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Abstract

We propose a mutual learning method using nonlinear perceptron within the framework
of online learning and have analyzed its validity using computer simulations. Mutual
learning involving three or more students is fundamentally different from the two-student
case with regard to variety when selecting a student to act as the teacher. The proposed
method consists of two learning steps: first, multiple students learn independently from
a teacher, and second, the students learn from others through mutual learning. Results
showed that the mean squared error could be improved even if the teacher had not taken
part in the mutual learning.

1 Introduction

Kinzel proposed mutual learning [1]-[3] within
the framework of online learning [4]-[6] as a model
to explore interactions between students. His model
employs two students, and a student learns with the
other student acting as a teacher. The target of his
model is to obtain the same networks through the
learning as the common key of cryptography.

In terms of the learning problem, how the stu-
dent approaches the teacher is important. In our
previous work [7], we showed that the generaliza-
tion error of the students becomes smaller through
mutual learning, even if the teacher does not take
part in the mutual learning. In that work, we used
linear perceptron. However, nonlinear perceptron
has several advantages over linear perceptron, such
as the ability to use nonlinear outputs, learnability,
storage capacity, and so forth. Thus, the learning
behavior of a nonlinear perceptron is of interest.

In the current work, we explore mutual learning
for nonlinear perceptron. The learning settings are
formulated similar to those of statistical mechan-
ics because we intend to construct a theory for the
proposed method to utilize in future research. We
demonstrate the validity of the proposed method by
computer simulations.

2 Formulations

In this work, we employ a teacher-student for-
mulation and assume the existence of a teacher net-
work that produces the desired output for the stu-
dent network. By introducing the teacher network,
we can directly measure the similarity of the stu-
dent weight vector against that of the teacher. Here,
first we formulate a teacher network and a student
network and then we introduce the gradient descent
algorithm.

  – 77
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The teacher is nonlinear perceptron with N in-
put units and an output and student networks are
ns nonlinear perceptron, as shown in Figure 2.
Here, ns denotes the number of students. We as-
sume the teacher and student networks receive N-
dimensional input x(m) = (x(m)

1 , . . . ,x(m)
N ) at the m-

th learning iteration, as shown in Figure 2. x(m)
i of

the independently drawn input x(m) are uncorrelated
random variables with zero mean and 1/N variance.
f in Figure 2 is the output function defined by

f (ξ) = erf
(

ξ√
2

)
=

1√
2π

∫ ξ

−ξ
e−

t2
2 dt. (1)

The output function is similar to sigmoid func-
tion. Teacher output v(m) is calculated using v(m) =

f (∑N
j=1 B jx

(m)
j ) and that of student u(m)

i is calcu-

lated using u(m)
i = f (∑N

j=1 J(m)
i j x(m)

j ). Here, B =

(B1, . . .BN) is the teacher weight vector and J(m)
i =

(J(m)
i1 , ...,J(m)

iN ) are the weight vector of the ith stu-
dent, where m denotes learning iterations. Learning
iteration m is ignored in the figures. Each element
B j, j = 1 ∼ N is drawn from a probability distri-
bution with zero mean and unit variance. We also
assume that each element of J(0)i j , which is the ini-

tial value of the student vector J(0)i , is drawn from
a probability distribution with zero mean and unit
variance.

Figure 1. Architecture of teacher and student
networks.

Next, we formulate the squared error. The
squared error for the i-th student Ei is given by

E(m)
i =

1
2

(
v(m)−u(m)

i

)2
. (2)

In the computer simulation, we use the mean
squared error E(m)

Mi that calculated by average of
E(m)

i over K inputs.

Next, we formulate the overlap. The overlap
is the direction cosine between the teacher weight
vector and the ith student weight vector given by

Ri =
B · Ji

∥B∥∥Ji∥
. (3)

Next, we formulate the similarity between the
teacher weight vector and the student weight vec-
tor. The similarity is a short form of the similarity
between the teacher weight vector and the student
weight vector[8]. The similarity is given by

∥B− Ji∥2 =
N

∑
j=1

(B j − Ji j)
2. (4)

Here, the similarity becomes zero when both the di-
rection cosine and the norm of the student weight
vector are unity at the same time.

