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Abstract

In this work, a class of neuro-computational classifiers are used for classification of frica-
tive phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based
classifier is used for classification. Later, another neuro fuzzy classifier is used for clas-
sification. We have used two different feature sets for the work, one using the specific
acoustic-phonetic characteristics and another temporal attributes using linear prediction
cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the
experimental details and performance difference obtained by replacing the RNN based
classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both
the feature sets to recognize Assamese fricative sounds.

1 Introduction

Over the years, soft computing tools like Arti-
ficial Neural Network (ANN), fuzzy systems and
their combinations are used as effective tools for
signal processing and pattern recognition. This is
because these acquire knowledge from the envi-
ronment, hold back the learning and use it subse-
quently. Due to its inherent capability of dealing
with nonlinear, dynamic systems, Artificial Neu-
ral Networks (ANN) are used as reliable classifiers.
Fuzzy systems are suitable for tracking minute vari-
ations in input patterns. While fuzzy systems gen-
erate qualitative and knowledge based mechanisms
for decision making, ANNs are non- parametric
classification with the ability to effectively learn
given patterns. These two are combined to form hy-
brid systems like Fuzzy Neural System (FNS) and
Neuro Fuzzy System (NFS). NFS blocks demon-

strate the ability to acquire numeric-qualitative, ex-
pert level decision making and generate efficient
adaptability and robustness while handling uncer-
tain processes or situations. Advantages of ANN
and fuzzy systems in form of NFS are found to
be robust, adaptive and expert systems for decision
making for uncertain processes like speech recogni-
tion. Here, we propose an approach for classifying
fricative sounds using two different neuro computa-
tional techniques, one with a Recurrent Neural Net-
work (RNN) and the other with an Adaptive Neuro
Fuzzy Inference System (ANFIS). The RNN is a
form of ANN with feedback connections between
output, input and different layers. The ANFIS is
an adaptive NFS system with a rule base supported
inference engine. Our objective is to ascertain the
suitability of application of an ANFIS based classi-
fier for temporal signal classification. This is driven
by the fact that fuzzy based systems are able to track
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minute variations in an environment invested with
uncertainty. Fuzzy in combination with ANN ac-
quires both qualitative and quantitative processing
ability which is expected to aid speech based appli-
cations.

Among the supervised learning ANNs, the
RNNs have the dynamic structure with a capability
of learning temporal information and hence are suit-
able for speech based applications. The key differ-
ence of RNN compared to the Multi Layer Percep-
tron (MLP) (which only hass feedforward paths) is
the contextual processing which circulates the most
relevant portion of the information among the dif-
ferent layers of the network and the constituent neu-
rons. Further, in many situations, due to inversion
in the applied patterns while performing the con-
textual processing, differential mode learning in the
local level of neurons enables the RNN to consider
only the most relevant portion of the data. With dif-
ferent types of activation functions at different lay-
ers of the network, contextual and differential pro-
cessing is strengthened. For example, in a three
hidden layer RNN, if one layer has tan-sigmoidal,
the next with log-sigmoidal and the last with tan-
sigmoidal activation function, the combination en-
ables better learning. The least correlated portion
of the patterns are retained and circulated and the
portions with similarity are discarded. As a result
the RNN becomes a fast learner and tracks time de-
pendent variations. The RNN uses feedforward and
feedback paths to track finer variations in the input.
The feedback paths are sometimes passed through
memory blocks which enable delayed versions of
the processed output to be considered for process-
ing. These variations can be due to the time de-
pendent behavior of the input patterns. So while
the MLP is only able to do discrimination between
applied samples, the RNN is able to distinguish
classes that show time variations. For the above
mentioned attributes, RNNs are found to be suit-
able for application like speech recognition [1] [2].
RNNs have been first applied to speech recognition
in [3]. Other important works include [4], [5], [6],
[7], [8], [9], [10].

Due to the uncertain nature of cognitive prob-
lems, fuzzy logic and fuzzy inference systems (FIS)
are suitable tools for dealing with pattern recogni-
tion issues with subtle and random variations. AN-
FIS is one of the best tradeoff between ANN and

fuzzy systems. Its capabilities are obtained from
the smoothness due to the fuzzy clustering interpo-
lation and adaptability provided by the backprop-
agation learning algorithm of ANN. The ANFIS
employs a hybrid-learning algorithm, which is a
combination of the recursive least-squares (RLS)
method and the back propagation gradient descent
method for training Sugeno-type FIS membership
function parameters to replicate the given training
data set [24]. Use of NFS approach for speech
recognition has recently been reported in contribu-
tion like [11], [12], [13], [14] and [15].

