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Abstract

Modeling social interaction can be based on graphs. However most models lack the flex-
ibility of including larger changes over time. The Barabási-Albert-model is a generative
model which already offers mechanisms for adding nodes. We will extent this by pre-
senting four methods for merging and five for dividing graphs based on the Barabási-
Albert-model. Our algorithms were motivated by different real world scenarios and focus
on preserving graph properties derived from these scenarios. With little alterations in
the parameter estimation those algorithms can be used for other graph models as well.
All algorithms were tested in multiple experiments using graphs based on the Barabási-
Albert-model, an extended version of the Barabási-Albert-model by Holme and Kim, the
Watts-Strogatz-model and the Erdős-Rényi-model. Furthermore we concluded that our
algorithms are able to preserve different properties of graphs independently from the used
model. To support the choice of algorithm, we created a guideline which highlights ad-
vantages and disadvantages of discussed methods and their possible use-cases.

1 Introduction

How can social interaction be modeled? This
question is discussed in many fields such as psy-
chology, sociology, and computer science. From
an algorithmic point of view, graph-like structures
influence our everyday life. Worldwide, people
are interacting trough daily direct or technology-
based communication. Investigating these struc-
tures uncovered patterns in the way people are con-
nected to each other. A famous example is the
phenomenon "six degrees of separation" which was
first suggested by Frigyes Karinthy in 1929 and
later popularized in a play written by John Guare
in 1990âĂŹs. This phenomenon describes a global
property of small-world networks such as the net-
work people form through communication. It is
suggested that every pair of humans is connected
through a maximal chain of 6 steps. A proof for
real networks of full-size scale could not be done,

yet. Such a global property of a network could be
used to predict the spreading of information or dis-
eases.

However, while time is going on these struc-
tures are constantly changing. For instance some
real-world communication examples, which are un-
dergoing constant changes could be students mak-
ing new friends, a group of classmates which is
falling apart after graduation or two companies
which are increasingly working together. Although
these changes can be crucial for the lives of affected
people, global properties should be largely unaf-
fected.

These examples lead us to think about observed
local changes. We can guess that some structures
will still exist in the resulting networks. For exam-
ple the group of classmates could lose track of each
other and new groups will be forming. Extroverts
will quickly find new friends, whereas introverts
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could need some time to establish same amount of
friends. Merging two cooperate networks will not
be influenced by personal attitudes. For the scenario
that company A is acquiring another company B it
could be assumed that companies A’s structure will
undergo only little changes, while the latter could
be fully restructured such that employees of com-
pany B will be integrated into company A’s struc-
ture.

Those local effects are present throughout the
whole network. While multiple connections will be
lost, new connections will be established. The field
of graph modeling offers us multiple models for
the generation of such graphs like the Erdős-Rényi-
model [1] and the Watts-Strogatz-model [2]. Ad-
ditionally, the Barabási-Albert-model [3] is able to
produce scale-free networks. Those are known for
having few high connected nodes called hubs and
much low connected ones. The latter model was
already used to model the world wide web [4, 5]
or movie co-occurrences between Hollywood ac-
tors [6]. Since social networks are claimed to
be scale-free networks our initial analysis focuses
on altering graphs following the Barabási-Albert-
model.

The Barabási-Albert-model is build up by con-
stantly adding nodes to an existing graph. Therefore
an existing network can easily be expanded using
the growing mechanism or shrinked by reverting
previous expansions. Nevertheless this does not ex-
plain all observable features in real-world networks.
For instance networks are able to split into sepa-
rate networks when communication between two
subgroups ceases e.g. a group of classmates which
is falling apart after graduation or the well-known
karate club data set presented by Zachary in [7].
The opposite effect, a merge of two previously dis-
tinct networks, is also plausible as described in the
case of two joining enterprises. Since the general
growing mechanism cannot be used to model those
large changes, further algorithms need to be devel-
oped to meet all observable requirements.

The purpose of this paper is:

– to propose multiple algorithms for merging
and dividing social network graphs based on
networks generated using the Barabási-Albert-
model. Algorithms will be focusing on differ-
ent graph properties taking the characteristics of

said real-world examples into account. See Sec-
tion 3 for a full presentation of algorithms.

– to compare local and global influences of our
merging and dividing approaches in Section 4

– to analyze the applicability of proposed algo-
rithms to other graph models like the Erdős-
Rényi-model and the Watts-Strogatz-model.

A short discussion of the results and ideas for
future work will be presented in Section 7. Some of
the results are already published in [8].

2 Related Work

Before we present our algorithms for merging
and dividing graphs we shortly summarize graph
related terms in the following sections. Afterwards
we introduce typical graph models, which will be
used to test proposed algorithms. We further high-
light similarities and differences of used models in
the final subsection.

2.1 Graphs

Our example of people staying connected to
each other, as already being said, can be modeled as
a graph. Here each person will be a node and two
persons regularly communicating will be connected
using an edge. If a person changes its communica-
tion behavior edges can be added or removed and
therefore the graph can be altered over time. Per-
sons joining in the group of people modeled in the
graph can be added as additional nodes.

We will use the following graph notation for
later sections. Let G = (V, E) be a graph, with
the set of nodes V and the set of edges E such that
E ⊆ {(u,v) | u ̸= v; u,v ∈V}. For sake of simplic-
ity we will assume that edges are always undirected
and therefore the edges e = (u,v) and e′ = (v,u) be
the same. We will use index notations V (gi) and
E(gi) to distinguish the nodes and edges of graphs
gi.

The number of links a node has is typically used
to measure its connectivity. This is called the node
degree and uses the notation kn = |{e = (u,n) | e ∈
E; u ∈ V}|. Let P(k) be the degree distribution of
the network. While the individual node degree rep-
resents a local graph property, the degree distribu-
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A short discussion of the results and ideas for
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we introduce typical graph models, which will be
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light similarities and differences of used models in
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Our example of people staying connected to
each other, as already being said, can be modeled as
a graph. Here each person will be a node and two
persons regularly communicating will be connected
using an edge. If a person changes its communica-
tion behavior edges can be added or removed and
therefore the graph can be altered over time. Per-
sons joining in the group of people modeled in the
graph can be added as additional nodes.

We will use the following graph notation for
later sections. Let G = (V, E) be a graph, with
the set of nodes V and the set of edges E such that
E ⊆ {(u,v) | u ̸= v; u,v ∈V}. For sake of simplic-
ity we will assume that edges are always undirected
and therefore the edges e = (u,v) and e′ = (v,u) be
the same. We will use index notations V (gi) and
E(gi) to distinguish the nodes and edges of graphs
gi.

The number of links a node has is typically used
to measure its connectivity. This is called the node
degree and uses the notation kn = |{e = (u,n) | e ∈
E; u ∈ V}|. Let P(k) be the degree distribution of
the network. While the individual node degree rep-
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tion can be used as a global graph property. Note
that for scale-free networks the degree distribution
follows a power-law function.

Additionally a graph can consist of a set of con-
nected components. A connected component is a
maximal subgraph in which any two nodes are con-
nected to each other by at least one path. Whereas
two subgraphs are connected if a path from one to
the other exists.

Merging of two formerly separated subgraphs
g1 = (V (g1),E(g1)) and g2 = (V (g2),E(g2)) is de-
fined by creating a new graph g such that V (g) =
V (g1) ∪V (g2), where E(g) contains at least one
edge e = (u,v), u ∈ V (g1), v ∈ V (g2). Dividing
a graph into two subgraphs works vice versa. The
nodes of the divided graph will be distributed to the
subgraphs g1 and g2 while holding the condition
V (g1)∩V (g2) = /0.

Multiple generative graph models exist in the
field of social networks. The following sections will
introduce famous examples and takes a look at their
properties. We will start with the Barabási-Albert-
model since it forms the basis of our analysis.

2.2 Barabási-Albert-model

A global property of social networks is the
scale-free property. It states that the node degree
distribution follows nearly a power law function.
Such a distribution could be observed in analyzing
real world networks like the world wide web.

BarabÃąsi and Albert observed the scale-free
property and searched for mechanisms explaining
this resulting distribution. In their observations they
found that new nodes favor the connection to well
established nodes in the network. This mechanism
is called preferential attachment and used for the
generation of the model. Using the preferential
attachment mechanism they were able to generate
random scale-free networks. The procedure will be
shortly explained in detail as follows [3].

The creation of the network starts with an initial
set of m0 nodes. Every new node will be connected
to nodes in the graph using m edges, where m ≤ m0.
The probability for a new node connecting to an ex-
isting node n is

pn =
kn

∑ j k j
(1)

where kn is the node-degree of node n, which is di-
vided by the sum of all node-degrees. This results
in the development of heavily linked nodes called
hubs, which are linked to a great part of the graph.
More generally the degree distribution of the full
graph follows a power law function of the form

P(k)∼ k−γ; γ = 2.9±0.1 . (2)

By the definition of the preferential attachment
strategy older nodes have higher chances to be-
come hubs. In the case of m = m0 we recommend
to use a fully connected initial graph for the m0
nodes. Otherwise the model will be biased to fa-
vor the (m0 + 1)-node, because it has the maximal
node-degree. We will make use of this through-
out our proposed methods for merging and splitting
Barabási-Albert-Graphs.

A drawback of the Barabási-Albert-model is
that it is unlikely to result in multiple components.
This can happen when the initial set of nodes con-
sists of multiple connected components and further
iterations do not connect those. If we choose to
start with a complete graph, it will always result
in one connected component. An extension of the
original generative algorithm tries to increase the
clustering capabilities. Holme and Kim proposed
to add a fourth step to the generation process[9].
Adding a node with m edges will be done by choos-
ing the first edge per preferential attachment. In
variation to the standard process further edges can
also be added with the alternative triad formation
step. Here, a new edge is added such that the new
node, the node from the first preferential attachment
step and a third node form a triad. With proba-
bility p we chose between using a triad formation
step instead of preferential attachment step. The
authors conclude their alteration increases cluster-
ing while maintaining the power-law distribution
of node-degrees. We will compare our algorithms
for their use on pure Barabási-Albert-graphs and
the alteration of Holme and Kim later referred as
Extended-Barabási-Albert-graphs in in subsubsec-
tion 6.1.3.

The Barabási-Albert-model was a first attempt
to explain the existence of node degree distributions
following a power law function and the emergence
of hubs. However, another drawback was that the
model could not explain how new nodes could be-
come hubs very fast. For instance, relating to the
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world wide example, the rise of Google as one of
the most linked web pages of the world wide web.
The model was extended using a fitness model de-
scribed in [10] to explain such a behavior. However
such extensions will not be regarded in this paper.

2.3 Watts-Strogatz-model and Erdős-
Rényi-model

Since we will compare our algorithms for the
application on the Watts-Strogatz-model and the
Erdős-Rényi-model, we will shortly summarize
both below.

The Watts-Strogatz-model [2] constructs a ran-
dom graph G(n,k,β) by starting with N nodes each
connected to K neighbors. As a second step all
edges are rewired with probability β. This is done
by replacing an edge (ni,n j) by (ni,nk), where k ̸= i
and the edge does not already exist. Note that it is
possible that the resulting graph consists of multiple
connected components.

The Erdős-Rényi-model [1] is divided into two
closely related variants. The first chooses one of all
possible graphs G(n,M) with M edges and n nodes,
where each graph has an equal probability. This
could be done by choosing N edges from the

(n
2

)
possible edges. Second variant G(n, p) starts with
an initial set of n unconnected nodes and includes
edges with probability p [11]. It can easily be de-
duced that each graph with n nodes and M edges is
equally likely with probability

pM(1− p)(
n
2)−M . (3)

As in the Watts-Strogatz-model it is possible that
the graph created by both variants consists of mul-
tiple connected components.

2.4 Comparison of the models

A limitation of the Watts-Strogatz-model and
the Erdős-Rényi-model is that they are not able
to produce a node degree distribution following a
power law function. Also both do not provide a
growing mechanism, which fixes them to the initial
set of nodes.

Figure 1 shows examples of the four discussed
graph models. The first one was created using the
Erdős-Rényi-model. We can see that the graph con-
sists of two connected components. The second

graph is based on the Watts-Strogatz-model. The
rewiring probability β was set to 0.3. Two edges
were rewired in the generation process. Even if this
graph shows one connected component it is also
possible that two components would have devel-
oped. Both graphs to the right are based on the
Barabási-Albert-model and its extension. Typical
for the both versions is that it is always one con-
nected component and some nodes have a much
higher node-degree. The latter shows a much higher
degree of clustering, which can be seen by the high
amount of connected triads.

3 Altering Barabási-Albert-
Graphs

We already discussed the process for generat-
ing a Barabási-Albert-Graph. Altering this graph
by growing or shrinking the network can be im-
plemented using the preferential attachment mech-
anism or reversing it. The Barabási-Albert-model
itself is based on the approach of adding one node
at a time and connecting this to other nodes. Grow-
ing the graph can be based on further iterations of
this generation process.

Reversing last iteration steps results in shrink-
ing the graph. If the order of adding nodes is un-
known we need to estimate the order in which nodes
were added to the graph. An implication of the pref-
erential attachment mechanism is that older nodes
probably have a higher node degree. For that rea-
son we can guess that sorting the nodes increasingly
by their node degree gives us a proper estimate for
their amount of time being part of the graph. In
a noise free network at least one node should have
exactly m edges, which is a good candidate to be re-
moved. Otherwise we simply remove the node with
the smallest node-degree. However it cannot be as-
sured that the model still holds true for the resulting
graph.

We will use the following subsection to describe
more complex algorithms for merging and divid-
ing Barabási-Albert-Graphs. For some algorithms
we will need to estimate the parameters a Barabási-
Albert-Graph is based on. Therefor we will first ex-
plain how those can be estimated.
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edges are rewired with probability β. This is done
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Erdős-Rényi-model. We can see that the graph con-
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higher node-degree. The latter shows a much higher
degree of clustering, which can be seen by the high
amount of connected triads.

3 Altering Barabási-Albert-
Graphs

We already discussed the process for generat-
ing a Barabási-Albert-Graph. Altering this graph
by growing or shrinking the network can be im-
plemented using the preferential attachment mech-
anism or reversing it. The Barabási-Albert-model
itself is based on the approach of adding one node
at a time and connecting this to other nodes. Grow-
ing the graph can be based on further iterations of
this generation process.

Reversing last iteration steps results in shrink-
ing the graph. If the order of adding nodes is un-
known we need to estimate the order in which nodes
were added to the graph. An implication of the pref-
erential attachment mechanism is that older nodes
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by their node degree gives us a proper estimate for
their amount of time being part of the graph. In
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we will need to estimate the parameters a Barabási-
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plain how those can be estimated.
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Figure 1. Comparison of graph models, a) Erdős-Rényi-model generated using the second variant G(n, p)
with p = 0.25, b) Watts-Strogatz-model with 0.3 probability for rewiring, c) Barabási-Albert-model with

m0 = m = 1, d) extended Barabási-Albert-model by Holme and Kai with m0 = m = 2, and p = 0.5

3.1 Estimating Barabási-Albert-Model At-
tributes

An existing Barabási-Albert-graph is based on
the amount of initial nodes m and the number of
edges each node gets connected to previous nodes
m0. For an existing Barabási-Albert-graph we need
to estimate the attributes of the generation process.
These are the amount of initial nodes m0 and the
number of edges per new node m.

