPSO-BP with the parameters MAX , LS, Tmax

Figure 10: The flowchart of HRS-BP(MAX , LS, rs,
ε0, ε1)

and δ.

4 Numerical simulations

4.1 The learning speed of hybrid methods
for EX-OR problem

In order to compare the speed of learning for BP,
EM and HEM-BP methods, a simulation of learn-
ing for EX-OR problem with two variables is per-
formed as one example. The EX-OR problem is
the logical function defined by y = x1⊕x2, where
x1,x2,y∈{0,1} and ⊕ means the Exclusive OR op-
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3.5 Hybrid PSO method with BP

Algorithm PSO(Tmax)
Initialize():
xxxi←U(LLL,UUU) for i∈Zm

ppp←xxxi for i∈Zm

xxxbest←argmin
i
{ f (xxxi)}

vvvi←U(−|UUU −LLL|, |UUU −LLL|)
w, c1, c2;parameters
1: counter ← 1
2: while counter < Tmax

3: for i=1 to m
4: r1, r2←U(0, 1)
5: for k=1 to n
6: vi

k←wvi
k + c1r1(pi

k − xi
k)+ c2r2(xbest

k − xi
k)

7: end for
8: xxxi←xxx+ vvvi

9: if f (xxxi)< f (pppi)
10: pppi←xxxi

11: end if
12: end for
13: end while
14: xxxbest←argmin

i
{ f (pppi)}

Figure 11. PSO algorithm

Algorithm HPSO-BP(MAX , LS, Tmax, δ)
1: Initialize
2: Iteration←1
3: while iteration < MAX
4: BP(LS, δ)
5: PSO(Tmax)
6: iteration ← iteration + 1
7: end while

Figure 12. HPSO-BP algorithm

In order to compare the proposed hybrid EM
method with the conventional hybrid one, let us in-
troduce hybrid PSO method with BP(HPSO-BP) as
the same method as section 3.1. PSO is well known
as the popular one of metaheuristic methods [9, 18].
Figs. 11 and 12 show the basic PSO algorithm and
the outline of HPSO-BP with the parameters MAX ,
LS, Tmax and δ.

4 Numerical simulations

4.1 The learning speed of hybrid methods
for EX-OR problem

In order to compare the speed of learning for
BP, EM and HEM-BP methods, a simulation of
learning for EX-OR problem with two variables is
performed as one example. The EX-OR problem
is the logical function defined by y = x1⊕x2, where
x1,x2,y∈{0,1} and ⊕ means the Exclusive OR op-
eration [12]. Fig. 13 shows the average of ten trials
for learning of three methods. The result shows that
HEM-BP algorithm is superior in learning speed to
the other ones, where MSE means the mean square
error.

Figure 13. The learning speed of hybrid EM
algorithm for EX-OR problem

4.2 The approximation capability of
HEM-BP

In order to compare the approximation capabil-
ity of HEM-BP with the conventional methods, two
simulation are performed.

4.2.1 Function approximation

This simulation uses four systems specified by
the following functions with [0,1]4(Eqs.(20) and
(21)) and [−1,1]4(Eqs.(22) and (23)). The numbers
of data for learning and test are 225 and 6400, re-
spectively.
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The following algorithms are compared and three-
layered neural network with p = 12 is used, where
α1 = α2 = 0.1 for all and w = 1.0, c1 = c2 = 0.1 for
HPSO-BP.
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In order to compare the proposed hybrid EM
method with the conventional hybrid one, let us in-
troduce hybrid PSO method with BP(HPSO-BP) as
the same method as section 3.1. PSO is well known
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the outline of HPSO-BP with the parameters MAX ,
LS, Tmax and δ.
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The following algorithms are compared and
three-layered neural network with p = 12 is used,
where α1 = α2 = 0.1 for all and w = 1.0, c1 = c2 =
0.1 for HPSO-BP.

1. BP(105, 10−5)

2. HRS-BP(20, 5000, 105, 10−5, 10−5)

3. HPSO-BP(20, 5000, 106, 10−5)

4. HEM-BP(20, 5000, 10−5)

Table 1 shows the result for four algorithms (1), (2),
(3) and (4), where the upper and lower values in
each box show MSE(×10−4) for learning and test
data, respectively.

Table 1. Result of function approximation for
HEM-BP

Eq.(20) Eq.(21) Eq.(22) Eq.(23)
(1) 0.68 21.29 1.46 1.28

1.26 36.32 3.47 1.75
(2) 0.60 14.31 1.09 0.80

1.09 25.06 3.20 1.35
(3) 0.50 10.38 1.01 0.96

1.17 20.54 2.74 1.68
(4) 0.32 5.40 0.62 0.62

0.81 16.33 2.62 1.30

HEM-BP is superior in accuracy to BP and is
the same capability as HPSO-BP.

