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Abstract

This article describes a novel approach to realtime motion assessment for rehabilitation
exercises based on the integration of comprehensive kinematic modeling with fuzzy in-
ference. To facilitate the assessment of all important aspects of a rehabilitation exercise,
a kinematic model is developed to capture the essential requirements for static poses, dy-
namic movements, as well as the invariance that must be observed during an exercise.
The kinematic model is expressed in terms of a set of kinematic rules. During the actual
execution of a rehabilitation exercise, the similarity between the measured motion data
and the model is computed in terms of their distances, which are then used as inputs to
a fuzzy interference system to derive the overall quality of the execution. The integrated
approach provides both a detailed categorical assessment of the overall execution of the
exercise and the degree of adherence to individual kinematic rules.

1 Introduction

Physical exercise is an essential part of rehabili-
tative healthcare. However, for a rehabilitative pro-
gram to be effective, it often requires in the range
of thousands of practice repetitions, all of which
must be performed exactly as prescribed. Due to
the large amount time needed and the high cost of
clinical sessions, it is highly desirable that a patient
carry out the bulk of practice at home. To facili-
tate practicing at home, a portable, low-cost motion
tracking system that could provide realtime assess-
ment of the exercise with live feedback would be a
great help for patients [1]. Although numerous such
systems have been proposed to help improve the
chances of the patient carrying out the prescribed
exercises correctly, many of them are incapable of

providing feedback in realtime [2, 3], and those that
do, only provide very limited information [4].

In this article, we present a novel approach to
realtime motion assessment and feedback for reha-
bilitation exercises. The main novelty is the inte-
gration of comprehensive kinematic modeling with
fuzzy inference. To facilitate the assessment of
all important aspects of a rehabilitation exercise,
a comprehensive kinematic model is developed to
capture the essential requirements for static poses
and dynamic movements, as well as the invariance
that must be observed during an exercise. The kine-
matic model is expressed in terms of a set of kine-
matic rules. During the actual execution of a reha-
bilitation exercise, the similarity between the mea-
sured motion data and the set of kinematic rules is
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computed in terms of their distances. The distances
for the kinematic rules are then used as inputs to the
fuzzy inference system to derive the overall quality
of the execution. Both the output from the fuzzy
inference system for each exercise, and the similar-
ity results with respect to the kinematic rules can
be presented to the patient as feedbacks in realtime.
Hence, the integrated approach provides both a de-
tailed categorical assessment of the overall execu-
tion of the exercise and the degree of adherence to
individual kinematic rules.

A foundation of this research is the develop-
ment of the kinematic rules for each rehabilitation
exercise. The kinematic model is defined in terms
of three types of kinematic rules:

— Rules for dynamic movement. Each rule is ex-
pressed in terms of the sequence of reference
configurations of a particular joint or body seg-
ment (such as an arm or leg) that delineate
monotonic segments of the movement.

— Rules for static poses. Some exercises only in-
volve stationary poses. In other exercises, some
body parts must remain stationary in designated
positions while other parts are moving. In both
cases, static rules are needed.

— Rules for movement invariance, each of which
defines the requirement for a moving body seg-
ment that must be satisfied during every iteration
of the exercise.

The rules for the kinematic model are stored in a
file and encoded in terms of the eXtensible Markup
Language (XML) for customizability and extensi-
bility. This is very important because rehabilitation
exercises often require adjustment for different pa-
tients, and even for the same patient during different
stages of the recovery process. The use of XML to
encode the kinematic rules also facilitates the reuse
of existing rules to define other exercises that share
similar characteristics.

The set of kinematic rules define the expected
motion for an ideal execution of a rehabilitation ex-
ercise. Obviously, we cannot use such rules to as-
sess an actual execution of a rehabilitation exercise
both because it is virtually impossible for even the
most well-trained clinician to perform the exercise
exactly as defined in the rules, and because even

the most high-end motion tracking system contains
measurement errors, let alone for a portable, low-
cost motion tracking system (such as those based
on Kinect [1]). To accommodate human errors
and measurement errors, the kinematic rules can be
modified by adding a tolerance bound for each pa-
rameter that is part of a configuration. Basically, the
tolerance-bound-based approach applies the classic
logic which categories the execution of an exercise
to either correct or wrong, as we have done in our
previous work [5].

However, the use of a tolerance bound to de-
termine whether or not the patient is doing an ex-
ercise correctly does not fully capture the spectrum
of the subjective assessment usually done by a clin-
ician. For example, depending on how the patient
performed an exercise, the clinician might give the
patient a feedback in terms of “excellent”, “very
good”, “good”, “fair”, and “poor”. Furthermore, it
is tricky to set the tolerance bound. A tight toler-
ance bound would exclude a “good” execution of
an exercise, labeling it as “wrong”, while a loose
tolerance bound might label an “fair” execution of
an exercise as “correct”. Therefore, it is much more
desirable to apply fuzzy inference in determining
the quality of the execution of an exercise, which is
incorporated in this research.

The integrated approach involves the following
key components to assess each exercise, as illus-
trated in Figure 1:

— Model the exercise in terms of a set of kinematic
rules. Define the membership functions for each
input and the output. Define the set of fuzzy
rules.

— While tracking the execution of the exercise, the
similarity (in terms of distance) of the measured
motion and the ideal model as defined in each
kinematic rule is calculated. The distance is
calculated based on the difference between the
measured parameters and those defined in the
kinematic rule.

— The distance measured in the above step is used
as the input to the fuzzy inference system. The
distance belongs to a fuzzy set with the corre-
sponding membership function, which indicates
the quality of the execution of a particular kine-
matic rule. The categorical information regard-
ing the measured distance will be displayed for
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Figure 1. Architecture of the integrated realtime assessment and feedback system.

the patient as a live feedback for the correspond-
ing kinematic rule.

— At the end of an iteration, the multiple inputs
based on all kinematic rules will be aggregated
and defuzzified. The defuzzified value also be-
longs to a fuzzy set indicating the overall quality
of the execution of the current iteration. In ad-
dition to being used as a live feedback to the pa-
tient, the categorical information is used to de-
cide if the current iteration should be counted
toward the prescribed exercise load.