Let nt be the total number of nodes present in
the graph and na = nt − m0 the number of nodes
added in the growing phase. Similar we define et as
the total number of edges in the graph, which is the
sum of edges from the initial phase e0 and the edges
from the growing phase ea = na ·m.

Depending on the assumption of the initializa-
tion e0 is between 0 (starting with no edges at all)
and 0.5 ·m0 · (m0 −1) (full-connected graph).

Based on this, we get:

na ·m ≤ et ≤ na ·m+
m0 · (m0 −1)

2
(4)

et

na
≥ m ≥ et

na
− m0 · (m0 −1)

2na
(5)

et

nt −m0
≥ m ≥ et

nt −m0
− m0 · (m0 −1)

2(nt −m0)
(6)

Previously we assumed that the graph after the
initialization phase is fully connected. For the case
that m = m0 and we are always starting with a full-
connected graph of m nodes the equation can be re-
duced to:

et = (nt −m) ·m+
m · (m−1)

2
(7)

0 = m2 −2 · (nt −
1
2
) ·m+2 · et (8)

m1,2 = nt −
1
2
±
√
(nt −

1
2
)2 −2 · et (9)

Experiments showed that subtracting the value of
the square root in Equation 9 results in a correct es-
timation of m.

Furthermore we will need an estimation of the
parameter m for a merge-graph g of two Barabási-
Albert-Graphs g1 and g2 and the reverse opera-
tion of dividing graph g into two Barabási-Albert-
Graphs g1 and g2. The latter case can be solved
trivially by setting m1 and m2 equal to the estimates
m of the divided graph. Deciding about an estimate
for the value m of a merge-graph can be more com-
plicated, except the trivial case of both graphs hav-
ing an equal parameter m such that m1 = m2. In
this case we can estimate m1 and m2 for both sub-
graphs separately and return m = m1 = m2. Other-
wise we will have to find a value for m big enough
to reach at least the same number of edges in the
merge graph as the sum of edges in both subgraphs
(|E(g)| ≥ |E(g1)|+ |E(g2)|). The estimation of the
parameter m of a merge graph is described in the
following algorithm.

1: function ESTIMATEM(Graph: g1,g2)
2: m1 ← estimateM(g1)
3: m2 ← estimateM(g2)
4: nt ← |V (g1)|+ |V (g2)|
5: m ← min(m1,m2)
6: loop
7: e ← (nt −m) ·m+ m·(m−1)

2
8: if e ≥ |E(g1)|+ |E(g2)| then
9: return m

10: else
11: m ← m+1
12: end if
13: end loop
14: end function
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3.2 Merging of two Graphs

In the following we describe four strategies and
their underlying motivation to merge two graphs.

3.2.1 Random Merge

To provide a baseline for later experiments we
will use the random merge algorithm (RM). It is the
simplest way of merging two graphs by picking up
all their nodes and add them in random order to a
new Barabási-Albert-Graph.

1: function RANDOMMERGE(Graph: g1,g2)
2: m ← estimateM(g1,g2)
3: graph ← EmptyBarabasiGraph(m)
4: nodes ←V (g1)∪V (g2)
5: nodes.shuffle()
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is (n), where
n is the number of nodes in both graphs.

While being the simplest way we could not ex-
pect the resulting graph to preserve properties of the
input graphs. The only thing, which could be ex-
pected is, that the Barabási-Albert-model properties
hold in the resulting graph.

3.2.2 Node-Degree-Order Merge

The second algorithm we propose focuses on
preserving the node degree of every node. One ex-
emplary use-case would be the differentiation of ex-
troverts and introverts. Consider two groups from
different schools merged by getting to know each
other. Individual connectivity of a node should be
preserved after the merge such that nodes represent-
ing extroverts will have more connections than in-
troverts before and after the merge.

The preferential attachment strategy used in the
Barabási-Albert-model leads to early added nodes
having much more connections than later ones.
Therefore we take all nodes of both graphs and put
them in a combined list. Nodes will be added to a
new Barabási-Albert-Graph in decreasing order of
their node degree. With this strategy it is expected,
that the node-degree distribution relating to the spe-
cific nodes is the same.

1: function NODEDEGREEMERGE(Graph:
g1,g2)

2: m ← estimateM(g1,g2)
3: graph ← EmptyBarabasiGraph(m)
4: nodes ←V (g1)∪V (g2)
5: nodes.sortByNodeDegree(′desc′)
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in both graphs. The
main complexity is a result of the sorting operation
on almost presorted lists.

3.2.3 Preserving-Nodes Merge

Relating to our company example, where one
enterprise acquired the other, we need a merge strat-
egy which preserves the structure of one child graph
as much as possible. Our observations resulted
in the definition of the preserving-nodes merge
(PNM). The main idea is to keep the full structure
of one input graph and add the other node by node
to the resulting merge-graph. Based on the node-
degree-order merge, nodes from the second input
graph are inserted in decreasing order of their node
degree.

1: function PRESERVINGNODESMERGE(
Graph: g1,g2)

2: m ← estimateM(g1,g2)
3: nodes ←V (g2)
4: nodes.sortByNodeDegree(′desc′)
5: for all node ← nodes do
6: g1.addNode(node)
7: end for
8: return graph
9: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in the second graph

From construction this strategy keeps all the in-
formation of the first graph. The inner structure of
the second graph is lost, but the node-degree distri-
bution relating to the specific nodes of the second
graph is the same.

Since the first graph is used as the base for the
merge, throughout the preferential attachment it is
highly probable that new nodes will preferentially
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3.2 Merging of two Graphs

In the following we describe four strategies and
their underlying motivation to merge two graphs.

3.2.1 Random Merge

To provide a baseline for later experiments we
will use the random merge algorithm (RM). It is the
simplest way of merging two graphs by picking up
all their nodes and add them in random order to a
new Barabási-Albert-Graph.

1: function RANDOMMERGE(Graph: g1,g2)
2: m ← estimateM(g1,g2)
3: graph ← EmptyBarabasiGraph(m)
4: nodes ←V (g1)∪V (g2)
5: nodes.shuffle()
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is (n), where
n is the number of nodes in both graphs.

While being the simplest way we could not ex-
pect the resulting graph to preserve properties of the
input graphs. The only thing, which could be ex-
pected is, that the Barabási-Albert-model properties
hold in the resulting graph.

3.2.2 Node-Degree-Order Merge

The second algorithm we propose focuses on
preserving the node degree of every node. One ex-
emplary use-case would be the differentiation of ex-
troverts and introverts. Consider two groups from
different schools merged by getting to know each
other. Individual connectivity of a node should be
preserved after the merge such that nodes represent-
ing extroverts will have more connections than in-
troverts before and after the merge.

The preferential attachment strategy used in the
Barabási-Albert-model leads to early added nodes
having much more connections than later ones.
Therefore we take all nodes of both graphs and put
them in a combined list. Nodes will be added to a
new Barabási-Albert-Graph in decreasing order of
their node degree. With this strategy it is expected,
that the node-degree distribution relating to the spe-
cific nodes is the same.

1: function NODEDEGREEMERGE(Graph:
g1,g2)

2: m ← estimateM(g1,g2)
3: graph ← EmptyBarabasiGraph(m)
4: nodes ←V (g1)∪V (g2)
5: nodes.sortByNodeDegree(′desc′)
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in both graphs. The
main complexity is a result of the sorting operation
on almost presorted lists.

3.2.3 Preserving-Nodes Merge

Relating to our company example, where one
enterprise acquired the other, we need a merge strat-
egy which preserves the structure of one child graph
as much as possible. Our observations resulted
in the definition of the preserving-nodes merge
(PNM). The main idea is to keep the full structure
of one input graph and add the other node by node
to the resulting merge-graph. Based on the node-
degree-order merge, nodes from the second input
graph are inserted in decreasing order of their node
degree.

1: function PRESERVINGNODESMERGE(
Graph: g1,g2)

2: m ← estimateM(g1,g2)
3: nodes ←V (g2)
4: nodes.sortByNodeDegree(′desc′)
5: for all node ← nodes do
6: g1.addNode(node)
7: end for
8: return graph
9: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in the second graph

From construction this strategy keeps all the in-
formation of the first graph. The inner structure of
the second graph is lost, but the node-degree distri-
bution relating to the specific nodes of the second
graph is the same.

Since the first graph is used as the base for the
merge, throughout the preferential attachment it is
highly probable that new nodes will preferentially
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be connected to nodes of the first graph. This leads
to a domination of the nodes from the first graph
and will increase their node degree much more as
nodes from the second graph.

Based on our real-world example of two enter-
prises, in which one acquires the other, this could
model rising connection between managers of the
acquiring company and workers of the second com-
pany. The structure of the buying company will not
change significant. Only few edges to nodes of the
bought company will be added. Managers of the ac-
quired company will be integrated first in the new
company structure and therefor are more likely to
be placed in higher positions with more influence
and connections in the new merges company. Fi-
nally workers of the bought company will be inte-
grated in the daily workflow.

3.2.4 Minimal-Merge

For our last merge strategy we again go back
to the analysis of two real world examples. For in-
stance we could model two groups of friends rarely
having contact to people outside the group or two
enterprises increasing their communication to each
other. Both examples will experience nearly no
changes in the base graphs when merged.

The minimal merge (MM) tries to model such
an behavior and focuses on keeping most of the
structure of both graphs. The main idea is to
use both graphs and connect them with additional
edges. To do so, we increase the estimated m.
Now we have free edges, we can use to connect
both graphs. Similar to the basic Barabási-Albert-
approach we select nodes proportional to there
node-degree.

1: function MINIMALMERGE(Graph: g1,g2)
2: m ← estimateM(g1,g2)+1
3: g ← UnionBarabasiGraph(g1,g2,m)
4: eadd = g.getMaxEdges()−|E(g)|
5: while eadd > 0 do
6: n1 ←V (g1).preferedSelect()
7: n2 ←V (g2).preferedSelect()
8: g.addEdge(n1,n2)
9: eadd ← eadd −1

10: end while
11: return graph
12: end function

The complexity of this algorithm is (n). This strat-
egy keeps most of the structure, with the drawback
of increasing the number of edges per node.

3.3 Dividing into two Graphs

After giving some examples for merging
graphs, we want to add five strategies for dividing
a graph in two subgraphs. Each algorithm will use
the parameters graph (g) and the number of nodes
expected in the first subgraph (noNodes1).

3.3.1 Random-Divide

As in the case of merging two graphs we pro-
vide one algorithm as baseline for comparison in
our evaluation experiments. The random-divide
strategy (RD) is the simplest idea to divide a given
graph. The basic idea is to create two sets of
nodes, for each new graph one. Then create a new
Barabási-Albert-graph from both of these sets.

1: function RANDOMDIVIDE(
Graph: g, noNodes1)

2: v1 ←V (g).randomSelect(noNodes1)
3: v2 ←V (g)− v1
4: m ← estimateM(g)
5: g1 ← EmptyBarabasiGraph(m)
6: g2 ← EmptyBarabasiGraph(m)
7: for all node ← v1 do
8: g1.addNode(node)
9: end for

10: for all node ← v2 do
11: g2.addNode(node)
12: end for
13: return g1,g2
14: end function

The complexity of the random-divide strategy is
(n), where n is the number of nodes. This simplest
method does not care about the underlying struc-
ture of the graph, but it ensures the properties of a
Barabási-Albert-Graph in the resulting graphs.

3.3.2 Random-Subgraph-Divide

An alteration of the Random-Divide lead us
to the second strategy called Random-Subgraph-
Divide (RSD). The set of nodes is randomly split
into two subsets, which will be used to create two
child graphs. Connections within those subgraphs
will be preserved. However this will lead to graphs
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violating the Barabási-Albert-properties. Therefor
we have to include repairing steps, which will be
described in detail in Subsection 3.4.

1: function RANDOMSGDIVIDE(
Graph: g, noNodes1)

2: v1 ←V (g).randomSelect(noNodes1)
3: v2 ←V (g)− v1
4: e1 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v1}
5: e2 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v2}
6: g1 ← Graph(v1,e1)
7: g2 ← Graph(v2,e2)
8: m1 ← estimateM(g1)
9: m2 ← estimateM(g2)

10: repairGraph(g1,m1)
11: repairGraph(g2,m2)
12: return g1,g2
13: end function

The complexity of our second divide algorithm
is (n2), where n is the number of nodes. The
increase in complexity results from our repairing
mechanism.

3.3.3 Subgraph-Expansion-Divide (SED)

We already preserved some connections be-
tween nodes in the RSD. The main drawback of
this method seems to be the extensive use of the
repairing operation to reconnect each of the sub-
graphs to one connected component. To improve
the Random-Subgraph-Divide we chose a node
set, which forms one connected component. We
achieve this by iteratively adding nodes to the cur-
rent subgraph until the size of first graph is reached.
For simplicity this step was implemented using
a breadth-first search (BFS). Maximum-cardinality
search could be used as an alternative search
scheme. See [12] for a detailed description. We
assume that the compactness of the resulting sub-
graph should be higher, but experiments still have
to be performed.

However it cannot be guaranteed that both
graphs approximate properties of the Barabási-
Albert-model e.g. the second subgraph can be split
into several components. In addition, both graphs
could still lack some edges, so both need to be re-
paired using the repair-operator described in Sub-
section 3.4.

1: function SUBGRAPHEXPDIVIDE(
Graph: g, noNodes1)

2: startNode ← g.NodeWithLowestDegree()
3: v1 ← BFS(startNode,noNodes1)
4: v2 ←V (g)− v1
5: e1 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v1}
6: e2 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v2}
7: g1 ← Graph(v1,e1)
8: g2 ← Graph(v2,e2)
9: m ← estimateM(g)

10: repairGraph(g1,m)
11: repairGraph(g2,m)
12: return g1,g2
13: end function

The complexity of our last divide is (n), where
n is the number of nodes in the graph. The repairing
step increases the complexity to (n2).

3.3.4 Node-Degree-Divide A

As it was already modeled in the Node-Degree-
Merge, we differentiated nodes by their node de-
gree. The Node-Degree-Divide A (NDDa) is based
on the same principle. First we order all nodes de-
scending by their node-degree. Second we split this
list and use the first part for the first subgraph and
the second accordingly. Nodes are then added in or-
der of their node degree. Edges between the nodes
will not be preserved.