4.2.2 Classification problem

Iris, Wine, Sonar and BCW data from USI
database shown in Table 2 are used for numerical
simulation [14]. In this simulation, 5-fold cross val-
idation is used. Then, the following algorithms are
compared and three-layered neural network with
p = 20 is used, where α1 = α2 = 0.1.

1. BP (50000, 10−5)

2. EM(500, 5)

3. HRS-BP(500, 1000, 10000, 10−5, 10−5)

4. HEM-BP(500, 1000, 10−5)

Table 2. Data for classification problem

The The The
number number number
of input of clusters of data

iris 4 3 150
wine 13 3 178
sonar 60 2 208
BCW 9 2 683

Table 3 shows the result of classification for
four algorithms (1), (2), (3) and (4), where the val-
ues in each box mean the rate of misclassification
(%) of MSE in the upper and one of minimum and
maximum errors in the lower.

Table 3. Result of classification for HEM-BP

iris wine sonar BCW
(1) 4.0 13.7 18.5 4.3

[0.0, 10.0] [11.4, 20.0] [14.6, 24.4] [2.2, 8.1]

(2) 4.0 16.6 19.5 4.3
[0.0, 6.7] [8.6, 25.7] [12.2, 29.3] [2.2, 6.6]

(3) 4.7 9.7 19.5 4.3
[0.0, 13.3] [5.7, 14.3] [17.1, 24.4] [2.9, 5.1]

(4) 3.3 4.0 15.1 4.0
[0.0, 6.7] [2.2, 5.1] [9.1, 24.4] [2.2, 5.1]

Table 3 shows that HEM-BP is most effective in
four algorithms.
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4.3 HEM-KM for clustering

In order to compare the capability of clustering
for four algorithms, data of Table 2 are also used.
Then, the following algorithms are used.

1. KM(50000, 10−4)

2. EM(500, 1000)

3. HRS-KM(500, 1000, 10000, 10−4, 10−4)

4. HEM-KM(500, 1000, 10−4)

Table 4 shows the result of classification for the
above four algorithms (1), (2), (3) and (4), where
each value in each box is the same meaning as one
in 4.2. As shown in Table 4, HEM-KM is superior
in accuracy to other methods.

Table 4. Result of clustering for HEM-KM

iris wine sonar BCW
(1) 11.3 19.7 45.6 3.9

[4.0, 33.3] [5.6, 33.9] [43.8, 46.2] [3.8, 4.0]

(2) 4.5 39.7 46.6 4.4
[4.0, 6.7] [36.5, 40.0] [46.6, 46.6] [4.0, 5.0]

(3) 4.0 23.1 45.7 3.9
[4.0, 4.0] [5.6, 41.6] [45.7, 45.7] [3.8, 4.0]

(4) 4.0 6.8 45.0 4.0
[4.0, 4.0] [6.2, 7.3] [44.7, 45.7] [3.9, 4.0]

4.4 The approximation capability of
HEM-FIS

In order to compare the approximation capabil-
ity of HEM-FIS, two simulations are performed.
Further, the following cases for learning are per-
formed.
Case 1: The parameters for learning are ccc, bbb and www.
Case 2: the parameter for learning is www.

4.4.1 Function approximation

This simulation uses four systems specified by
the functions Eqs.(20), (21), (22) and (23), where
c = 81 in Case 1 and c = 256 in Case 2 and Kc =
Kb = 0.01 and Kw = 0.1 in all cases.

The following algorithms are compared:

1. FIS(20000, 10−5)

2. HRS-FIS(20, 1000, 10000, 10−5, 10−5)

3. HEM-FIS(20, 1000, 10−5)

Tables 5 and 6 show the results for Case 1 and
Case 2, respectively. The number of data for learn-
ing is 512, and for test is 6400. The learning rate are
Kc = 0.01, Kw = 0.01 and Kw = 0.1, respectively.
The results show that HEM-FIS is superior to other
algorithms in all cases.

Table 5. Result of function approximation for FIS
in Case 1.

Eq.(20) Eq.(21) Eq.(22) Eq.(23)
(1) 0.10 0.10 0.10 0.10

1.92 3.29 1.62 3.29
(2) 0.08 0.09 0.10 0.09

1.83 2.56 2.05 2.56
(3) 0.09 0.09 0.09 0.09

1.92 2.79 1.56 2.79

Table 6. Result of function approximation for FIS
in Case 2.