The remainder of this article is organized as
follows. Section 2 describes the background and
related work. Section 3 presents the specification
for kinematic modeling of rehabilitation exercises.
Section 4 elaborates the mechanisms to track the
state of the execution of an exercise so that the key
frames can be identified for similarity calculation.
Section 5 provides the fuzzy inference framework
for assessing the overall quality of the execution of
an exercise. Section 6 presents two case studies,
one using the hip abduction exercise and the other
using the sit to stand exercise. Finally, section 7
concludes this article.

2 Background and Related Work

The foundation for human motion assessment
is gesture and activity recognition. A gesture typi-
cally involves one or two hands, and possibly body
poses, to convey some specific meaning, such as
zoom in or zoom out. An activity usually refers to
a sequence of full body movements that a person
performs, such as walking, running, brushing teeth,

etc., which does not necessarily convey a meaning
to the computer or other persons. Rehabilitation ex-
ercises can be considered as a special form of hu-
man activity.

The approaches to human motion recognition
can be roughly divided into two categories: (1) tem-
plate based and (2) rule based. In the template based
approach, the sequence of motions for a gesture or
an activity is first recorded, which is then used as an
exemplar to be compared with the observed gesture
or activity either directly, or is used to train a model
for the gesture, and the trained model is then used
to classify the observed gesture or activity. The
method used to train the model varies significantly,
from simple ones such as obtaining average joint
angles at a set of feature points [4], to particle fil-
ters [6], to finite state machines [7], and to sophis-
ticated statistical methods such as hidden Markov
models [8] and neural networks [9]. The main ben-
efit of the template based approach is that either no
model is needed, or the model parameters can be fit-
ted automatically using exemplar data if a model is
used. As a tradeoff, the feedback provided by these
approaches often contains limited information (e.g.,
only categorical information regarding the gesture
or activity observed), which is not desirable for the
purpose of rehabilitation exercise monitoring.

The rule based approach does not require the
recording of exemplars and the training of sophis-
ticated statistical models. Instead, a gesture or an
activity is defined by a set of kinematic rules, cre-
ated by experts, that capture the key features of the
gesture or activity. This approach has a number of
advantages over the template based approach:
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— It is less computationally intensive because it
does not require comprehensive pattern match-
ing. Hence, it is suitable for realtime motion as-
sessment, which is necessary for rehabilitation
exercise monitoring.

— No scaling is needed because the rules reflect
the invariance of the gesture or activity and it
is independent from the person who performs
it. This further reduces the complexity and com-
putational cost, which makes the rule based ap-
proach more attractive for rehabilitation exercise
monitoring.

— It can provide realtime feedback with much
more specific information regarding exactly how
the motion deviates from the predefined gesture
or activity. This is particularly important for re-
habilitation exercise monitoring. For example, it
is far more useful to inform a patient that her leg
is abducting out of the frontal plane when the
leg must stay within the plane, instead of sim-
ply telling the patient that the current iteration is
incorrect.

Hence, most existing research in rehabilitation
exercise monitoring can be categorized into this ap-
proach. However, the rule based approach typically
has the following limitations:

— The rules have to be carefully defined by experts
and expressed in an implementable form. This
would incur additional financial cost to a human
motion recognition system and prevent a regu-
lar user from defining his/her own gestures. For
rehabilitation exercises, however, this is largely
not an issue because the clinician who prescribes
an exercise is an expert in defining the exercise.
All we need is an intuitive interface for the clin-
ician to define an exercise using his/her familiar
terminologies.

— For sophisticated gestures or activities, it may
be difficult to define the rules precisely. For-
tunately, rehabilitation exercises usually involve
simple body movements that are easy to define.

— The rules are often hard-coded into each appli-
cation, making it hard to extend or modify an
existing application. In the context of rehabili-
tation exercise monitoring, this weakness can be
problematic because the exercises prescribed for

different patients may have to be customized to
meet the specific needs of each patient, and the
rules for the same exercise for the same patient
may have to be varied during different stages of
the recovery. In this research, we address this is-
sue by encoding the kinematic rules using XML
with a customizable motion recognition engine.

2.1 Template Based Approach

In the template based approach, the dominating
methods for building gesture models via training
data are based on machine learning, such as hid-
den Markov models (HMMs) and neural networks
(NNs). This line of work in the context of gesture
recognition has been reviewed in recent surveys [8]
and [10]. Below, we highlight several studies that
are closely related to rehabilitation exercise moni-
toring, and/or aim to provide realtime feedback.

In [11], a two-stage motion recognition method
is proposed for automated rehabilitation exercise
analysis with near realtime performance. The
method exploits the fact that rehabilitation exercises
involve periodic velocity patterns such as flexion
and extension. Efficiency is achieved by identify-
ing appropriate motion segments based on velocity
peaks and zero velocity crossings in the measured
joint angles in the first stage prior to applying HMM
on the common motion segment in the second stage.
The time it takes to segment an approximately 40-
second trace is reduced to below 7 seconds com-
pared with over 50 seconds using standard HMM
or over 70 seconds using DTW. This method is not
by any means fast enough for realtime feedback, but
it does improve the efficiency drastically compared
with traditional machine learning methods. Further-
more, the method is capable of identifying correct
repetitions of an exercise, but does not provide any
specific feedback regarding the incorrect iterations.

In [9], an NN based method is used to analyze
the motion in rehabilitation exercises. An NN based
model is used to provide more robustness against
motion sensing errors due to occlusions. Further-
more, once trained, the model is capable of detect-
ing in less than two seconds both correct move-
ments as well as an iteration that is too fast or too
slow, or a wrong static joint angle, by comparing the
observed data with the predicted data based on the
model. This is an important step towards realtime
feedback with specific information to patients.
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In [6], a method is designed specifically to en-
able gestural interaction with realtime non-visual
feedback using a motivating example of gait anal-
ysis. The characteristics of the motion are modeled
using Dynamic Movement Primitives (DMP) [12],
which are capable of capturing the nonlinear dy-
namics of the motion. A major advantage of DMP
models over other machine learning methods is
that the parameters for the model possess kine-
matic identities important for the biomechanics of
the movement of interest, such as rehabilitation ex-
ercises. Once the model is trained, a particle fil-
ter [13] is used to provide realtime feedback regard-
ing a number of meaningful features of the move-
ment, such as the deviation from a predicted trajec-
tory, the probability of candidate gestures to which
the current movement might belong, and the state
of the gesture identified.