3 Proposed method

In this section, we formulate a mutual learning
algorithm for nonlinear perceptron. This algorithm
is composed of two parts: initial learning and mu-
tual learning. In the initial learning, a student learns
from the teacher, and we use the gradient descent
algorithm to modify each student’s weight vector
J(m)

i :

J(m+1)
i = J(m)

i +η
(

v(m)−u(m)
i

)
x(m). (5)

An identical input x(m) is applied to all students in
the same order. Equation (5) shows that the initial
learning is carried out between the teacher and one
of the students. All the students independently learn
the relationship between the input x(m) and the tar-
get v(m) given in every iteration. Therefore, after the
initial learning, there is some correlation between
the teacher and students. This means that the stu-
dents have the portion of the information which the
teacher has. When the mean squared error reaches
E(m)

Mi = ER, we switch the initial learning to the mu-
tual learning. The learning equation of the mutual
learning is

J(m+1)
i = J(m)

i +η
(

ui′(m)−u(m)
i

)
x(m). (6)
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get v(m) given in every iteration. Therefore, after the
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Here, subscript i denotes a student and subscript
i′(m) denotes a student acting as a teacher at the m-
th iteration.

4 Results

In this section, we discuss the behavior of the
initial learning and mutual learning through the
computer simulations. The element of teacher
weight vector Bi is sampled from N (0,1), that of
student J(0)i is sampled from N (0,1), and that of
input x(m)

i is sampled from N (0,1/N), as described
in Sec. 2. The learning step size is set to η = 0.1,
the input dimension is set to N = 1000, and the re-
sults are averages obtained over 10 trials.

4.1 Initial learning

The results of the initial learning are presented
in this subsection. In the initial learning, equation
(5) is used as the learning equation. The results of
student 1 are used. In Figs. 2, 3, and 4, the hori-
zontal axis is time t = m/N, where m is the number
of learning iterations. The vertical axis of Figure
2 is the overlap R1, that of Figure 3 is the mean
squared error EM1, and that of Figure 4 is the simi-
larity ∥B− J1∥2. In these figures, the m of B and J1
has been omitted for simplicity. We set ER = 0.001,
and the initial learning stopped when EM1 = 0.001.
As shown in Figure 2, R1 started from R(0)

1 = 0, in-
creased along t, and was eventually almost 1 be-
yond t = 75. This demonstrates that when we use
a smaller ER, the angle between the student weight
vector and that of the teacher will be smaller. The
time course of EM1 and ∥B−J1∥2 are shown in Figs.
3 and 4. Both exhibit similar curves and approach
zero beyond t = 75. Note that the meanings of
∥B− J1∥2 ∼ 0 and EM1 ∼ 0 are different: the simi-
larity directly measures the difference between the
teacher weight vector and the student weight vec-
tor while the mean squared error measures the out-
put difference of between the teacher weight vector
and that of the student. Therefore, from Figure 4,
it is shown that by using a smaller ER, the student
weight vector becomes more similar to the teacher
weight vector. Note that the similarity can be mea-
sured when we use the teacher-student formulation.

Figure 2. Time course of direction cosine of
teacher weight vector and student weight vector R1.

Figure 3. Time course of mean squared error EM1 .

Figure 4. Time course of similarity ∥B− J1∥2 .

4.2 Mutual learning with two students

The results of mutual learning with two students
are presented in this subsection. In mutual learn-
ing, equation (6) is used as the learning equation.
The initial learning is done beforehand with mutual
learning. After the initial learning, the two students
achieved EM1 = EM2. In mutual learning, students
take turns acting as a teacher.

Computer simulation results of mutual learning
with two students are shown in Figs. 5, 6, and 7,
where the horizontal axis is time t = m/N. The ver-
tical axis of Figure 5 is the overlap R1, that of Figure
6 is the mean squared error EM1, and that of Figure 7
is the similarity ∥B−J1∥2. In our computer simula-
tions, mutual learning stopped at t = 749. We iden-
tified the stopping times at which students had the
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best performances. Results obtained are the aver-
ages over 10 trials. In Figs. 5 − 7, results are given
using the teacher network and student network 1.