Eq.(20) Eq.(21) Eq.(22) Eq.(23)
(1) 0.41 0.10 1.83 1.83

7.74 14.47 23.89 21.16
(2) 1.26 1.87 2.88 2.99

21.76 23.96 31.63 33.85
(3) 0.38 1.11 2.15 1.95

3.27 7.69 14.32 13.81

4.4.2 Classification problem

The following classification problem is per-
formed as numerical simulation: In the classifica-
tion problems, points on [0,1]3 are classified into
two classes: class 0 and class 1. The class bound-
aries are given as spheres centered at (0.5,0.5,0.5).
For Sphere, the inside of sphere is associated with
class 1 and the outside with class 0. For Double-
Sphere, the area between Spheres 1 and 2 is associ-
ated with class 1 and the other area with class 0.
For triple-Sphere, the inside of Sphere 1 and the
area between Sphere 2 and Sphere 3 is associated
with class1 and the other area with class 0. Fig. 14
shows the case of Triple-Sphere.
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Figure 14. Triple-Sphere for two-category
classification problem

Then, three algorithms are performed:

1. FIS(20000, 10−4)

2. HRS-FIS(20,1000,10000,10−4,10−4)

3. HEM-FIS(20, 1000, 10−4)

Tables 7 and 8 show the results for c = 27 in
Case 1 and c = 125 in Case 2, respectively. The
numbers of data for learning and test are 512 and
6400, respectively. Each value in each box is same
as Table 3. The results show that HEM-FIS is supe-
rior to other algorithms.

Table 7. Result of classification problem for FIS in
Case 1.

Sphere Double-Sphere Triple-Sphere
(1) 2.7 7.5 8.1

[1.5, 3.8] [6.2, 8.6] [6.4, 9.4]
(2) 2.6 6.6 7.8

[2.0, 3.6] [5.4, 9.7] [6.0, 10.5]
(3) 2.4 6.9 7.7

[1.6, 2.9] [6.1, 7.6] [6.4, 9.2]

Table 8. Result of classification problem for FIS in
Case 2.

Sphere Double-Sphere Triple-Sphere
(1) 3.3 5.1 5.6

[2.7, 3.9] [4.0, 6.1] [4.8, 6.7]
(2) 3.1 4.6 5.8

[2.4, 3.6] [3.3, 5.7] [4.5, 6.9]
(3) 3.1 4.6 5.1

[2.6, 3.8] [3.9, 5.5] [4.4, 6.5]

5 Conclusion

In this paper, we investigated the performance
of hybrid EM methods combining EM method with
the steepest descent methods such as k-means, BP
and FIS. It is shown that they are superior in learn-
ing speed and accuracy to the conventional EM,
BP, k-means, and learning of FIS methods. Fur-
ther, they showed better performance than the hy-
brid random search methods with BP, k-means and
learning of FIS methods. Though we used k-means
and BP methods as local search techniques, the
other methods based on the steepest descent meth-
ods can be also applied.

As the future works, we will consider to pro-
pose hybrid EM methods with the other steepest de-
scent methods and to prove the convergence of the
proposed hybrid EM methods.
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4.3 HEM-KM for clustering

In order to compare the capability of clustering
for four algorithms, data of Table 2 are also used.
Then, the following algorithms are used.

1. KM(50000, 10−4)

2. EM(500, 1000)

3. HRS-KM(500, 1000, 10000, 10−4, 10−4)

4. HEM-KM(500, 1000, 10−4)

Table 4 shows the result of classification for the
above four algorithms (1), (2), (3) and (4), where
each value in each box is the same meaning as one
in 4.2. As shown in Table 4, HEM-KM is superior
in accuracy to other methods.

Table 4. Result of clustering for HEM-KM

iris wine sonar BCW
(1) 11.3 19.7 45.6 3.9

[4.0, 33.3] [5.6, 33.9] [43.8, 46.2] [3.8, 4.0]

(2) 4.5 39.7 46.6 4.4
[4.0, 6.7] [36.5, 40.0] [46.6, 46.6] [4.0, 5.0]

(3) 4.0 23.1 45.7 3.9
[4.0, 4.0] [5.6, 41.6] [45.7, 45.7] [3.8, 4.0]

(4) 4.0 6.8 45.0 4.0
[4.0, 4.0] [6.2, 7.3] [44.7, 45.7] [3.9, 4.0]

4.4 The approximation capability of
HEM-FIS

In order to compare the approximation capabil-
ity of HEM-FIS, two simulations are performed.
Further, the following cases for learning are per-
formed.
Case 1: The parameters for learning are ccc, bbb and www.
Case 2: the parameter for learning is www.