1: function NODEDEGREEDIVIDEA(
Graph: g, noNodes1)

2: m ← estimateM(g)
3: g1 ← EmptyBarabasiGraph(m)
4: g2 ← EmptyBarabasiGraph(m)
5: nodes ←V (g)
6: nodes.sortByNodeDegree(′desc′)
7: for all node ← nodes[: noNodes] do
8: g1.addNode(node)
9: end for

10: for all node ← nodes[noNodes :] do
11: g2.addNode(node)
12: end for
13: return g1,g2
14: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in the graph. Since
this strategy keeps the Barabási-Albert-properties
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violating the Barabási-Albert-properties. Therefor
we have to include repairing steps, which will be
described in detail in Subsection 3.4.

1: function RANDOMSGDIVIDE(
Graph: g, noNodes1)

2: v1 ←V (g).randomSelect(noNodes1)
3: v2 ←V (g)− v1
4: e1 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v1}
5: e2 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v2}
6: g1 ← Graph(v1,e1)
7: g2 ← Graph(v2,e2)
8: m1 ← estimateM(g1)
9: m2 ← estimateM(g2)

10: repairGraph(g1,m1)
11: repairGraph(g2,m2)
12: return g1,g2
13: end function

The complexity of our second divide algorithm
is (n2), where n is the number of nodes. The
increase in complexity results from our repairing
mechanism.

3.3.3 Subgraph-Expansion-Divide (SED)

We already preserved some connections be-
tween nodes in the RSD. The main drawback of
this method seems to be the extensive use of the
repairing operation to reconnect each of the sub-
graphs to one connected component. To improve
the Random-Subgraph-Divide we chose a node
set, which forms one connected component. We
achieve this by iteratively adding nodes to the cur-
rent subgraph until the size of first graph is reached.
For simplicity this step was implemented using
a breadth-first search (BFS). Maximum-cardinality
search could be used as an alternative search
scheme. See [12] for a detailed description. We
assume that the compactness of the resulting sub-
graph should be higher, but experiments still have
to be performed.

However it cannot be guaranteed that both
graphs approximate properties of the Barabási-
Albert-model e.g. the second subgraph can be split
into several components. In addition, both graphs
could still lack some edges, so both need to be re-
paired using the repair-operator described in Sub-
section 3.4.

1: function SUBGRAPHEXPDIVIDE(
Graph: g, noNodes1)

2: startNode ← g.NodeWithLowestDegree()
3: v1 ← BFS(startNode,noNodes1)
4: v2 ←V (g)− v1
5: e1 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v1}
6: e2 = {(x1,x2) : ∀(x1,x2) ∈ E(g)∧ x1,x2 ∈

v2}
7: g1 ← Graph(v1,e1)
8: g2 ← Graph(v2,e2)
9: m ← estimateM(g)

10: repairGraph(g1,m)
11: repairGraph(g2,m)
12: return g1,g2
13: end function

The complexity of our last divide is (n), where
n is the number of nodes in the graph. The repairing
step increases the complexity to (n2).

3.3.4 Node-Degree-Divide A

As it was already modeled in the Node-Degree-
Merge, we differentiated nodes by their node de-
gree. The Node-Degree-Divide A (NDDa) is based
on the same principle. First we order all nodes de-
scending by their node-degree. Second we split this
list and use the first part for the first subgraph and
the second accordingly. Nodes are then added in or-
der of their node degree. Edges between the nodes
will not be preserved.

1: function NODEDEGREEDIVIDEA(
Graph: g, noNodes1)

2: m ← estimateM(g)
3: g1 ← EmptyBarabasiGraph(m)
4: g2 ← EmptyBarabasiGraph(m)
5: nodes ←V (g)
6: nodes.sortByNodeDegree(′desc′)
7: for all node ← nodes[: noNodes] do
8: g1.addNode(node)
9: end for

10: for all node ← nodes[noNodes :] do
11: g2.addNode(node)
12: end for
13: return g1,g2
14: end function

The complexity of this algorithm is (n · logn),
where n is the number of nodes in the graph. Since
this strategy keeps the Barabási-Albert-properties
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and also the node-degree distribution related to the
nodes, no repairing operation is needed.

3.3.5 Node-Degree-Divide B (NDDb)

This strategy is closely related to NDDa and
modifies the splitting strategy of the ordered list
of nodes. A drawback of the first strategy is that
the node degree distribution following a power law
function results in two distinct distributed subsets.
While the first includes nodes with a wide range
of node degrees, the second subset could be nearly
evenly distributed.

For that reason we do not split the list into
two parts, but instead we pick alternating elements
for every subgraph, with respect to the selected re-
lation. The function createIndexList() returns all
node indexes of nodes used for the first subgraph
such that when possible they are equally spaced to
each other.

This alternative picking strategy ensures that
each subgraph includes some of the top connected
nodes, while overall fairly distributing nodes of the
originating node-degree distribution between both
graphs. However, equal to the NDDa algorithm,
edges between picked nodes will not be preserved.

1: function NODEDEGREEDIVIDEB(Graph: g,
noNodes1)

2: m ← estimateM(g)
3: g1 ← EmptyBarabasiGraph(m)
4: g2 ← EmptyBarabasiGraph(m)
5: nodes.sortByNodeDegree(′desc′)
6: indexlist← createIndexList(|V (g)|, noNodes1)
7: for all node ← nodes do
8: if index(node) in indexlist then
9: g1.addNode(node)

10: else
11: g2.addNode(node)
12: end if
13: end for
14: return g1,g2
15: end function

The complexity of strategy NDDb is (n · log(n))
where n is the number of nodes. The increased ef-
fort for picking nodes does not influence the com-
plexity class and therefor is equal to NDDa.

3.4 Repairing-Steps

Two of our divide algorithms, namely Random-
Subgraph-Divide and Subgraph-Expansion-Divide,
can produce graphs that do not hold typical prop-
erties of the Barabási-Albert-model. We created a
repairing-operation which tries to achieve the three
properties:

1 Barabási-Albert-graph is always one connected
component

2 Every node has at least m edges, respectively
each node n ∈V has a node-degree of kn ≥ m

3 The maximal number of edges is

na ·m+
m · (m0 −1)

2
(10)

This does not lead to a graph perfectly fol-
lowing the Barabási-Albert-model, but achieves the
most properties with minimal manipulation of the
graph. If the graph consists of multiple connected
components, additional edges will be used to con-
nect all to one component. Further on edges will
be added to increase the node-degree of all nodes
having a degree lower than m. For the case that the
number of edges is not high enough an recursive run
with repairGraph(g,m+ 1) will be started. If first
two steps did not use up all edges, remaining edges
will be added using preferential attachment.

1: function REPAIRGRAPH(Graph: g, m)
2: if |V (g)| ≤ m then
3: return completeGraph(V(g))
4: end if
5: eadd = getMaxEdges(g)−|E(g)|
6: while |g.components|> 1 do
7: if eadd < 0 then
8: return repairGraph(g,m+1)
9: end if

10: source ← V(g).randomSelect(1)
11: target ← V(g).randomSelect(1)
12: Connect(source, target)
13: eadd ← eadd −1
14: end while
15: for all node ←{n : n ∈V (g),kn < m} do
16: while node.degree < m do
17: if eadd < 0 then
18: return repairGraph(g,m+1)
19: end if
20: target ← V(g).preferedSelect(1)
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21: g.addEdge(node, target)
22: eadd ← eadd −1
23: end while
24: end for
25: while eadd > 0 do
26: source ← V(g).preferedSelect(1)
27: target ← V(g).preferedSelect(1)
28: g.addEdge(source, target)
29: eadd ← eadd −1
30: end while
31: return g
32: end function

The repair operator has a complexity of (n2) where
n is the number of nodes.

The repairing process is based on the genera-
tive mechanisms of the original model. On the one
hand it could be argued that a better approximation
of the power-law function could be achieved by cal-
culating the desired distribution beforehand and use
the remaining edges to fit this distribution. One the
other hand we want the power-law distribution to be
a result of the preferential attachment strategy and
not created by force. Therefor we focused on a min-
imal change of the start graph using the preferen-
tial attachment strategy to achieve properties listed
above.

4 Experiments

The following subsections will describe our ex-
periments for evaluating the behavior of proposed
merge and divide algorithms for Barabási-Albert-
Graphs. Subsection 4.3 introduces our comparison
measures. Additionally we recorded run times of
all algorithms. See Subsection 5 for results.

4.1 Merging of two Graphs

We used Barabási-Albert-Graphs of differing
size and (n) and connectivity (m0 = m). Our four
scenarios test the algorithm behavior for a merge
of two graphs based on equal parameters and dif-
ferences in one or both parameters. The following
test scenarios formed the basis for our comparison
of Barabási-Albert-graphs:

name n1 m1 n2 m2

equal 5000 3 5000 3
diff_m 5000 3 5000 8
diff_size 5000 8 25000 8
diff_all 5000 8 25000 3

4.2 Dividing into two Graphs

Similar to the experiments for merging graphs
we divided graphs in different ratios of nodes in
the resulting subgraphs. Following test scenarios
were created for dividing a Barabási-Albert-graph
into two subgraphs:

name n m noNodes1

10 : 90 10000 5 1000
20 : 80 10000 5 2000
30 : 70 10000 5 3000
40 : 60 10000 5 4000
50 : 50 10000 5 5000

4.3 Measurements

To measure the quality of each algorithm, we
focus on three aspects derived from real world ob-
servations, namely edge preservation, node-degree
rank and node-degree distribution.

4.3.1 Edge Preservation

One of our merging examples was the increased
cooperation of two enterprises. In this case the in-
ner structure of both graphs is nearly untouched.
This means, that nodes which are connected before
are also connected after the merge. Not connected
nodes should be separate after the merge, as well.

We can measure such a behavior by calculating
the percentage of preserved edges during the alter-
ation process. Because of different usage of graph
information during the merge and divide operations,
e.g. PNM only preserves edges of the first graph,
this has to be calculated for both graphs individu-
ally.

4.3.2 Rank-Correlation

Another property already discussed is the dif-
ferentiation of extroverts and introverts. Nodes
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21: g.addEdge(node, target)
22: eadd ← eadd −1
23: end while
24: end for
25: while eadd > 0 do
26: source ← V(g).preferedSelect(1)
27: target ← V(g).preferedSelect(1)
28: g.addEdge(source, target)
29: eadd ← eadd −1
30: end while
31: return g
32: end function

The repair operator has a complexity of (n2) where
n is the number of nodes.

The repairing process is based on the genera-
tive mechanisms of the original model. On the one
hand it could be argued that a better approximation
of the power-law function could be achieved by cal-
culating the desired distribution beforehand and use
the remaining edges to fit this distribution. One the
other hand we want the power-law distribution to be
a result of the preferential attachment strategy and
not created by force. Therefor we focused on a min-
imal change of the start graph using the preferen-
tial attachment strategy to achieve properties listed
above.

4 Experiments

The following subsections will describe our ex-
periments for evaluating the behavior of proposed
merge and divide algorithms for Barabási-Albert-
Graphs. Subsection 4.3 introduces our comparison
measures. Additionally we recorded run times of
all algorithms. See Subsection 5 for results.

4.1 Merging of two Graphs

We used Barabási-Albert-Graphs of differing
size and (n) and connectivity (m0 = m). Our four
scenarios test the algorithm behavior for a merge
of two graphs based on equal parameters and dif-
ferences in one or both parameters. The following
test scenarios formed the basis for our comparison
of Barabási-Albert-graphs:

name n1 m1 n2 m2

equal 5000 3 5000 3
diff_m 5000 3 5000 8
diff_size 5000 8 25000 8
diff_all 5000 8 25000 3

4.2 Dividing into two Graphs

Similar to the experiments for merging graphs
we divided graphs in different ratios of nodes in
the resulting subgraphs. Following test scenarios
were created for dividing a Barabási-Albert-graph
into two subgraphs:

name n m noNodes1

10 : 90 10000 5 1000
20 : 80 10000 5 2000
30 : 70 10000 5 3000
40 : 60 10000 5 4000
50 : 50 10000 5 5000

4.3 Measurements

To measure the quality of each algorithm, we
focus on three aspects derived from real world ob-
servations, namely edge preservation, node-degree
rank and node-degree distribution.

4.3.1 Edge Preservation

One of our merging examples was the increased
cooperation of two enterprises. In this case the in-
ner structure of both graphs is nearly untouched.
This means, that nodes which are connected before
are also connected after the merge. Not connected
nodes should be separate after the merge, as well.

We can measure such a behavior by calculating
the percentage of preserved edges during the alter-
ation process. Because of different usage of graph
information during the merge and divide operations,
e.g. PNM only preserves edges of the first graph,
this has to be calculated for both graphs individu-
ally.

4.3.2 Rank-Correlation

Another property already discussed is the dif-
ferentiation of extroverts and introverts. Nodes
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could possibly establish a wide range of connec-
tions. We suggest that nodes which are more active,
or stronger connected should also have a higher
node-degrees in the resulting graphs.

To estimate this, we calculate the node-degree
rank of every node in both graphs. Afterwards, we
calculate the two well known rank correlation coef-
ficients Spearman’s ρ [13, Section 14.7] including
tie-correction and Kendall’s τ [14]. These measures
have a range from −1 to +1, where +1 (−1) in-
dicates that the order is completely preserved (re-
versed).

4.3.3 Node-Degree Distribution

Based on the Barabási-Albert-model the node-
degree of all nodes in the graph should follow a
power-law distribution, described in Equation 2.

We determine the node-degree distribution of
the resulting graph and compare them with the the-
oretical node-degree distribution based on the pre-
sented formula and the number of edges in the
graph. We calculate the root-mean-squared-error
to check how good the distribution fits the node-
degree distribution of our graph.

5 Results

In the following section we present the results
of our experiments. First we give a brief compar-
ison about the run times, and afterwards we show
the in Subsection 4.3 described measures.

5.1 Merging of two Graphs

5.1.1 Computing Time

Figure 2. Computation time for merge operators
with different graph sizes

In Figure 2 we show the run time for the pre-
sented merge algorithms. We used two graphs with
the same number of nodes and a connectivity of
m = 4. The measurement is based on 10 runs for
each graph size. The runtime for all algorithms is
almost linear in graph-size.

This is due to the fact that the constants of
the logarithmic parts from the ordering are relative
small in contrast to the constant factors of the merge
process itself.

5.1.2 Edge Preservation

The edge preservation follows the design of
the algorithms. The Minimal-Merge preserves all
edges, and the Preserving-Nodes Algorithms the
edges from the first graph. All others algorithms
lose the inner structure. A more detailed view can
be taken from Table 1. The first part of every col-
umn describes the percentage of preserved edges
from the first resulting subgraph, and the second
part the other subgraph respectively.