Figure 5 shows the dependence of overlap R1
according to the switching error ER. Overlap at
t = 749 depends on ER. As shown in the figure,
a smaller ER resulted in a larger R1 through mu-
tual learning. Note that R1 is improved even with a
small switching error, e.g., ER = 0.001. Moreover,
the overlap was enlarged through mutual learning
only, without using the teacher network. The de-
pendence of mean squared error EM1 according to
the switching error ER, shown in Figure 6, indicates
that the mean squared error EM1 can be reduced
by mutual learning, and that this tendency depends
on the switching error ER. From these results, as
with the overlap, the mean squared error was re-
duced through mutual learning without the teacher
network. Figure 7 shows the dependence of the sim-
ilarity ∥B − J1∥2 according to the switching error
ER. The tendency of the similarity is similar to that
of the mean squared error. This demonstrates that
mutual learning improved the similarity and mean
squared error at the same time without the teacher
network. This demonstrates that mutual learning is
effective.

Figure 5. Dependence of overlap R1 according to
switching error ER.

Figure 6. Dependence of mean squared error EM1
according to switching error ER .

Figure 7. Dependence of similarity ∥B− J1∥2

according to switching error ER .

Next, we discuss the effect of mutual learning
in more detail. Figures 8, 9, and 10 show the results
of analysis of Figs. 5, 6, and 7, where the hori-
zontal axis is the switching error ER. The vertical
axis of Figure 8 is the ratio of R∗

1/R(0). Here, R∗
1

means R1 at t = 749. The vertical axis of Figure 9
is the ratio of E∗

M1/E(0)
M1 and that of Figure 10 is the

ratio of ∥B− J∗1∥2/∥B− J(0)1 ∥2. Here, E∗
M1 means

EM1 at t = 749 and J∗1 means J1 at t = 749. Fig-
ure 8 shows the dependence of the ratio R∗

1/R(0)
1 ac-

cording to the switching error ER. As shown in the
figure, the ratio R∗

1/R(0)
1 is proportional to ER and

the biggest improvement of the ratio R∗
1/R(0)

1 ∼ 1.38
is achieved when ER = 0.3. Note that the ratio is
not improved when ER = 0.001. Figure 9 shows
the dependence of the ratio E∗

M1/E(0)
M1 according to

the switching error ER. In this case, the biggest
improvement of ratio E∗

M1/E(0)
M1 ∼ 0.7 is achieved

when ER = 0.1, and the ratio is proportional to ER
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except for ER = 0.001. Note that the ratio E∗
M1/E(0)

M1
is improved when ER = 0.001. These results differ
from those of ratio R∗

1/R(0)
1 . Figure 10 shows the

dependence of the ratio ∥B− J∗1∥2/∥B− J(0)1 ∥2 ac-
cording to the switching error ER. The tendency of
ratio ∥B− J∗1∥2/∥B− J(0)1 ∥2 is similar to that of ra-
tio E∗

M1/E(0)
M1. Note that the ratio is also improved

when ER = 0.001. These results also differ from
those of ratio R∗

1/R(0)
1 . This mean that the direc-

tion cosine between the teacher weight vector and
the student weight vector is not changed, although
the norm of the student vector may approach that
of the teacher vector. Next, we discuss the differ-
ence between R1, EM1, and ∥B−J1∥2 based on their
definitions. R1 shows the direction cosines of the
teacher and student weight vectors specifically, only
the overlap tendency of the two vectors. However,
we must consider both the direction cosine and the
magnitude difference between the teacher and stu-
dent weight vectors. For this purpose, we must use
∥B−J1∥2, which measures the direction cosine and
the magnitude difference at the same time. EM1 is
also a good measure, but EM1 is calculated by using
the output of the teacher network and the student
networks, so it depends on the input x(m) and also
on the output function f (·). Therefore, ∥B− J1∥2 is
the most useful in our case.

Figure 8. Dependence of ratio R∗
1/R(0)

1 according
to ER.

Figure 9. Dependence of ratio E∗
M1/E(0)

M1 according
to ER.

Figure 10. Dependence of ratio ∥B− J1∥2

according to ER.