Speech consists of sequences of sounds.
Phonemes are the smallest distinguishable mean-
ingful unit of the speech signal which is an ab-
stract representation at some cognitive level. Frica-
tives are consonant phonemes produced with a very
narrow constriction in the oral cavity. There is a
rapid flow of air through the constriction, creating
turbulence in the flow. The random velocity fluc-
tuation in the flow can act as a source of sound.
The sound generated in this way is called turbu-
lence noise. Air turbulence produced in this way,
by various kinds of constrictions in the vocal tract
is the typical sound source for all fricatives [16]-
[19] the position of which depends on the particular
fricative. Assamese is a major language in the north
eastern part of India spoken by over 30 million peo-
ple. It has a rich linguistic diversity with vast dialec-
tal and ethnographic tonal variations. In Assamese
language, fricative forms a major group of speech
sounds which has different phonemical character-
istics. In Assamese language, voiceless alveolar
fricative /s/ and velar fricative /x/ are observed. Fur-
ther, voiced alveolar fricative /z/ and voiced glottal
fricative /H/ are also identified. Unlike other Indian
languages, the presence of voiceless velar fricative
/x/ is a specific feature of the language [20]-[22].

For classification of fricatives, we have per-
formed experiments on two different feature sets.
The first set of feature vectors are generated from
the specific acoustic-phonetic characteristics i.e.
centre of gravity (COG), standard deviation (SD),
skewness and kurtosis and the second set of fea-
ture vector have been formulated using frame based
Linear prediction cepstral coefficients (LPCC). The
second feature used for the work is of temporal na-
ture and here a Self Organizing Map (SOM) is used
to reduce the dimension of features.
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The rest of the paper is organized as follows.
Section 2 provides a details of theoretical consid-
erations, Section 3 describes the feature set used in
the work and Section 4 provides the experimental
details and result derived out of the work. Section 5
concludes the description.

2 Theoretical Consideration

Here, we briefly describe the related theoretical
aspects. We focus on certain basic attributes of the
RNN, ANFIS, SOM, LPCC and fricative sounds of
Assamese language.

2.1 RNN

RNNs are types of ANNs with one or more
feedback loops. The feedback can be of a local
or global kind. The RNN may be considered to be
an MLP having a local or global feedback in a va-
riety of forms. It may have feedback paths from
the output neurons of the MLP to the input layer
or a global feedback from the hidden neurons of
the ANN to the input layer [23]. RNN uses learn-
ing algorithm like Back Propagation Through Time
(BPTT), Real-Time Recurrent Learning (RTRL),
Decoupled Extended Kalman Filtering (DEKF) etc.
The architectural layout of a recurrent networks
takes many different forms like Input-Output Re-
current Model, State-Space Model etc which are
commonly used. Each of these have a specific form
of global feedback. RNN’s design enables it to deal
with dynamic variations in the input. It has feed-
forward and feedback back paths which contribute
towards the temporal processing ability. The feed-
forward paths make it like the MLP hence is able
to make non-linear discrimination between bound-
aries using a gradient descent based learning. Next,
the feedback paths enable the RNN to generate con-
textual processing. The feedback paths are some-
times passed through memory blocks which enable
delayed versions of the processed output to be con-
sidered for processing. These variations can be due
to the time dependent behavior of the input patterns.
So while the MLP is only able to do discriminations
between applied samples, the RNN is able to dis-
tinguish classes that show time variations. For the
above mentioned attributes, RNNs are found to be
suitable for application like speech recognition.

2.2 ANFIS

ANFIS are a class of adaptive networks which
combines the powerful description of fuzzy clas-
sification techniques with the learning capabilities
of ANNs. Fundamentally, ANFIS is a FIS whose
membership function parameters are adjusted us-
ing either a back propagation algorithm alone or
in combination with a RLS type adaptive update
running in recursion. This adjustment allows the
fuzzy systems to learn from the data they are mod-
eling. The primary aspect is that if the inputs
have finer variations and the FIS has the appropri-
ate rule set, the system is able to follow the changes
appropriately. Here, applied patterns are mapped
through input and then through output membership
functions and associated parameters to the decision
layer. An adaptive network is a multi-layer feed-
forward network in which each node performs a
particular function based on incoming signals and a
set of parameters pertaining to this node. The type
of node function may vary from node to node and
the choice of node function depends on the over-
all function that the network is designed to carry
out. ANFIS implements Takagi Sugeno FIS and has
a five layered architecture as shown in Figure 2.2.
The first hidden layer is for fuzzification of the in-
put variables and T-norm operators are deployed in
the second hidden layer to compute the rule an-
tecedent part. The third hidden layer normalizes the
rule strengths followed by the fourth hidden layer
where the consequent parameters of the rule are de-
termined. Output layer computes the overall input
as the summation of all incoming signals [24] [25].

Figure 1. Architecture of ANFIS

2.3 SOM

The SOM is a method of data analysis used for
clustering and projecting multi-dimensional data
into a lower-dimensional space to reveal hidden
structures of the data. The SOM [26] is a class



62 Chayashree Patgiri, Mousmita Sarma, Kandarpa Kumar Sarma

of ANN capable of recognizing the main features
of the data they are trained on. Kohonen proposed
SOM architecture which can automatically gener-
ate self organization properties during unsupervised
learning process. Kohonen SOM is unsupervised
system which is based on the competitive learn-
ing. It means that a competition process takes place
before each cycle of learning. In the competition
process a winning processing element is chosen by
some criteria. Usually this criteria is to minimize
an Euclidean distance between the input vector and
the weight vector. After the winning processing el-
ement is chosen, its weight vector is adapted ac-
cording to the learning law used [23]. The basic
network architecture of Kohonen’s SOM is shown
in Figure 2.