5.1.3 Rank Correlation

Recorded values were averaged over 100 itera-
tions of specified experiments and are shown in Ta-
ble 2 and Table 3. The baseline algorithm Random-
Merge (RM) had always values around 0 which
indicates that degree rank order before and after
the merge stand in no correlation to each other.
Preserving-Node-Merge (PNM) performed better in
the merge of two equal graphs and on the same
level as RM for graphs with differing m. The
Node-Degree-Merge algorithm (NDM) ranked sec-
ond best in first three experiments. For an equal
merge both rank-correlation coefficients had much
higher values (ρequal = 0.726 and τequal = 0.625)
than PNM. It reached even higher values for merg-
ing graphs with differing m (ρdiff _m = 0.842 and
τdiff _m = 0.709) and differing size (ρdiff _m = 0.874
and τdiff _m = 0.779). However PNM performed bet-
ter than NDM for graphs differing in size and con-
nectivity (ρdiff _all = 0.850 and τdiff _all = 0.718). The
algorithm Minimal-Merge (MM) scored best with
values near to +1 for both experiments. This is due
to the minimal change by adding just a few edges.

4.3.2 Rank-Correlation

Another property already discussed is the differenti-
ation of extroverts and introverts. Nodes could pos-
sibly establish a wide range of connections. We sug-
gest that nodes which are more active, or stronger
connected should also have a higher node-degrees in
the resulting graphs.

To estimate this, we calculate the node-degree
rank of every node in both graphs. Afterwards, we
calculate the two well known rank correlation co-
efficients Spearman’s ρ [13, Section 14.7] including
tie-correction and Kendall’s τ [14]. These measures
have a range from −1 to +1, where +1 (−1) in-
dicates that the order is completely preserved (re-
versed).

4.3.3 Node-Degree Distribution

Based on the Barabási-Albert-model the node-
degree of all nodes in the graph should follow a
power-law distribution, described in Equation 2.

We determine the node-degree distribution of the
resulting graph and compare them with the theoret-
ical node-degree distribution based on the presented
formula and the number of edges in the graph. We
calculate the root-mean-squared-error to check how
good the distribution fits the node-degree distribution
of our graph.

5 Results

In the following section we present the results of our
experiments. First we give a brief comparison about
the run times, and afterwards we show the in Subsec-
tion 4.3 described measures.

Figure 2: Computation time for merge operators with
different graph sizes

5.1 Merging of two Graphs

5.1.1 Computing Time

In Figure 2 we show the run time for the presented
merge algorithms. We used two graphs with the
same number of nodes and a connectivity of m = 4.
The measurement is based on 10 runs for each graph
size. The runtime for all algorithms is almost linear
in graph-size.

This is due to the fact that the constants of the log-
arithmic parts from the ordering are relative small in
contrast to the constant factors of the merge process
itself.

5.1.2 Edge Preservation

The edge preservation follows the design of the algo-
rithms. The Minimal-Merge preserves all edges, and
the Preserving-Nodes Algorithms the edges from the
first graph. All others algorithms lose the inner struc-
ture. A more detailed view can be taken from Ta-
ble 1. The first part of every column describes the
percentage of preserved edges from the first result-
ing subgraph, and the second part the other subgraph
respectively.
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Table 1. Average part of edges preserved after merge-operation in percent

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.4 / 0.4 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 2. Measured values for Kendall’s τ

Merge ρequal ρdiff _m ρdiff _size ρdiff _all

RM 0.000 -0.001 0.000 0.001
NDM 0.726 0.842 0.874 0.779
PNM 0.475 -0.134 0.612 0.850
MM 1.000 0.979 1.000 0.985

Table 3. Measured values for Spearman’s ρ

Merge τequal τdiff _m τdiff _size τdiff _all

RM 0.000 0.000 0.000 0.001
NDM 0.625 0.709 0.745 0.661
PNM 0.406 -0.061 0.486 0.718
MM 1.000 0.927 1.000 0.964

5.1.4 Node-Degree Distribution

Table 4 shows the RMSE between the observed
node-degree and the theoretical node-degree distri-
bution. The upper part of the table shows the RMSE
for the initial graphs, and below the results for all
merged graphs for every method.

Table 4. RMSE of node-degree distribution before
and after merge

RMSE equal diff_m diff_size diff_all

g1 23.2 22.9 4.9 4.8
g2 22.6 4.9 12.3 75.7

RM 38.2 11.7 14.0 53.9
NDM 39.4 12.0 14.3 54.2
PNM 38.3 38.2 14.1 14.3
MM 43.3 199.1 14.8 229.2

The Random-Merge (RM) algorithm generates
the best results except for the diff_all dataset.

Minimal-Merge (MM) leads to huge errors, espe-
cially with different m. This is based on the fact,
that most of the inner structure is kept and no com-
bined graph with all nodes is created from scratch.
PNM and NDM generate results with RMSE be-
tween the initial graphs.

5.2 Dividing into two Graphs

5.2.1 Computing Time

Figure 3. Computation time for divide operators
with different graph sizes

Figure 3 shows the run time for the presented
divide algorithms. We used a graph with a connec-
tivity of m = 4. The divide operation divides the
graph into two subgraphs with the same size. The
measurement is based on 10 runs for each graph
size.

The two algorithms using the repair operator are
slower then the other ones. The Random-Divide
(RM), and the Node-Degree-Divide (NDDa, and
NDDb) algorithms are almost equal and linear in
computation time. The Random-Subgraph-Divide
(RSD) algorithms looks also linear, which is an in-
dication that the repair operation is less used in this
algorithm than in the Subgraph-Expansion-Divide
(SED) algorithm.
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The Random-Merge (RM) algorithm generates the
best results except for the diff_all dataset. Minimal-
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different m. This is based on the fact, that most of
the inner structure is kept and no combined graph
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NDM generate results with RMSE between the ini-
tial graphs.
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algorithm than in the Subgraph-Expansion-Divide
(SED) algorithm.

5.2.2 Edge Preservation

The RSD and the SED preserve all structure infor-
mation from the selected subgraph. The NDD algo-
rithms preserve some structure, (2− 4%), while the
Random Divide loses almost all inner structure. De-
tailed information is presented in Table 5. The first
part of each column represents the portion of pre-
served edges from the first resulting subgraph, and
the second portions represents the ratio of the other
subgraph.

5.2.3 Rank Correlation

Measured rank-correlations of all divides are shown
in Table 6 and Table 7. Recorded values were av-
eraged over 100 iterations of specified experiments.
It can be seen that our baseline algorithm Random-
Divide (RD) shows no correlation between the de-
gree rank order before and after the divide. So
the order of nodes by their node degree before the
divide has no effect on the order of nodes after
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Table 1. Average part of edges preserved after merge-operation in percent

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.4 / 0.4 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 2. Measured values for Kendall’s τ

Merge ρequal ρdiff _m ρdiff _size ρdiff _all

RM 0.000 -0.001 0.000 0.001
NDM 0.726 0.842 0.874 0.779
PNM 0.475 -0.134 0.612 0.850
MM 1.000 0.979 1.000 0.985

Table 3. Measured values for Spearman’s ρ

Merge τequal τdiff _m τdiff _size τdiff _all

RM 0.000 0.000 0.000 0.001
NDM 0.625 0.709 0.745 0.661
PNM 0.406 -0.061 0.486 0.718
MM 1.000 0.927 1.000 0.964

5.1.4 Node-Degree Distribution

Table 4 shows the RMSE between the observed
node-degree and the theoretical node-degree distri-
bution. The upper part of the table shows the RMSE
for the initial graphs, and below the results for all
merged graphs for every method.

Table 4. RMSE of node-degree distribution before
and after merge

RMSE equal diff_m diff_size diff_all

g1 23.2 22.9 4.9 4.8
g2 22.6 4.9 12.3 75.7

RM 38.2 11.7 14.0 53.9
NDM 39.4 12.0 14.3 54.2
PNM 38.3 38.2 14.1 14.3
MM 43.3 199.1 14.8 229.2

The Random-Merge (RM) algorithm generates
the best results except for the diff_all dataset.

Minimal-Merge (MM) leads to huge errors, espe-
cially with different m. This is based on the fact,
that most of the inner structure is kept and no com-
bined graph with all nodes is created from scratch.
PNM and NDM generate results with RMSE be-
tween the initial graphs.

5.2 Dividing into two Graphs

5.2.1 Computing Time

Figure 3. Computation time for divide operators
with different graph sizes

Figure 3 shows the run time for the presented
divide algorithms. We used a graph with a connec-
tivity of m = 4. The divide operation divides the
graph into two subgraphs with the same size. The
measurement is based on 10 runs for each graph
size.

The two algorithms using the repair operator are
slower then the other ones. The Random-Divide
(RM), and the Node-Degree-Divide (NDDa, and
NDDb) algorithms are almost equal and linear in
computation time. The Random-Subgraph-Divide
(RSD) algorithms looks also linear, which is an in-
dication that the repair operation is less used in this
algorithm than in the Subgraph-Expansion-Divide
(SED) algorithm.

ON MERGING AND . . .

Table 5. Average part of edges preserved after divide-operation in percent

Divide 10:90 20:80 30:70 40:60 50:50

RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.2 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.9 / 0.2 2.3 / 0.2 1.6 / 0.2 1.3 / 0.3 1.1 / 0.3
NDDb 4.0 / 0.7 2.5 / 0.8 1.8 / 0.9 1.4 / 1.0 1.1 / 1.2
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

5.2.2 Edge Preservation

The RSD and the SED preserve all structure in-
formation from the selected subgraph. The NDD al-
gorithms preserve some structure, (2− 4%), while
the Random Divide loses almost all inner structure.
Detailed information is presented in Table 5. The
first part of each column represents the portion of
preserved edges from the first resulting subgraph,
and the second portions represents the ratio of the
other subgraph.

5.2.3 Rank Correlation

Measured rank-correlations of all divides are
shown in Table 6 and Table 7. Recorded values
were averaged over 100 iterations of specified ex-
periments. It can be seen that our baseline algo-
rithm Random-Divide (RD) shows no correlation
between the degree rank order before and after the
divide. So the order of nodes by their node degree
before the divide has no effect on the order of nodes
after the divide. The algorithms Node-Degree-
Divide-A (NDDa) and Subgraph-Expansion-Divide
(SED) scored nearly similar for uneven divides
(see ρ10:90 and τ10:90). However SED seems to
be more resistant to a change of the node-ratio.
The rank-correlation values of SED are slowly de-
clining from ρ10:90 = 0.675 to ρ50:50 = 0.516 (de-
crease of ≈23%). Whereas rank-correlation values
of NDDa were decreasing from ρ10:90 = 0.661 to
ρ50:50 = 0.385 (decrease of ≈42%). Similar obser-
vations can be done comparing values for Kendall’s
τ. Random-Subgraph-Divide (RSD) was evaluated
as second best algorithm. Both correlation coef-
ficients have a high range of values, where dis-
tributing nodes in a ratio of 30:70 resulted in min-
imal values of ρ30:70 = 0.632 and τ30:70 = 0.520.
Higher values were reached for more equal di-
vides with a ratio of 50:50 (ρ50:50 = 0.722 and

τ50:50 = 0.612) or more uneven divides with a ratio
of 10:90 (ρ10:90 = 0.771 and τ10:90 = 0.709). The
Node-Degree-Divide-B (NDDb) algorithm scored
best with nearly constant values of ρ ≈ 0.813 and
τ ≈ 0.692.

Table 6. Measured values for Spearman’s ρ

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50

RD 0.000 0.001 0.001 0.000 0.000
RSD 0.771 0.650 0.632 0.683 0.722
NDDa 0.661 0.541 0.456 0.401 0.385
NDDb 0.813 0.814 0.813 0.814 0.814
SED 0.675 0.568 0.525 0.511 0.516

Table 7. Measured values for Kendall’s τ

Divide τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.000 0.000 -0.001 0.000 0.002
RSD 0.709 0.558 0.520 0.569 0.612
NDDa 0.561 0.456 0.379 0.330 0.314
NDDb 0.692 0.693 0.692 0.693 0.693
SED 0.558 0.449 0.407 0.394 0.402

5.2.4 Node-Degree Distribution

The measured root-mean-squared-error for all
dividing algorithms is presented in Table 8.
The Random-Divide Algorithm (RD) as well as
the Node-Degree-Divide algorithms (NDDa, and
NDDb) generate subgraphs with a lower RMSE
then the initial graph. On the contrary the
Random-Subgraph-Divide (RSD) algorithm and the
Subgraph-Expansion-Divide (SED) method leads
to subgraphs with much higher RMSE. Both algo-
rithms use much of the underlying structure and the
repair method. That is the reason why the joined
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Table 8. RMSE of node-degree distribution before and after divide

RMSE 10:90 20:80 30:70 40:60 50:50

g 16.3 16.4 16.2 16.3 16.5

RD(g1) 3.8 5.7 7.2 8.9 10.2
RD(g2) 15.3 14.1 12.8 11.6 10.1
RSD(g1) 91.8 128.8 190.9 197.0 175.0
RSD(g2) 309.6 310.8 283.2 234.2 170.6
NDDa(g1) 3.9 5.7 8.8 8.8 9.8
NDDa(g2) 15.4 14.1 11.8 11.8 10.1
NDDb(g1) 3.9 5.5 8.7 8.7 10.4
NDDb(g2) 15.3 14.2 11.5 11.5 10.1
SED(g1) 32.0 60.8 93.6 127.9 167.5
SED(g2) 442.6 464.0 444.4 412.4 374.9

node-degree distribution does not fit the theoretical
node-degree distribution provided by the Barabási-
Albert-model.

6 Altering other types of graphs

In this section we focus on graphs generated by
other models. A brief introduction into these mod-
els could be find in Section 2. We performed the
same experiments as for the Barabási-Albert-graphs
by generating similar graphs.

In the following we present the experiments
and the results of Erdős-Rényi, Watts-Strogatz, and
Extended-Barabási-Albert graphs.

6.1 Experiments

In our case similar means, that the graphs have
similar number of nodes and edges. For simplicity
we assume nedges = nnodes ·m for Barabási-Albert-
graphs. This means that we ignore the special ini-
tialization step. As for the Barabási-Albert-graphs,
we run every experiment 100 times.

6.1.1 Erdős-Rényi graphs

Our graph generator for Erdős-Rényi graphs
uses the second variant, where p describes the prob-
ability of connecting two nodes. The number of
edges in an Erdős-Rényi graph is binomial dis-
tributed with

n = npossible_edges =
nnodes · (nnodes −1)

2
.

The expected value is E(edges) = n · p and should
be similar to Barabási-Albert-graphs E(edges) =
nnodes ·m. For a fixed n we can estimate p by

nnodes ·m =
nnodes · (nnodes −1)

2
· p (11)

p =
2m

nnodes −1
. (12)

We used the following test parameters for merg-
ing two Erdős-Rényi-graphs:

The split experiments were done with the fol-
lowing parameters:

graphs with a lower RMSE then the initial graph.
On the contrary the Random-Subgraph-Divide
(RSD) algorithm and the Subgraph-Expansion-
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higher RMSE. Both algorithms use much of the un-
derlying structure and the repair method. That is the
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models. A brief introduction into these models could
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ments as for the Barabási-Albert-graphs by generat-
ing similar graphs.

In the following we present the experiments and
the results of Erdős-Rényi, Watts-Strogatz, and
Extended-Barabási-Albert graphs.

