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Abstract

Evolutionary game theory is used to model the evolution of competing strategies in a
population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in
which any competing mutated strategy would be wiped out from a population. If a strategy
is weak evolutionarily stable, the competing strategy may manage to survive within the
network. Understanding the network-related factors that affect the evolutionary stability
of a strategy would be critical in making accurate predictions about the behaviour of a
strategy in a real-world strategic decision making environment. In this work, we evaluate
the effect of network topology on the evolutionary stability of a strategy. We focus on two
well-known strategies known as the Zero-determinant strategy and the Pavlov strategy.
Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed
population of players. We identify that the Zero-determinant strategy may survive, and
may even dominate in a population of players connected through a non-homogeneous
network. We introduce the concept of ‘topological stability’ to denote this phenomenon.
We argue that not only the network topology, but also the evolutionary process applied and
the initial distribution of strategies are critical in determining the evolutionary stability of
strategies. Further, we observe that topological stability could affect other well-known
strategies as well, such as the general cooperator strategy and the cooperator strategy.
Our observations suggest that the variation of evolutionary stability due to topological
stability of strategies may be more prevalent in the social context of strategic evolution,
in comparison to the biological context.

1 Introduction

Game theory is the science of strategic decision
making among autonomous players [1]. Game the-
ory has its roots in micro-economics and has later
been adopted in myriad fields of study, such as bi-
ology, psychology and computer science [2]. Evo-
lutionary game theory is the branch of study that
has resulted from the adoption of game theory into
evolutionary biology [3]. It is used to study how
a particular strategy or a group of strategies would
evolve over time in a population of players. If a

strategy is an evolutionarily stable strategy (ESS),
once it is adopted by a population of players, any
mutated strategy would not be able to invade it
[4]. Evolutionary stability of a strategy could fur-
ther be divided into two sub categories. strong ESS
and weak ESS (also called asymptotic stable strat-
egy and stable strategy [5]). If a strategy is in a
weak evolutionarily stable state, the invading strat-
egy does not completely die-out but its population
does not increase [5].
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Meanwhile, complex networks science is in-
creasingly used to model and analyse human in-
teractions [6, 7]. Many societies where humans or
other sentient agents interact display heterogeneous
network topologies, in which some agents / people
are very well connected while others are sparsely
connected [7, 8]. In such societies or multi-agent
networks [9], the topology of the network of in-
teractions can be quantified by a range of metrics,
including the clustering coefficient, average path
length, global and local assortativity [10, 11, 12],
topological mutual information [13, 14], various
static and dynamic centrality measures [15] and so
forth. Moreover, many of these social systems dis-
play the so-called scale-free property, which is char-
acterised by maximum heterogeneity in terms of
number of connections, and the small-world prop-
erty, where the characteristic path length is compar-
atively small and the clustering comparatively high.
Therefore it is clear that the topology of any society
or agent network must be considered in determining
the dynamics of a system, including how individual
agents make decisions in such systems.

In this work, we study how network topology
affects the evolutionary stability of strategies. We
use a class of strategies known as ‘memory-one
strategies’ in prisoner’s dilemma (PD) game to eval-
uate the effect of network topology on evolution-
ary stability. Iterated prisoner’s dilemma game has
widely been used to model -the strategic decision
making of self-interested opponents [16, 17, 18].
In memory-one strategies, each player would base
his action on a probability derived based on the
previous interaction with the same opponent [19,
20]. In this work, we particularly focus on a sub-
class of memory-one strategies known as ‘Zero-
Determinant(ZD) strategies’, along with other well-
known memory-one strategies. Zero-determinant
strategies have been demonstrated to be extortion-
ate strategies, meaning that they have the ability to
unilaterally set the payoff of the opponent [21]. In-
tuitively, this would suggest that Zero-Determinant
strategies have the potential to be evolutionarily sta-
ble against any competing strategy. However, Zero-
determinant strategies have later been shown to be
evolutionarily unstable in a well-mixed population
of players [18]. In this work, we test whether net-
work topology affects the evolutionary stability of
Zero-determinant strategies in a non-homogeneous
network of players.

To test the effect of network topology, we use
two well known network classes, known as the
scale-free networks [7] and well-mixed networks.
Also, we use two evolutionary processes to evolve
the populations. First, we test the effect of topology
using the death-birth Moran process [22], which
is an evolutionary process used to model the evo-
lution of players over time, particularly in biolog-
ical systems. Then we use a stochastic strategy
adoption process that would update the strategy of
a randomly selected node, by comparing it with a
selected neighbour’s strategy. The same process
has been used as an evolutionary process by San-
tos et al. [23], with the pure-strategy PD game. We
will refer to this evolutionary process as the ‘strat-
egy adoption process’ in the rest of the paper. We
compare and contrast the evolutionary outcomes
of these two processes when players are placed in
both well-mixed networks and scale-free networks.
Based on the results of these observations, we argue
that the evolutionarily unstable strategies in a well-
mixed population may survive and even dominate
in a heterogeneous network of players. We show
that the topology of the interactions of the players,
the evolutionary update process as well as the ini-
tial topological distribution of players are signifi-
cant determining the overall evolutionary stability
of a strategy. When the players are distributed in
a homogeneous network however, the evolutionary
process used would not have a significant effect the
evolutionary stability of a strategy. We further test
the effect of topology on the evolutionary stability
by varying network assortativity [10], which is a
measure of the similarity of mixing of nodes in a
network. We argue that when the network becomes
more heterogeneous, network topology would have
a more significant effect on the evolutionary stabil-
ity of strategies. We call this topologically influ-
enced evolutionary stability of strategies as ‘topo-
logical stability’.

Understanding the topological effect on the evo-
lutionary stability of a strategy would help us to
make better predictions about the evolutionary sta-
bility of a strategy in a real-world environment.
Even though a strategy may be theoretically sta-
ble or not, its actual evolutionary behaviour may
depend on the topology of the interconnections in
the population and the evolutionary update mech-
anism used. By studying these effects extensively,
the modelling of evolutionary games may be im-
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proved, by increasing the accuracy of the predic-
tions of the evolutionary stability of strategies.

The rest of the paper is organised as follows.
We begin by providing a background on the the-
oretical aspects of evolutionary game theory and
complex network science, within the scope of this
work. Therein we introduce the memory-one strate-
gies in the iterated prisoner’s dilemma (IPD) game,
as well as a sub-class of memory-one strategies
known as Zero-determinant strategies. Further, we
explain death-birth Moran process and its signifi-
cance in determining the evolutionary stability of
a strategy, comparing it with the strategy adoption
process suggested by Santos et al. [23]. Next, we
present the results obtained by simulating both the
death-birth Moran process and the strategy adoption
process in well-mixed and scale-free networks of
players. Further, we present the results on how the
variation of network heterogeneity, measured using
the network assortativity, affects the evolutionary
stability of strategies. Finally, we discuss the re-
sults, presenting our conclusions.

2 Background

2.1 Game Theory

Game theory is the study of strategic decision
making [1]. Game theory was first developed as a
branch of micro-economics [1, 2]. However, later it
has been adopted in diverse fields of study, such as
evolutionary biology, sociology, psychology, politi-
cal science and computer science [2]. Game theory
has gained such wide applicability due to the preva-
lence of strategic decision making across different
fields of study. One of the key concepts of Game
theory is that of Nash equilibrium [24]. Nash equi-
librium suggests that there is an equilibrium state in
a strategic game, which neither player would bene-
fit deviating from. Nash equilibrium can be defined
for both pure strategy and mixed strategy scenar-
ios. Also, a strategy game could have multiple Nash
equilibria.

A formal definition for Nash equilibrium can be
given as follows. Let (S, f ) be a game with n play-
ers, where Si is the strategy set of a given player i.
Thus, the strategy profile S consisting of the strategy
sets of all players would be, S= S1×S2×S3....×Sn.
f = ( f1(x), ....., fn(x)) would be the payoff function

for xεS. Suppose xi is th strategy profile of player i
and x−i be the strategy profile of all players except
player i. Thus, when each player iε1, .....,n chooses
strategy xi that would result in the strategy profile
x = (x1, ....,xn), giving a payoff of f (i) to that par-
ticular player. A strategy profile x∗εS is in Nash
equilibrium if no unilateral deviation in strategy by
any single player would return a higher utility for
that particular player. Formally put,

∀i,xiεSi : fi(x∗i ,x
∗
−i)≥ fi(xi,x∗−i) (1)

2.2 Evolutionary Game Theory

Evolutionary game theory is an outcome of the
adaptation of game theory into the field of evo-
lutionary biology [3, 4]. Evolutionary biology is
based on the idea that an organism’s genes largely
contribute to its observable characteristics. Thus,
genes determine the fitness of an organism in a
given environment. Evolutionary game theory ar-
gues that the success of an organism depends on
its interaction with other organisms within a pop-
ulation. Thus, the fitness of an organism would be
dependent on its interaction with other organisms
in that population. In game theoretic terminology,
the interactions of players would be the strategies
and the fitness of each strategy would be the payoff.
As the population evolves over time, certain strate-
gies would be dominant while some other strategies
would be extinct. Thus, evolutionary game theory
provides a mathematical basis to model the evolu-
tionary process using concepts of game theory. On
the other hand, it opens a new dimension for game
theorists to observe how the evolution of strategies
in games would happen over time in populations
of players. Some of the critical questions asked in
EGT include; which populations/strategies are sta-
ble? When to individuals adopt other strategies?
and would it be possible for mutants to invade a
given population?