Figure 2. Generic Self Organizing Map

The learning procedure of Kohonen feature
maps is similar to that of competitive learning net-
works. A similarity (dissimilarity) measure is se-
lected and the winning unit is considered to be the
one with the largest (smallest) activation. For Ko-
honen feature maps, the winning unit’s weights and
also all of the weights in a neighborhood around the
winning units are updated [27].

2.4 LPCC feature extraction method

In the linear prediction analysis of speech, each
sample is predicted as a linear weighted sum of the
past p samples where p represents the order of pre-
diction [28]. If s(n) is the present sample, then it is
predicted by the past p samples as

ŝ(n) =−
p

∑
k=1

aks(n− k) (1)

The difference between the actual and predicted
sample value is termed as the prediction error or
residual, which is given by

e(n) = s(n)− ŝ(n) = s(n)+
p

∑
k=1

aks(n− k) (2)

where {ak} are the linear prediction coefficients.
The linear prediction coefficients are typically de-
termined by minimizing the mean square error
(MSE) over an analysis frame. The coefficients can
be obtained by solving the set of p normal equa-
tions,

p

∑
k=1

akR(n− k) =−R(n),n = 1,2, . . . , p (3)

where

R(k) =
N−(p−1)

∑
n=0

s(n)s(n− k),k = 0,1,2, . . . , p (4)

and {s(n)} are the speech samples and N is the
numbers of samples in one analysis frame.
In the frequency domain, the eq. (2) can be repre-
sented as,

E(z) = S(z)+
p

∑
k=1

akS(z)z−k (5)

i.e.

A(z) =
E(z)
S(z)

= 1+
p

∑
k=1

akz−k (6)

A cepstrum is the result of taking the Inverse
Fourier transform (IFT) of the logarithm of the es-
timated spectrum of a signal. The concept of cep-
strum was defined in a 1963 paper by Bogert et al
[29]. A short-time cepstrum analysis was proposed
by Schroeder and Noll for application to pitch de-
termination of human speech [30] [31]. Cepstral
parameter extraction in speech recognizers system
is based on converting LPC parameters to cepstral
coefficients by utilizing the recursion relationship.
Cepstral coefficients of A(z) is given by,

c(k) =
1

2π

π∫

−π

logA(e jω)e jnωdω (7)
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The cepstrum parameters may be computed directly
from the LP parameters using the following recur-
sion.

c(k) = a(k)−
k−1

∑
m=1

m
k

c(k)a(k−m),1 ≤ k ≤ p (8)

In speech recognition systems, the cepstrum
also plays a significant role. Specifically, the cep-
stral coefficients have been found empirically to
be a more robust, reliable feature set for speech
recognition than linear predictive coding (LPC) co-
efficients or other equivalent parameter sets [32].
Thus, the cepstral coefficient of the LPC obtained
are applied to SOM for clustering which will form
the feature vector for the RNN classifier in this pa-
per.

2.5 Fricative Sounds of Assamese language

Assamese is a major language spoken in the
North-Eastern part of India. It is the official lan-
guage of state of Assam. It is an Indo-Aryan lan-
guage originated from Vedic dialects but the ex-
act nature of the origin and growth of the lan-
guage is not very clear as yet [20]. It is sup-
posed that like other Aryan languages, Assamese
was also born from Apabhraṁśa dialects developed
from Mãgadhi Prakrit of the eastern group of San-
skritic language [20]. Assamese phonemic inven-
tory consists of eight vowels and twenty-one conso-
nants. The consonants may be grouped into broad
divisions: the stops and the continuants. There are
eleven continuants out of which four spirants or
fricatives /s/, /z/, /x/, /H/ are identified [20] [33].
These four Assamese fricative as shown in Table
2.5 are described below [20]-

1 Voiceless alveolar sibilant, /s/: It is one of the
most common sound cross linguistically. Its
manner of articulation is sibilant fricative, which
means it is generally produced by channeling air
flow along a groove in the back of the tongue
up to the place of articulation, at which point it
is focused against the sharp edges of the nearly
clenches teeth, causing high frequency turbu-
lence. Its place of articulation is alveolar means
it is articulated with tongue at the alveolar ridge.
Its phonation is voiceless, which means it is pro-
duced without vibrations of the vocal cords.

2 Voiced alveolar fricative, /z/: Its manner of ar-
ticulation is also sibilant. But its phonation is
voiced, which means the vocal cords vibrate dur-
ing the articulation.