6.1 Experiments

In our case similar means, that the graphs have simi-
lar number of nodes and edges. For simplicity we as-
sume nedges = nnodes ·m for Barabási-Albert-graphs.
This means that we ignore the special initialization
step. As for the Barabási-Albert-graphs, we run ev-
ery experiment 100 times.
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second variant, where p describes the probability of
connecting two nodes. The number of edges in an
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n = npossible_edges =
nnodes · (nnodes −1)

2
.

The expected value is E(edges) = n · p and should
be similar to Barabási-Albert-graphs E(edges) =
nnodes ·m. For a fixed n we can estimate p by
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We used the following test parameters for merging
two Erdős-Rényi-graphs:

name n1 p1 n2 p2

equal 5000 1.2 � 5000 1.2 �
diff_m 5000 1.2 � 5000 3.2 �
diff_size 5000 3.2 � 25000 0.64 �
diff_all 5000 3.2 � 25000 0.24 �

The split experiments were done with the follow-
ing parameters:

name n m noNodes1

10 : 90 10000 1 � 1000
20 : 80 10000 1 � 2000
30 : 70 10000 1 � 3000
40 : 60 10000 1 � 4000
50 : 50 10000 1 � 5000

6.1.2 Watts-Strogatz small-world graphs

In the Watts-Strogatz-graphs each node is connected
to k neighbors. Every edge is connected with two
nodes, so the number of edges in such a graph is
nedges = 0.5 · n · k. So we set k = 2 ·m to get similar
graphs to the Barabási-Albert-graphs. Additionally
there is a parameter β which describes the random-
ness of the graph. To analyze the influence of β we
did each experiment with β ∈ {0.2,0.4,0.6,0.8}.

The merge experiment setup was the following:
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Table 8. RMSE of node-degree distribution before and after divide

RMSE 10:90 20:80 30:70 40:60 50:50

g 16.3 16.4 16.2 16.3 16.5

RD(g1) 3.8 5.7 7.2 8.9 10.2
RD(g2) 15.3 14.1 12.8 11.6 10.1
RSD(g1) 91.8 128.8 190.9 197.0 175.0
RSD(g2) 309.6 310.8 283.2 234.2 170.6
NDDa(g1) 3.9 5.7 8.8 8.8 9.8
NDDa(g2) 15.4 14.1 11.8 11.8 10.1
NDDb(g1) 3.9 5.5 8.7 8.7 10.4
NDDb(g2) 15.3 14.2 11.5 11.5 10.1
SED(g1) 32.0 60.8 93.6 127.9 167.5
SED(g2) 442.6 464.0 444.4 412.4 374.9

node-degree distribution does not fit the theoretical
node-degree distribution provided by the Barabási-
Albert-model.

6 Altering other types of graphs

In this section we focus on graphs generated by
other models. A brief introduction into these mod-
els could be find in Section 2. We performed the
same experiments as for the Barabási-Albert-graphs
by generating similar graphs.

In the following we present the experiments
and the results of Erdős-Rényi, Watts-Strogatz, and
Extended-Barabási-Albert graphs.

6.1 Experiments

In our case similar means, that the graphs have
similar number of nodes and edges. For simplicity
we assume nedges = nnodes ·m for Barabási-Albert-
graphs. This means that we ignore the special ini-
tialization step. As for the Barabási-Albert-graphs,
we run every experiment 100 times.

6.1.1 Erdős-Rényi graphs

Our graph generator for Erdős-Rényi graphs
uses the second variant, where p describes the prob-
ability of connecting two nodes. The number of
edges in an Erdős-Rényi graph is binomial dis-
tributed with

n = npossible_edges =
nnodes · (nnodes −1)

2
.

The expected value is E(edges) = n · p and should
be similar to Barabási-Albert-graphs E(edges) =
nnodes ·m. For a fixed n we can estimate p by

nnodes ·m =
nnodes · (nnodes −1)

2
· p (11)

p =
2m

nnodes −1
. (12)

We used the following test parameters for merg-
ing two Erdős-Rényi-graphs:

The split experiments were done with the fol-
lowing parameters:
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6.1.2 Watts-Strogatz small-world graphs

In the Watts-Strogatz-graphs each node is con-
nected to k neighbors. Every edge is connected with
two nodes, so the number of edges in such a graph
is nedges = 0.5 ·n ·k. So we set k = 2 ·m to get similar
graphs to the Barabási-Albert-graphs. Additionally
there is a parameter β which describes the random-
ness of the graph. To analyze the influence of β we
did each experiment with β ∈ {0.2,0.4,0.6,0.8}.

The merge experiment setup was the following:

name n1 k1 n2 k2

equal 5000 6 5000 6
diff_m 5000 6 5000 16
diff_size 5000 16 25000 16
diff_all 5000 16 25000 6

Additionally we used the following parameters
for splitting:

name n m noNodes1

10 : 90 10000 10 1000
20 : 80 10000 10 2000
30 : 70 10000 10 3000
40 : 60 10000 10 4000
50 : 50 10000 10 5000

6.1.3 Extended-Barabási-Albert

The Extended-Barabási-Albert-graphs are an
extension of Barabási-Albert-graphs with an addi-
tional parameter p. This parameter specifies a prob-
ability of creating a triangle with neighbor nodes
instead of preferential attachment. We uses ex-
act the same settings as for the Barabási-Albert-
graph experiments. Additionally we vary p ∈
{0.2,0.4,0.6,0.8,1.0}.

6.2 Results

All model produce similar test results, so we
summarize them and point out special effects.

6.2.1 Edge Preservation

The edge preservation behavior of the presented
algorithms, see Table 10, 11 and 12 for merge and

Table 13, 14 and 15 for split, is similar to Barabási-
Albert-graphs. The NDM, NDDa, and NDDb algo-
rithm generate lower preservations for Erdős-Rényi,
and Watts-Strogatz- graphs.

6.2.2 Rank Correlation

Also the rank correlation is comparable to
Barabási-Albert-graphs. We figure out that the
merging algorithm PNM produces high negative
correlations for the diff_m setting for all alterna-
tive models, see Table 16, 17 and 18. All divide
algorithms, beside RD generate lower correlations
for Watts-Strogatz-graphs, especially for low β, Ta-
ble 20. Higher β and Erdős-Rényi-graphs, Table
19, behave like Barabási-Albert-graphs. SED out-
performs Extended-Barabási-Albert-graphs w.r.t.
Barabási-Albert-graphs for 10:90, and 20:80, Table
21.

6.2.3 Node-Degree Distribution

The merging algorithms RM and NDM create
new strict Barabási-Albert-graphs. So the RMSE
describing the fitting to an optimal scale-free graph
decreases dramatical for Erdős-Rényi-graphs, Ta-
ble 22, and Watts-Strogatz-graphs, Table 23. The
Extended-Barabási-Albert-graph is very similar to
Barabási-Albert-graphs, so this effect is very low.
But we can observe that MM produces better results
then pure Barabási-Albert-graphs, see Table 24, and
25.

The splitting algorithms have a similar behav-
ior.
RD, NDDa, and NDDb create new Barabási-Albert-
graphs so the RMSE of the resulting graphs is
very low, see Table 26, and 27. We can point
out that Extended-Barabási-Albert-graphs have an
higher RMSE as input graphs then Barabási-Albert-
graphs, but the resulting graphs have a lower
RMSE, Table 28, and 28 for RSD and SED..

7 Conclusion

Multiple use cases were present, where it could
be necessary to merge and divide social graphs.
Each theoretical use case had special properties,
e.g. preserving node degrees, which we tried to
model in proposed algorithms. It is not possible to
determine one best algorithm for either merging or
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dividing Barabási-Albert-Graphs. Every algorithm
has its potential use cases and specific benefits in
a subset of our evaluation measures. It is up to
the user to decide, which algorithm fits best. A
summary of our experimental evaluation results is
shown in Table 9 and can be used as a guideline.

If the input algorithm fulfills the scale-free
property also the resulting graphs will hold this
property. So the algorithms could be used also for
graph which are not created by a Barabási-Albert-
model, but are scale-free. Due to the fact, that the
resulting graphs have similar node-edge relations
the sparsity could be assured.

The investigated other graph models gener-
ate similar results then the Barabási-Albert-graphs.
The RM, and NDM merge as well as the RD,
NDDa, and NDDb split transform the graphs into
strict Barabási-Albert-graphs. This yields into loss
of the input structure. The other algorithms could
handle the alternative models in way the input struc-
ture would be kept. Naturally, the resulting graphs
do not fulfill the properties of the alternative mod-
els.

Results will be included in our tool for event
generation of dynamic social network simula-
tions [15] in the next step of development. Further-
more the algorithms could be used to improve com-
putational intelligence methods, for instance hierar-
chical clustering on Barabási-Albert-graphs. Also,
our work on dynamic clusters [16][17] in social net-
works will benefit from these results.

Further research should be done towards the re-
pairing function. With same more advanced repair-
ing steps it would be possible to generate graphs
that to fit more the theoretical node-degree distribu-
tion.

We provide a Python implementation of the pre-
sented algorithms at http://bitbucket.org/paheld/ dy-
namix.
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SED - + ◦ -
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A Appendix - Detailed Results
In this appendix we present detailed results from ex-

periments with other models then the Barabási-Albert
graphs.

Table 10. Average part of edges preserved after
merge-operation in percent for Erdős-Rényi-graphs

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 11. Average part of edges preserved after
merge-operation in percent for Watts-Strogatz

graphs. The results are independent of β

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 12. Average part of edges preserved after
merge-operation in percent for

Extended-Barabási-Albert graphs The results of
RM, RNM and MM are independent of p.

Merge equal diff_m diff_size diff_all

p = 0.2
RM 0.0 / 0.0 0.1 / 0.1 0.0 / 0.0 0.0 / 0.0
NDM 0.3 / 0.3 0.3 / 1.1 0.2 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1

p = 0.6
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.2

p = 0.8
NDM 0.3 / 0.3 0.3 / 1.0 0.3 / 0.3 0.5 / 0.2

p = 1.0
NDM 0.3 / 0.3 0.4 / 1.0 0.3 / 0.3 0.4 / 0.2
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A Appendix - Detailed Results
In this appendix we present detailed results from ex-

periments with other models then the Barabási-Albert
graphs.

Table 10. Average part of edges preserved after
merge-operation in percent for Erdős-Rényi-graphs

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 11. Average part of edges preserved after
merge-operation in percent for Watts-Strogatz

graphs. The results are independent of β

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 12. Average part of edges preserved after
merge-operation in percent for

Extended-Barabási-Albert graphs The results of
RM, RNM and MM are independent of p.

Merge equal diff_m diff_size diff_all

p = 0.2
RM 0.0 / 0.0 0.1 / 0.1 0.0 / 0.0 0.0 / 0.0
NDM 0.3 / 0.3 0.3 / 1.1 0.2 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1

p = 0.6
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.2

p = 0.8
NDM 0.3 / 0.3 0.3 / 1.0 0.3 / 0.3 0.5 / 0.2

p = 1.0
NDM 0.3 / 0.3 0.4 / 1.0 0.3 / 0.3 0.4 / 0.2

ON MERGING AND . . .

Table 13. Average part of edges preserved after divide-operation in percent of Erdős-Rényi graphs

Divide 10:90 20:80 30:70 40:60 50:50

RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.2 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.0 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.2
NDDb 1.4 / 0.2 0.7 / 0.2 0.5 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 14. Average part of edges preserved after divide-operation in percent of Watts-Strogatz graphs

Divide 10:90 20:80 30:70 40:60 50:50

β = 0.2
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.0 / 0.1 0.5 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.2 / 0.1 0.6 / 0.1 0.4 / 0.2 0.3 / 0.2 0.2 / 0.2
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.4
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.1 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.3 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.6
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.1 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.4 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.8
RD 1.1 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.2 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.3 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
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Table 22. RMSE of node-degree distribution
before and after merge of Erdős-Rényi graphs

RMSE equal diff_m diff_size diff_all

g1 1025 1025 492 492
g2 1025 485 2645 4905

RM 42 12 14 55
NDM 42 11 14 54
PNM 1709 1711 935 899
MM 1923 1394 3078 4229

Table 23. RMSE of node-degree distribution
before and after merge of Watts-Strogatz graphs

RMSE equal diff_m diff_size diff_all

β = 0.2
g1 1114 1114 540 540
g2 1116 543 2687 5343

RM 39 12 14 54
NDM 38 12 14 54
PNM 465 469 104 105
MM 2180 1116 3215 3555

β = 0.4
g1 894 894 459 459
g2 895 458 2272 4262

RM 38 12 14 54
NDM 39 12 14 54
PNM 414 413 96 96
MM 1749 1028 2724 3082

β = 0.6
g1 792 792 424 424
g2 791 427 2119 3753

RM 39 12 14 53
NDM 38 12 14 55
PNM 381 384 92 92
MM 1553 972 2542 2843

β = 0.8
g1 734 734 411 411
g2 736 408 2004 3503

RM 38 12 14 54
NDM 39 12 14 54
PNM 365 362 89 88
MM 1435 947 2395 2706

Table 24. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs

RMSE equal diff_m diff_size diff_all

p = 0.2
g1 60 60 53 53
g2 59 53 174 276

RM 67 12 19 55
NDM 68 12 19 54
PNM 119 119 10 11
MM 166 188 219 384

p = 0.4
g1 96 96 53 53
g2 97 54 167 291

RM 67 12 19 54
NDM 67 12 19 54
PNM 108 108 10 10
MM 269 193 201 394

p = 0.6
g1 83 83 53 53
g2 72 53 159 227

RM 66 12 19 54
NDM 66 12 19 54
PNM 105 105 10 10
MM 212 182 195 327

Table 25. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs (continued)

RMSE equal diff_m diff_size diff_all

p = 0.8
g1 57 57 47 47
g2 53 48 144 207

RM 66 12 19 55
NDM 65 12 19 54
PNM 95 95 18 15
MM 153 167 181 283

p = 1.0
g1 17 17 37 37
g2 18 30 43 49

RM 67 12 19 54
NDM 67 12 18 54
PNM 95 95 25 29
MM 37 149 142 155

ON MERGING AND . . .

