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tions of control signals. At the simulations, rea-
sonable designs of synchronized frame length,
number of power slots N, network topology, and
system dimensions must be counted in.

3. Along with these sophisticated simulations,
characteristics of the proposed power network
must be quantified that includes the efficiency
of network operations, the evaluation of power
losses, and the estimation of reliability against
system troubles. In addition, to realize this pro-
posed network, some practical appliactions must
be investigated based on their cost estimation
of construction and preservation in comparison
with conventional power systems.
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Abstract

Several hybrid neuron models, which combine continuous spike-generation mechanisms
and discontinuous resetting process after spiking, have been proposed as a simple tran-
sition scheme for membrane potential between spike and hyperpolarization. As one of
the hybrid spiking neuron models, Izhikevich neuron model can reproduce major spike
patterns observed in the cerebral cortex only by tuning a few parameters and also exhibit
chaotic states in specific conditions. However, there are a few studies concerning the
chaotic states over a large range of parameters due to the difficulty of dealing with the
state dependent jump on the resetting process in this model. In this study, we examine
the dependence of the system behavior on the resetting parameters by using Lyapunov
exponent with saltation matrix and Poincaré section methods, and classify the routes to
chaos.

1 Introduction

Recently, according to the development of the
brain measurement technology, it has been recog-
nized that the information is transmitted among
neurons by the spike timing instead of the firing
rate of neurons. Therefore, the spiking neuron mod-
els, which can describe the spike timing, have been
attracting a lot of attention. Then, many types
of mechanism for generating spiking pattern have
been revealed through the bifurcation analysis by
the spiking neuron models [1, 2, 3]. The spiking
neuron models used in these previous studies were
the Hodgkin-Huxley (HH) type model [4] and sim-
pler conductance based models such as FitzHugh-
Nagumo model and Hindmarsh-Rose model [1], de-

scribed by continuous ordinary differential equa-
tions. While, several hybrid neuron models, which
combine continuous spike-generation mechanisms
and discontinuous resetting process after spiking,
have been proposed as a simple transition scheme
for membrane potential between spike and hyper-
polarization [5, 6, 7, 8]. As the simplest hybrid
spiking neuron model, the leaky integrate-and-fire
neuron model is constructed by leak ohmic con-
ductance, membrane capacitance, refractory period
and threshold for membrane potential. Its imple-
mentation cost for numerical calculation is small,
but the reproduced spiking patterns are restricted to
only regular spiking with class one excitability due
to the sacrificing many factors of non-linear neuro-
dynamics [1]. In contrast, Izhikevich neuron model
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as two dimensional non-linear hybrid neuron model
can induce many kinds of bifurcation and reproduce
almost all spiking activities observed in the actual
neural systems by tuning a few parameters includ-
ing the resetting process [5, 6].

As one of the characteristics of spiking activi-
ties in the brain, chaotic spiking patterns have been
shown to support adaptable information processing
in the function of learning and memory. Previous
studies have been made on the continuous spik-
ing neuron model, focusing on the electrical cou-
pling strength and external input signal, and so on
[3, 9, 10, 11, 12]. The reason for not adopting the
above mentioned hybrid neuron model in the pre-
vious studies was the difficulty for evaluating chaos
caused by state dependent jump in the resetting pro-
cess. Some approaches have been made to deal with
this condition by the bifurcation analysis [13, 14]
and the Lyapunov exponent [15, 16] on the Poincaré
section, and Lyapunov exponent with a saltation
matrix on the system trajectory [17].

In this paper, using both Lyapunov exponent
with saltation matrix and bifurcation analysis, we
analyze the dependence of the system behavior on
the resetting parameters in Izhikevich neuron model
over wide range of parameters [18]. Following
these results, we clarify the mechanism for gener-
ating chaos called the route to chaos.

2 Model and Methods

In this section, first, Izhikevich neuron model
is explained and the typical spiking patterns are
demonstrated. Second, the Lyapunov exponent
with saltation matrix is defined as an evaluation in-
dex for the system state, and Poincaré section meth-
ods are introduced to analyze the structure of sys-
tem trajectories.