3 Voiceless velar fricative, /x/: Its place of artic-
ulation is velar, which means it is articulated
with the back of the tongue at the soft palate.
Its phonation is voiceless. Assamese is un-
usual among eastern Indo-Aryan language for
the presence of voiceless velar fricatives. It is
similar to the velar sound in German of Eu-
rope. Phonetically, this /x/ sound is pronounced
somewhat in between the sounds /s/, /kh/ and
/h/ and is similar to the German sound /ch/ as
pronounced in the word ’Bach’ or the Scottish
sound as found in the word ’Loch’. It may be
an Indo- European feature, which has been pre-
served by AxAmija [34] [35]. It is an important
phoneme in the language.

4 Voiced glottal fricative, /H/ : Its phonation is
voiced, which means the vocal cords vibrate dur-
ing the articulation.

Table 1. Assamese Fricative Phonemes

Phonation
Place of Articulation
Alveolar Velar Glottal

Voiceless /s/ /x/
Voiced /z/ /H/

3 Feature set used in the work

This section provides a brief description of the
two different feature vectors used in this work. The
first feature vector is characterized by acoustic pho-
netic characteristics while the other is formed by
LPCC constituents.

3.1 Feature vector creation using acoustic
phonetic characteristics

Fricatives can be clearly differentiated from one
another using spectral features of them. Spectral
features include determination of first, four spec-
tral moments viz. center of gravity (COG), Stan-
dard deviation (SD), skewness and kurtosis. Overall
noise amplitude is also investigated. A feature vec-
tor is formed using an acoustical study carried out
on the spectral characteristics of the four fricatives.
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A set of experiments are performed on the speech
database mentioned in Sect. 4.1, to measure the
acoustic features, mainly spectral moments, namely
COG, SD, skewness and kurtosis etc. and thus a
feature vector is created for each of the fricative ex-
amples used for pattern mapping to class codes us-
ing RNN. It is well known that the COG reflects
average energy concentration and SD is the mea-
sure of how much the frequency in a spectrum can
deviate from the COG. On the other hand, skew-
ness refers to spectral tilt, the overall slant of the
energy distribution. Positive skewness suggests a
negative tilt with a concentration of energy in the
lower frequencies and negative skewness is asso-
ciated with a positive tilt and a predominance of
energy in the higher frequencies. Finally, kurtosis
is an indicator of the peakedness of the distribu-
tion. Positive kurtosis values indicate a relatively
high peakedness (the higher the value, the more
peaked the distribution), while negative values in-
dicate a relatively flat distribution. Positive kurtosis
thus suggests a clearly defined spectrum with well-
resolved peaks, while negative kurtosis indicates a
flat spectrum without clearly defined peaks. Am-
plitude of fricative noise is also useful for classifi-
cation and recognition. The fricative samples used
for these experiments are later used for RNN train-
ing. All these parameters are measured by writing
a few simple scripts in the speech analysis software
PRAAT. The feature vectors thus generated are of
size 1 × 4, which has four parameters COG, SD,
skewness and kurtosis on its four elements. Such
a feature vector for fricative /s/ generated using the
four parameter for a male and a female speaker is
shown in the Table 2 and Table 3.1.

Table 2. Feature vector of fricative /s/ (male
speaker)

COG (Hz) SD (Hz) Skewness Kurtosis
8747 2034 -2.26 8.72

Table 3. Feature vector of fricative /s/ (female
speaker)

COG (Hz) SD (Hz) Skewness Kurtosis
9541 1166 -1.24 15.81

3.2 Feature vector creation using LPCC
and SOM

Initially, LPCC is computed from the fricative
sound for 20 mili second (ms) frame with a shift of
10 ms and after that a difference LPCC coefficient
is computed. The difference coefficients for frame n
are the difference between the coefficients of frame
n+ δ and n− δ. In our implementation, a differen-
tial coefficient is computed every frame, with δ = 1
frames. The feature vectors obtained for a particu-
lar fricative sound is presented to SOM for cluster-
ing. If a 13th order LPCC is performed for every
frame, the size of the feature matrix will be N ×12,
where N will be the number of frames present in
the speech segment. SOM is used here to cluster
the feature vectors extracted in that way since ad-
jacent frames may possess less variation. SOMs
role is to simply bring similar frames into one clus-
ter. Thus vectors obtained after taking LPCC are
fed to a SOM network with different cluster size,
M(M < N) for grouping the similar data. The clus-
ter size, M used here are 8 and 10. The cluster pro-
vided by SOM is used as pattern vector for classifi-
cation.

4 Experimental Details, Results
and Discussion

In this section, we report the experimental de-
tails and the results of fricative classification ob-
tained from a RNN and an ANFIS based classifiers.
Individual results for the two classifiers using two
different feature set are reported. The following
sections provide description of speech database and
experiments performed.