The equivalent concept to Nash Equilibrium in
evolutionary game theory, is evolutionary stability
[25]. If Nash Equilibrium can be considered as a
static equilibrium, evolutionary stability represents
a dynamic equilibrium of a strategy, over time. A
strategy is called evolutionarily stable if it has the
potential to dominate over any mutant strategy [3].
Evolutionary games are often modelled as iterative
games where a population of players play the same
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game iteratively in a well-mixed or a spatially dis-
tributed environment [26].

2.2.1 Iterated prisoner’s dilemma

Prisoner’s dilemma is a game that is found in
classical game theory [27]. Given the payoff matrix
in Fig. 1, the inequality T>R>P>S should be satis-
fied in a prisoner’s dilemma game. In other words,
in the prisoner’s dilemma game, the highest mutual
payoffs are obtained by the players when both play-
ers cooperate. However, if one player cooperates
while the other defects, the defector would obtain a
higher payoff. The dilemma is that the Nash Equi-
librium of this game, which occurs when both play-
ers defect, does not provide the optimum payoff for
both the players.

Figure 1. The payoff matrix of the prisoner’s
dilemma game. T>R>P>S

In iterated prisoner’s dilemma(IPD), the pris-
oner’s dilemma game is iterated over many time-
steps, over a population of players [17]. Each
player would play a single iteration of the game
with its neighbours in each time-step. Iterated
prisoner’s dilemma game is widely used to model
the autonomous decision making behaviour of self-
interested players. It has been demonstrated that the
topology of the network is significant in the evolu-
tion of cooperation of strategies in the IPD game
[23]. For example, when the iterated prisoner’s
dilemma game is played among pure cooperation
and pure defection strategies, cooperation evolves
to be the dominant strategy in a population of play-
ers that are distributed in a scale-free topology.

2.2.2 Memory-one strategies

As opposed to pure strategies of coopera-
tion and defection, mixed strategies of prisoner’s

dilemma game are based on the assumption that
each player chooses a strategy based on a proba-
bility distribution. In fact, pure strategies can be re-
garded as a special case of mixed strategies where
each strategy is chosen with the probability of one.
Memory-one strategies [18, 28] are a special sub-
class of mixed strategies, where the current mixed
strategy of a game would depend on the immedi-
ate previous interaction between the two players in
concern. On the other hand, Memory-one strategies
are a specialisation of a more general class of strate-
gies called finite-memory strategies [18, 28], where
the current mixed strategy would be dependent on n
number of historical states between the two players.

When considering the previous state between
two players in a PD game, there could be four pos-
sible states. Namely CC, CD, DC and DD, where
C represents cooperation and D represents defec-
tion, respectively. Memory-one strategies are rep-
resented by calculating the probabilities of cooper-
ation by a player in the next move, given the type of
the previous interaction of the player with the same
opponent. For example, a strategy (1,1,1,1) would
imply that the Player A would cooperate with player
B, irrespective of the previous encounter between
Player A and B. Similarly, (0,0,0,0) would represent
a player that always defects. Thus, the pure strategy
cooperation and defection can be thought of as a
special case of memory-one or finite memory strate-
gies. By varying the probabilities of cooperation
under each of the previous encounters, it is possible
to define any number of mixed strategies. Some of
the well-known memory-one strategies include the
Pavlov strategy (1,0,0,1) and the general cooperator
(0.935, 0.229, 0.266, 0.42) strategy. General coop-
erator is the evolutionarily dominating strategy that
evolved at low mutation rates as demonstrated by
Iliopoulos et al. [29]. Tit-for-Tat, is another well
knowns strategy where a player would only cooper-
ate if the opponent cooperated in the previous inter-
action. This is signified by the probability distribu-
tion (1,1,0,0).

2.2.3 Zero-Determinant strategies

Zero-determinant strategies [21, 30] are a spe-
cial sub-class of memory-one strategies that have
recently gained much attention in the literature and
media. ZD strategies denote a class of memory-one
strategies that enable a player to unilaterally set the

strategy is called evolutionarily stable if it has the potential
to dominate over any mutant strategy [3]. Evolutionary games
are often modelled as iterative games where a population of
players play the same game iteratively in a well-mixed or a
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1) Iterated prisoner’s dilemma: Prisoner’s dilemma is a
game that is found in classical game theory [27]. Given the
payoff matrix in Fig. 1, the inequality T>R>P>S should be
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Fig. 1: The payoff matrix of the prisoner’s dilemma game.
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the evolution of cooperation of strategies in the IPD game [23].
For example, when the iterated prisoner’s dilemma game is
played among pure cooperation and pure defection strategies,
cooperation evolves to be the dominant strategy in a population
of players that are distributed in a scale-free topology.

2) Memory-one strategies: As opposed to pure strategies
of cooperation and defection, mixed strategies of prisoner’s
dilemma game are based on the assumption that each player
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pure strategies can be regarded as a special case of mixed
strategies where each strategy is chosen with the probability
of one. Memory-one strategies [18], [28] are a special sub-class
of mixed strategies, where the current mixed strategy of a game
would depend on the immediate previous interaction between
the two players in concern. On the other hand, Memory-
one strategies are a specialisation of a more general class of

strategies called finite-memory strategies [18], [28], where the
current mixed strategy would be dependent on n number of
historical states between the two players.

When considering the previous state between two players
in a PD game, there could be four possible states. Namely
CC, CD, DC and DD, where C represents cooperation and
D represents defection, respectively. Memory-one strategies
are represented by calculating the probabilities of cooperation
by a player in the next move, given the type of the previous
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3) Zero-Determinant strategies: Zero-determinant strate-
gies [21], [30] are a special sub-class of memory-one strategies
that have recently gained much attention in the literature and
media. ZD strategies denote a class of memory-one strategies
that enable a player to unilaterally set the opponent’s payoff.
Due to this inherent property, ZD strategies have the ability
to gain a higher expected payoff against an opposing strategy.
However, for a strategy to be evolutionarily stable, it has to
be stable against itself as well as the opponent strategies.
It has been shown that ZD strategies do not perform well
against itself. Due to this reason, ZD strategies have been
demonstrated to be evolutionarily unstable [18], particularly
against the Pavlov strategy.

ZD strategies are defined using a set of conditional prob-
ability equations [21]. Suppose p1, p2, p3 and p4 denote the
set of probabilities that a player would cooperate given that
the player’s last interaction with the same opponent resulted
in the outcomes CC (p1), CD (p2), DC (p3) or DD (p4). ZD
strategies are defined by fixing p2 and p3 to be functions of
p1 and p4, denoted by Eq. 2 and Eq. 3.

p2 =
p1(T − P )− (1 + p4)(T −R)

R− P
(2)

p3 =
(1− p1)(P − S) + p4(R− S)

R− P
(3)

It was shown by Press and Dyson [21] that when playing
against the ZD strategy, the expected utility of an opponent
O can be defined using the probabilities p1 and p4, while p2
and p3 are defined as functions of p1 and p4. Eq. 4 gives the
expected payoff of the opponent against the ZD strategy.
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opponent’s payoff. Due to this inherent property,
ZD strategies have the ability to gain a higher ex-
pected payoff against an opposing strategy. How-
ever, for a strategy to be evolutionarily stable, it
has to be stable against itself as well as the oppo-
nent strategies. It has been shown that ZD strate-
gies do not perform well against itself. Due to this
reason, ZD strategies have been demonstrated to be
evolutionarily unstable [18], particularly against the
Pavlov strategy.

ZD strategies are defined using a set of con-
ditional probability equations [21]. Suppose p1,
p2, p3 and p4 denote the set of probabilities that a
player would cooperate given that the player’s last
interaction with the same opponent resulted in the
outcomes CC (p1), CD (p2), DC (p3) or DD (p4).
ZD strategies are defined by fixing p2 and p3 to be
functions of p1 and p4, denoted by Eq. 2 and Eq. 3.

p2 =
p1(T −P)− (1+ p4)(T −R)

R−P
(2)

p3 =
(1− p1)(P−S)+ p4(R−S)

R−P
(3)

It was shown by Press and Dyson [21] that when
playing against the ZD strategy, the expected utility
of an opponent O can be defined using the proba-
bilities p1 and p4, while p2 and p3 are defined as
functions of p1 and p4. Eq. 4 gives the expected
payoff of the opponent against the ZD strategy.