2.1 Izhikevich neuron model

Izhikevich neuron model [5, 6] is a two-
dimensional system of ordinary differential equa-
tions of the form:

v̇ = 0.04v2 +5v+140−u+ I, (1)

u̇ = a(bv−u), (2)

with the auxiliary after-spike resetting

if v ≥ 30[mV], then

{
v ← c
u ← u+d.

(3)

Here, v and u represent the membrane potential of
the neuron and a membrane recovery variable, re-
spectively. v and the time t have [mV] and [ms]
scales, respectively. I is the input dc-current. The
parameters a and b describe the time scale and
the sensitivity of u, respectively. Spiking behav-
iors such as regular spiking (RS), intrinsically burst-
ing (IB) and chattering (CH) are reproduced by
using this model. In our simulation, this model
is analyzed numerically by non linear differen-
tial/algebraic equation solvers of SUNDIALS li-
brary [19]

Figure 1. Spiking behaviors. (a) Regular spiking
(RS) (a = 0.02,b = 0.2,c =−65,d = 8). (b)

Intrinsically bursting (IB)
(a = 0.02,b = 0.2,c =−55,d = 4). (c) Chattering

(CH) (a = 0.02,b = 0.2,c =−50,d = 2).

Let us demonstrate the time evolution of v(t)
in the cases of RS (a = 0.02,b = 0.2,c =−65,d =
8), IB (a = 0.02,b = 0.2,c = −55,d = 4) and CH
(a = 0.02,b = 0.2,c = −50,d = 2). When the dc-
current I = 10 is input to RS neuron as shown in the
bottom of Fig. 1 (a), the neuron fires a few spikes
with short inter-spike period and then the period be-
comes long. This spiking behavior is the most typi-

regular spiking (RS), intrinsically bursting (IB) and
chattering (CH) are reproduced by using this model.
In our simulation, this model is analyzed numerically
by non linear differential/algebraic equation solvers
of SUNDIALS library [19]

Let us demonstrate the time evolution of v(t) in
the cases of RS (a = 0.02,b = 0.2,c = −65,d = 8),
IB (a = 0.02,b = 0.2,c = −55,d = 4) and CH (a =
0.02,b = 0.2,c = −50,d = 2). When the dc-current
I = 10 is input to RS neuron as shown in the bottom
of Fig. 1 (a), the neuron fires a few spikes with short
inter-spike period and then the period becomes long.
This spiking behavior is the most typical in the cor-
tex. There are not only spiking neurons like RS neu-
ron but also bursting neurons like IB and CH in the
cortex. Figure 1 (b) shows that IB neuron bursts at
the begin of I = 10 and then bursting shifts to spik-
ing. On the other hand, CH neuron bursts during
I = 10 and the inter-burst frequency can be as high
as about 40 [Hz] as shown in Fig. 1 (c).

2.2 Lyapunov exponent with saltation ma-
trix and Poincaré section methods

We quantify the chaotic activity of Izhikevich neuron
model with Lyapunov exponent. On the continuous
system trajectory between i-th and (i + 1)-th spik-
ing times: (ti ≤ t ≤ ti+1), the variational equations
of Eqs. (1) and (2) are defined as follows:

Φ̇i+1(t, ti) = J(v,u, t)Φi+1(t, ti), (4)

Φi+1(ti, ti) = E, (5)

where, Φ, J and E indicate the state transition matrix,
the Jacobian and unit matrix, respectively. At t = ti,
the saltation matrix is given by

Si =

[
v̇+
v̇− 0

u̇+−u̇−
v̇− 1

]
. (6)

Here, (v−,u−) and (v+,u+) represent the values
of (v,u) before and after spiking, respectively. In
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Figure 1: Spiking behaviors. (a) Regular spiking
(RS) (a = 0.02,b = 0.2,c = −65,d = 8). (b) Intrin-
sically bursting (IB) (a = 0.02,b = 0.2,c =−55,d =
4). (c) Chattering (CH) (a = 0.02,b = 0.2,c =
−50,d = 2).

the case of the spikes arising in [T k : T k+1] [ms],
Φk(T k+1,T k) (k = 0,1, · · · ,N − 1) [17, 20] is writ-
ten by