A gesture may also be modeled as a finite state
machine (FSM) [7] that consists of a sequence of
states in spatial-temporal space. FSM is different
from HMM in that the number of states and state
transitions are obtained dynamically from the train-
ing data instead of predefined as in HMM. Fur-
thermore, FSM helps segment and align the train-
ing data while producing the model for a gesture.
The most interesting feature for FSM is that gesture
recognition is done based on the current data point,
instead of operating on the entire segment of data as
in HMM. This makes FSM a promising method to
provide realtime feedback.

In MotionMA [4], the model for a gesture is not
based on any statistical or machine learning algo-
rithm. Instead, the model consists of a collection of
joint. The training data is first filtered using a low-
pass filter to remove noise and then the feature data
is extracted on zero-derivatives (peaks, valleys, and
inflexion points). The feature data is merged using
k-means clustering. The merged data serves as the
model for the gesture and is used to identify static
and dynamic axes. This simple model enables the
system to monitor violations in static axes contin-
uously in realtime, and to count the repetitions for
dynamic joints.

2.2 Rule Based Approaches

In the context of rehabilitation exercise moni-
toring, rule based approaches in general have dif-
ferent concerns than the template based approaches.

The rules are primarily defined to assess the cor-
rectness of movements rather than to recognize ges-
tures because it is assumed that the patient knows
or is informed which particular exercise to perform.
Hence, it is not necessary for the rules to completely
define an exercise as long as they are in line with
the therapeutic objectives of the exercise and are
sufficient to automatically carry out correctness as-
sessment and repetition count. Consequently, most
studies focus on a very small set of rules and they
are predominately expressed in terms of joint an-
gles.

In [14] and [15], the rules for gait retraining are
expressed in terms of the trunk flexion angle, trunk
lean angle, and the distance that a set of joints for
postural control traverse. In [16], the knee angle
and the ankle angle are used to assess the quality
of sit-to-stand and squat, and the shoulder angle
is used to assess the shoulder abduction/adduction
quality. In [17], the rules are expressed in terms of
the knee angle in a robotic system for knee rehabil-
itation.

In [18], two metrics are used to evaluate the
quality of the sit-to-stand exercise: (1) the mini-
mum hip angle, in which a younger healthier person
would typically have a larger value than an older
person; and (2) the smoothness of the head move-
ment, which is quantified as the area of a triangle
that is determined by the second highest peak, the
valley and lines that are parallel to the axes on the
head-speed-versus-time plot.

Far more comprehensive rules have been de-
veloped for the purpose of recognizing hand ges-
tures [19] and body gestures [20]. In [20], a Ges-
ture Description Language (GDL) is introduced,
in which a gesture is determined by a set of key
frames. A frame contains joint positions reported
by the motion sensing device (the Kinect sensor in
this case). All rules are expressed in terms of one or
more key frames except the final rule, which defines
the gesture in terms of a sequence of basic rules.
Because GDL is designed to be based on a set of
key frames, it is resilient to motion sensing errors.
However, as a tradeoff, it lacks the support for rules
that depend on the entire trajectory of a gesture. It
also lacks a guideline as to how to identify the key
frames for each gesture.

In [19], a hand gesture is defined by a sequence
of monotonic hand segments. A monotonic seg-
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ment refers to a sequence of hand configurations
in which the angles of the finger joints are either
non-increasing or non-decreasing. The key frames
used in GDL [20] often coincide with the reference
configurations used in [19] to delineate monotonic
segments when the concept is extended from hand
gesture to body gesture recognition.

Our kinematic modeling resembles [19] in that
dynamic movements in each rehabilitation exercise
are defined in terms of monotonic segments. How-
ever, we also include kinematic rules regarding in-
variance requirements, which may not be important
for general purpose gesture recognition, but are crit-
ical for the effectiveness of rehabilitation exercises.
For example, for hip abduction, it is important that
the abducting leg remain within the frontal plane
the entire time, which deserves a separate invari-
ance rule. We also accommodate rules that define
static poses.

Fuzzy rules have been used in other system as a
way to produce a single output score. For example,
fuzzy rules are employed to capture the clinician’s
subjective requirements on performing rehabilita-
tion exercises by Su [2]. Unlike in our approach,
dynamic time warping is used in [2] to evaluate the
similarity on the trajectory and the speed of a sin-
gle joint (left or right hand) movement. It is un-
clear how to apply this approach to handle the more
complicated exercises that we considered in this ar-
ticle, such as hip abduction and sit to stand. Simi-
larly, fuzzy rules are used in [3] to generate a single
score regardless the quality of golf swings. HMM is
used to recognize individual features of the motion,
which is different from our approach.

Finally, this research is extended from our pre-
vious work on kinematic modeling [1, 5]. In our
previous work, a tolerance bound is specified for
each parameter in the kinematic rules, and if the
observed value for any parameter deviates from the
expected value by more than the tolerance amount,
the current iteration would be classified as “incor-
rect”. In this research, we enhance our previous
work by providing a more detailed feedback on the
overall quality of the execution of each iteration us-
ing fuzzy inference.

3 Kinematic Modeling of Rehabili-
tation Exercises

The kinematic characteristics of a rehabilitation
exercise are modeled in terms of three types of kine-
matic rules for each rehabilitation exercise:

— Rules for dynamic movement. Each rule is ex-
pressed in terms of the sequence of reference
configurations of a particular joint or body seg-
ment (such as an arm or leg) that delineate the
monotonic segments of each iteration (the term
“segment” in monotonic segment refers to a pe-
riod of continuous movements. It is not to be
confused with the same term in body segment,
which refers to a body part.) For a joint, a refer-
ence configuration is usually expressed in terms
of the joint angle, which is defined as the angle
between two adjacent body segments, or the dis-
tance between two joints. To describe the move-
ment more accurately, one can define a refer-
ence configuration in terms of the position of a
moving body segment with respect to anatomi-
cal planes (i.e., the frontal, sagittal, or transverse
plane).

— Rules for static poses. Some exercises only in-
volve stationary poses. In other exercises, some
body parts must remain stationary while other
body segments move. In these cases, static rules
are needed. In general, a rule for a static pose
is also expressed in terms of the desired angle
for a particular joint, or the position of a body
segment with respect to anatomical planes. It is
also possible to describe a static pose in terms of
the distance between different joints or relative
positions of different joints.