4.1 Speech Database

The speech database is created from speakers
of four different dialects of Assamese language. A
word list as shown in Figure 3 is prepared contain-
ing fricative-vowel-fricative (CiVCi and CiVC j)
and vowel-fricative-vowel (ViCVi and ViCV j) syl-
lables and are recorded by the trained speakers in
a noise free environment. Each CVC and VCV to-
ken is repeated five times, yielding a total of 245 to-
kens per speaker (49 syllables × 5 repetitions). For
recording, the speech analysis software Wavesurfer
[36] and a PC headset is used with the following



65Chayashree Patgiri, Mousmita Sarma, Kandarpa Kumar Sarma

A set of experiments are performed on the speech
database mentioned in Sect. 4.1, to measure the
acoustic features, mainly spectral moments, namely
COG, SD, skewness and kurtosis etc. and thus a
feature vector is created for each of the fricative ex-
amples used for pattern mapping to class codes us-
ing RNN. It is well known that the COG reflects
average energy concentration and SD is the mea-
sure of how much the frequency in a spectrum can
deviate from the COG. On the other hand, skew-
ness refers to spectral tilt, the overall slant of the
energy distribution. Positive skewness suggests a
negative tilt with a concentration of energy in the
lower frequencies and negative skewness is asso-
ciated with a positive tilt and a predominance of
energy in the higher frequencies. Finally, kurtosis
is an indicator of the peakedness of the distribu-
tion. Positive kurtosis values indicate a relatively
high peakedness (the higher the value, the more
peaked the distribution), while negative values in-
dicate a relatively flat distribution. Positive kurtosis
thus suggests a clearly defined spectrum with well-
resolved peaks, while negative kurtosis indicates a
flat spectrum without clearly defined peaks. Am-
plitude of fricative noise is also useful for classifi-
cation and recognition. The fricative samples used
for these experiments are later used for RNN train-
ing. All these parameters are measured by writing
a few simple scripts in the speech analysis software
PRAAT. The feature vectors thus generated are of
size 1 × 4, which has four parameters COG, SD,
skewness and kurtosis on its four elements. Such
a feature vector for fricative /s/ generated using the
four parameter for a male and a female speaker is
shown in the Table 2 and Table 3.1.

Table 2. Feature vector of fricative /s/ (male
speaker)

COG (Hz) SD (Hz) Skewness Kurtosis
8747 2034 -2.26 8.72

Table 3. Feature vector of fricative /s/ (female
speaker)

COG (Hz) SD (Hz) Skewness Kurtosis
9541 1166 -1.24 15.81

3.2 Feature vector creation using LPCC
and SOM

Initially, LPCC is computed from the fricative
sound for 20 mili second (ms) frame with a shift of
10 ms and after that a difference LPCC coefficient
is computed. The difference coefficients for frame n
are the difference between the coefficients of frame
n+ δ and n− δ. In our implementation, a differen-
tial coefficient is computed every frame, with δ = 1
frames. The feature vectors obtained for a particu-
lar fricative sound is presented to SOM for cluster-
ing. If a 13th order LPCC is performed for every
frame, the size of the feature matrix will be N ×12,
where N will be the number of frames present in
the speech segment. SOM is used here to cluster
the feature vectors extracted in that way since ad-
jacent frames may possess less variation. SOMs
role is to simply bring similar frames into one clus-
ter. Thus vectors obtained after taking LPCC are
fed to a SOM network with different cluster size,
M(M < N) for grouping the similar data. The clus-
ter size, M used here are 8 and 10. The cluster pro-
vided by SOM is used as pattern vector for classifi-
cation.

4 Experimental Details, Results
and Discussion

In this section, we report the experimental de-
tails and the results of fricative classification ob-
tained from a RNN and an ANFIS based classifiers.
Individual results for the two classifiers using two
different feature set are reported. The following
sections provide description of speech database and
experiments performed.

4.1 Speech Database

The speech database is created from speakers
of four different dialects of Assamese language. A
word list as shown in Figure 3 is prepared contain-
ing fricative-vowel-fricative (CiVCi and CiVC j)
and vowel-fricative-vowel (ViCVi and ViCV j) syl-
lables and are recorded by the trained speakers in
a noise free environment. Each CVC and VCV to-
ken is repeated five times, yielding a total of 245 to-
kens per speaker (49 syllables × 5 repetitions). For
recording, the speech analysis software Wavesurfer
[36] and a PC headset is used with the following
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specification-

– Sampling frequency: 48000 Hz and

– Bit resolution: 16 bit per sample

Assamese has four different dialects namely
Eastern, Central, Kamrupi and Goalpariya groups.
From every dialect there are 3 speakers. After
recording, fricatives are annotated and segmented
in the speech analysis software PRAAT [37].

4.2 Classification using RNN with acoustic
phonetic feature

A significant portion of the work is related to
the design of the RNN classifier, its training, valida-
tion and testing for recognition of Assamese frica-
tives using acoustic phonetic features. The formu-
lation of the features have already been discussed.
The process logic of the design of classifier using
RNN and acoustic phonetic feature is shown in Fig-
ure 4.