Φk(T k+1,T k) = Φi+1(T k+1, ti)SiΦi(ti, ti−1)

· · ·S2Φ2(t2, t1)S1Φ1(t1,T k). (7)

By using the eigenvalues lk
j ( j = 1,2) of

Φk(T k+1,T k), the Lyapunov spectrum λ j is
calculated by

λ j =
1

T N −T 0

N−1

∑
k=0

log(|lk
j |). (8)

In our simulation, we set T k+1 −T k is the period of
20 spikes (i= 20) or 1000 [ms] as its maximum value

3
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cal in the cortex. There are not only spiking neurons
like RS neuron but also bursting neurons like IB and
CH in the cortex. Figure 1 (b) shows that IB neuron
bursts at the begin of I = 10 and then bursting shifts
to spiking. On the other hand, CH neuron bursts
during I = 10 and the inter-burst frequency can be
as high as about 40 [Hz] as shown in Fig. 1 (c).

2.2 Lyapunov exponent with saltation ma-
trix and Poincaré section methods

We quantify the chaotic activity of Izhikevich
neuron model with Lyapunov exponent. On the
continuous system trajectory between i-th and (i+
1)-th spiking times: (ti ≤ t ≤ ti+1), the variational
equations of Eqs. (1) and (2) are defined as follows:

Φ̇i+1(t, ti) = J(v,u, t)Φi+1(t, ti), (4)

Φi+1(ti, ti) = E, (5)

where, Φ, J and E indicate the state transition ma-
trix, the Jacobian and unit matrix, respectively. At
t = ti, the saltation matrix is given by

Si =

[
v̇+
v̇− 0

u̇+−u̇−
v̇− 1

]
. (6)

Here, (v−,u−) and (v+,u+) represent the values
of (v,u) before and after spiking, respectively. In
the case of the spikes arising in [T k : T k+1] [ms],
Φk(T k+1,T k) (k = 0,1, · · · ,N − 1) [17, 20] is writ-
ten by

Φk(T k+1,T k) = Φi+1(T k+1, ti)SiΦi(ti, ti−1)

· · ·S2Φ2(t2, t1)S1Φ1(t1,T k). (7)

By using the eigenvalues lk
j ( j = 1,2) of

Φk(T k+1,T k), the Lyapunov spectrum λ j is calcu-
lated by

λ j =
1

T N −T 0

N−1

∑
k=0

log(|lk
j |). (8)

In our simulation, we set T k+1 − T k is the period
of 20 spikes (i = 20) or 1000 [ms] as its maximum
value in the case that T k+1−T k achieves 1000 [ms]
before 20 spikes arise.

To investigate the structures of appeared at-
tractors, Poincaré section method [21] is utilized.
Figure 2 indicates the orbit of (v,u) on the v − u
plane in the case of RS. In our study, we set the

Poincaré section at v = 30 [mV] as the resetting
point given by Eq.(3) and observe the time evolu-
tions of (u1,u2, · · · ) which are the system behaviors
of u on the the Poincaré section. The dynamics of ui

is given by Poincaré mapping ui+1 = ϕ(ui), and then
the point after m times passing through the Poincaré
section from ui becomes ui+m = ϕm(ui).

Figure 2. RS orbit of (v,u) (solid line) including
state dependent jump (reset) on v−u phase plane

and Poincaré section utilized in this study.
(a = 0.02,b = 0.2,c =−65,d = 8, I = 10).

3 Results and Evaluations

In this section, we evaluate the chaotic states
in two parameter regions by using λ1 and Poincaré
section methods.

3.1 Period-doubling bifurcation route to
chaos

In parameter sets for RS, IB and CH, the param-
eters a and b are common (a = 0.02,b = 0.2) and
the parameters on the resetting process c and d are
set differentially ((c,d) = (−65,8) for RS, (−55,4)
for IB, (−50,2) for CH). That is, Izhikevich neuron
model can reproduce the various spiking patterns by
tuning the parameters regarding the resetting pro-
cess. This section focuses on the chaotic system
behavior around these parameter sets for RS, IB and
CH.