4.4.1 Function approximation

This simulation uses four systems specified by
the functions Eqs.(20), (21), (22) and (23), where
c = 81 in Case 1 and c = 256 in Case 2 and Kc =
Kb = 0.01 and Kw = 0.1 in all cases.

The following algorithms are compared:

1. FIS(20000, 10−5)

2. HRS-FIS(20, 1000, 10000, 10−5, 10−5)

3. HEM-FIS(20, 1000, 10−5)

Tables 5 and 6 show the results for Case 1 and
Case 2, respectively. The number of data for learn-
ing is 512, and for test is 6400. The learning rate are
Kc = 0.01, Kw = 0.01 and Kw = 0.1, respectively.
The results show that HEM-FIS is superior to other
algorithms in all cases.

Table 5. Result of function approximation for FIS
in Case 1.

Eq.(20) Eq.(21) Eq.(22) Eq.(23)
(1) 0.10 0.10 0.10 0.10

1.92 3.29 1.62 3.29
(2) 0.08 0.09 0.10 0.09

1.83 2.56 2.05 2.56
(3) 0.09 0.09 0.09 0.09

1.92 2.79 1.56 2.79

Table 6. Result of function approximation for FIS
in Case 2.

Eq.(20) Eq.(21) Eq.(22) Eq.(23)
(1) 0.41 0.10 1.83 1.83

7.74 14.47 23.89 21.16
(2) 1.26 1.87 2.88 2.99

21.76 23.96 31.63 33.85
(3) 0.38 1.11 2.15 1.95

3.27 7.69 14.32 13.81

4.4.2 Classification problem

The following classification problem is per-
formed as numerical simulation: In the classifica-
tion problems, points on [0,1]3 are classified into
two classes: class 0 and class 1. The class bound-
aries are given as spheres centered at (0.5,0.5,0.5).
For Sphere, the inside of sphere is associated with
class 1 and the outside with class 0. For Double-
Sphere, the area between Spheres 1 and 2 is associ-
ated with class 1 and the other area with class 0.
For triple-Sphere, the inside of Sphere 1 and the
area between Sphere 2 and Sphere 3 is associated
with class1 and the other area with class 0. Fig. 14
shows the case of Triple-Sphere.
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Figure 14. Triple-Sphere for two-category
classification problem

Then, three algorithms are performed:

1. FIS(20000, 10−4)

2. HRS-FIS(20,1000,10000,10−4,10−4)

3. HEM-FIS(20, 1000, 10−4)

Tables 7 and 8 show the results for c = 27 in
Case 1 and c = 125 in Case 2, respectively. The
numbers of data for learning and test are 512 and
6400, respectively. Each value in each box is same
as Table 3. The results show that HEM-FIS is supe-
rior to other algorithms.

Table 7. Result of classification problem for FIS in
Case 1.

Sphere Double-Sphere Triple-Sphere
(1) 2.7 7.5 8.1

[1.5, 3.8] [6.2, 8.6] [6.4, 9.4]
(2) 2.6 6.6 7.8

[2.0, 3.6] [5.4, 9.7] [6.0, 10.5]
(3) 2.4 6.9 7.7

[1.6, 2.9] [6.1, 7.6] [6.4, 9.2]

Table 8. Result of classification problem for FIS in
Case 2.

Sphere Double-Sphere Triple-Sphere
(1) 3.3 5.1 5.6

[2.7, 3.9] [4.0, 6.1] [4.8, 6.7]
(2) 3.1 4.6 5.8

[2.4, 3.6] [3.3, 5.7] [4.5, 6.9]
(3) 3.1 4.6 5.1

[2.6, 3.8] [3.9, 5.5] [4.4, 6.5]

5 Conclusion

In this paper, we investigated the performance
of hybrid EM methods combining EM method with
the steepest descent methods such as k-means, BP
and FIS. It is shown that they are superior in learn-
ing speed and accuracy to the conventional EM,
BP, k-means, and learning of FIS methods. Fur-
ther, they showed better performance than the hy-
brid random search methods with BP, k-means and
learning of FIS methods. Though we used k-means
and BP methods as local search techniques, the
other methods based on the steepest descent meth-
ods can be also applied.

As the future works, we will consider to pro-
pose hybrid EM methods with the other steepest de-
scent methods and to prove the convergence of the
proposed hybrid EM methods.
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