— Rules for movement invariance, each of which
defines a requirement for a moving body seg-
ment that must be satisfied during every itera-
tion of the exercise. In rehabilitation exercises,
the requirement is typically defined in terms of
the relative angle between the moving body seg-
ment and anatomical planes.

3.1 Encoding of Kinematic Rules

The rules are encoded using XML for its read-
ability and extensibility. In this subsection, we de-
scribe how to encode each type of rules. Listing 1
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shows an outline on how the correctness rules for
each exercise are encoded. The rules start with an
ExerciseName element for identification, and then
a list of dynamic rules, each represented by a Dy-
namicRule element, a set of static rules grouped to-
gether as a single StaticRule element, and a set of
invariance rules grouped together as a single Invari-
anceRule element.

Listing 1. The set of rules that may be defined for

an exercise.

<KinematicRules>

<ExerciseName> ... <ExerciseName>

<DynamicRule> </DynamicRule>
<DynamicRule> </DynamicRule>
</DynamicRule>
</StaticRule>

</InvarianceRule>

<DynamicRule>
<StaticRule>

1
2
3
4
5
6
7
8 <InvarianceRule>
9

</KinematicRules>

Enclosed within the DynamicRule element is a
list of Configuration elements, each representing a
reference configuration, as shown in Listing 2.

Listing 2. Composition of a dynamic rule.

<DynamicRule>

<Configuration> </Configuration>

<Configuration> </Configuration>

<Configuration>

1
2
3
4
5 </Configuration>
6

</DynamicRule>

The StaticRule element consists of a list of Con-
figuration elements, as shown in Listing 3. Each
Configuration element encodes the desirable posi-
tion for a joint or a body segment, and it has the
same format as the Configuration element used in
the DynamicRule element.

Listing 3. Composition of a static rule.

<StaticRule>

<Configuration> </Configuration>

<Configuration> </Configuration>

<Configuration> </Configuration>

1
2
3
4
5
6 </StaticRule>

Similar to the StaticRule element, an Invari-
anceRule element also consists of a list of Configu-
ration elements, as shown in Listing 4. Each Con-
figuration element encodes the restriction of a mov-
ing body segment throughout the entire iteration.
Again, it has an identical format to the Configura-
tion element used in the DynamicRule element, but
differs in semantics.

Listing 4. Composition of an invariance rule.

1 <InvarianceRule>

<Configuration> </Configuration>

<Configuration> </Configuration>

</Configuration>

2
3
4
5 <Configuration>
6

</InvarianceRule>

There are three different types of Configuration
elements, as shown in Listings 5, 6, and 7, respec-
tively. The first type of Configuration element is for
a joint angle, which starts with a Type element for
readability and parsing. The joint angle is defined
by three joints: the current joint represented by the
CenterJoint element, and two adjacent joints repre-
sented by the DownstreamJoint and UpstreamJoint
elements. The designated angle for the joint for a
configuration is specified in the Angle element. The
MaxAngleDeviation element specifies the largest
deviation value from the designated angle for the
configuration. This parameter is primarily used for
the similarity calculation to be elaborated in Sec-
tion 4.2. When determining this heuristic parame-
ter, one must consider the following factors:

— Deviation by the amount specified in MaxAn-
gleDeviation must not result in overlapping of
the current configuration with another configu-
ration defined in the dynamic rule for the exer-
cise.

— Deviation from the designated value must not
lead to an unsafe posture for the patient.

The MaxAngleDeviation element is also used to
help determine the initial configuration in an exer-
cise.

Listing 5. A configuration in terms of a joint angle.

1 <Configuration>

2 <Type>"JointAngle"</Type>
3 <CenterJoint>"JointName"</CenterJoint>
4 <DownstreamJoint>"JointName"

</DownstreamJoint>

5 <UpstreamJoint>"JointName"
</UpstreamJoint>

6 <Angle>"AngleValue"</Angle>

7 <MaxAngleDeviation> "..."
</MaxAngleDeviation>

8 <Duration>"DurationValue"</Duration>

9 <MaxDurationDeviation> "..."

</MaxDurationDeviation>
10 </Configuration>

The second type of Configuration element de-
scribes the required distance between a moving
joint, represented by the MovingJoint element, and
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a stationary one, represented by the StationaryJoint
element, shown in Listing 6. The distance is rep-
resented in the Distance element. The MaxDistDe-
viation element defines the maximum deviation al-
lowed from the ideal distance specified in the Dis-
tance element.

Listing 6. A configuration in terms of the distance
between two joints.

1 <Configuration>

2 <Type>"JointDistance"</Type>
3 <Jointl>"JointName"</Jointl>
4 <Joint2>"JointName"</Joint2>
5 <Distance>"Value"</Distance>
6

<MaxDistDeviation> "..."

</MaxDistDeviation>
7 <Duration>"DurationValue"</Duration>

8 <MaxDurationDeviation> "...
</MaxDurationDeviation>
9 </Configuration>

The last type of Configuration element de-
scribes the orientation of a body segment. The
body segment is encoded by two elements, Down-
streamJoint and UpstreamJoint, to give the direc-
tion of the body segment. The orientation of the
body segment is defined in terms of the angle be-
tween the segment and one or more of the anatomi-
cal planes, including, FrontalAngle, which denotes
the angle between the body segment and the frontal
plane, SagittalAngle, which denotes the angle be-
tween the body segment and the sagittal plane, and
TransverseAngle, which denotes the angle between
the body segment and the transverse plane. Only
two of the angles are needed to uniquely determine
the orientation of the body segment. If an angle is
not used, a value -1 is used. When the Configura-
tion element is used in an invariance rule, typically
only one of the three angles is used to define the en-
velope of the movement with respect to one of the
three anatomical planes. Because this configuration
also specifies an angle (although not joint angle),
we use the MaxAngleDeviation element to define
the maximum deviation from the expected angle.