At first, Fig. 3 shows the dependence of λ1
on the parameters of c and d around the param-
eter region for the parameter sets of RS, IB and
CH [5]. Here, the other parameters are fixed (a =
0.02,b = 0.2, I = 10). As a result, it is confirmed
that the chaotic state (λ1 > 0) exists in the region:
−59 � c � −40, d ≈ 1.0. Furthermore, under the
condition c = −55 [mV], we demonstrate the de-
pendence of the system behavior on the parameter d
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around the value inducing chaotic spiking (d ≈ 1.0).
Figure 4 shows the time series of v(t) [mV] (up-
per) and the orbit of (v,u) (lower) indicated black
solid line. Here, as shown in the lower figures, v-
nullcline (v̇ = 0 indicated by red dotted line) and
u-nullcline (u̇ = 0 indicated by green dashed line)
do not have the intersection point. Therefore, the
neuron exhibits the spiking state regardless of the
value of c and d. At d = 0.8 (Fig. 4 (a)), the or-
bit indicates the period-1 state. Then, as the value
of d increases, the system state transits to period-2
(d = 0.85 in Fig.4 (b)), period-4 (d = 0.89 in Fig.4
(c)) and chaos (λ1 ≈ 0.043) (d = 0.93 in Fig.4 (d))
through period-doubling bifurcation. The duration
for this chaotic spiking activity is divided into the
duration for hyperpolarization (v ≈−60) [mV] and
the duration for arising several spikes from v≈−50
[mV], i.e., this chaotic spike pattern has the bursting
characteristic.

Figure 3. Dependence of maximum Lyapunov
exponent λ1 on parameters of d and c for resetting

process. The symbols of (+) indicate the
parameter sets for RS, IB and CH given by Fig.1.

(a = 0.02,b = 0.2, I = 10)

Next, the system behavior indicated in Fig.4
is analyzed by Poincaré section method in detail.
According to the time series of ui in Fig.5 (up-
per), it is confirmed that the orbits of period-1,
period-2, period-4 and chaos in Fig. 4 correspond
to fixed point ((a)), period-1 ((b)) period-3 ((c))
and chaos ((d)) on Poincaré section, respectively.
In order to investigate the relationship between ui

and ui+1, the return map of ui is shown in Fig.5
(lower). Here, the black solid, red dotted and
green dashed lines indicate the orbit of ui, Poincaré
map ui+1 = ϕ(ui) and ui+1 = ui, respectively. In
Fig. 5 (a) (d = 0.8), ui stays at the stable fixed
point (ui,ui+1) = (−4.7,−4.7) as the intersection
between ui+1 = ϕ(ui) and ui+1 = ui. As increas-
ing d, the period-1 ((b)), period-3 ((c)) and chaotic

((d)) states appear through the period-doubling bi-
furcation. Also, the shapes of ϕ in Figs. 5 (a) to
(d) exhibit the stretching and folding structure as a
feature of non-linear map.

Furthermore, in order to examine the change
of system behavior against the parameter d, con-
tinuously, we investigate the bifurcation by chang-
ing d with bifurcation diagram of ui ((a)) and λ1
((b)) in Fig. 6. Here, this evaluating parameter re-
gion includes the values of d = 0.8 to 0.93 used in
Fig.4 and Fig. 5. Form these results, in the range
of 0 � d � 0.8, ui is on the fixed point, and then
through the period-doubling bifurcation as the fa-
miliar route to chaos in the spiking neuron mod-
els [1, 3, 22], the chaotic state (λ1 > 0) appears at
d ≈ 0.93.

(a)

(b)

Figure 6. (a) Bifurcation diagram. (b) Dependence
of maximum Lyapunov exponent λ1 on d.