E(O,ZD) =
(1− p1)P+ p4R)
(1− p1 + p4)

(4)

Here, P and R represent the payoffs earned
when both players defect and corporate, respec-
tively.

Hence, ZD strategies allow a player to unilat-
erally set the opponent’s payoff, effectively making
them extortionate strategies. In the simulations per-
formed here, we set the probabilities p1 and p4 as
0.99 and 0.01 respectively, as in the study done by
Adami and Hintze [18]. We then derive p2 and p3
to be 0.97 and 0.02, using the ZD conditional prob-
ability equations Eq. 2 and Eq. 3.

2.3 Evolutionary processes

We make use of two evolutionary processes in
the evolution of populations. The first one is a well-
known evolutionary process known as the death-
birth Moran process. The second one is the stochas-
tic strategy adoption process that was adopted from
the work of Santos et al. [23].

2.3.1 Death-birth Moran Process [22]

As the name suggests, in the death-birth Moran
process, a node is randomly selected for removal
at each time-step. Then, its replacement node is
selected from its neighbours based on a probabil-
ity proportional to the fitness of the neighbours. In
the case of the iterated prisoner’s dilemma game,
the fitness is equivalent to the accumulated payoff
of each node, averaged over its number of neigh-
bours. Then, the selected neighbour is replicated to
replace the node that is being removed. The new
node would have zero payoff yet it would still have
the same neighbours as the previous node that ex-
isted in the same topological space. This process
is continued over n number of time-steps to evolve
the entire population over time. Death-birth Moran
process is commonly used to emulate the evolution
of biological species where the strategies are ‘hard-
wired’ into the players. If the lifetime of a player
is significantly less than the time-span of evolution,
as with the case of biological evolution, death-birth
Moran process may effectively be used to simulate
the evolution of strategies(players) over time.

2.3.2 Stochastic strategy adoption process

Since Moran process maybe be more applica-
ble in the biological context where the players with
hard-wired strategies get replaced, it does not take
into account the individual payoff differences of
the node being replaced and the replicating node.
Thus, it maybe possible that the node being re-
placed would actually have a higher cumulative
payoff (fitness) than the replicating node. On the
other hand, in the social context, the time-span of
evolution of strategies could be considerably less
than the lifetime of a player. Hence, players would
be more inclined to adopt the apparently success-
ful strategy and survive without getting replaced
from the population. In order to model this kind
of social evolution, a stochastic strategy adoption
process can be applied. Such a process has been
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used in Santos et al. [23] to demonstrate the evolu-
tion of cooperation in IPD games with pure strate-
gies. We extend that method for mixed strategies
in this work. When employing this particular strat-
egy adoption process, a node going through evolu-
tion is not directly replaced. Instead, its strategy
could be updated by comparing its cumulative pay-
off with that of a stochastically selected neighbour.
As with the Moran process, in each time-step, a
node is marked for update. Then, a potential node
to compare it with is selected from its neighbours,
based on a probability proportional to the fitness
(accumulated payoff) of the neighbours. Then, the
probability of the marked node adopting the strat-
egy of its selected neighbour is calculated using the
following equation.

p = max{0, (Py − Px)/[k> (E (ZD,Pav)− E (Pav,ZD)]}
(5)

Where,
p - Probability that node X would adopt Y’s strategy
Px - Cumulative pay off of node X
Py - Cumulative pay off of node Y
k> - Maximum degree of X’s degree (kx) and Y’s
degree (ky)
E (ZD,Pav)− The expected payoff of a ZD node
against a Pavlov node
E (Pav,ZD)– The expected payoff of a Pavlov node
against a ZD node

As shown above, the population update prob-
ability depends on the payoff difference of the
marked node and the selected neighbour node.
Also, the degree of those two nodes are used to nor-
malise the effect of degree differences. Still, the
cumulative payoff of the node with the higher de-
gree would be higher due to the fact that it would
have more interactions with other players. Thus,
this equation implicitly captures the network topol-
ogy in calculating the adoption probability. Due to
this reason, this particular strategy adoption process
can be used to study the topological effect on the
evolutionary stability of strategies.

2.4 Complex Networks

Complex Networks are self-organising net-
works that show non-trivial topological features [7].
Complex Network analysis provides a network per-

spective in analysing complex systems. Different
classes of complex networks have been defined to
model real-world complex systems such as social
and biological systems. In this work, we mainly
focus on two such network classes known as well-
mixed networks and scale-free networks that are
widely discussed in the network analysis literature.

2.4.1 Well-mixed Networks

Well-mixed networks has been one of the most
widely used network models in network analysis
since the inception of complex network science.
Also, they are widely used in modelling evolution-
ary games [29]. These networks are modelled, as-
suming that each node is connected to every other
node in the network. Due to this reason, well-mixed
networks can be regarded as a class of homoge-
neous networks. Therefore, it is possible to approx-
imate well-mixed networks to lattice networks with
each node having the identical number of neigh-
bours. However, most of the real-world networks
such as social networks and biological networks
do not demonstrate well-mixed behaviour, instead
being spatially distributed with non-homogeneous
topological features [7]. Still, well-mixed networks
provide a good reference model to compare with the
non-homogeneous networks [16].

2.4.2 Scale-free Networks

Scale-free networks demonstrate a network
topology that shows a power-law degree distribu-
tion [6]. In other words, the degree distribution of
the network would fit in a equation of the form y
= αx−γ. Here, γ is called the scale-free exponent.
The scale-free exponent is obtained by fitting a par-
ticular degree distribution into a power-law curve.
As the scale-free exponent increases, so does the
power-law nature of the degree distribution. Also,
if the correlation of the fitting is higher, such a de-
gree distribution would indicate that the respective
network closely resembles a scale-free network.

Scale-free nature is abundant in real-world net-
works, such as in social, biological and collabora-
tion networks [7]. Scale-free networks make per-
fect candidates to study the topological effect of a
population of players due to this reason. For ex-
ample, it has been shown that cooperation becomes
the dominant strategy in a scale-free topology due
to the heterogeneity of the network [16, 23]. More-
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used in Santos et al. [23] to demonstrate the evolu-
tion of cooperation in IPD games with pure strate-
gies. We extend that method for mixed strategies
in this work. When employing this particular strat-
egy adoption process, a node going through evolu-
tion is not directly replaced. Instead, its strategy
could be updated by comparing its cumulative pay-
off with that of a stochastically selected neighbour.
As with the Moran process, in each time-step, a
node is marked for update. Then, a potential node
to compare it with is selected from its neighbours,
based on a probability proportional to the fitness
(accumulated payoff) of the neighbours. Then, the
probability of the marked node adopting the strat-
egy of its selected neighbour is calculated using the
following equation.

p = max{0, (Py − Px)/[k> (E (ZD,Pav)− E (Pav,ZD)]}
(5)

Where,
p - Probability that node X would adopt Y’s strategy
Px - Cumulative pay off of node X
Py - Cumulative pay off of node Y
k> - Maximum degree of X’s degree (kx) and Y’s
degree (ky)
E (ZD,Pav)− The expected payoff of a ZD node
against a Pavlov node
E (Pav,ZD)– The expected payoff of a Pavlov node
against a ZD node

As shown above, the population update prob-
ability depends on the payoff difference of the
marked node and the selected neighbour node.
Also, the degree of those two nodes are used to nor-
malise the effect of degree differences. Still, the
cumulative payoff of the node with the higher de-
gree would be higher due to the fact that it would
have more interactions with other players. Thus,
this equation implicitly captures the network topol-
ogy in calculating the adoption probability. Due to
this reason, this particular strategy adoption process
can be used to study the topological effect on the
evolutionary stability of strategies.

2.4 Complex Networks

Complex Networks are self-organising net-
works that show non-trivial topological features [7].
Complex Network analysis provides a network per-

spective in analysing complex systems. Different
classes of complex networks have been defined to
model real-world complex systems such as social
and biological systems. In this work, we mainly
focus on two such network classes known as well-
mixed networks and scale-free networks that are
widely discussed in the network analysis literature.

2.4.1 Well-mixed Networks

Well-mixed networks has been one of the most
widely used network models in network analysis
since the inception of complex network science.
Also, they are widely used in modelling evolution-
ary games [29]. These networks are modelled, as-
suming that each node is connected to every other
node in the network. Due to this reason, well-mixed
networks can be regarded as a class of homoge-
neous networks. Therefore, it is possible to approx-
imate well-mixed networks to lattice networks with
each node having the identical number of neigh-
bours. However, most of the real-world networks
such as social networks and biological networks
do not demonstrate well-mixed behaviour, instead
being spatially distributed with non-homogeneous
topological features [7]. Still, well-mixed networks
provide a good reference model to compare with the
non-homogeneous networks [16].