Listing 7. A configuration in terms of bone
orientations.
1 <Configuration>
2 <Type>"BoneOrientation"</Type>
3 <DownstreamJoint>"JointName"
</DownstreamJoint>

4 <UpstreamJoint>"JointName"
</UpstreamJoint>
5 <FrontalAngle>"AngleValue"

</FrontalAngle>

6 <SagittalAngle>"AngleValue"
</SagittalAngle>
7 <TransverseAngle>"AngleValue"

</TransverseAngle>

8 <MaxAngleDeviation> "..."
</MaxAngleDeviation>

9 <Duration>"DurationValue"</Duration>

10 <MaxDurationDeviation> "..."

</MaxDurationDeviation>
11 </Configuration>

Common to all three Configuration elements
are a pair of elements, Duration and MaxDura-
tionDeviation, that define the expected duration of
the monotonic segment that begins with the current
configuration, and the maximum deviation from the
expected value. These two elements are not used
when the Configuration element is used for static
and invariance rules. If the speed of the movement
in an exercise is not important, these elements again
are not used. A value -1 for each of the elements in-
dicates that it is not used. Alternatively, elements
that are not used can be omitted in the configura-
tion.

4 Realtime Motion Tracking

While a patient is performing a rehabilitation
exercise, the data captured by a motion sensing de-
vice, such as Microsoft Kinect, will be fed to a
motion tracking engine frame-by-frame for analysis
based on the kinematic rules. The primary objective
of motion tracking is to determine the similarity be-
tween the actual execution of an exercise and the set
of kinematic rules for the exercise for each iteration.
The motion tracking is driven by the dynamic kine-
matic rule for each exercise because the iteration
for the exercise is determined by the dynamic rule.
The overall quality of the execution of an exercise
is calculated at the end of each iteration.

In the presence of static kinematic rules and/or
invariance kinematic rules, every newly arrived
frame is compared against the configurations de-
fined in these rules, for the entire duration of each
iteration. That is, the similarity calculation for these
rules is done on a frame-by-frame basis. At the end
of the current iteration, the similarity is determined
by the aggregated distances computed for all frames
received within the iteration.
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4.1 Motion Tracking for Dynamic Rules

A preliminary step in tracking the execution of
an exercise is to know exactly when an iteration is
started. The initial configuration in the dynamic
rule defines the initial pose of each iteration. The
motion tracking will not start until the initial con-
figuration condition is met. Even though we could
insist that the patient position himself/herself ex-
actly in the fashion specified by the initial configu-
ration, doing so might frustrate the patient because
it might take numerous attempts for the patient to
master this correct starting position. Hence, we ap-
ply a tolerance bound on each parameter in the ini-
tial configuration for the convenience of the patient.
The tolerance bound can be derived from the maxi-
mum deviation parameter specified for each param-
eter, e.g., the tolerance bound can be set to half of
the maximum deviation. Note that a patient might
decide to abort the current iteration before he/she
completes the current one, either arbitrarily or due
to a negative feedback received. In this case, the
patient is assumed to restart from the initial config-
uration again.

To track the similarity of the execution of an
exercise with respect to a dynamic kinematic rule,
we must identify the exact frame received from the
motion sensor that matches each reference config-
uration that is defined in the dynamic rule. This
requires the tracking of the state of the execution
of an exercise. To facilitate the tracking of the state,
we model the exercise as a finite state machine. The
number of states are determined by the number of
monotonic segments in the dynamic rule, which co-
incides with the number of unique reference config-
urations defined in the dynamic rule.

Due to the repetitive nature of rehabilitation ex-
ercises, one iteration actually involves two mirrored
activities. For example, one iteration of the hip ab-
duction exercise consists of a hip abduction activity
and its mirrored activity, hip adduction; and simi-
larly, one iteration of the sit to stand exercise con-
sists of a sit to stand activity and its mirrored activ-
ity, stand to sit.

Furthermore, the final pose of the first activity
may be a transient pose or a stable pose. A pa-
tient normally would not stay in the final pose for
a significant amount of time if it is a transient pose,
and would continue completing the mirrored activ-

ity immediately after reaching the final pose. The
final pose of the hip abduction activity is such a
transient pose. On the other hand, the final pose
might be stable, in that the patient could stay com-
fortably in that pose for a significant amount time,
such as the standing pose in the sit to stand exercise.

For an exercise with a transient final pose, it is
more convenient to track the execution of the exer-
cise as a single whole activity. For an exercise with
a stable final pose, we must track the execution of
the exercise as two separate finite state machines,
i.e., we would need to define the kinematic rules
for the first activity and its mirrored activity sepa-
rately in two finite state machines, because the pa-
tient might move around in the stable pose as we
have observed in the sit to stand exercise, which
could disrupt the tracking of the state of the exer-
cise.

Figure 2 shows the two types of finite state ma-
chine specifications. The top figure illustrates the
state transitions for an exercise with a transient fi-
nal pose as a single finite state machine. The bot-
tom figure shows the state transitions for an exercise
with a stable final pose using two mirrored, separate
finite state machines.

We first describe the finite state machine speci-
fication for exercises with a transient final pose. An
exercise is defined with a sequence of 2k — 1 ref-
erence configurations, Cy, &, ..., Gi—1, G, Ci_y,
... G5, C}, where C; is identical to C;. (The re-
peated reference configuration C; is explicitly in-
cluded in the sequence for the convenience of im-
plementation of finite state machine of both types.)
There are 2k — 1 corresponding states, S, S, ...,
Sk—1> Sk» Sy s -r S5, S}, where §; is the mirrorred
motion segment of S;. Each state S; is initiated by
detecting the corresponding reference configuration
C;. Hence, the finite state machine is transitioned to
S; on detecting configuration C; and it will stay in
state S; until the next reference configuration Cjy |
is detected, as is illustrated in Figure 2. Similarly,
a state S; is initiated by the detection of configura-
tion C;, and the finite state machine will stay in the
current state until the next configuration C;_, is de-
tected.

For exercises with a stable final pose, two finite
state machines are expected to run sequentially. The
state transition for each finite state machine is iden-
tical to that in the first type of finite state machine.
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Figure 2. Finite state machines for a dynamic rule. The finite state machine on the top is used to track
exercises with a transient final pose. The set of two mirrored finite state machine on the bottom are used to
track exercises with a stable final pose.