Acoustic-phonetic features of four fricatives are
used to perform the RNN based fricative classifica-
tion problem in order to recognize the fricatives.
Initially, the gradient descent with adaptive learn-
ing rate backpropagation algorithm is used to train
the RNN with 3 hidden layer and 15 feature vec-
tors per fricative, but it requires more time and
the recognition rate is somewhat lower. Then the
Resilient Backpropagation (RB) and Levenberg-
Marquardt (LM) training algorithms are adopted
for training, which have provided 88% success rate,
if the feature vector size is increased to 25 per frica-
tive. Further, Scaled Conjugate Gradient (SCG) and
Bayesian Regularization (BR) algorithms are also
used, which further increases the success rate to
96% and is found to be the best among all the four
algorithms in terms of success rate. Table 4 repre-
sents the success rate of Assamese fricatives using
SCG training algorithm. The comparison between
recognition success rate and training algorithms is
shown in Table 5. It can be observed from the Ta-
ble 5 that LM and RB algorithm give same recog-
nition rate, but training speed is better for RB al-
gorithm. SCG and BR algorithm give 96% success
rate. But BR algorithm takes relatively more train-
ing time than that of SCG algorithm. Therefore,
from success rate and computational time point of

view, SCG algorithm is a better choice for the pro-
posed work.
The experiments are repeated for the entire data set
considered and at least ten trials are conducted for
each of the algorithms considered during training.
It makes the set up robust. The feature set con-
sidered and the RNN formulated turns out to be a
robust combination for fricative recognition in As-
samese.

Table 4. Classification result of RNN using scaled
conjugate gradient training algorithm

Fricative Correct Faulty
Recognition Recognition

/s/ 98% 2%
/z/ 88% 12%
/x/ 98% 2%
/H/ 98% 2%

Table 5. Comparison of different training
algorithms

Training Recognition Training
Algorithm Rate (%) Time (sec)
Levenberg- 88 31.20
Marquardt
Resilient 88 7.46

Backpropagation
Scaled Conjugate 96 174.75

Gradient
Bayesian 96 250.90

Regularization

4.3 Classification using RNN with LPCC
and SOM based feature

The results obtained from the RNN-acoustic
phonetic feature combination is next compared with
that obtained using LPCC and SOM generated fea-
tures applied to a RNN classifier. Figure 5 shows
the classifier using RNN and LPCC and SOM based
feature.

The steps involved on the process can be sum-
marized below-

1 Recording of 245 number of fricative-vowel-
fricative (CiVCi and CiVC j) and vowel-
fricative-vowel (ViCVi and ViCV j) syllables
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Figure 3. Wordlist Prepared for Recognition purpose

Figure 4. Process logic of the RNN and acoustic phonetic feature

Figure 5. Process logic of the RNN classifier using LPCC and SOM based feature
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Figure 3. Wordlist Prepared for Recognition purpose

Figure 4. Process logic of the RNN and acoustic phonetic feature

Figure 5. Process logic of the RNN classifier using LPCC and SOM based feature
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from 12 speakers covering all the four dialects
of Assamese language.

2 Extraction of features from recorded fricative
sounds using frame-based LPCC and frame-
based differential LPCC method.

3 Generation of hybrid feature vectors for both
LPCC methods those will be used for training
and testing of said classifiers.

4 Training each of the RNN with 80 fricative sam-
ples using those feature vectors.

5 Testing of the algorithm with 30 samples per
fricative.

The feature vectors generated from the frame-
based LPCC of the fricative speech are presented to
the SOM for clustering the large dimensional data.
Here, SOM is used to reduce the size of the feature
vector which will form the pattern layer of the RNN
classifier. A 12th order linear prediction analysis
is performed for every frame of 20 ms speech with
overlap of 10 ms. So, the size of the vector after tak-
ing LPCC will be N×12, where N is the number of
frames present in the speech segment. Here, a SOM
block is used to cluster the feature vectors extracted
in groups with commonality. This is required be-
cause of the fact that adjacent frames possess less
variation hence have higher correlation which de-
celerates the learning of the classifier. SOM’s role
is to group similar frames into one cluster. To attain
this objective, vectors obtained after taking LPCC
are fed to a SOM network with different cluster
sizes, M (M <N) for grouping the similar data. The
cluster size, M used here are 8 and 10. The clus-
ters provided by SOM are used as pattern vectors
for driving the training and testing of the RNN clas-
sifier. This way original feature vectors obtained
from 20 ms frames are reduced into the differen-
tially sized cluster centers.
Initially, a few training algorithms like gradient de-
scent with adaptive learning rate backpropagation,
Resilient Backpropagation (RBP) and Levenberg-
Marquardt (LM) optimized backpropagation are
used to train the RNN with 3 hidden layers and
40 feature vectors. But recognition rate observed
is somewhat lower and requires more time to com-
plete the learning cycle. Finally, Scaled Conju-
gate Gradient (SCG) algorithms is used with 80
feature vectors, which increases the success rate

to an acceptable mark and is found to be the best
among all the four algorithms in terms of recogni-
tion rate. Table 4.3 shows the percentage of correct
recognition using frame-based LPCC with cluster
size, M of value 8. It is observed that the over-
all recognition rate is 77% considering LPCC and
RNN with three hidden layer and 80 feature vector
combination trained with SCG learning algorithm
where M = 8. The same RNN is now trained with
M = 10. Table 4.3 shows the results which indi-
cates an improvement of overall recognition rate for
fricative inputs reaching levels upto 80%. The pri-
mary reason behind selection of different values of
M (namely 8 and 10) is to ascertain the effect of
cluster size on recognition. With M = 10, more in-
formation is extracted than is the case with M = 8,
hence better success rate is obtained with the for-
mer.