Table 15. Average part of edges preserved after divide-operation in percent of Extended-Barabási-Albert
graphs

Divide 10:90 20:80 30:70 40:60 50:50

p = 0.2
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 2.9 / 0.2 1.8 / 0.2 1.3 / 0.2 1.0 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
RD 0.7 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.2 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.3
NDDb 3.5 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.6
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.8
RD 0.9 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.3 / 0.6 2.0 / 0.7 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 1.0
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.2 / 0.6 1.9 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 16. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

RM -0.001 -0.002 0.000 0.000 -0.001 -0.001 0.000 0.000
NDM 0.728 0.844 0.875 0.785 0.612 0.703 0.743 0.655
PNM 0.405 -0.435 0.577 0.872 0.337 -0.222 0.459 0.749
MM 0.977 0.984 0.980 0.991 0.952 0.929 0.958 0.968
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β = 0.4
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MM 1749 1028 2724 3082
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RM 39 12 14 53
NDM 38 12 14 55
PNM 381 384 92 92
MM 1553 972 2542 2843

β = 0.8
g1 734 734 411 411
g2 736 408 2004 3503

RM 38 12 14 54
NDM 39 12 14 54
PNM 365 362 89 88
MM 1435 947 2395 2706

Table 24. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs

RMSE equal diff_m diff_size diff_all

p = 0.2
g1 60 60 53 53
g2 59 53 174 276

RM 67 12 19 55
NDM 68 12 19 54
PNM 119 119 10 11
MM 166 188 219 384

p = 0.4
g1 96 96 53 53
g2 97 54 167 291

RM 67 12 19 54
NDM 67 12 19 54
PNM 108 108 10 10
MM 269 193 201 394

p = 0.6
g1 83 83 53 53
g2 72 53 159 227

RM 66 12 19 54
NDM 66 12 19 54
PNM 105 105 10 10
MM 212 182 195 327

Table 25. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs (continued)

RMSE equal diff_m diff_size diff_all

p = 0.8
g1 57 57 47 47
g2 53 48 144 207

RM 66 12 19 55
NDM 65 12 19 54
PNM 95 95 18 15
MM 153 167 181 283

p = 1.0
g1 17 17 37 37
g2 18 30 43 49

RM 67 12 19 54
NDM 67 12 18 54
PNM 95 95 25 29
MM 37 149 142 155

ON MERGING AND . . .

Table 15. Average part of edges preserved after divide-operation in percent of Extended-Barabási-Albert
graphs

Divide 10:90 20:80 30:70 40:60 50:50

p = 0.2
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 2.9 / 0.2 1.8 / 0.2 1.3 / 0.2 1.0 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
RD 0.7 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.2 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.3
NDDb 3.5 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.6
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.8
RD 0.9 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.3 / 0.6 2.0 / 0.7 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 1.0
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.2 / 0.6 1.9 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 16. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

RM -0.001 -0.002 0.000 0.000 -0.001 -0.001 0.000 0.000
NDM 0.728 0.844 0.875 0.785 0.612 0.703 0.743 0.655
PNM 0.405 -0.435 0.577 0.872 0.337 -0.222 0.459 0.749
MM 0.977 0.984 0.980 0.991 0.952 0.929 0.958 0.968

ON MERGING AND . . .

Table 15. Average part of edges preserved after divide-operation in percent of Extended-Barabási-Albert
graphs

Divide 10:90 20:80 30:70 40:60 50:50

p = 0.2
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 2.9 / 0.2 1.8 / 0.2 1.3 / 0.2 1.0 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
RD 0.7 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.2 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.3
NDDb 3.5 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.6
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.8
RD 0.9 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.3 / 0.6 2.0 / 0.7 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 1.0
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.2 / 0.6 1.9 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 16. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

RM -0.001 -0.002 0.000 0.000 -0.001 -0.001 0.000 0.000
NDM 0.728 0.844 0.875 0.785 0.612 0.703 0.743 0.655
PNM 0.405 -0.435 0.577 0.872 0.337 -0.222 0.459 0.749
MM 0.977 0.984 0.980 0.991 0.952 0.929 0.958 0.968
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Table 17. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

β = 0.2
RM 0.001 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
NDM 0.708 0.840 0.864 0.771 0.622 0.713 0.751 0.665
PNM 0.266 -0.620 0.562 0.865 0.218 -0.379 0.464 0.760
MM 1.000 0.953 1.000 0.956 1.000 0.874 1.000 0.924

β = 0.4
RM 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000
NDM 0.724 0.842 0.870 0.779 0.627 0.710 0.750 0.664
PNM 0.311 -0.580 0.570 0.876 0.253 -0.333 0.465 0.765
MM 1.000 0.969 1.000 0.974 1.000 0.900 1.000 0.944

β = 0.6
RM -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.000
NDM 0.728 0.843 0.872 0.781 0.626 0.708 0.749 0.662
PNM 0.334 -0.556 0.573 0.878 0.271 -0.310 0.465 0.765
MM 1.000 0.975 1.000 0.980 1.000 0.910 1.000 0.951

β = 0.8
RM -0.002 -0.001 0.000 -0.001 -0.001 -0.001 0.000 0.000
NDM 0.73 0.843 0.873 0.782 0.625 0.707 0.748 0.661
PNM 0.345 -0.543 0.575 0.879 0.280 -0.298 0.465 0.765
MM 1.000 0.977 1.000 0.982 1.000 0.914 1.000 0.955
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Table 17. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

β = 0.2
RM 0.001 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
NDM 0.708 0.840 0.864 0.771 0.622 0.713 0.751 0.665
PNM 0.266 -0.620 0.562 0.865 0.218 -0.379 0.464 0.760
MM 1.000 0.953 1.000 0.956 1.000 0.874 1.000 0.924

β = 0.4
RM 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000
NDM 0.724 0.842 0.870 0.779 0.627 0.710 0.750 0.664
PNM 0.311 -0.580 0.570 0.876 0.253 -0.333 0.465 0.765
MM 1.000 0.969 1.000 0.974 1.000 0.900 1.000 0.944

β = 0.6
RM -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.000
NDM 0.728 0.843 0.872 0.781 0.626 0.708 0.749 0.662
PNM 0.334 -0.556 0.573 0.878 0.271 -0.310 0.465 0.765
MM 1.000 0.975 1.000 0.980 1.000 0.910 1.000 0.951

β = 0.8
RM -0.002 -0.001 0.000 -0.001 -0.001 -0.001 0.000 0.000
NDM 0.73 0.843 0.873 0.782 0.625 0.707 0.748 0.661
PNM 0.345 -0.543 0.575 0.879 0.280 -0.298 0.465 0.765
MM 1.000 0.977 1.000 0.982 1.000 0.914 1.000 0.955

ON MERGING AND . . .

Table 18. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

p = 0.2
RM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDM 0.656 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.319 -0.389 0.576 0.831 0.281 -0.225 0.458 0.699
MM 1.000 0.978 1.000 0.984 1.000 0.925 1.000 0.964

p = 0.4
RM -0.003 -0.001 0.000 0.000 -0.003 0.000 0.000 0.000
NDM 0.655 0.841 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.317 -0.391 0.576 0.830 0.280 -0.228 0.458 0.699
MM 1.000 0.977 1.000 0.984 1.000 0.924 1.000 0.963

p = 0.6
RM -0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
NDM 0.655 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.315 -0.396 0.576 0.831 0.279 -0.231 0.458 0.700
MM 1.000 0.977 1.000 0.983 1.000 0.925 1.000 0.963

p = 0.8
RM -0.001 0.000 0.001 -0.001 -0.001 0.000 0.000 -0.001
NDM 0.655 0.842 0.859 0.778 0.567 0.710 0.729 0.661
PNM 0.316 -0.403 0.576 0.833 0.279 -0.234 0.457 0.703
MM 1.000 0.978 1.000 0.984 1.000 0.926 1.000 0.963

p = 1.0
RM 0.000 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
NDM 0.655 0.842 0.859 0.778 0.566 0.709 0.728 0.661
PNM 0.316 -0.406 0.577 0.833 0.279 -0.236 0.457 0.704
MM 1.000 0.979 1.000 0.984 1.000 0.927 1.000 0.964

Table 19. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.001 -0.0 -0.001 0.001 -0.002 0.0 -0.0 -0.001 0.001 -0.002
RSD 0.768 0.601 0.563 0.634 0.688 0.694 0.508 0.446 0.5 0.551
NDDa 0.659 0.543 0.46 0.416 0.407 0.55 0.45 0.379 0.341 0.332
NDDb 0.804 0.803 0.803 0.804 0.803 0.675 0.674 0.674 0.675 0.674
SED 0.819 0.645 0.557 0.48 0.452 0.718 0.52 0.432 0.362 0.337
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Table 20. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

β = 0.2
RD -0.001 0.0 -0.002 0.001 -0.0 -0.0 0.0 -0.001 0.001 -0.0
RSD 0.623 0.409 0.31 0.332 0.37 0.541 0.336 0.247 0.264 0.297
NDDa 0.645 0.559 0.44 0.432 0.454 0.55 0.466 0.361 0.349 0.367
NDDb 0.8 0.8 0.801 0.8 0.8 0.695 0.695 0.696 0.696 0.695
SED 0.642 0.456 0.353 0.299 0.276 0.554 0.37 0.279 0.233 0.215

β = 0.4
RD -0.0 -0.001 0.002 0.0 0.001 -0.0 -0.001 0.001 0.0 0.001
RSD 0.689 0.481 0.391 0.424 0.471 0.603 0.396 0.308 0.332 0.374
NDDa 0.663 0.537 0.48 0.415 0.429 0.561 0.448 0.394 0.337 0.348
NDDb 0.811 0.811 0.811 0.81 0.809 0.696 0.696 0.696 0.696 0.695
SED 0.698 0.519 0.409 0.343 0.31 0.592 0.415 0.317 0.262 0.235

β = 0.6
RD 0.0 -0.001 -0.001 -0.0 0.0 0.0 -0.001 -0.001 -0.0 0.0
RSD 0.713 0.513 0.429 0.471 0.522 0.629 0.424 0.338 0.369 0.414
NDDa 0.663 0.547 0.482 0.413 0.423 0.561 0.457 0.396 0.337 0.343
NDDb 0.813 0.813 0.813 0.813 0.813 0.695 0.695 0.695 0.694 0.695
SED 0.726 0.55 0.431 0.354 0.318 0.615 0.438 0.331 0.268 0.238

β = 0.8
RD 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0 0.0
RSD 0.723 0.527 0.449 0.497 0.548 0.64 0.437 0.354 0.389 0.434
NDDa 0.666 0.553 0.482 0.414 0.42 0.563 0.462 0.396 0.339 0.342
NDDb 0.814 0.814 0.814 0.814 0.814 0.694 0.694 0.694 0.694 0.694
SED 0.74 0.565 0.441 0.357 0.322 0.627 0.449 0.338 0.269 0.24
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Table 17. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

β = 0.2
RM 0.001 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
NDM 0.708 0.840 0.864 0.771 0.622 0.713 0.751 0.665
PNM 0.266 -0.620 0.562 0.865 0.218 -0.379 0.464 0.760
MM 1.000 0.953 1.000 0.956 1.000 0.874 1.000 0.924

β = 0.4
RM 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000
NDM 0.724 0.842 0.870 0.779 0.627 0.710 0.750 0.664
PNM 0.311 -0.580 0.570 0.876 0.253 -0.333 0.465 0.765
MM 1.000 0.969 1.000 0.974 1.000 0.900 1.000 0.944

β = 0.6
RM -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.000
NDM 0.728 0.843 0.872 0.781 0.626 0.708 0.749 0.662
PNM 0.334 -0.556 0.573 0.878 0.271 -0.310 0.465 0.765
MM 1.000 0.975 1.000 0.980 1.000 0.910 1.000 0.951

β = 0.8
RM -0.002 -0.001 0.000 -0.001 -0.001 -0.001 0.000 0.000
NDM 0.73 0.843 0.873 0.782 0.625 0.707 0.748 0.661
PNM 0.345 -0.543 0.575 0.879 0.280 -0.298 0.465 0.765
MM 1.000 0.977 1.000 0.982 1.000 0.914 1.000 0.955

ON MERGING AND . . .

Table 18. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

p = 0.2
RM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDM 0.656 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.319 -0.389 0.576 0.831 0.281 -0.225 0.458 0.699
MM 1.000 0.978 1.000 0.984 1.000 0.925 1.000 0.964

p = 0.4
RM -0.003 -0.001 0.000 0.000 -0.003 0.000 0.000 0.000
NDM 0.655 0.841 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.317 -0.391 0.576 0.830 0.280 -0.228 0.458 0.699
MM 1.000 0.977 1.000 0.984 1.000 0.924 1.000 0.963

p = 0.6
RM -0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
NDM 0.655 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.315 -0.396 0.576 0.831 0.279 -0.231 0.458 0.700
MM 1.000 0.977 1.000 0.983 1.000 0.925 1.000 0.963

p = 0.8
RM -0.001 0.000 0.001 -0.001 -0.001 0.000 0.000 -0.001
NDM 0.655 0.842 0.859 0.778 0.567 0.710 0.729 0.661
PNM 0.316 -0.403 0.576 0.833 0.279 -0.234 0.457 0.703
MM 1.000 0.978 1.000 0.984 1.000 0.926 1.000 0.963

p = 1.0
RM 0.000 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
NDM 0.655 0.842 0.859 0.778 0.566 0.709 0.728 0.661
PNM 0.316 -0.406 0.577 0.833 0.279 -0.236 0.457 0.704
MM 1.000 0.979 1.000 0.984 1.000 0.927 1.000 0.964

Table 19. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.001 -0.0 -0.001 0.001 -0.002 0.0 -0.0 -0.001 0.001 -0.002
RSD 0.768 0.601 0.563 0.634 0.688 0.694 0.508 0.446 0.5 0.551
NDDa 0.659 0.543 0.46 0.416 0.407 0.55 0.45 0.379 0.341 0.332
NDDb 0.804 0.803 0.803 0.804 0.803 0.675 0.674 0.674 0.675 0.674
SED 0.819 0.645 0.557 0.48 0.452 0.718 0.52 0.432 0.362 0.337

ON MERGING AND . . .