Obviously we cannot expect a patient to exe-
cute an exercise exactly as defined in the kinematic
rules. Hence, it is impractical to check each arriv-
ing frame against the next reference configuration
because we might never see a matching frame. In-
stead, we have to track the actual monotonic seg-
ments dynamically in realtime while the patient is
doing the exercise. The monotonic segment detec-
tion can be accomplished by tracking the change of
the variables of interest (i.e., joint angle, joint dis-
tance, or body segment orientation angles). When a
change of sign in speed of the movement is detected
(i.e., from increasing to decreasing, or vice versa),
the current monotonic segment has just ended. It
is only at this point that the condition for the next
reference configuration is checked against the last
frame received for similarity calculation. (The sim-
ilarity calculation method will be given in the next
subsection.) Normally, the patient would continue
doing the exercise to the next state.

A patient could always abort the current itera-
tion, either arbitrarily or based on the live feedback
received for each segment of the exercise. Hence,
as shown in Figure 2, in the finite state machine for
the exercise, there could be a transition from any
state S; to the initial state. As a result, the mo-
tion tracking engine must always check the current
frame with respect to the initial configuration of the
current finite state machine.

More formally, at state S; (orS;), there may be
three types of events as shown in Figure 2:

— Event el: The newly arrived frame does not end
the current segment. In this case, the finite state
machine stays in the current state S; (or S;).

— Event €2: The newly arrived frame ends the cur-
rent segment. The finite state machine transi-
tions to state S; 1 (or S;_,) as a result of e2.

— Event e3: The newly arrived frame matches the
initial configuration. Hence, the finite state ma-
chine transitions to the initial state.

Unfortunately, the addition of the mechanism
to detect the actual monotonic segments at runtime
makes the system vulnerable to motion sensing er-
rors and small movement errors from the patient.
The mechanism for monotonic segment detection
could introduce artificially short segments in these
scenarios. To overcome this problem, an additional
mechanism is used. In our implementation, we use
the simple mechanism described below.

For each finite state machine, we keep track of
the maximum and minimum value of the variable of
interest in each state. For a monotonic segment with
increasing values, we delay declaring the end of the
segment until the current value is smaller than the
last seen maximum value by a predefined heuristic
value to rule out small fluctuations of the measured
variable. Similarly, for a monotonic segment with
decreasing values, we delay declaring the end of
the segment until the current value is larger than the
last seen minimum value by a predefined heuristic
value. This mechanism would inevitably introduce
a small delay in state transitions and ultimately the
repetition count display.
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4.2 Similarity Calculation

Given a reference configuration and the match-
ing frame received, the similarity between the two
is determined by the distance between them. The
smaller the distance is, the more similar between
the two. The distance is calculated based on the dif-
ference between each variable defined in the refer-
ence configuration and the corresponding observed
variable. Recall that there are three types of config-
urations: (1) joint angle configuration; (2) distance
configuration; and (3) bone orientation configura-
tion. The bone orientation configuration is typically
used for invariance rules. In each of the first two
types of configurations, at most two variables can
be defined, where one must be either a joint angle,
or a distance between two joints, and the other the
duration of the movement segment. The last type of
configuration typically defines one or two angles.

Given a pair of variables X, (defined in the
reference configuration) and X, (observed vari-
able), and the maximum deviation from the refer-
ence value as defined in the reference configura-
tion (e.g., the MaxAngleDeviation, or MaxDistDe-
viation, or MaxDurationDeviation) Ey, the distance
between the two, Dy is defined in Equation 1:

XX,

D
X Ex

6]

If the patient moves within the maximum devia-
tion defined in Ey, then Dy would range between 0
and 1. The distance is normalized against the max-
imum deviation for each variable so that the dis-
tances can be aggregated in a meaningful way.

Given a set of n variables defined in a reference
configuration C, X1, X>, ..., X, the total distance be-
tween the reference configuration and the observed
configuration is defined as the weighted sum of in-
dividual (normalized) distances for the n variables,
as shown in in Equation 2:

n

DC = Z WiDXi (2)
i=1
where w; is the weight for the variable X;, and the
n
sum of all weight must be 1 (i.e., } w; =1). By
i=1

1=
default, the weight is the same for all variables,
ie,w=1/n.

So far, we have presented how to calculate the
distance between a reference configuration and a
single corresponding observed frame. For static and
invariance kinematic rules, every frame observed
will be compared against each of the reference con-
figurations defined in each such rule. We must ag-
gregate the individual distances at the end of the it-
eration for each reference configuration, and further
aggregate them together for the entire rule. Sim-
ilarly, for a dynamic kinematic rule consisting of
several reference configurations, the distances for
the individual configurations must also be aggre-
gated as well.

Let m be the number of frames received within
an iteration, and Dicm-c be the distance between the
received frame i (where i = 1,2,...m) and a refer-
ence configuration Cy;. defined in the static rule.
The aggregated distance for the entire iteration with
respect to a reference configuration is defined in
Equation 3:

m
Y D¢
i=1

static
DCstutic = l (3)
m
Assuming that there are k reference configura-
tions in the static rule, the total distance for the
static rule is given in Equation 4:

k
D .
—1 Cs]tatic

Dslatic = JT (4)

The calculation for the aggregated distance for
the entire iteration with respect to the invariance
rule is rather similar. In the first step, the distance is
aggregated for each reference configuration in the
rule, as defined in Equation 5:

m .
D;
i—1 Cinvariance

DCinmriamre = l (5)
m
Assuming that there are k reference configura-
tions in the invariance rule, the total distance for the
invariance rule is given in Equation 6:

k
D .
=1 C;';mriance

Dinvuriance = ]_T (6)
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Assuming that a dynamic rule consists of k
reference configurations, and the distance for ref-
erence configuration j (where j = 1,2,...,k) is

jc _, the aggregated distance for the entire it-

d):nam!c . . .
eration with respect to the dynamic rule, Dc,,,,.,...» 15
defined in equation 7:

k
D .
Jg 1 Ctjj 'ynamic

Ddynamic = T (N

5 Fuzzy Inference

The distance we computed for each kinematic
rule is used as the input to a fuzzy inference sys-
tem that determines the overall quality of the execu-
tion of the current iteration. The overall structure of
the fuzzy inference system is illustrated in Figure 3.
For simplicity and clarity, we assume the kinematic
model consists of only one dynamic rule, one static
rule, and one invariance rule in this section.