2.4.2 Scale-free Networks

Scale-free networks demonstrate a network
topology that shows a power-law degree distribu-
tion [6]. In other words, the degree distribution of
the network would fit in a equation of the form y
= αx−γ. Here, γ is called the scale-free exponent.
The scale-free exponent is obtained by fitting a par-
ticular degree distribution into a power-law curve.
As the scale-free exponent increases, so does the
power-law nature of the degree distribution. Also,
if the correlation of the fitting is higher, such a de-
gree distribution would indicate that the respective
network closely resembles a scale-free network.

Scale-free nature is abundant in real-world net-
works, such as in social, biological and collabora-
tion networks [7]. Scale-free networks make per-
fect candidates to study the topological effect of a
population of players due to this reason. For ex-
ample, it has been shown that cooperation becomes
the dominant strategy in a scale-free topology due
to the heterogeneity of the network [16, 23]. More-
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over, scale-free networks can be conveniently gen-
erated using the Preferential attachment growth
model proposed by Barabasi and Albert [7]. Pref-
erential attachment model suggests that when a net-
work grows in size, nodes with higher degree have a
higher probability of attracting new nodes. In other
words, there exists a degree-dependent ‘preference’
in creating links with the existing nodes, when a
new node joins the network. In this work, we use
scale-free networks generated using the preferential
attachment model for all our simulations.

2.4.3 Network Assortativity

Assortativity is the tendency observed in net-
works where nodes mostly connect with similar
nodes. Typically, this similarity is interpreted in
terms of the degrees of nodes. Assortativity has
been formally defined as a correlation function of
excess degree distributions and link distribution of
a network [10, 13]. The formal definition of Assor-
tativity makes use of network topological concepts
such as degree distribution p(k) and excess de-
gree distribution q(k) for undirected networks [13].
Given q(k), one can introduce the quantity e j,k as
the joint probability distribution of the remaining
degrees of the two nodes at either end of a randomly
chosen link. Given these distributions, the assorta-
tivity of an undirected network is defined as:

ρ =
1

σ2
q

[
∑
jk

jk
(
e j,k −q jqk

)]
(6)

where σq is the standard deviation of q(k). In
this work, we use networks with varying assorta-
tivity values to observe how the heterogeneity of
mixing patterns affect the evolutionary stability of
strategies.

3 Methodology

Initially, we re-created the experimental results
obtained in the work by Adami and Hintze [18],
by mixing the Zero-determinant strategy with the
Pavlov strategy in a well-mixed population. This
further enabled us to confirm the theoretical re-
sults presented in the same work using the replica-
tor dynamics model, suggesting that the ZD strategy
would be evolutionarily unstable against the Pavlov
strategy. To do this, we started with a population

of 1000 nodes that are connected via a lattice where
each node is connected to 8 other random nodes.
Initially, the two strategies were distributed in a ran-
dom manner so that the ZD strategy would occupy
different fractions of the population (0.6 and 0.4)
in each simulation run. Then, using the death-birth
Moran process, the population was updated over
150,000 time-steps to observe the evolution of the
strategies.

Afterwards, we changed the evolutionary pro-
cess to the stochastic strategy adoption process used
by Santos et al. [23]. This enabled us to determine,
whether it is the population update process or the
network topology that affects the evolutionary sta-
bility of the strategies in concern.

Then we replaced the well-mixed population
with a non-homogeneous scale-free network with
1000 nodes. As with the case of the previous ex-
periment, the ZD strategy and the Pavlov strategy
were assigned randomly among the nodes. With
the players spatially distributed in a scale-free net-
work, both the death-birth Moran process and the
strategy adoption process were applied separately
to observe the effect that they have on the evolution
of strategies. The Fig. 3 depicts the degree distri-
bution of the scale-free network used. As the figure
shows, the degree distribution shows a power-law
curve that is reminiscent with the typical scale-free
networks.

Figure 3. The degree distribution of the scale-free
network used.

Next, we changed the initial distribution of the
strategies in such a manner that the ZD strategy
would occupy the majority of hubs. This was
done by sorting the nodes according to their de-
gree and assigning the top 60% of the nodes with

2) Scale-free Networks: Scale-free networks demonstrate a
network topology that shows a power-law degree distribution
[6]. In other words, the degree distribution of the network
would fit in a equation of the form y = αx−γ . Here, γ is called
the scale-free exponent. The scale-free exponent is obtained by
fitting a particular degree distribution into a power-law curve.
As the scale-free exponent increases, so does the power-law
nature of the degree distribution. Also, if the correlation of the
fitting is higher, such a degree distribution would indicate that
the respective network closely resembles a scale-free network.

Scale-free nature is abundant in real-world networks, such
as in social, biological and collaboration networks [7]. Scale-
free networks make perfect candidates to study the topological
effect of a population of players due to this reason. For exam-
ple, it has been shown that cooperation becomes the dominant
strategy in a scale-free topology due to the heterogeneity of
the network [16], [23]. Moreover, scale-free networks can
be conveniently generated using the Preferential attachment
growth model proposed by Barabasi and Albert [7]. Preferen-
tial attachment model suggests that when a network grows in
size, nodes with higher degree have a higher probability of
attracting new nodes. In other words, there exists a degree-
dependent ‘preference’ in creating links with the existing
nodes, when a new node joins the network. In this work, we use
scale-free networks generated using the preferential attachment
model for all our simulations.

3) Network Assortativity: Assortativity is the tendency
observed in networks where nodes mostly connect with similar
nodes. Typically, this similarity is interpreted in terms of the
degrees of nodes. Assortativity has been formally defined as
a correlation function of excess degree distributions and link
distribution of a network [10], [13]. The formal definition of
Assortativity makes use of network topological concepts such
as degree distribution p(k) and excess degree distribution q(k)
for undirected networks [13]. Given q(k), one can introduce
the quantity ej,k as the joint probability distribution of the
remaining degrees of the two nodes at either end of a randomly
chosen link. Given these distributions, the assortativity of an
undirected network is defined as:

ρ =
1

σ2
q


∑

jk

jk (ej,k − qjqk)


 (6)

where σq is the standard deviation of q(k). In this work, we
use networks with varying assortativity values to observe how
the heterogeneity of mixing patterns affect the evolutionary
stability of strategies.

III. METHODOLOGY

Initially, we re-created the experimental results obtained
in the work by Adami and Hintze [18], by mixing the Zero-
determinant strategy with the Pavlov strategy in a well-mixed
population. This further enabled us to confirm the theoreti-
cal results presented in the same work using the replicator
dynamics model, suggesting that the ZD strategy would be
evolutionarily unstable against the Pavlov strategy. To do
this, we started with a population of 1000 nodes that are
connected via a lattice where each node is connected to 8 other

random nodes. Initially, the two strategies were distributed in a
random manner so that the ZD strategy would occupy different
fractions of the population (0.6 and 0.4) in each simulation run.
Then, using the death-birth Moran process, the population was
updated over 150,000 time-steps to observe the evolution of
the strategies.

Afterwards, we changed the evolutionary process to the
stochastic strategy adoption process used by Santos et al. [23].
This enabled us to determine, whether it is the population
update process or the network topology that affects the evolu-
tionary stability of the strategies in concern.

Then we replaced the well-mixed population with a non-
homogeneous scale-free network with 1000 nodes. As with
the case of the previous experiment, the ZD strategy and the
Pavlov strategy were assigned randomly among the nodes.
With the players spatially distributed in a scale-free network,
both the death-birth Moran process and the strategy adoption
process were applied separately to observe the effect that they
have on the evolution of strategies. The Fig. 3 depicts the
degree distribution of the scale-free network used. As the figure
shows, the degree distribution shows a power-law curve that
is reminiscent with the typical scale-free networks.

 0

 100

 200

 300

 400

 1  5  15  20

N
um

be
r o

f n
od

es

Degree

Fig. 3: The degree distribution of the scale-free network used.

Next, we changed the initial distribution of the strategies in
such a manner that the ZD strategy would occupy the majority
of hubs. This was done by sorting the nodes according to their
degree and assigning the top 60% of the nodes with the ZD
strategy. In this configuration, the initial average degree of
ZD nodes was measured to be 3.4 while the average degree of
Pavlov nodes was 1.8. The evolution of strategies was observed
under the death-birth Moran process as well as the strategy
adoption process. The experiment was repeated with the Pavlov
strategy occupying the majority of hubs.