Table 18. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

p = 0.2
RM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDM 0.656 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.319 -0.389 0.576 0.831 0.281 -0.225 0.458 0.699
MM 1.000 0.978 1.000 0.984 1.000 0.925 1.000 0.964

p = 0.4
RM -0.003 -0.001 0.000 0.000 -0.003 0.000 0.000 0.000
NDM 0.655 0.841 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.317 -0.391 0.576 0.830 0.280 -0.228 0.458 0.699
MM 1.000 0.977 1.000 0.984 1.000 0.924 1.000 0.963

p = 0.6
RM -0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
NDM 0.655 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.315 -0.396 0.576 0.831 0.279 -0.231 0.458 0.700
MM 1.000 0.977 1.000 0.983 1.000 0.925 1.000 0.963

p = 0.8
RM -0.001 0.000 0.001 -0.001 -0.001 0.000 0.000 -0.001
NDM 0.655 0.842 0.859 0.778 0.567 0.710 0.729 0.661
PNM 0.316 -0.403 0.576 0.833 0.279 -0.234 0.457 0.703
MM 1.000 0.978 1.000 0.984 1.000 0.926 1.000 0.963

p = 1.0
RM 0.000 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
NDM 0.655 0.842 0.859 0.778 0.566 0.709 0.728 0.661
PNM 0.316 -0.406 0.577 0.833 0.279 -0.236 0.457 0.704
MM 1.000 0.979 1.000 0.984 1.000 0.927 1.000 0.964

Table 19. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.001 -0.0 -0.001 0.001 -0.002 0.0 -0.0 -0.001 0.001 -0.002
RSD 0.768 0.601 0.563 0.634 0.688 0.694 0.508 0.446 0.5 0.551
NDDa 0.659 0.543 0.46 0.416 0.407 0.55 0.45 0.379 0.341 0.332
NDDb 0.804 0.803 0.803 0.804 0.803 0.675 0.674 0.674 0.675 0.674
SED 0.819 0.645 0.557 0.48 0.452 0.718 0.52 0.432 0.362 0.337
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Table 20. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

β = 0.2
RD -0.001 0.0 -0.002 0.001 -0.0 -0.0 0.0 -0.001 0.001 -0.0
RSD 0.623 0.409 0.31 0.332 0.37 0.541 0.336 0.247 0.264 0.297
NDDa 0.645 0.559 0.44 0.432 0.454 0.55 0.466 0.361 0.349 0.367
NDDb 0.8 0.8 0.801 0.8 0.8 0.695 0.695 0.696 0.696 0.695
SED 0.642 0.456 0.353 0.299 0.276 0.554 0.37 0.279 0.233 0.215

β = 0.4
RD -0.0 -0.001 0.002 0.0 0.001 -0.0 -0.001 0.001 0.0 0.001
RSD 0.689 0.481 0.391 0.424 0.471 0.603 0.396 0.308 0.332 0.374
NDDa 0.663 0.537 0.48 0.415 0.429 0.561 0.448 0.394 0.337 0.348
NDDb 0.811 0.811 0.811 0.81 0.809 0.696 0.696 0.696 0.696 0.695
SED 0.698 0.519 0.409 0.343 0.31 0.592 0.415 0.317 0.262 0.235

β = 0.6
RD 0.0 -0.001 -0.001 -0.0 0.0 0.0 -0.001 -0.001 -0.0 0.0
RSD 0.713 0.513 0.429 0.471 0.522 0.629 0.424 0.338 0.369 0.414
NDDa 0.663 0.547 0.482 0.413 0.423 0.561 0.457 0.396 0.337 0.343
NDDb 0.813 0.813 0.813 0.813 0.813 0.695 0.695 0.695 0.694 0.695
SED 0.726 0.55 0.431 0.354 0.318 0.615 0.438 0.331 0.268 0.238

β = 0.8
RD 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0 0.0
RSD 0.723 0.527 0.449 0.497 0.548 0.64 0.437 0.354 0.389 0.434
NDDa 0.666 0.553 0.482 0.414 0.42 0.563 0.462 0.396 0.339 0.342
NDDb 0.814 0.814 0.814 0.814 0.814 0.694 0.694 0.694 0.694 0.694
SED 0.74 0.565 0.441 0.357 0.322 0.627 0.449 0.338 0.269 0.24
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Table 20. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

β = 0.2
RD -0.001 0.0 -0.002 0.001 -0.0 -0.0 0.0 -0.001 0.001 -0.0
RSD 0.623 0.409 0.31 0.332 0.37 0.541 0.336 0.247 0.264 0.297
NDDa 0.645 0.559 0.44 0.432 0.454 0.55 0.466 0.361 0.349 0.367
NDDb 0.8 0.8 0.801 0.8 0.8 0.695 0.695 0.696 0.696 0.695
SED 0.642 0.456 0.353 0.299 0.276 0.554 0.37 0.279 0.233 0.215

β = 0.4
RD -0.0 -0.001 0.002 0.0 0.001 -0.0 -0.001 0.001 0.0 0.001
RSD 0.689 0.481 0.391 0.424 0.471 0.603 0.396 0.308 0.332 0.374
NDDa 0.663 0.537 0.48 0.415 0.429 0.561 0.448 0.394 0.337 0.348
NDDb 0.811 0.811 0.811 0.81 0.809 0.696 0.696 0.696 0.696 0.695
SED 0.698 0.519 0.409 0.343 0.31 0.592 0.415 0.317 0.262 0.235

β = 0.6
RD 0.0 -0.001 -0.001 -0.0 0.0 0.0 -0.001 -0.001 -0.0 0.0
RSD 0.713 0.513 0.429 0.471 0.522 0.629 0.424 0.338 0.369 0.414
NDDa 0.663 0.547 0.482 0.413 0.423 0.561 0.457 0.396 0.337 0.343
NDDb 0.813 0.813 0.813 0.813 0.813 0.695 0.695 0.695 0.694 0.695
SED 0.726 0.55 0.431 0.354 0.318 0.615 0.438 0.331 0.268 0.238

β = 0.8
RD 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0 0.0
RSD 0.723 0.527 0.449 0.497 0.548 0.64 0.437 0.354 0.389 0.434
NDDa 0.666 0.553 0.482 0.414 0.42 0.563 0.462 0.396 0.339 0.342
NDDb 0.814 0.814 0.814 0.814 0.814 0.694 0.694 0.694 0.694 0.694
SED 0.74 0.565 0.441 0.357 0.322 0.627 0.449 0.338 0.269 0.24

ON MERGING AND . . .

Table 21. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

p = 0.2
RD -0.0 -0.0 -0.0 0.002 0.0 -0.0 -0.0 -0.0 0.001 0.0
RSD 0.77 0.646 0.637 0.693 0.728 0.709 0.557 0.525 0.579 0.619
NDDa 0.635 0.52 0.437 0.382 0.366 0.537 0.437 0.364 0.314 0.299
NDDb 0.781 0.781 0.782 0.782 0.781 0.663 0.663 0.664 0.663 0.663
SED 0.801 0.632 0.529 0.513 0.502 0.704 0.518 0.419 0.407 0.403

p = 0.4
RD -0.001 -0.002 0.001 0.0 0.002 -0.001 -0.001 0.001 0.0 0.001
RSD 0.77 0.642 0.632 0.687 0.723 0.708 0.554 0.522 0.574 0.615
NDDa 0.634 0.519 0.436 0.378 0.362 0.537 0.436 0.363 0.312 0.296
NDDb 0.78 0.782 0.782 0.78 0.782 0.663 0.664 0.664 0.663 0.664
SED 0.805 0.646 0.549 0.528 0.521 0.709 0.532 0.438 0.421 0.42

p = 0.6
RD 0.001 0.001 -0.001 0.002 0.0 0.001 0.001 -0.001 0.001 0.0
RSD 0.771 0.644 0.632 0.687 0.723 0.709 0.555 0.522 0.574 0.615
NDDa 0.635 0.519 0.436 0.379 0.364 0.537 0.436 0.363 0.312 0.297
NDDb 0.781 0.781 0.781 0.781 0.781 0.664 0.664 0.664 0.663 0.664
SED 0.816 0.677 0.585 0.549 0.552 0.722 0.561 0.47 0.439 0.446

p = 0.8
RD 0.0 0.002 -0.001 0.001 0.0 0.0 0.002 -0.001 0.001 0.0
RSD 0.772 0.646 0.634 0.692 0.726 0.71 0.557 0.523 0.578 0.616
NDDa 0.635 0.52 0.439 0.383 0.37 0.537 0.437 0.365 0.316 0.302
NDDb 0.781 0.782 0.781 0.782 0.781 0.663 0.663 0.663 0.664 0.663
SED 0.822 0.714 0.656 0.605 0.603 0.73 0.598 0.535 0.488 0.49

p = 1.0
RD -0.001 -0.001 -0.001 0.001 -0.0 -0.001 -0.001 -0.001 0.001 -0.0
RSD 0.775 0.651 0.643 0.695 0.732 0.712 0.561 0.53 0.579 0.621
NDDa 0.636 0.521 0.44 0.387 0.372 0.538 0.437 0.365 0.318 0.304
NDDb 0.782 0.781 0.781 0.781 0.782 0.663 0.662 0.662 0.662 0.664
SED 0.823 0.783 0.742 0.73 0.729 0.733 0.675 0.625 0.613 0.615

Table 26. RMSE of node-degree distribution before and after divide or Erdős-Rényi graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

g 1768 1768 1768 1768 1768

RD 4 / 18 7 / 17 9 / 16 10 / 13 12 / 12
RSD 171 / 889 405 / 835 661 / 790 665 / 781 720 / 718
NDDa 5 / 18 6 / 17 9 / 15 10 / 14 12 / 12
NDDb 4 / 18 6 / 17 8 / 15 10 / 14 12 / 12
SED 62 / 746 117 / 582 178 / 520 225 / 435 286 / 368
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Table 20. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

β = 0.2
RD -0.001 0.0 -0.002 0.001 -0.0 -0.0 0.0 -0.001 0.001 -0.0
RSD 0.623 0.409 0.31 0.332 0.37 0.541 0.336 0.247 0.264 0.297
NDDa 0.645 0.559 0.44 0.432 0.454 0.55 0.466 0.361 0.349 0.367
NDDb 0.8 0.8 0.801 0.8 0.8 0.695 0.695 0.696 0.696 0.695
SED 0.642 0.456 0.353 0.299 0.276 0.554 0.37 0.279 0.233 0.215

β = 0.4
RD -0.0 -0.001 0.002 0.0 0.001 -0.0 -0.001 0.001 0.0 0.001
RSD 0.689 0.481 0.391 0.424 0.471 0.603 0.396 0.308 0.332 0.374
NDDa 0.663 0.537 0.48 0.415 0.429 0.561 0.448 0.394 0.337 0.348
NDDb 0.811 0.811 0.811 0.81 0.809 0.696 0.696 0.696 0.696 0.695
SED 0.698 0.519 0.409 0.343 0.31 0.592 0.415 0.317 0.262 0.235

β = 0.6
RD 0.0 -0.001 -0.001 -0.0 0.0 0.0 -0.001 -0.001 -0.0 0.0
RSD 0.713 0.513 0.429 0.471 0.522 0.629 0.424 0.338 0.369 0.414
NDDa 0.663 0.547 0.482 0.413 0.423 0.561 0.457 0.396 0.337 0.343
NDDb 0.813 0.813 0.813 0.813 0.813 0.695 0.695 0.695 0.694 0.695
SED 0.726 0.55 0.431 0.354 0.318 0.615 0.438 0.331 0.268 0.238

β = 0.8
RD 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0 0.0
RSD 0.723 0.527 0.449 0.497 0.548 0.64 0.437 0.354 0.389 0.434
NDDa 0.666 0.553 0.482 0.414 0.42 0.563 0.462 0.396 0.339 0.342
NDDb 0.814 0.814 0.814 0.814 0.814 0.694 0.694 0.694 0.694 0.694
SED 0.74 0.565 0.441 0.357 0.322 0.627 0.449 0.338 0.269 0.24

ON MERGING AND . . .

Table 21. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

p = 0.2
RD -0.0 -0.0 -0.0 0.002 0.0 -0.0 -0.0 -0.0 0.001 0.0
RSD 0.77 0.646 0.637 0.693 0.728 0.709 0.557 0.525 0.579 0.619
NDDa 0.635 0.52 0.437 0.382 0.366 0.537 0.437 0.364 0.314 0.299
NDDb 0.781 0.781 0.782 0.782 0.781 0.663 0.663 0.664 0.663 0.663
SED 0.801 0.632 0.529 0.513 0.502 0.704 0.518 0.419 0.407 0.403

p = 0.4
RD -0.001 -0.002 0.001 0.0 0.002 -0.001 -0.001 0.001 0.0 0.001
RSD 0.77 0.642 0.632 0.687 0.723 0.708 0.554 0.522 0.574 0.615
NDDa 0.634 0.519 0.436 0.378 0.362 0.537 0.436 0.363 0.312 0.296
NDDb 0.78 0.782 0.782 0.78 0.782 0.663 0.664 0.664 0.663 0.664
SED 0.805 0.646 0.549 0.528 0.521 0.709 0.532 0.438 0.421 0.42

p = 0.6
RD 0.001 0.001 -0.001 0.002 0.0 0.001 0.001 -0.001 0.001 0.0
RSD 0.771 0.644 0.632 0.687 0.723 0.709 0.555 0.522 0.574 0.615
NDDa 0.635 0.519 0.436 0.379 0.364 0.537 0.436 0.363 0.312 0.297
NDDb 0.781 0.781 0.781 0.781 0.781 0.664 0.664 0.664 0.663 0.664
SED 0.816 0.677 0.585 0.549 0.552 0.722 0.561 0.47 0.439 0.446

p = 0.8
RD 0.0 0.002 -0.001 0.001 0.0 0.0 0.002 -0.001 0.001 0.0
RSD 0.772 0.646 0.634 0.692 0.726 0.71 0.557 0.523 0.578 0.616
NDDa 0.635 0.52 0.439 0.383 0.37 0.537 0.437 0.365 0.316 0.302
NDDb 0.781 0.782 0.781 0.782 0.781 0.663 0.663 0.663 0.664 0.663
SED 0.822 0.714 0.656 0.605 0.603 0.73 0.598 0.535 0.488 0.49

p = 1.0
RD -0.001 -0.001 -0.001 0.001 -0.0 -0.001 -0.001 -0.001 0.001 -0.0
RSD 0.775 0.651 0.643 0.695 0.732 0.712 0.561 0.53 0.579 0.621
NDDa 0.636 0.521 0.44 0.387 0.372 0.538 0.437 0.365 0.318 0.304
NDDb 0.782 0.781 0.781 0.781 0.782 0.663 0.662 0.662 0.662 0.664
SED 0.823 0.783 0.742 0.73 0.729 0.733 0.675 0.625 0.613 0.615

Table 26. RMSE of node-degree distribution before and after divide or Erdős-Rényi graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

g 1768 1768 1768 1768 1768

RD 4 / 18 7 / 17 9 / 16 10 / 13 12 / 12
RSD 171 / 889 405 / 835 661 / 790 665 / 781 720 / 718
NDDa 5 / 18 6 / 17 9 / 15 10 / 14 12 / 12
NDDb 4 / 18 6 / 17 8 / 15 10 / 14 12 / 12
SED 62 / 746 117 / 582 178 / 520 225 / 435 286 / 368

ON MERGING AND . . .