For each input, a membership function is de-
fined so that the degree to which it belongs in the
corresponding fuzzy set can be determined. For
rehabilitation exercises, we recommend to include
the following classes in the fuzzy set: “excellent”,
“very good”, “good”, “fair”, and “poor”. The in-
put value is limited between 0 and 1 inclusive. A
distance measured might be larger than 1 if the pa-
tient deviates from a kinematic rule significantly, in
which case, the distance is rounded down to 1. An
example membership function based on the Guas-
sian curve for the input is shown in Figure 4.

We define the following five rules using linguis-
tic terms:

1 If the input from every kinematic rule is excel-
lent, then the execution of the current iteration is
excellent.

2 If the input from every kinematic rule is very
good or excellent, with at least one input belongs
to the “very good” category, then the execution
of the current iteration is very good.

3 If the input from every kinematic rule is good,
very good or excellent, with at least one input
belongs to the “good” category, then the execu-
tion of the current iteration is good.

4 If the input from every kinematic rule is fair,
good, very good or excellent, with at least one
input belongs to the “fair” category, then the ex-
ecution of the current iteration is fair.

5 If any of the inputs belongs to the “wrong” cat-
egory, then the execution of the current iteration
is wrong.

The five linguistic rules will be expressed in terms
of 125 fuzzy rules because we have three inputs and
each input has five categories. In fuzzy inference,
we assume that the rules have equal weight. The
output from each fuzzy rule evaluation also belongs
to a fuzzy set. As implied in the fuzzy rule spec-
ification, we choose to use the same membership
function as that of the input.

The surface plot for the output-input of the pro-
posed fuzzy inference system is shown in Figure 5.
The plot is generated using Matlab’s Fuzzy Logic
Toolbox (using the default Mamdani’s fuzzy infer-
ence method) with all 125 rules and the 3 inputs.
The figure shows the dependency of the output of
the fuzzy inference system (i.e., overall quality of
the iteration) with respect to the inputs from the dy-
namic rule and the invariance rule (the input from
the static rule is not shown). As can be seen, when
the inputs are close to 0, which means that the pa-
tient’s execution is very close to what is dictated
by the ideal kinematic model, the quality is high
(i.e., close to 0).

To provide easily understood feedback to the
patient, and to assist in deciding whether or not the
current iteration should be counted, the output value
is fuzzified again based on the membership func-
tion for the output. If the output belongs to “excel-
lent”, “very good”, or “good”, the current iteration
is counted. Otherwise, the current iteration is not

counted towards correct repetitions.

6 Case Studies

In this section, we demonstrate how to apply
our approach to rehabilitation exercise assessment
with two case studies, one using the hip abduction
exercise, and the other using the sit to stand exer-
cise. Both are common rehabilitation exercises. For
each case study, we first define the kinematic rules
for the exercise, then we show how to perform the
similarity calculation with two different traces, one
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Fuzzy Rule 1

Fuzzy Rule 2

Fuzzy Rule 3

Fuzzy Rule 4

Fuzzy Rule 5
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Figure 3. Overall structure of the fuzzy inference system for feedback computation.
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Figure 5. The surface plot for the output-inputs of the proposed fuzzy inference system. Only two of the
inputs are shown.
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a correct execution and the other an incorrect ex-
ecution of the exercise according to the subjective
judgment of the authors. In the last step, we show
the result of the fuzzy inference.

6.1 Hip Abduction

For rehabilitation purposes, the hip abduction
exercise involves movement of the hip in which the
abducting leg moves away from the body in the
same frontal plane as the rest of the body. To com-
plete multiple iterations during an exercise, hip ad-
duction follows the abduction movement so that the
leg goes back to the midline.

6.1.1 Kinematic Rules Specification

The kinematic rules for hip abduction are shown
in Listing 8. For simplicity, we omit the duration re-
quirement for each movement segment.

Listing 8. The rules for hip abduction.

1 <KinematicRules>
2 <ExerciseName>"Hip Abduction"
<ExerciseName>

3 <DynamicRule>

4 <Configuration>

5 <Type>"JointAngle"</Type>

6 <CenterJoint>"HipCenter"
</CenterJoint>

7 <DownstreamJoint>"RightAnkle"
</DownstreamJoint>

8 <UpstreamJoint>"LeftAnkle"
</UpstreamJoint>

9 <Angle>"0"</Angle>

10 <MaxAngleDeviation> "20"
</MaxAngleDeviation>

11 </Configuration>

12 <Configuration>

13 <Type>"JointAngle"</Type>

14 <CenterJoint>"HipCenter"
</CenterJoint>

15 <DownstreamJoint>"RightAnkle"
</DownstreamJoint>

16 <UpstreamJoint>"LeftAnkle"
</UpstreamJoint>

17 <Angle>"45"</Angle>

18 <MaxAngleDeviation> "20"
</MaxAngleDeviation>

19 </Configuration>

20 </DynamicRule>

21 <InvarianceRule>

22 <Configuration>

23 <Type>"BoneOrientation"</Type>

24 <DownstreamJoint>"HipCenter"
</DownstreamJoint>

25 <UpstreamJoint>"RightAnkle"
</UpstreamJoint>

26 <FrontalAngle>"0"</FrontalAngle>

27 <MaxAngleDeviation>"15"

28 </MaxAngleDeviation>

29 <SagittalAngle>"-1"</SagittalAngle>

30 <TransverseAngle>"-1"
</TransverseAngle>

31 </Configuration>

32 <Configuration>

33 <Type>"JointAngle"</Type>

34 <CenterJoint>"RightKnee"
</CenterJoint>

35 <DownstreamJoint>"HipCenter"
</DownstreamJoint>

36 <UpstreamJoint>"RightAnkle"
</UpstreamJoint>

37 <Angle>"170"</Angle>

38 <MaxAngleDeviation>"15"

39 </MaxAngleDeviation>

40 </Configuration>

41 </InvarianceRule>

42 </KinematicRules>

The rules for hip abduction include one dy-
namic rule and one invariance rule. The dynamic
rule concerns the movement of the abducting leg
(i.e., the right leg in our example) and the move-
ment is described in terms of two reference config-
urations, first when the abducting leg is at the mid-
line of the body, and the second one when the leg is
at the out-most position. A single variable, the hip
angle, is defined in both configurations. In the first
reference configuration, the expected angle value is
0 degree, and in the second reference configuration,
the expected angle value is 45 degrees. The first
configuration in the invariance rule dictates that the
abducting leg must remain within the frontal plane
while moving. The second configuration specifies
that the abducting knee must remain straight. Due
to the systematic error from the Kinect sensor [21],
we set the expected knee angle to be 170 degrees
instead of 180. We set the maximum angle devi-
ation for the parameters in the dynamic rule to 20
degrees and set the maximum angle deviation for
the parameters in the invariance rule to 15 degrees.