As the next step, we mixed the Pavlov strategy with the
general cooperator strategy and the cooperator strategy in
separate scale-free networks of players. We tested the evolution
of strategies with a random initial distribution of strategies
and a strategy distribution where the opponent strategy (GC or
cooperator) is initially assigned mostly on hubs. This enabled
us to determine whether any observed topological stability of
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Figure 2. The evolution of ZD population fraction against the Pavlov strategy, in well-mixed and scale-free
populations. The population is allowed to evolve under the death-birth Moran process with 0.1%

replacement rate. The strategies are initially distributed randomly, with the fraction of ZD nodes being 0.4
and 0.6, respectively.

the ZD strategy. In this configuration, the initial
average degree of ZD nodes was measured to be
3.4 while the average degree of Pavlov nodes was
1.8. The evolution of strategies was observed under
the death-birth Moran process as well as the strat-
egy adoption process. The experiment was repeated
with the Pavlov strategy occupying the majority of
hubs.

As the next step, we mixed the Pavlov strat-
egy with the general cooperator strategy and the co-
operator strategy in separate scale-free networks of
players. We tested the evolution of strategies with a
random initial distribution of strategies and a strat-
egy distribution where the opponent strategy (GC
or cooperator) is initially assigned mostly on hubs.
This enabled us to determine whether any observed
topological stability of ZD strategy is a unique and
inherent property of the stratety itself or whether it
is a more general behaviour that could occur with
other strategies as well.

Finally, we observed the evolution of the Pavlov
and ZD strategies in non-homogeneous networks
while the network heterogeneity was gradually
varying. To perform this test, we generated a set of
scale-free networks with varying assortativity val-
ues by rewiring a scale-free network in a probabilis-
tic manner. Then, both strategies were distributed
randomly in each scale-free population in such a
manner that the ZD strategy would occupy 60%
of the nodes. Afterwards, the populations were al-
lowed to evolve over 150,000 time-steps under the
strategy adoption process and the remaining popu-

lation fractions of ZD players were recorded. The
results were averaged over 40 independent runs.

4 Results

In certain figures in this section, we have limited
the number of time-steps shown, when the strat-
egy in concern becomes extinct reasonably quickly.
Fig.2 shows the evolution of the fraction of ZD
nodes when the ZD strategy is mixed with the
Pavlov strategy in well-mixed and scale-free popu-
lations. The evolutionary process used is the death-
birth Moran process. As expected, ZD strategy
gradually becomes extinct in a well-mixed popu-
lation. This confirms that in a homogeneous net-
work, ZD strategy is evolutionarily unstable against
the Pavlov strategy that operates as a strong evo-
lutionarily stable strategy, as suggested by Adami
and Hintze [18]. Moreover, ZD does not survive
even in a non-homogeneous population distributed
in a scale-free network, when the same evolutionary
process is applied.

Next, Fig.4 depicts the evolution of the ZD and
Pavlov strategies in a scale-free non-homogeneous
network of players, under different initial config-
urations. The figure shows the evolution of the
ZD fraction when the strategies are initially dis-
tributed randomly as well as when more hubs are
assigned with the ZD strategy initially. As the fig-
ure depicts, Pavlov clearly dominates and eradicates
the ZD strategy, suggesting that irrespective of the
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Fig. 2: The evolution of ZD population fraction against the Pavlov strategy, in well-mixed and scale-free populations. The
population is allowed to evolve under the death-birth Moran process with 0.1% replacement rate. The strategies are initially
distributed randomly, with the fraction of ZD nodes being 0.4 and 0.6, respectively.

ZD strategy is a unique and inherent property of the stratety
itself or whether it is a more general behaviour that could occur
with other strategies as well.

Finally, we observed the evolution of the Pavlov and
ZD strategies in non-homogeneous networks while the net-
work heterogeneity was gradually varying. To perform this
test, we generated a set of scale-free networks with varying
assortativity values by rewiring a scale-free network in a
probabilistic manner. Then, both strategies were distributed
randomly in each scale-free population in such a manner that
the ZD strategy would occupy 60% of the nodes. Afterwards,
the populations were allowed to evolve over 150,000 time-
steps under the strategy adoption process and the remaining
population fractions of ZD players were recorded. The results
were averaged over 40 independent runs.

IV. RESULTS

In certain figures in this section, we have limited the
number of time-steps shown, when the strategy in concern
becomes extinct reasonably quickly. Fig.2 shows the evolution
of the fraction of ZD nodes when the ZD strategy is mixed
with the Pavlov strategy in well-mixed and scale-free popula-
tions. The evolutionary process used is the death-birth Moran
process. As expected, ZD strategy gradually becomes extinct in
a well-mixed population. This confirms that in a homogeneous
network, ZD strategy is evolutionarily unstable against the
Pavlov strategy that operates as a strong evolutionarily stable
strategy, as suggested by Adami and Hintze [18]. Moreover,
ZD does not survive even in a non-homogeneous population
distributed in a scale-free network, when the same evolutionary
process is applied.

Next, Fig.4 depicts the evolution of the ZD and Pavlov
strategies in a scale-free non-homogeneous network of players,
under different initial configurations. The figure shows the
evolution of the ZD fraction when the strategies are initially
distributed randomly as well as when more hubs are assigned
with the ZD strategy initially. As the figure depicts, Pavlov
clearly dominates and eradicates the ZD strategy, suggesting
that irrespective of the initial distribution of strategies, ZD
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Fig. 4: The evolution of ZD population fraction against the
Pavlov strategy, in scale-free populations of varying initial
configurations. The population is allowed to evolve under the
death-birth Moran process with 0.1% replacement rate. In
the two initial configurations, ZD strategy is either assigned
randomly or assigned more on hubs (in hubs initialisation, the
initial average degrees of ZD and Pavlov nodes are 3.4 and
1.8, respectively).

cannot survive when the population is allowed to evolve under
the death-birth Moran process.

Fig.5 depicts the scenario where a well-mixed population
of ZD and Pavlov strategies are allowed to interact with each
other over time, according to the strategy adoption process
instead of the Moran process. Here too, ZD is gradually
eradicated from the population. However, when the same
evolutionary process is applied in a scale-free population of
players, ZD strategy manages to survive, as shown in Fig6[a].
According to the figure, Pavlov strategy shows weak evolution-
ary stability, failing to eradicate the ZD strategy completely,
when the two strategies are initially assigned randomly. On the
other hand, when the ZD is initially assigned to the majority
of hubs as depicted in Fig.6[b], ZD manages to become the
weak evolutionarily stable strategy over the Pavlov strategy,
becoming the dominant strategy in the network. However, as
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Figure 2. The evolution of ZD population fraction against the Pavlov strategy, in well-mixed and scale-free
populations. The population is allowed to evolve under the death-birth Moran process with 0.1%

replacement rate. The strategies are initially distributed randomly, with the fraction of ZD nodes being 0.4
and 0.6, respectively.

the ZD strategy. In this configuration, the initial
average degree of ZD nodes was measured to be
3.4 while the average degree of Pavlov nodes was
1.8. The evolution of strategies was observed under
the death-birth Moran process as well as the strat-
egy adoption process. The experiment was repeated
with the Pavlov strategy occupying the majority of
hubs.

As the next step, we mixed the Pavlov strat-
egy with the general cooperator strategy and the co-
operator strategy in separate scale-free networks of
players. We tested the evolution of strategies with a
random initial distribution of strategies and a strat-
egy distribution where the opponent strategy (GC
or cooperator) is initially assigned mostly on hubs.
This enabled us to determine whether any observed
topological stability of ZD strategy is a unique and
inherent property of the stratety itself or whether it
is a more general behaviour that could occur with
other strategies as well.

Finally, we observed the evolution of the Pavlov
and ZD strategies in non-homogeneous networks
while the network heterogeneity was gradually
varying. To perform this test, we generated a set of
scale-free networks with varying assortativity val-
ues by rewiring a scale-free network in a probabilis-
tic manner. Then, both strategies were distributed
randomly in each scale-free population in such a
manner that the ZD strategy would occupy 60%
of the nodes. Afterwards, the populations were al-
lowed to evolve over 150,000 time-steps under the
strategy adoption process and the remaining popu-

lation fractions of ZD players were recorded. The
results were averaged over 40 independent runs.

4 Results

In certain figures in this section, we have limited
the number of time-steps shown, when the strat-
egy in concern becomes extinct reasonably quickly.
Fig.2 shows the evolution of the fraction of ZD
nodes when the ZD strategy is mixed with the
Pavlov strategy in well-mixed and scale-free popu-
lations. The evolutionary process used is the death-
birth Moran process. As expected, ZD strategy
gradually becomes extinct in a well-mixed popu-
lation. This confirms that in a homogeneous net-
work, ZD strategy is evolutionarily unstable against
the Pavlov strategy that operates as a strong evo-
lutionarily stable strategy, as suggested by Adami
and Hintze [18]. Moreover, ZD does not survive
even in a non-homogeneous population distributed
in a scale-free network, when the same evolutionary
process is applied.