(a = 0.02,b = 0.2,c =−55, I = 10)

3.2 Intermittent route to chaos

We evaluate the chaotic behavior in the re-
gion around the parameter set (a = 0.2,b = 2,c =
−56,d = −16, I = −99) which is proposed by
Izhikevich [6] as the parameter set producing the
chaotic behavior. Note that route to chaos for this
parameter set has not been investigated, so far.
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We evaluate the chaotic behavior in the re-
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−56,d = −16, I = −99) which is proposed by
Izhikevich [6] as the parameter set producing the
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Figure 4. System behavior in periodic-1 ((a) d = 0.8), periodic-2 ((b) d = 0.85), periodic-4 ((c) d = 0.89)
and chaotic ((d) d = 0.93) states. Upper figures indicate time series of v(t) [mV] and lower figures indicate
orbit of (v,u), v-nullcline (v̇ = 0) and u-nullcline (u̇ = 0) given by black solid, red dotted and green dashed

lines, respectively. (a = 0.02,b = 0.2,c =−55, I = 10)

(a) d = 0.8 (b) d = 0.85

-90
-60
-30

 0
 30

 5000  5100  5200  5300

v 
[m

V]

t [ms]

-7.5
-7

-6.5
-6

-5.5
-5

-4.5
-4

-3.5

-60 -40 -20  0  20  40

u

v

-60
-30

 0
 30

 5000  5100  5200  5300

v 
[m

V]

t [ms]

-7.5
-7

-6.5
-6

-5.5
-5

-4.5
-4

-3.5

-60 -40 -20  0  20  40

u

v

(c) d = 0.89 (d) d = 0.93

-60
-30

 0
 30

 5000  5100  5200  5300

v 
[m

V]

t [ms]

-7.5
-7

-6.5
-6

-5.5
-5

-4.5
-4

-3.5

-60 -40 -20  0  20  40

u

v

-60
-30

 0
 30

 5000  5100  5200  5300

v 
[m

V]

t [ms]

-7.5
-7

-6.5
-6

-5.5
-5

-4.5
-4

-3.5

-60 -40 -20  0  20  40

u

v

Figure 4: System behavior in periodic-1 ((a) d = 0.8), periodic-2 ((b) d = 0.85), periodic-4 ((c) d = 0.89)
and chaotic ((d) d = 0.93) states. Upper figures indicate time series of v(t) [mV] and lower figures indicate
orbit of (v,u), v-nullcline (v̇ = 0) and u-nullcline (u̇ = 0) given by black solid, red dotted and green dashed
lines, respectively. (a = 0.02,b = 0.2,c =−55, I = 10)
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Figure 5. System behaviors on Poincaré section. Time series of ui (upper). Return maps between ui and
ui+1 (lower), where red solid line is the orbit for ui, red dotted line is Poincaré map ui+1 = ϕ(ui), and green

dashed line is ui+1 = ui. The values of parameter d correspond to Fig. 4 from (a) to (d).
(a = 0.02,b = 0.2,c =−55, I = 10)
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Figure 5. System behaviors on Poincaré section. Time series of ui (upper). Return maps between ui and
ui+1 (lower), where red solid line is the orbit for ui, red dotted line is Poincaré map ui+1 = ϕ(ui), and green

dashed line is ui+1 = ui. The values of parameter d correspond to Fig. 4 from (a) to (d).
(a = 0.02,b = 0.2,c =−55, I = 10)

CHAOTIC STATES INDUCED BY . . .

First, Fig. 7 shows the c − d map of λ1 in
the case of (a = 0.2,b = 2, I = −99). The chaotic
state (λ1 > 0) exists in the region d � −13. Un-
der the condition c = −56 [mV], we demonstrate
the dependence of the system behavior on d. In
Fig. 8, the time series of v[mV] (upper) and the
orbit of (v,u) (indicated by black solid line) (lower)
are shown. Here, v-nullcline (v̇ = 0; indicated by
red dotted line) and u-nullcline (u̇ = 0; indicated
by green dashed line) have two intersection points
at (−57.0,−114.0) and (−17.9,−35.9) as unstable
fixed points, thus, the neuron exhibits the spiking
state. At d = −11 (Fig. 8 (a)), the orbit indicates
the 1-period state. Then, as the value of d decreases,
the system state transits to chaotic state in Figs.8
(b), (c) and (d). Here, it can be observed that the
durations of the apparently periodic spiking seem
to be shortened in these chaotic behaviors with de-
crease in d.