4.3 Mutual learning with more than three
students

Mutual learning involving three or more stu-
dents is fundamentally different from the two-
student case in terms of variety when selecting a
student to act as teacher. Figures 11 and 12 show
the results obtained through learning in a cyclic or-
der of A → B → C → A. Here, A learns B is re-
ferred to as A → B. In these figures, the horizontal
axis is the number of students ns. The vertical axis
of Figure 11 (top) is the overlap at t = 749, R1

∗, that
of Figure 11 (bottom) is the mean squared error at
t = 749, E∗

M1, and that of Figure 12 is the similarity
at t = 749, ∥B− J∗1∥2. We used ns = 2, 3, 5, and
10 and set ER = 0.001, 0.1, 0.2, and 0.3. The sym-
bols “⃝”, “△”, “�”, and “▽” show the results for
ER = 0.001,0.1,0.2, and 0.3, respectively. The re-
sults obtained are the averages over 10 trials. From
Figs. 11 and 12, R∗

1 is proportional to the number
of students for all ERs and is particularly improved
when ER = 0.2, and E∗

M1 and ∥B−J∗1∥2 are inversely
proportional to the number of students ns. Note that
for all ERs, R∗

1, E∗
M1, and ∥B−J∗1∥2 are not saturated

at ns = 10. From our previous study [7], we know
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that R∗
1 and E∗

M1 are saturated at ns = 10 due to using
the linear output function. Therefore, in our future
work, we will investigate the issue of nonlinearity
of the output function for mutual learning.

Figure 11. Dependence of R1
∗(top) and

EM1
∗(bottom) according to number of students.

Figure 12. Dependence of ∥B− J∗1∥2 according to
number of students.

4.4 Trajectory of student weight vector
through mutual learning

In the previous subsection, we showed that mu-
tual learning can improve the performance of stu-

dents without using a teacher. In this section, we
clarify that the student weight vectors move toward
the teacher weight vector through the mutual learn-
ing. We also clarify that the weight trajectories de-
pending on the manner of selecting a student to act
as teacher. For this purpose, we employ principle
component analysis (PCA).

We obtained the trajectories of the student
weight vectors by two steps: (1) obtain the first and
second eigenvectors of matrix H, which consists of
teacher weight vector B and student weight vectors
J(m)

i at every 100 iterations. Three students J1,J2,
and J3 are used.

H =




B1, B2, . . . , BN

J(0)11 , J(0)12 , . . . , J(0)1N

J(100)
11 , J(100)

12 , . . . , J(100)
1N

...
...

...
...

J(M)
11 , J(M)

12 , . . . , J(M)
1N

J(0)21 , J(0)22 , . . . , J(0)2N

J(100)
21 , J(100)

22 , . . . , J(100)
2N

...
...

...
...

J(M)
21 , J(M)

22 , . . . , J(M)
2N

J(0)31 , J(0)32 , . . . , J(0)3N

J(100)
31 , J(100)

32 , . . . , J(100)
3N

...
...
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Here, M is the number of iterations to stop the mu-
tual learning. J(0)i is the initial weight vector of ith
student trained by mutual learning. (2) plots the tra-
jectories of the student weight vectors at every 100
learning steps in the space spanned by the first and
second eigenvectors. Figure 13 shows trajectories
of the student weight vectors obtained during mu-
tual learning involving three students respectively
referred to as A, B, and C.

Figure 13(a) shows the results obtained during
learning in cyclic order. The learning step size is
η = 0.1 and the number of iterations to stop mu-
tual learning is M = 100×N, where N = 1000. Ini-
tial value of overlap R(0) is set to 0.8. Figure 13(b)
shows the results obtained through learning where
one student is randomly selected to act as teacher
for comparison. The symbol ”o” at the center of
each figure shows the weight vector of the teacher.
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that R∗
1 and E∗

M1 are saturated at ns = 10 due to using
the linear output function. Therefore, in our future
work, we will investigate the issue of nonlinearity
of the output function for mutual learning.

Figure 11. Dependence of R1
∗(top) and

EM1
∗(bottom) according to number of students.