Next, Fig.4 depicts the evolution of the ZD and
Pavlov strategies in a scale-free non-homogeneous
network of players, under different initial config-
urations. The figure shows the evolution of the
ZD fraction when the strategies are initially dis-
tributed randomly as well as when more hubs are
assigned with the ZD strategy initially. As the fig-
ure depicts, Pavlov clearly dominates and eradicates
the ZD strategy, suggesting that irrespective of the
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initial distribution of strategies, ZD cannot survive
when the population is allowed to evolve under the
death-birth Moran process.

Figure 4. The evolution of ZD population fraction
against the Pavlov strategy, in scale-free

populations of varying initial configurations. The
population is allowed to evolve under the

death-birth Moran process with 0.1% replacement
rate. In the two initial configurations, ZD strategy
is either assigned randomly or assigned more on

hubs (in hubs initialisation, the initial average
degrees of ZD and Pavlov nodes are 3.4 and 1.8,

respectively).

Figure 5. The evolution of ZD population fraction
against the Pavlov strategy, in a well-mixed

population. The population is allowed to evolve
under the strategy adoption process. The strategies
are initially distributed randomly, with the fraction

of ZD nodes being 0.4 and 0.6, respectively.

Fig.5 depicts the scenario where a well-mixed
population of ZD and Pavlov strategies are allowed
to interact with each other over time, according to
the strategy adoption process instead of the Moran
process. Here too, ZD is gradually eradicated from
the population. However, when the same evolution-
ary process is applied in a scale-free population of

players, ZD strategy manages to survive, as shown
in Fig6[a]. According to the figure, Pavlov strat-
egy shows weak evolutionary stability, failing to
eradicate the ZD strategy completely, when the two
strategies are initially assigned randomly. On the
other hand, when the ZD is initially assigned to the
majority of hubs as depicted in Fig.6[b], ZD man-
ages to become the weak evolutionarily stable strat-
egy over the Pavlov strategy, becoming the domi-
nant strategy in the network. However, as the same
figure shows, when the Pavlov strategy is initially
assigned to the majority of hubs, it behaves as a
strong evolutionarily stable strategy, wiping out the
ZD population. This suggests that under the strat-
egy adoption evolutionary process, the evolutionar-
ily unstable ZD strategy may not only survive, but
may even become the more prominent strategy in a
non-homogeneous population of players.

Then, we mixed the Pavlov strategy with the
GC and the cooperator strategies respectively, in
a Scale-free population. Fig.7 and Fig. 8 show
the evolution of the GC, cooperator, defector and
Tit-for-Tat strategy fractions over time, when those
strategies are initially placed randomly or mostly on
hubs. As the figures depict, the opposing strategies
too may survive or dominate the population based
on the initial distribution of the strategies, when the
population is updated using the strategy adoption
evolutionary process. This suggests that topological
influence on the evolutionary stability is not limited
to the ZD strategy, but may apply to other strategies
as well.

Finally, we tested the evolution of the ZD pop-
ulation against the Pavlov strategy while the het-
erogeneity of the networks are gradually changed.
Fig.9 shows the variation of the remaining ZD frac-
tion after 150,000 time-steps under the strategy
adoption process. As the figure shows, there exits
a negative correlation between the network assor-
tativity and the remaining ZD fraction. The actual
Pearson correlation value of the two series is -0.85,
suggesting a strong negative correlation. Network
assortativity is a measure of the similarity or the
homogeneity of the mixing patterns of the nodes.
Therefore, this result suggests that the effect of net-
work topology on the evolutionary stability of a
strategy increases, as the network becomes more
heterogeneous.
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Fig. 2: The evolution of ZD population fraction against the Pavlov strategy, in well-mixed and scale-free populations. The
population is allowed to evolve under the death-birth Moran process with 0.1% replacement rate. The strategies are initially
distributed randomly, with the fraction of ZD nodes being 0.4 and 0.6, respectively.

ZD strategy is a unique and inherent property of the stratety
itself or whether it is a more general behaviour that could occur
with other strategies as well.

Finally, we observed the evolution of the Pavlov and
ZD strategies in non-homogeneous networks while the net-
work heterogeneity was gradually varying. To perform this
test, we generated a set of scale-free networks with varying
assortativity values by rewiring a scale-free network in a
probabilistic manner. Then, both strategies were distributed
randomly in each scale-free population in such a manner that
the ZD strategy would occupy 60% of the nodes. Afterwards,
the populations were allowed to evolve over 150,000 time-
steps under the strategy adoption process and the remaining
population fractions of ZD players were recorded. The results
were averaged over 40 independent runs.

IV. RESULTS

In certain figures in this section, we have limited the
number of time-steps shown, when the strategy in concern
becomes extinct reasonably quickly. Fig.2 shows the evolution
of the fraction of ZD nodes when the ZD strategy is mixed
with the Pavlov strategy in well-mixed and scale-free popula-
tions. The evolutionary process used is the death-birth Moran
process. As expected, ZD strategy gradually becomes extinct in
a well-mixed population. This confirms that in a homogeneous
network, ZD strategy is evolutionarily unstable against the
Pavlov strategy that operates as a strong evolutionarily stable
strategy, as suggested by Adami and Hintze [18]. Moreover,
ZD does not survive even in a non-homogeneous population
distributed in a scale-free network, when the same evolutionary
process is applied.

Next, Fig.4 depicts the evolution of the ZD and Pavlov
strategies in a scale-free non-homogeneous network of players,
under different initial configurations. The figure shows the
evolution of the ZD fraction when the strategies are initially
distributed randomly as well as when more hubs are assigned
with the ZD strategy initially. As the figure depicts, Pavlov
clearly dominates and eradicates the ZD strategy, suggesting
that irrespective of the initial distribution of strategies, ZD
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Fig. 4: The evolution of ZD population fraction against the
Pavlov strategy, in scale-free populations of varying initial
configurations. The population is allowed to evolve under the
death-birth Moran process with 0.1% replacement rate. In
the two initial configurations, ZD strategy is either assigned
randomly or assigned more on hubs (in hubs initialisation, the
initial average degrees of ZD and Pavlov nodes are 3.4 and
1.8, respectively).

cannot survive when the population is allowed to evolve under
the death-birth Moran process.

Fig.5 depicts the scenario where a well-mixed population
of ZD and Pavlov strategies are allowed to interact with each
other over time, according to the strategy adoption process
instead of the Moran process. Here too, ZD is gradually
eradicated from the population. However, when the same
evolutionary process is applied in a scale-free population of
players, ZD strategy manages to survive, as shown in Fig6[a].
According to the figure, Pavlov strategy shows weak evolution-
ary stability, failing to eradicate the ZD strategy completely,
when the two strategies are initially assigned randomly. On the
other hand, when the ZD is initially assigned to the majority
of hubs as depicted in Fig.6[b], ZD manages to become the
weak evolutionarily stable strategy over the Pavlov strategy,
becoming the dominant strategy in the network. However, as
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Fig. 5: The evolution of ZD population fraction against the
Pavlov strategy, in a well-mixed population. The population
is allowed to evolve under the strategy adoption process. The
strategies are initially distributed randomly, with the fraction
of ZD nodes being 0.4 and 0.6, respectively.

the same figure shows, when the Pavlov strategy is initially
assigned to the majority of hubs, it behaves as a strong
evolutionarily stable strategy, wiping out the ZD population.
This suggests that under the strategy adoption evolutionary
process, the evolutionarily unstable ZD strategy may not only
survive, but may even become the more prominent strategy in
a non-homogeneous population of players.

Then, we mixed the Pavlov strategy with the GC and the
cooperator strategies respectively, in a Scale-free population.
Fig.7 and Fig. 8 show the evolution of the GC, cooperator, de-
fector and Tit-for-Tat strategy fractions over time, when those
strategies are initially placed randomly or mostly on hubs. As
the figures depict, the opposing strategies too may survive or
dominate the population based on the initial distribution of the
strategies, when the population is updated using the strategy
adoption evolutionary process. This suggests that topological
influence on the evolutionary stability is not limited to the ZD
strategy, but may apply to other strategies as well.

Finally, we tested the evolution of the ZD population
against the Pavlov strategy while the heterogeneity of the
networks are gradually changed. Fig.9 shows the variation of
the remaining ZD fraction after 150,000 time-steps under the
strategy adoption process. As the figure shows, there exits a
negative correlation between the network assortativity and the
remaining ZD fraction. The actual Pearson correlation value of
the two series is -0.85, suggesting a strong negative correlation.
Network assortativity is a measure of the similarity or the
homogeneity of the mixing patterns of the nodes. Therefore,
this result suggests that the effect of network topology on the
evolutionary stability of a strategy increases, as the network
becomes more heterogeneous.