Figure 7. Dependence of maximum Lyapunov
exponent λ1 on parameters of d and c. The symbol
of (+) indicates the chaotic parameter set proposed

in Ref.[6]. (a = 0.2,b = 2, I =−99)

Next, by using Poincaré section method, the
system behavior indicated in Fig.8 is evaluated. As
shown in Fig.9 (a) (upper), ui stays at the fixed
point (ui ≈ −98.6). At d = −12 (Fig.9 (b) (up-
per)), ui begins to oscillate with a focus on ui ≈
−98.6, the amplitude of this oscillation expands to
−102 � ui � −90, and then ui returns to around
−98.6, again. Here, the periodic oscillation dis-
appears gradually with decrease of d as shown in
Figs.9 (b) (d = −12), (c) (d = −13) and (d) (d =
−16). Now, to investigate the feature of ui os-
cillation, we use the return map of ui and ui+2.
Lower figures in Fig. 9 indicate the orbit of ui

(black solid line), Poincaré map ui+2 = ϕ2(ui) (red
dotted line) and ui+2 = ui (green dashed line). In

the case of d = −11 ((a)), the orbit of ui stays at
the intersection point (≈ (−98.5,−98.5)) between
ui+2 = ϕ2(ui) and ui+2 = ui. However, at d = −12
((b)), the orbit of ui exhibits sluggish movement
(laminar mode) in the region where the slope of ϕ2

around 1.0 (−102 � ui � −94) and irregularly ac-
tive movement (turbulent mode) in the other region
having larger slope (≫ 1). This chaotic dynam-
ics alternating between the laminar and turbulent
modes is called intermittency chaos [23, 24]. As the
value of d decreases, the region producing the lam-
inar mode, where the ϕ2 slope indicates around 1.0,
reduces and then the turbulent mode is dominant in
the dynamics as shown in Figs.9 (b) to (d).

Furthermore, we investigate the bifurcation in
detail by enlarging the parameter region on d in-
cluding the value of d = −11 to −16 used in Fig.8
and Fig.9. Figures 10 (a) and (b) indicate the bifur-
cation diagram of ui and λ1, respectively. In the re-
gion d �−11.9, ui stays at the fixed point (λ1 ≈ 0),
but in d � −11.9 the system state transits to chaos
(λ1 � 0) not to undergo the period-doubling bifur-
cation.

Figure 10. (a) Bifurcation diagram. (b)
Dependence of maximum Lyapunov exponent λ1

on d. (a = 0.2,b = 2,c =−56, I =−99)
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Figure 10: (a) Bifurcation diagram. (b) Depen-
dence of maximum Lyapunov exponent λ1 on d.
(a = 0.2,b = 2,c =−56, I =−99)

not observed in the parameter region around (a =
0.2,b = 2,c =−56,d =−16, I =−99) proposed by
Izhikevich as the parameter set producing the chaotic
behavior. Alternatively, it is confirmed that in this
region the periodic state transits to chaos through
the intermittency chaos, i.e., the intermittent route to
chaos exists in this region.

4 Conclusion

We have examined the chaotic behaviors of Izhike-
vich neuron model from the viewpoint of the route
to chaos rigorously by using the Lyapunov exponent
with saltation matrix and Poincaré section methods
in two representative parameter regions. The first is
parameter region around the parameter sets for RS,
IB and CH neurons. The second is the region around
the parameter set for chaotic spiking proposed by
Izhikevich. From these results, it was revealed that in
the former region, the chaotic state appears through
the period-doubling bifurcation route as the famil-
iar route to chaos in the spiking neuron models, and
this chaotic spiking pattern has the bursting charac-
teristic. On the other hand, in the latter region the
chaotic state is induced through the intermittent route
to chaos, and this intermittency chaos is divided into
laminar and turbulent modes.

Therefore, Izhikevich neuron model can produce
various chaotic spiking patterns by tuning the param-
eters for resetting process. The transition between
spike and hyperpolarization, which is described as
the resetting process in Izhikevich neuron model,
may play an important role of the function to gen-
erate various chaotic spiking patterns from several
routes to chaos in the actual neural systems.