Table 6. Classification result of RNN using
frame-based LPCC (M=8)

Fricative Correct Faulty
Recognition Recognition

/s/ 86.67 % 13.33%
/z/ 70 % 30%
/x/ 70 % 30%
/H/ 80 % 20%

Table 7. Classification result of RNN using
frame-based LPCC (M=10)

Fricative Correct Faulty
Recognition Recognition

/s/ 83.33% 16.67%
/z/ 76.67 % 23.33%
/x/ 70% 30%
/H/ 86.67% 13.33%

To increase the recognition rate further, we de-
sign a hybrid feature set to train the RNN classi-
fier. For that purpose, difference of LPCC from
one frame to another is used to create novel feature
vector. This provides another set of feature vectors
which is clustered using SOM. A 2nd RNN classi-
fier is trained using differential LPCC, which add
knowledge to the main classifier. This way recogni-
tion rate improves. Frame-based differential LPCC
is combined with a delayed version of the conven-
tional frame-based LPCC which forms a hybrid fea-
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ture vector set for the RNN to train efficiently. Table
4.3 shows the results of recognition rates obtained
using the hybrid feature set with the RNN classi-
fier. It has three hidden layers and M = 10 dealing
with hybrid LPCC features. With these parameters,
the overall recognition rate of Assamese fricatives
is found to be approximately 82%.

Table 8. Classification result of RNN using
frame-based LPCC and differential LPCC (M=10)

Fricative Correct Faulty
Recognition Recognition

/s/ 86.67 % 13.33%
/z/ 76.67% 23.33 %
/x/ 76.67 % 23.33%
/H/ 86.67% 13.33%

4.4 Classification using ANFIS with acous-
tic phonetic feature and LPCC and
SOM based feature

The results of the RNN classifier derived using
the multiple feature sets as described above is next
compared with that obtained using the ANFIS clas-
sifier. The ANFIS block replaces the RNN clas-
sifier with the rest of the process logic remaining
unchanged. ANFIS uses a fuzzified backpropaga-
tion learning to capture the variations in the inputs
which are modified appropriately. The parameters
related to membership functions and RLS estima-
tion are fixed to enable proper real to fuzzy world
mapping, learning, inference generation, decision
making and back translation from the fuzzy to the
real world. The learning procedure of the ANFIS
has two parts. In the first part, the input patterns are
propagated and the optimal consequent parameters
are estimated by an iterative RLS procedure, while
the premise parameters are assumed to be fixed for
the current cycle through the training set. In the
second part the patterns are propagated again and
a fuzzified backpropagation is used to modify the
premise parameters, while the consequent parame-
ters remain fixed. This procedure is then iterated
[24] [25]. We have used trapezoidal membership
function to generate the fuzzification for use in the
FIS. The classification results of ANFIS for acous-
tic phonetic feature is represented in Table 9 and
for LPCC and SOM based feature is represented in
Table 4.4. Table 4.4 shows a computational time re-

quired by the ANFIS and RNN based classifier to
do classification of four fricatives with same num-
ber of input patterns for two types of feature. In
comparison to RNN, the correct recognition rate of
ANFIS is little less in the current database of frica-
tive sounds for both the feature sets. However, AN-
FIS provides advantage in terms of computational
time. The learning of the ANFIS is fast and compu-
tationally less demanding. The computational time
shown in Table 4.4 is for a worst case situation
where due to less optimized feature set, the train-
ing time is extended than the case with the inputs
samples having low corellation content.

Table 9. Classification performance using ANFIS
for acoustic phonetic feature

Fricative Correct Faulty
Recognition Recognition

/s/ 85.4% 14.6%
/z/ 86.2% 13.8%
/x/ 83.4% 16.6%
/ H / 89.5% 10.5%

Table 10. Classification using ANFIS for
frame-based LPCC and differential LPCC (M=10)

Fricative Correct Faulty
Recognition Recognition

/s/ 73.8 % 26.2%
/z/ 72.57 % 27.43%
/x/ 70.51 % 29.49%
/H/ 78.9% 21.1 %

Table 11. Computational load (worst case) for
RNN and ANFIS

Feature RNN ANFIS
Acoustic Phonetic 162.28 sec 53.8 sec
LPCC and SOM 223.14 sec 83.23 sec

With acoustic features, the RNN and the SCG
algorithm generates a highest correct recognition
rate of around 98% (Table 4). SCG algorithm pro-
vides best performance of around 96% on an aver-
age for the entire data set and a worst case com-
putational time of 174.75 seconds (Table 5). With
LPCC features, RNN gives a highest performance
of 86.67% with 8 clusters (Table 6) and a marginal
improvement with 10 cluster numbers (Table 7).
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ture vector set for the RNN to train efficiently. Table
4.3 shows the results of recognition rates obtained
using the hybrid feature set with the RNN classi-
fier. It has three hidden layers and M = 10 dealing
with hybrid LPCC features. With these parameters,
the overall recognition rate of Assamese fricatives
is found to be approximately 82%.