V. DISCUSSION

Network game theory has gained prominence as an in-
terdisciplinary field. Complex networks are increasingly used
to model social systems, while the cognitive decision making
processes of individuals in such systems is modelled by game
theory. It is obvious that the topological connection patterns
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Fig. 9: The evolution of ZD population fraction against the
Pavlov strategy, in scale-free populations with varying network
assortativity values. The population is allowed to evolve under
the strategy adoption process. The results are averaged over
40 independent runs.

would influence the decisions made by individual entities, and
many questions remain answered in regards to how topology
can influence the strategies individual players will choose over
time.

In this work, we attempted to evaluate how the network
topology of a population of players affect the evolutionary
stability of a strategy. In particular, we focused on a class
of strategies known as Zero-determinant strategies, which has
been demonstrated to be evolutionarily unstable against the
Pavlov strategy.

Based on the results gathered from this research, we
suggest that network topology has an effect on whether a
particular strategy is evolutionarily stable or not. However,
the topologically influenced evolutionary stability is a weak
evolutionary stability and not a strong evolutionary stability.
In other words, the stable strategy would not be able to
completely eradicate the competing strategy and the competing
strategy would be able to survive within the confines of the
network.

We also identified that the topological effect of evolu-
tionary stability is determined by the evolutionary process
used. When using the death-birth Moran process to evolve the
population, topology does not seem have a significant effect
on the evolutionary stability of strategies. However, when the
strategy adoption process suggested by Santos et al. [23] is
applied, topology does have significant effect on evolutionary
stability of a strategy within a population. Strategy adoption
process takes into account the cumulative payoff of each
node in determining whether a strategy should be replaced
or not. Therefore, this result suggests that an evolutionarily
unstable strategy could survive when they occupy the hubs
surrounded by leaf nodes assigned with the evolutionarily
stable strategy. In a heterogeneous network of players, hubs
tend to have more strategic interactions with their opponents
compared to leaf nodes. Thus, a hub with an evolutionarily
unstable strategy would continue to be irreplaceable by the
neighbouring nodes’ strategies, as it would continue to have a
higher payoff compared to its immediate neighbours.
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Figure 6. The evolution of ZD population fraction against the Pavlov strategy, in scale-free populations of
varying initial configurations. The population is allowed to evolve under the strategy adoption process. (a)
ZD and Pavlov strategies initially distributed randomly (b) Majority of hubs are either assigned with ZD or

Pavlov (the initial average degrees of hub and non-hub strategies are 3.4 and 1.8, respectively).

Figure 7. The evolution of GC and cooperator strategies competing against the Pavlov strategy, in
scale-free populations of varying initial configurations. The population is allowed to evolve under the
strategy adoption process. In the two initial configurations, the competing strategy is either assigned

randomly or assigned more on hubs (in hubs initialisation, the initial average degrees of competing nodes
and Pavlov nodes are 3.4 and 1.8, respectively).

Figure 8. The evolution of Defector and Tit-for-tat strategies competing against the Pavlov strategy, in
scale-free populations of varying initial configurations. The population is allowed to evolve under the
strategy adoption process. In the two initial configurations, the competing strategy is either assigned

randomly or assigned more on hubs (in hubs initialisation, the initial average degrees of competing nodes
and Pavlov nodes are 3.4 and 1.8, respectively).
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Fig. 6: The evolution of ZD population fraction against the Pavlov strategy, in scale-free populations of varying initial
configurations. The population is allowed to evolve under the strategy adoption process. (a) ZD and Pavlov strategies initially
distributed randomly (b) Majority of hubs are either assigned with ZD or Pavlov (the initial average degrees of hub and non-hub
strategies are 3.4 and 1.8, respectively).
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(b) Cooperator − vs− Pavlov

Fig. 7: The evolution of GC and cooperator strategies competing against the Pavlov strategy, in scale-free populations of varying
initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial configurations,
the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial average degrees
of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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(b) Tit− for − Tat− vs− Pavlov

Fig. 8: The evolution of Defector and Tit-for-tat strategies competing against the Pavlov strategy, in scale-free populations
of varying initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial
configurations, the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial
average degrees of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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Fig. 6: The evolution of ZD population fraction against the Pavlov strategy, in scale-free populations of varying initial
configurations. The population is allowed to evolve under the strategy adoption process. (a) ZD and Pavlov strategies initially
distributed randomly (b) Majority of hubs are either assigned with ZD or Pavlov (the initial average degrees of hub and non-hub
strategies are 3.4 and 1.8, respectively).
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Fig. 7: The evolution of GC and cooperator strategies competing against the Pavlov strategy, in scale-free populations of varying
initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial configurations,
the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial average degrees
of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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Fig. 8: The evolution of Defector and Tit-for-tat strategies competing against the Pavlov strategy, in scale-free populations
of varying initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial
configurations, the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial
average degrees of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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Fig. 6: The evolution of ZD population fraction against the Pavlov strategy, in scale-free populations of varying initial
configurations. The population is allowed to evolve under the strategy adoption process. (a) ZD and Pavlov strategies initially
distributed randomly (b) Majority of hubs are either assigned with ZD or Pavlov (the initial average degrees of hub and non-hub
strategies are 3.4 and 1.8, respectively).
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Fig. 7: The evolution of GC and cooperator strategies competing against the Pavlov strategy, in scale-free populations of varying
initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial configurations,
the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial average degrees
of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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Fig. 8: The evolution of Defector and Tit-for-tat strategies competing against the Pavlov strategy, in scale-free populations
of varying initial configurations. The population is allowed to evolve under the strategy adoption process. In the two initial
configurations, the competing strategy is either assigned randomly or assigned more on hubs (in hubs initialisation, the initial
average degrees of competing nodes and Pavlov nodes are 3.4 and 1.8, respectively).
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Figure 6. The evolution of ZD population fraction against the Pavlov strategy, in scale-free populations of
varying initial configurations. The population is allowed to evolve under the strategy adoption process. (a)
ZD and Pavlov strategies initially distributed randomly (b) Majority of hubs are either assigned with ZD or

Pavlov (the initial average degrees of hub and non-hub strategies are 3.4 and 1.8, respectively).

Figure 7. The evolution of GC and cooperator strategies competing against the Pavlov strategy, in
scale-free populations of varying initial configurations. The population is allowed to evolve under the
strategy adoption process. In the two initial configurations, the competing strategy is either assigned

randomly or assigned more on hubs (in hubs initialisation, the initial average degrees of competing nodes
and Pavlov nodes are 3.4 and 1.8, respectively).

Figure 8. The evolution of Defector and Tit-for-tat strategies competing against the Pavlov strategy, in
scale-free populations of varying initial configurations. The population is allowed to evolve under the
strategy adoption process. In the two initial configurations, the competing strategy is either assigned

randomly or assigned more on hubs (in hubs initialisation, the initial average degrees of competing nodes
and Pavlov nodes are 3.4 and 1.8, respectively).
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5 Discussion

Figure 9. The evolution of ZD population fraction
against the Pavlov strategy, in scale-free

populations with varying network assortativity
values. The population is allowed to evolve under

the strategy adoption process. The results are
averaged over 40 independent runs.

Network game theory has gained prominence as
an interdisciplinary field. Complex networks are in-
creasingly used to model social systems, while the
cognitive decision making processes of individuals
in such systems is modelled by game theory. It
is obvious that the topological connection patterns
would influence the decisions made by individual
entities, and many questions remain answered in re-
gards to how topology can influence the strategies
individual players will choose over time.

In this work, we attempted to evaluate how the
network topology of a population of players affect
the evolutionary stability of a strategy. In partic-
ular, we focused on a class of strategies known
as Zero-determinant strategies, which has been
demonstrated to be evolutionarily unstable against
the Pavlov strategy.

Based on the results gathered from this re-
search, we suggest that network topology has an ef-
fect on whether a particular strategy is evolutionar-
ily stable or not. However, the topologically influ-
enced evolutionary stability is a weak evolutionary
stability and not a strong evolutionary stability. In
other words, the stable strategy would not be able to
completely eradicate the competing strategy and the
competing strategy would be able to survive within
the confines of the network.