Further research based on this study would be to
evaluate the chaotic system behaviors in the Izhike-
vich neuron assemblies jointed by electric synapses
and chemical synapses. Besides, we would investi-
gate the functionality of chaos for signal transmis-
sion and information processing such as chaotic res-
onance.
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Figure 8. System behavior in periodic-1 ((a) d =−11) and chaotic ((b) d =−12, (c) d =−13 and (d)
d =−16) states. Upper figures indicate time series of v(t) [mV] and lower figures indicate orbit of (v,u),

v-nullcline (v̇ = 0) and u-nullcline (u̇ = 0) given by black solid, red dotted and green dashed lines,
respectively. (a = 0.2,b = 2,c =−56, I =−99)
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Figure 8: System behavior in periodic-1 ((a) d = −11) and chaotic ((b) d = −12, (c) d = −13 and (d)
d =−16) states. Upper figures indicate time series of v(t) [mV] and lower figures indicate orbit of (v,u), v-
nullcline (v̇= 0) and u-nullcline (u̇= 0) given by black solid, red dotted and green dashed lines, respectively.
(a = 0.2,b = 2,c =−56, I =−99)
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Figure 8. System behavior in periodic-1 ((a) d =−11) and chaotic ((b) d =−12, (c) d =−13 and (d)
d =−16) states. Upper figures indicate time series of v(t) [mV] and lower figures indicate orbit of (v,u),

v-nullcline (v̇ = 0) and u-nullcline (u̇ = 0) given by black solid, red dotted and green dashed lines,
respectively. (a = 0.2,b = 2,c =−56, I =−99)

CHAOTIC STATES INDUCED BY . . .

Figure 9. System behavior on Poincaré section. Time series of ui (upper). Return map of ui and ui+2
(lower), where black solid line is the orbit for ui, red dotted line is Poincaré map ui+2 = ϕ2(ui), and green

dashed line is ui+2 = ui. The values of parameter d correspond to Fig. 8 from (a) to (d).
(a = 0.2,b = 2,c =−56, I =−99)
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−99)
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As a result, the period-doubling bifurcation is
not observed in the parameter region around (a =
0.2,b = 2,c = −56,d = −16, I = −99) proposed
by Izhikevich as the parameter set producing the
chaotic behavior. Alternatively, it is confirmed that
in this region the periodic state transits to chaos
through the intermittency chaos, i.e., the intermit-
tent route to chaos exists in this region.

4 Conclusion

We have examined the chaotic behaviors of
Izhikevich neuron model from the viewpoint of the
route to chaos rigorously by using the Lyapunov ex-
ponent with saltation matrix and Poincaré section
methods in two representative parameter regions.
The first is parameter region around the parame-
ter sets for RS, IB and CH neurons. The second is
the region around the parameter set for chaotic spik-
ing proposed by Izhikevich. From these results, it
was revealed that in the former region, the chaotic
state appears through the period-doubling bifurca-
tion route as the familiar route to chaos in the spik-
ing neuron models, and this chaotic spiking pattern
has the bursting characteristic. On the other hand, in
the latter region the chaotic state is induced through
the intermittent route to chaos, and this intermit-
tency chaos is divided into laminar and turbulent
modes.

Therefore, Izhikevich neuron model can pro-
duce various chaotic spiking patterns by tuning the
parameters for resetting process. The transition be-
tween spike and hyperpolarization, which is de-
scribed as the resetting process in Izhikevich neuron
model, may play an important role of the function to
generate various chaotic spiking patterns from sev-
eral routes to chaos in the actual neural systems.

Further research based on this study would be to
evaluate the chaotic system behaviors in the Izhike-
vich neuron assemblies jointed by electric synapses
and chemical synapses. Besides, we would investi-
gate the functionality of chaos for signal transmis-
sion and information processing such as chaotic res-
onance.
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As a result, the period-doubling bifurcation is
not observed in the parameter region around (a =
0.2,b = 2,c = −56,d = −16, I = −99) proposed
by Izhikevich as the parameter set producing the
chaotic behavior. Alternatively, it is confirmed that
in this region the periodic state transits to chaos
through the intermittency chaos, i.e., the intermit-
tent route to chaos exists in this region.

4 Conclusion

We have examined the chaotic behaviors of
Izhikevich neuron model from the viewpoint of the
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duce various chaotic spiking patterns by tuning the
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generate various chaotic spiking patterns from sev-
eral routes to chaos in the actual neural systems.
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