Figure 12. Dependence of ∥B− J∗1∥2 according to
number of students.

4.4 Trajectory of student weight vector
through mutual learning

In the previous subsection, we showed that mu-
tual learning can improve the performance of stu-

dents without using a teacher. In this section, we
clarify that the student weight vectors move toward
the teacher weight vector through the mutual learn-
ing. We also clarify that the weight trajectories de-
pending on the manner of selecting a student to act
as teacher. For this purpose, we employ principle
component analysis (PCA).

We obtained the trajectories of the student
weight vectors by two steps: (1) obtain the first and
second eigenvectors of matrix H, which consists of
teacher weight vector B and student weight vectors
J(m)

i at every 100 iterations. Three students J1,J2,
and J3 are used.
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Here, M is the number of iterations to stop the mu-
tual learning. J(0)i is the initial weight vector of ith
student trained by mutual learning. (2) plots the tra-
jectories of the student weight vectors at every 100
learning steps in the space spanned by the first and
second eigenvectors. Figure 13 shows trajectories
of the student weight vectors obtained during mu-
tual learning involving three students respectively
referred to as A, B, and C.

Figure 13(a) shows the results obtained during
learning in cyclic order. The learning step size is
η = 0.1 and the number of iterations to stop mu-
tual learning is M = 100×N, where N = 1000. Ini-
tial value of overlap R(0) is set to 0.8. Figure 13(b)
shows the results obtained through learning where
one student is randomly selected to act as teacher
for comparison. The symbol ”o” at the center of
each figure shows the weight vector of the teacher.

MUTUAL LEARNING USIN . . .

In these figures, the horizontal axis shows the first
principle component and the vertical axis shows the
second principle component.

When the learning is cyclic, the trajectories of
the students will head not toward the teacher but
rather toward the student acting as teacher. As
shown in Figure 13(a), the trajectory of A is heading
toward B, not toward the teacher, in the early stage
of learning. However, as the learning proceeds, all
students head toward the teacher.

In random selected learning, one student is ran-
domly selected to act as teacher. This student then
learns the average of all students to act as teacher.
As shown in Figure 13(b), the trajectories were all
straight and heading toward the teacher weight vec-
tor.

From these results, we clarified that the student
weight vectors head toward teacher weight vector
through the mutual learning.

(a) Cyclic learning

(b) Random selected learning

Figure 13. Trajectory of student weight vector
during mutual learning.

5 Conclusion

We have proposed a mutual learning method
using nonlinear perceptron and demonstrated its
validity through computer simulations. We have
shown that the mutual learning improves the perfor-
mance of student without a teacher. We also have
shown that the performance achieved by mutual
learning depends on the MSE of the initial learning.
Moreover, the performance of students can be im-
proved by using many students. In our future work,
we intend to construct a theory of mutual learning
through nonlinear perceptron and investigate the is-
sue of nonlinearity of the output function for mutual
learning.

The authors thank Professor Masato Okada for
insightful discussions.
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D. Trajectory of student weight vector through mutual learning

In the previous subsection, we showed that mutual learning
can improve the performance of students without using a
teacher. In this section, we clarify that the student weight
vectors move toward the teacher weight vector through the
mutual learning. We also clarify that the weight trajectories
depending on the manner of selecting a student to act as
teacher. For this purpose, we employ principle component
analysis (PCA).

We obtained the trajectories of the student weight vectors
by two steps: (1) obtain the first and second eigenvectors of
matrix H , which consists of teacher weight vector B and
student weight vectors J

(m)
i at every 100 iterations. Three

students J1, J2, and J3 are used.

H =
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Here, M is the number of iterations to stop the mutual learning.
J

(0)
i is the initial weight vector of ith student trained by

mutual learning. (2) plots the trajectories of the student weight
vectors at every 100 learning steps in the space spanned by
the first and second eigenvectors. Figure 13 shows trajectories
of the student weight vectors obtained during mutual learning
involving three students respectively referred to as A, B, and
C.