We also identified that the topological effect of
evolutionary stability is determined by the evolu-

tionary process used. When using the death-birth
Moran process to evolve the population, topology
does not seem have a significant effect on the evo-
lutionary stability of strategies. However, when
the strategy adoption process suggested by San-
tos et al. [23] is applied, topology does have sig-
nificant effect on evolutionary stability of a strat-
egy within a population. Strategy adoption pro-
cess takes into account the cumulative payoff of
each node in determining whether a strategy should
be replaced or not. Therefore, this result suggests
that an evolutionarily unstable strategy could sur-
vive when they occupy the hubs surrounded by leaf
nodes assigned with the evolutionarily stable strat-
egy. In a heterogeneous network of players, hubs
tend to have more strategic interactions with their
opponents compared to leaf nodes. Thus, a hub
with an evolutionarily unstable strategy would con-
tinue to be irreplaceable by the neighbouring nodes’
strategies, as it would continue to have a higher pay-
off compared to its immediate neighbours.

The significance of the evolutionary process
may have implications in the real-world networks
of strategic players. Moran process would be more
appropriate in the biological context where the life-
time of a player is significantly less than the evo-
lutionary time-span. It could be effectively used to
model the evolution of species where the strategies
are ‘hard-wired’ to the players and the evolution
happens through the replacement of players with
the replicas of better performing players. However,
in the social context, the evolution of strategies may
be driven by the adoption of strategies by the play-
ers based on the performance of their neighbouring
players. In other words, a stochastic strategy adop-
tion process could be used to model the evolution
of strategies when the lifetime of a player maybe
considerably larger than the time-span of evolution.
Examples of such situations involve the interactions
that happen in corporate sector and financial mar-
kets. There, it is often observable that the players
continually adopt the strategies of other players, in
their struggle to survive. Thus, the strategy adop-
tion evolutionary update process may be more rel-
evant when the evolution of strategies is applied in
the social context. Accordingly, topological effect
on the evolutionary stability of strategies may be
more prevalent in the social context, compared to
the biological context.
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Fig. 5: The evolution of ZD population fraction against the
Pavlov strategy, in a well-mixed population. The population
is allowed to evolve under the strategy adoption process. The
strategies are initially distributed randomly, with the fraction
of ZD nodes being 0.4 and 0.6, respectively.

the same figure shows, when the Pavlov strategy is initially
assigned to the majority of hubs, it behaves as a strong
evolutionarily stable strategy, wiping out the ZD population.
This suggests that under the strategy adoption evolutionary
process, the evolutionarily unstable ZD strategy may not only
survive, but may even become the more prominent strategy in
a non-homogeneous population of players.

Then, we mixed the Pavlov strategy with the GC and the
cooperator strategies respectively, in a Scale-free population.
Fig.7 and Fig. 8 show the evolution of the GC, cooperator, de-
fector and Tit-for-Tat strategy fractions over time, when those
strategies are initially placed randomly or mostly on hubs. As
the figures depict, the opposing strategies too may survive or
dominate the population based on the initial distribution of the
strategies, when the population is updated using the strategy
adoption evolutionary process. This suggests that topological
influence on the evolutionary stability is not limited to the ZD
strategy, but may apply to other strategies as well.

Finally, we tested the evolution of the ZD population
against the Pavlov strategy while the heterogeneity of the
networks are gradually changed. Fig.9 shows the variation of
the remaining ZD fraction after 150,000 time-steps under the
strategy adoption process. As the figure shows, there exits a
negative correlation between the network assortativity and the
remaining ZD fraction. The actual Pearson correlation value of
the two series is -0.85, suggesting a strong negative correlation.
Network assortativity is a measure of the similarity or the
homogeneity of the mixing patterns of the nodes. Therefore,
this result suggests that the effect of network topology on the
evolutionary stability of a strategy increases, as the network
becomes more heterogeneous.

V. DISCUSSION

Network game theory has gained prominence as an in-
terdisciplinary field. Complex networks are increasingly used
to model social systems, while the cognitive decision making
processes of individuals in such systems is modelled by game
theory. It is obvious that the topological connection patterns
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Fig. 9: The evolution of ZD population fraction against the
Pavlov strategy, in scale-free populations with varying network
assortativity values. The population is allowed to evolve under
the strategy adoption process. The results are averaged over
40 independent runs.

would influence the decisions made by individual entities, and
many questions remain answered in regards to how topology
can influence the strategies individual players will choose over
time.

In this work, we attempted to evaluate how the network
topology of a population of players affect the evolutionary
stability of a strategy. In particular, we focused on a class
of strategies known as Zero-determinant strategies, which has
been demonstrated to be evolutionarily unstable against the
Pavlov strategy.

Based on the results gathered from this research, we
suggest that network topology has an effect on whether a
particular strategy is evolutionarily stable or not. However,
the topologically influenced evolutionary stability is a weak
evolutionary stability and not a strong evolutionary stability.
In other words, the stable strategy would not be able to
completely eradicate the competing strategy and the competing
strategy would be able to survive within the confines of the
network.

We also identified that the topological effect of evolu-
tionary stability is determined by the evolutionary process
used. When using the death-birth Moran process to evolve the
population, topology does not seem have a significant effect
on the evolutionary stability of strategies. However, when the
strategy adoption process suggested by Santos et al. [23] is
applied, topology does have significant effect on evolutionary
stability of a strategy within a population. Strategy adoption
process takes into account the cumulative payoff of each
node in determining whether a strategy should be replaced
or not. Therefore, this result suggests that an evolutionarily
unstable strategy could survive when they occupy the hubs
surrounded by leaf nodes assigned with the evolutionarily
stable strategy. In a heterogeneous network of players, hubs
tend to have more strategic interactions with their opponents
compared to leaf nodes. Thus, a hub with an evolutionarily
unstable strategy would continue to be irreplaceable by the
neighbouring nodes’ strategies, as it would continue to have a
higher payoff compared to its immediate neighbours.
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Further, it is important to note that not only
the topology, but also the initial distribution of the
strategies within the network too plays a significant
role in shaping the evolution of the strategies. For
instance, when the evolutionarily unstable strategy
occupies hubs as opposed to the leaf nodes at the
initiation of the evolution, it even manages to be-
come the more prominent strategy within the net-
work over time, resembling a weak evolutionarily
stable strategy.

Even though we mainly focused on the ZD and
Pavlov strategies in this work, we could replicate
similar observations with other well-known strate-
gies such as the general cooperator and cooperator
strategies, competing against the Pavlov strategy.
This could mean that the variation of evolutionary
stability due to topological stability of strategies is
a more general phenomena that may be applica-
ble to most strategies that are competing with each
other. In addition, the topological effect on the evo-
lutionary stability may be observed for other games
other than the Prisoner’s dilemma game. For in-
stance, it would be interesting to observe how the
extensive form games, where the temporal dimen-
sion is built-in to the strategic decisions, are af-
fected by the topological placement of the players.
Such studies may be useful in accurately predicting
the evolutionary stability of strategies in scenarios
such as auctions, which can be modelled with ex-
tensive form games.

In conclusion, we could identify the following
three factors that determine the topological stability
of strategies in a non-homogeneous network. Net-
work topology, evolutionary process and the initial
distribution of the strategies. By varying these three
factors, an evolutionarily unstable strategy may be
able to survive and may even operate as a weak
evolutionarily stable strategy, in a population of
players connected in a non-homogeneous topology.
Based on our observations, the topological stabil-
ity of strategies may be more prevalent in the social
context of the evolution of strategies, in comparison
to the biological context.
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Further, it is important to note that not only
the topology, but also the initial distribution of the
strategies within the network too plays a significant
role in shaping the evolution of the strategies. For
instance, when the evolutionarily unstable strategy
occupies hubs as opposed to the leaf nodes at the
initiation of the evolution, it even manages to be-
come the more prominent strategy within the net-
work over time, resembling a weak evolutionarily
stable strategy.

Even though we mainly focused on the ZD and
Pavlov strategies in this work, we could replicate
similar observations with other well-known strate-
gies such as the general cooperator and cooperator
strategies, competing against the Pavlov strategy.
This could mean that the variation of evolutionary
stability due to topological stability of strategies is
a more general phenomena that may be applica-
ble to most strategies that are competing with each
other. In addition, the topological effect on the evo-
lutionary stability may be observed for other games
other than the Prisoner’s dilemma game. For in-
stance, it would be interesting to observe how the
extensive form games, where the temporal dimen-
sion is built-in to the strategic decisions, are af-
fected by the topological placement of the players.
Such studies may be useful in accurately predicting
the evolutionary stability of strategies in scenarios
such as auctions, which can be modelled with ex-
tensive form games.

In conclusion, we could identify the following
three factors that determine the topological stability
of strategies in a non-homogeneous network. Net-
work topology, evolutionary process and the initial
distribution of the strategies. By varying these three
factors, an evolutionarily unstable strategy may be
able to survive and may even operate as a weak
evolutionarily stable strategy, in a population of
players connected in a non-homogeneous topology.
Based on our observations, the topological stabil-
ity of strategies may be more prevalent in the social
context of the evolution of strategies, in comparison
to the biological context.
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