Table 8. Classification result of RNN using
frame-based LPCC and differential LPCC (M=10)

Fricative Correct Faulty
Recognition Recognition

/s/ 86.67 % 13.33%
/z/ 76.67% 23.33 %
/x/ 76.67 % 23.33%
/H/ 86.67% 13.33%

4.4 Classification using ANFIS with acous-
tic phonetic feature and LPCC and
SOM based feature

The results of the RNN classifier derived using
the multiple feature sets as described above is next
compared with that obtained using the ANFIS clas-
sifier. The ANFIS block replaces the RNN clas-
sifier with the rest of the process logic remaining
unchanged. ANFIS uses a fuzzified backpropaga-
tion learning to capture the variations in the inputs
which are modified appropriately. The parameters
related to membership functions and RLS estima-
tion are fixed to enable proper real to fuzzy world
mapping, learning, inference generation, decision
making and back translation from the fuzzy to the
real world. The learning procedure of the ANFIS
has two parts. In the first part, the input patterns are
propagated and the optimal consequent parameters
are estimated by an iterative RLS procedure, while
the premise parameters are assumed to be fixed for
the current cycle through the training set. In the
second part the patterns are propagated again and
a fuzzified backpropagation is used to modify the
premise parameters, while the consequent parame-
ters remain fixed. This procedure is then iterated
[24] [25]. We have used trapezoidal membership
function to generate the fuzzification for use in the
FIS. The classification results of ANFIS for acous-
tic phonetic feature is represented in Table 9 and
for LPCC and SOM based feature is represented in
Table 4.4. Table 4.4 shows a computational time re-

quired by the ANFIS and RNN based classifier to
do classification of four fricatives with same num-
ber of input patterns for two types of feature. In
comparison to RNN, the correct recognition rate of
ANFIS is little less in the current database of frica-
tive sounds for both the feature sets. However, AN-
FIS provides advantage in terms of computational
time. The learning of the ANFIS is fast and compu-
tationally less demanding. The computational time
shown in Table 4.4 is for a worst case situation
where due to less optimized feature set, the train-
ing time is extended than the case with the inputs
samples having low corellation content.

Table 9. Classification performance using ANFIS
for acoustic phonetic feature

Fricative Correct Faulty
Recognition Recognition

/s/ 85.4% 14.6%
/z/ 86.2% 13.8%
/x/ 83.4% 16.6%
/ H / 89.5% 10.5%

Table 10. Classification using ANFIS for
frame-based LPCC and differential LPCC (M=10)

Fricative Correct Faulty
Recognition Recognition

/s/ 73.8 % 26.2%
/z/ 72.57 % 27.43%
/x/ 70.51 % 29.49%
/H/ 78.9% 21.1 %

Table 11. Computational load (worst case) for
RNN and ANFIS

Feature RNN ANFIS
Acoustic Phonetic 162.28 sec 53.8 sec
LPCC and SOM 223.14 sec 83.23 sec

With acoustic features, the RNN and the SCG
algorithm generates a highest correct recognition
rate of around 98% (Table 4). SCG algorithm pro-
vides best performance of around 96% on an aver-
age for the entire data set and a worst case com-
putational time of 174.75 seconds (Table 5). With
LPCC features, RNN gives a highest performance
of 86.67% with 8 clusters (Table 6) and a marginal
improvement with 10 cluster numbers (Table 7).
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Using frame based LPCC and differential LPCC,
the 10 cluster configuration improves RNN perfor-
mance (Table 8). With ANFIS using acoustic pho-
netic features, the performance is marginally lower.
This is also observed with the frame based LPCC
and differential LPCC when used with the ANFIS
classifier. But the advantage is with respect to the
computational time which is between 2.7 to 3 times
lower than that required by the RNN. This aspect
of the ANFIS can be used further to enhance the
overall efficiency of the system.

5 Conclusion

Here, we have presented a comparative depic-
tion of the experimental results derived from frica-
tive classification of Assamese speech using RNN
and ANFIS. Two types of feature sets are derived
for the work, one using acoustic phonetic character-
istics of fricative sounds and the other using LPCC
and SOM based temporal feature. It is observed that
the RNN provides better classification for both the
feature sets but at the cost of higher computational
speed. Although ANFIS performance is somewhat
lower for the current set of data, computational time
is significantly lesser than RNN. The work estab-
lishes the applicability of ANFIS based recognizer
for fricative classification of a dialectically oriented
and ethnographic diction containing language like
Assamese, the vital aspects of which are captured
using acoustic phonetic and temporal features.
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