Figure 13(a) shows the results obtained during learning in
cyclic order. The learning step size is η = 0.1 and the number
of iterations to stop mutual learning is M = 100 × N , where
N = 1000. Initial value of overlap R(0) is set to 0.8. Figure
13(b) shows the results obtained through learning where one
student is randomly selected to act as teacher for comparison.
The symbol ”o” at the center of each figure shows the weight
vector of the teacher. In these figures, the horizontal axis shows
the first principle component and the vertical axis shows the
second principle component.

When the learning is cyclic, the trajectories of the students
will head not toward the teacher but rather toward the student
acting as teacher. As shown in Fig. 13(a), the trajectory of A is
heading toward B, not toward the teacher, in the early stage of
learning. However, as the learning proceeds, all students head
toward the teacher.

In random selected learning, one student is randomly
selected to act as teacher. This student then learns the average

of all students to act as teacher. As shown in Fig. 13(b), the
trajectories were all straight and heading toward the teacher
weight vector.

From these results, we clarified that the student weight
vectors head toward teacher weight vector through the mutual
learning.
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Fig. 13. Trajectory of student weight vector during mutual learning.

V. CONCLUSION

We have proposed a mutual learning method using nonlin-
ear perceptron and demonstrated its validity through computer
simulations. We have shown that the mutual learning improves
the performance of student without a teacher. We also have
shown that the performance achieved by mutual learning
depends on the MSE of the initial learning. Moreover, the
performance of students can be improved by using many
students. In our future work, we intend to construct a theory of
mutual learning through nonlinear perceptron and investigate
the issue of nonlinearity of the output function for mutual
learning.

The authors thank Professor Masato Okada for insightful
discussions.
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D. Trajectory of student weight vector through mutual learning

In the previous subsection, we showed that mutual learning
can improve the performance of students without using a
teacher. In this section, we clarify that the student weight
vectors move toward the teacher weight vector through the
mutual learning. We also clarify that the weight trajectories
depending on the manner of selecting a student to act as
teacher. For this purpose, we employ principle component
analysis (PCA).

We obtained the trajectories of the student weight vectors
by two steps: (1) obtain the first and second eigenvectors of
matrix H , which consists of teacher weight vector B and
student weight vectors J

(m)
i at every 100 iterations. Three

students J1, J2, and J3 are used.

H =
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Here, M is the number of iterations to stop the mutual learning.
J

(0)
i is the initial weight vector of ith student trained by

mutual learning. (2) plots the trajectories of the student weight
vectors at every 100 learning steps in the space spanned by
the first and second eigenvectors. Figure 13 shows trajectories
of the student weight vectors obtained during mutual learning
involving three students respectively referred to as A, B, and
C.

Figure 13(a) shows the results obtained during learning in
cyclic order. The learning step size is η = 0.1 and the number
of iterations to stop mutual learning is M = 100 × N , where
N = 1000. Initial value of overlap R(0) is set to 0.8. Figure
13(b) shows the results obtained through learning where one
student is randomly selected to act as teacher for comparison.
The symbol ”o” at the center of each figure shows the weight
vector of the teacher. In these figures, the horizontal axis shows
the first principle component and the vertical axis shows the
second principle component.

When the learning is cyclic, the trajectories of the students
will head not toward the teacher but rather toward the student
acting as teacher. As shown in Fig. 13(a), the trajectory of A is
heading toward B, not toward the teacher, in the early stage of
learning. However, as the learning proceeds, all students head
toward the teacher.

In random selected learning, one student is randomly
selected to act as teacher. This student then learns the average

of all students to act as teacher. As shown in Fig. 13(b), the
trajectories were all straight and heading toward the teacher
weight vector.

From these results, we clarified that the student weight
vectors head toward teacher weight vector through the mutual
learning.
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Fig. 13. Trajectory of student weight vector during mutual learning.

V. CONCLUSION

We have proposed a mutual learning method using nonlin-
ear perceptron and demonstrated its validity through computer
simulations. We have shown that the mutual learning improves
the performance of student without a teacher. We also have
shown that the performance achieved by mutual learning
depends on the MSE of the initial learning. Moreover, the
performance of students can be improved by using many
students. In our future work, we intend to construct a theory of
mutual learning through nonlinear perceptron and investigate
the issue of nonlinearity of the output function for mutual
learning.
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