Table 21. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

p = 0.2
RD -0.0 -0.0 -0.0 0.002 0.0 -0.0 -0.0 -0.0 0.001 0.0
RSD 0.77 0.646 0.637 0.693 0.728 0.709 0.557 0.525 0.579 0.619
NDDa 0.635 0.52 0.437 0.382 0.366 0.537 0.437 0.364 0.314 0.299
NDDb 0.781 0.781 0.782 0.782 0.781 0.663 0.663 0.664 0.663 0.663
SED 0.801 0.632 0.529 0.513 0.502 0.704 0.518 0.419 0.407 0.403
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RD -0.001 -0.002 0.001 0.0 0.002 -0.001 -0.001 0.001 0.0 0.001
RSD 0.77 0.642 0.632 0.687 0.723 0.708 0.554 0.522 0.574 0.615
NDDa 0.634 0.519 0.436 0.378 0.362 0.537 0.436 0.363 0.312 0.296
NDDb 0.78 0.782 0.782 0.78 0.782 0.663 0.664 0.664 0.663 0.664
SED 0.805 0.646 0.549 0.528 0.521 0.709 0.532 0.438 0.421 0.42

p = 0.6
RD 0.001 0.001 -0.001 0.002 0.0 0.001 0.001 -0.001 0.001 0.0
RSD 0.771 0.644 0.632 0.687 0.723 0.709 0.555 0.522 0.574 0.615
NDDa 0.635 0.519 0.436 0.379 0.364 0.537 0.436 0.363 0.312 0.297
NDDb 0.781 0.781 0.781 0.781 0.781 0.664 0.664 0.664 0.663 0.664
SED 0.816 0.677 0.585 0.549 0.552 0.722 0.561 0.47 0.439 0.446

p = 0.8
RD 0.0 0.002 -0.001 0.001 0.0 0.0 0.002 -0.001 0.001 0.0
RSD 0.772 0.646 0.634 0.692 0.726 0.71 0.557 0.523 0.578 0.616
NDDa 0.635 0.52 0.439 0.383 0.37 0.537 0.437 0.365 0.316 0.302
NDDb 0.781 0.782 0.781 0.782 0.781 0.663 0.663 0.663 0.664 0.663
SED 0.822 0.714 0.656 0.605 0.603 0.73 0.598 0.535 0.488 0.49

p = 1.0
RD -0.001 -0.001 -0.001 0.001 -0.0 -0.001 -0.001 -0.001 0.001 -0.0
RSD 0.775 0.651 0.643 0.695 0.732 0.712 0.561 0.53 0.579 0.621
NDDa 0.636 0.521 0.44 0.387 0.372 0.538 0.437 0.365 0.318 0.304
NDDb 0.782 0.781 0.781 0.781 0.782 0.663 0.662 0.662 0.662 0.664
SED 0.823 0.783 0.742 0.73 0.729 0.733 0.675 0.625 0.613 0.615

Table 26. RMSE of node-degree distribution before and after divide or Erdős-Rényi graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

g 1768 1768 1768 1768 1768

RD 4 / 18 7 / 17 9 / 16 10 / 13 12 / 12
RSD 171 / 889 405 / 835 661 / 790 665 / 781 720 / 718
NDDa 5 / 18 6 / 17 9 / 15 10 / 14 12 / 12
NDDb 4 / 18 6 / 17 8 / 15 10 / 14 12 / 12
SED 62 / 746 117 / 582 178 / 520 225 / 435 286 / 368
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Table 22. RMSE of node-degree distribution
before and after merge of Erdős-Rényi graphs

RMSE equal diff_m diff_size diff_all

g1 1025 1025 492 492
g2 1025 485 2645 4905

RM 42 12 14 55
NDM 42 11 14 54
PNM 1709 1711 935 899
MM 1923 1394 3078 4229

Table 23. RMSE of node-degree distribution
before and after merge of Watts-Strogatz graphs

RMSE equal diff_m diff_size diff_all

β = 0.2
g1 1114 1114 540 540
g2 1116 543 2687 5343

RM 39 12 14 54
NDM 38 12 14 54
PNM 465 469 104 105
MM 2180 1116 3215 3555

β = 0.4
g1 894 894 459 459
g2 895 458 2272 4262

RM 38 12 14 54
NDM 39 12 14 54
PNM 414 413 96 96
MM 1749 1028 2724 3082

β = 0.6
g1 792 792 424 424
g2 791 427 2119 3753

RM 39 12 14 53
NDM 38 12 14 55
PNM 381 384 92 92
MM 1553 972 2542 2843

β = 0.8
g1 734 734 411 411
g2 736 408 2004 3503

RM 38 12 14 54
NDM 39 12 14 54
PNM 365 362 89 88
MM 1435 947 2395 2706

Table 24. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs

RMSE equal diff_m diff_size diff_all

p = 0.2
g1 60 60 53 53
g2 59 53 174 276

RM 67 12 19 55
NDM 68 12 19 54
PNM 119 119 10 11
MM 166 188 219 384

p = 0.4
g1 96 96 53 53
g2 97 54 167 291

RM 67 12 19 54
NDM 67 12 19 54
PNM 108 108 10 10
MM 269 193 201 394

p = 0.6
g1 83 83 53 53
g2 72 53 159 227

RM 66 12 19 54
NDM 66 12 19 54
PNM 105 105 10 10
MM 212 182 195 327

Table 25. RMSE of node-degree distribution
before and after merge of

Extended-Barabási-Albert graphs (continued)

RMSE equal diff_m diff_size diff_all

p = 0.8
g1 57 57 47 47
g2 53 48 144 207

RM 66 12 19 55
NDM 65 12 19 54
PNM 95 95 18 15
MM 153 167 181 283

p = 1.0
g1 17 17 37 37
g2 18 30 43 49

RM 67 12 19 54
NDM 67 12 18 54
PNM 95 95 25 29
MM 37 149 142 155
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Table 27. RMSE of node-degree distribution before and after divide or Watts-Strogatz graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

β = 0.2
g 1534 1534 1534 1534 1534

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 180 / 1459 447 / 1276 774 / 1184 869 / 1076 964 / 958
NDDa 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 73 / 1224 142 / 943 221 / 725 300 / 573 381 / 429
381

β = 0.4
g 1291 1291 1291 1291 1291

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 175 / 1269 440 / 1156 743 / 1079 791 / 971 899 / 904
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 66 / 996 130 / 778 192 / 589 250 / 458 325 / 376

β = 0.6
g 1169 1169 1169 1169 1169

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 174 / 1169 432 / 1073 729 / 1015 789 / 956 865 / 867
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 68 / 897 129 / 672 184 / 530 250 / 434 307 / 362

β = 0.8
g 1087 1087 1087 1087 1087

RD 4 / 15 6 / 14 7 / 13 8 / 12 10 / 10
RSD 171 / 1114 423 / 1029 716 / 983 755 / 923 841 / 846
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
SED 66 / 836 120 / 650 178 / 517 238 / 420 308 / 344

ON MERGING AND . . .

Table 21. Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert
graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

p = 0.2
RD -0.0 -0.0 -0.0 0.002 0.0 -0.0 -0.0 -0.0 0.001 0.0
RSD 0.77 0.646 0.637 0.693 0.728 0.709 0.557 0.525 0.579 0.619
NDDa 0.635 0.52 0.437 0.382 0.366 0.537 0.437 0.364 0.314 0.299
NDDb 0.781 0.781 0.782 0.782 0.781 0.663 0.663 0.664 0.663 0.663
SED 0.801 0.632 0.529 0.513 0.502 0.704 0.518 0.419 0.407 0.403

p = 0.4
RD -0.001 -0.002 0.001 0.0 0.002 -0.001 -0.001 0.001 0.0 0.001
RSD 0.77 0.642 0.632 0.687 0.723 0.708 0.554 0.522 0.574 0.615
NDDa 0.634 0.519 0.436 0.378 0.362 0.537 0.436 0.363 0.312 0.296
NDDb 0.78 0.782 0.782 0.78 0.782 0.663 0.664 0.664 0.663 0.664
SED 0.805 0.646 0.549 0.528 0.521 0.709 0.532 0.438 0.421 0.42

p = 0.6
RD 0.001 0.001 -0.001 0.002 0.0 0.001 0.001 -0.001 0.001 0.0
RSD 0.771 0.644 0.632 0.687 0.723 0.709 0.555 0.522 0.574 0.615
NDDa 0.635 0.519 0.436 0.379 0.364 0.537 0.436 0.363 0.312 0.297
NDDb 0.781 0.781 0.781 0.781 0.781 0.664 0.664 0.664 0.663 0.664
SED 0.816 0.677 0.585 0.549 0.552 0.722 0.561 0.47 0.439 0.446

p = 0.8
RD 0.0 0.002 -0.001 0.001 0.0 0.0 0.002 -0.001 0.001 0.0
RSD 0.772 0.646 0.634 0.692 0.726 0.71 0.557 0.523 0.578 0.616
NDDa 0.635 0.52 0.439 0.383 0.37 0.537 0.437 0.365 0.316 0.302
NDDb 0.781 0.782 0.781 0.782 0.781 0.663 0.663 0.663 0.664 0.663
SED 0.822 0.714 0.656 0.605 0.603 0.73 0.598 0.535 0.488 0.49

p = 1.0
RD -0.001 -0.001 -0.001 0.001 -0.0 -0.001 -0.001 -0.001 0.001 -0.0
RSD 0.775 0.651 0.643 0.695 0.732 0.712 0.561 0.53 0.579 0.621
NDDa 0.636 0.521 0.44 0.387 0.372 0.538 0.437 0.365 0.318 0.304
NDDb 0.782 0.781 0.781 0.781 0.782 0.663 0.662 0.662 0.662 0.664
SED 0.823 0.783 0.742 0.73 0.729 0.733 0.675 0.625 0.613 0.615

Table 26. RMSE of node-degree distribution before and after divide or Erdős-Rényi graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

g 1768 1768 1768 1768 1768

RD 4 / 18 7 / 17 9 / 16 10 / 13 12 / 12
RSD 171 / 889 405 / 835 661 / 790 665 / 781 720 / 718
NDDa 5 / 18 6 / 17 9 / 15 10 / 14 12 / 12
NDDb 4 / 18 6 / 17 8 / 15 10 / 14 12 / 12
SED 62 / 746 117 / 582 178 / 520 225 / 435 286 / 368
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Table 27. RMSE of node-degree distribution before and after divide or Watts-Strogatz graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

β = 0.2
g 1534 1534 1534 1534 1534

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 180 / 1459 447 / 1276 774 / 1184 869 / 1076 964 / 958
NDDa 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 73 / 1224 142 / 943 221 / 725 300 / 573 381 / 429
381

β = 0.4
g 1291 1291 1291 1291 1291

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 175 / 1269 440 / 1156 743 / 1079 791 / 971 899 / 904
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 66 / 996 130 / 778 192 / 589 250 / 458 325 / 376

β = 0.6
g 1169 1169 1169 1169 1169

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 174 / 1169 432 / 1073 729 / 1015 789 / 956 865 / 867
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 68 / 897 129 / 672 184 / 530 250 / 434 307 / 362

β = 0.8
g 1087 1087 1087 1087 1087

RD 4 / 15 6 / 14 7 / 13 8 / 12 10 / 10
RSD 171 / 1114 423 / 1029 716 / 983 755 / 923 841 / 846
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
SED 66 / 836 120 / 650 178 / 517 238 / 420 308 / 344
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Table 27. RMSE of node-degree distribution before and after divide or Watts-Strogatz graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

β = 0.2
g 1534 1534 1534 1534 1534

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 180 / 1459 447 / 1276 774 / 1184 869 / 1076 964 / 958
NDDa 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 73 / 1224 142 / 943 221 / 725 300 / 573 381 / 429
381

β = 0.4
g 1291 1291 1291 1291 1291

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 175 / 1269 440 / 1156 743 / 1079 791 / 971 899 / 904
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 66 / 996 130 / 778 192 / 589 250 / 458 325 / 376

β = 0.6
g 1169 1169 1169 1169 1169

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 174 / 1169 432 / 1073 729 / 1015 789 / 956 865 / 867
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 68 / 897 129 / 672 184 / 530 250 / 434 307 / 362

β = 0.8
g 1087 1087 1087 1087 1087

RD 4 / 15 6 / 14 7 / 13 8 / 12 10 / 10
RSD 171 / 1114 423 / 1029 716 / 983 755 / 923 841 / 846
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
SED 66 / 836 120 / 650 178 / 517 238 / 420 308 / 344

ON MERGING AND . . .

Table 28. RMSE of node-degree distribution before and after divide or Extended-Barabási-Albert graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

p = 0.2
g 138 138 138 138 138

RD 5 / 22 8 / 21 10 / 18 13 / 17 15 / 15
RSD 89 / 121 130 / 116 189 / 128 161 / 147 136 / 137
NDDa 5 / 23 8 / 20 10 / 19 13 / 17 14 / 15
NDDb 5 / 23 8 / 21 10 / 19 13 / 17 15 / 15
SED 16 / 130 25 / 199 26 / 215 32 / 256 26 / 283

p = 0.4
g 147 147 147 147 147

RD 5 / 22 8 / 21 10 / 19 12 / 16 15 / 14
RSD 83 / 102 124 / 113 176 / 114 151 / 116 121 / 121
NDDa 5 / 22 8 / 21 10 / 19 13 / 17 15 / 15
NDDb 5 / 22 8 / 20 10 / 19 12 / 17 15 / 15
SED 16 / 119 18 / 183 19 / 226 25 / 253 29 / 244

Table 29. RMSE of node-degree distribution before and after divide or Extended-Barabási-Albert graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

p = 0.6
g 128 128 128 128 128

RD 5 / 23 8 / 20 10 / 19 13 / 17 15 / 15
RSD 83 / 93 115 / 117 163 / 102 119 / 120 110 / 114
NDDa 5 / 23 8 / 21 10 / 19 13 / 17 15 / 15
NDDb 5 / 23 8 / 21 10 / 19 13 / 17 15 / 14
SED 12 / 132 13 / 168 15 / 206 18 / 220 32 / 225

p = 0.8
g 122 122 122 122 122

RD 5 / 22 8 / 21 10 / 19 12 / 17 15 / 15
RSD 84 / 87 115 / 94 162 / 96 128 / 110 102 / 109
NDDa 5 / 23 8 / 21 10 / 18 13 / 17 15 / 14
NDDb 5 / 22 8 / 21 10 / 19 13 / 16 15 / 15
SED 11 / 138 13 / 178 21 / 192 28 / 210 36 / 194

p = 1.0
g 157 157 157 157 157

RD 5 / 22 8 / 20 10 / 19 13 / 17 14 / 14
RSD 86 / 84 131 / 88 166 / 96 158 / 100 107 / 109
NDDa 5 / 22 8 / 21 10 / 19 12 / 17 15 / 15
NDDb 5 / 22 8 / 21 10 / 19 13 / 16 15 / 15
SED 9 / 170 19 / 167 28 / 191 40 / 189 54 / 168
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Table 27. RMSE of node-degree distribution before and after divide or Watts-Strogatz graphs

RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

β = 0.2
g 1534 1534 1534 1534 1534

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 180 / 1459 447 / 1276 774 / 1184 869 / 1076 964 / 958
NDDa 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 73 / 1224 142 / 943 221 / 725 300 / 573 381 / 429
381

β = 0.4
g 1291 1291 1291 1291 1291

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 175 / 1269 440 / 1156 743 / 1079 791 / 971 899 / 904
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 66 / 996 130 / 778 192 / 589 250 / 458 325 / 376

β = 0.6
g 1169 1169 1169 1169 1169

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 174 / 1169 432 / 1073 729 / 1015 789 / 956 865 / 867
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 68 / 897 129 / 672 184 / 530 250 / 434 307 / 362

β = 0.8
g 1087 1087 1087 1087 1087

RD 4 / 15 6 / 14 7 / 13 8 / 12 10 / 10
RSD 171 / 1114 423 / 1029 716 / 983 755 / 923 841 / 846
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
SED 66 / 836 120 / 650 178 / 517 238 / 420 308 / 344