6.1.2 Similarity Calculation and Fuzzy Infer-
ence

Figure 6 shows three measured variables dur-
ing a run of multiple hip abduction iterations using
Microsoft Kinect, namely, hip angle, off-frontal-
plane angle, and knee angle, which are needed to
assess the dynamic rule and the invariance rule. In
this run, the first three iterations are executed cor-
rectly, and the last two iterations are done intention-
ally wrong by moving the abducting leg out of the
frontal plane. The hip angle is defined as the angle
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between the two legs (specifically using the vector
from the left hip to the left ankle, and the vector
from the right hip to the right ankle). The knee an-
gle refers to the angle formed between the upper leg
and the lower leg (using the vector from the knee
to the hip and the vector from the knee to the an-
kle). The off-frontal-plane angle refers to the angle
formed between the abducting leg and the frontal
plane.

180 | =
150
Hip Angle
—~ 120 Off-Frontal-Plane Angle
3 Right Knee Angle
o 9 | Left Knee Angle
g
[} 60
T Pl A £ s
g P TS A SN AN
< 30 | { *} P / * ; L i J
§ f 1 + F % e} b
/ F :
. _%%wg:%m% < |
P
_30 L L L 1 L 1 L §§‘§<1 \@

-2 0 2 4 6 8 10 12 14 16 18
Time Elapsed (seconds)

Figure 6. The measured variables a hip abduction
run with five iterations using Microsoft Kinect
sensor. The first three iterations are determined

subjectively as “correct” while the remaining two

are intentionally executed incorrectly.

The distance between the observed hip angle
and that defined in the reference configuration is
calculated based on Equation 1. Because it is the
only parameter in the configuration, it is also the
distance for the configuration itself. The total dis-
tance with respect to the dynamic rule can then be
computed using Equation 7. The invariance rule is
defined by two reference configurations, each with
only a single parameter. The similarity calculation
can be done by following Equations 1, 5 and 6.

The results of the similarity calculation for the
dynamic rule and the invariance rule are used as the
two inputs to the fuzzy inference system defined in
Section 5. The output of the fuzzy inference sys-
tem is obtained via Matlab. The inputs and the out-
puts for the three correct iterations and two wrong
iterations of hip abduction are summarized in Ta-
ble 6.1.2. The outputs are then fuzzified again so
that we can provide categorical feedback to the pa-
tient. As shown in Figure 7. the first three iterations
are categorized as “Good” or “Very Good” and the
last two iterations are classified as “Fair”.
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Figure 7. Fuzzified output with categorical
feedback for the five iterations of hip abduction.

Note that the similarity input and consequently
the output and its fuzzy classification closely de-
pend on the maximum deviation parameters speci-
fied in the kinematic rules. A large value might cat-
egorize a wrong iteration as “Good”, while a small
maximum deviation value might classify a correct
exercise as “Fair”. For example, if we set the maxi-
mum deviation to be 20 for the parameters in the in-
variance rule, the last two iterations would be classi-
fied as “Good”. On the other hand, if the maximum
deviation is set to be 10, two of the three correct it-
erations would be classified as “Fair”. Obviously,
it is desirable to automatically set such parameters
instead of manually tune them, which will be ad-
dressed in our future research using machine learn-
ing methods based on training data.

6.2 Sit to Stand

A sit to stand exercise can be used as a strength-
ening exercise for the large muscle groups of the
legs or it can be a motor re-learning activity, or both.
A patient who has multiple sclerosis, for example,
may practice sit to stand to improve strength and
coordinated movement of the gluteus maximus and
quadriceps muscles. That would entail having both
feet placed evenly on the floor at all times, and the
hip angle, left/right knee angles, and left/right ankle
angles all at about 90 degrees of flexion at the be-
ginning of the exercise. The person would then lean
forward with his or her trunk, moving into more
hip flexion, and stand in a typical manner from that
point.
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Table 1. The inputs and the output for five iterations of hip abduction.

Iteration 1

Iteration 2

Iteration 3 Iteration 4 Iteration 5

Input 1 Cl1 0.357 0.003 0.019 0.237 0.123
(dynamic) Cc2 0.131 0.509 0.563 0.670 0.604
Caynamic ~ 0.244 0.256 0.291 0.454 0.354
Input 2 Cl1 0.329 0.276 0.328 0.256 0.396
(invariance) Cc2 0.578 0.395 0.676 1.159 1.202
Cinvariance 0.453 0.336 0.502 0.707 0.799
Output 0.459 0.336 0.502 0.700 0.741
6.2.1 Kinematic Rules Specification 13 <Type>"JointAngle"</Type>
. . . . 14 <CenterJoint>"HipCenter"
To make multiple iterations of the exercise, the </CenterJoint>
patient performs the mirrored activity (i.e., stand to 15 <DownstreamJoint>"ShoulderCenter"
sit) followed by sit to stand. Unlike the hip abduc- FiRornstncentotne
. . . 16 <UpstreamJoint>"LeftKnee"
tion exercise, where the end pose of the abduction i reaniolnes
action is not stable (few individuals can maintain 17 <Angle>"60[130]"</Angle>
this one-leg pose for a significant amount time), the 1 <MaXAj§leie”la;io?> t o
. . . . </MaxAngleDeviation>
end pose of the sit to stand is stable in that a patient i </Configurati jm
may choose to stay (more or less) in the standing 2 <Configuration>
pose for some time before he/she proceeds to sit- 2 SHRES TEHAERTE C! S THE
ting down. As we will show later in this section, 2 <Cent<e/rciiltzzoﬁiienter
the patient may move slightly in the standing pose, 2 <DownstreamJoint>"ShoulderCenter™"
which would disrupt the motion segment tracking. </DownstreamJoint>
Hence, it is necessary to define the sit to stand, and H <Up5t<r/322iiz;;oiii imee
its mirrored activity (stand to sit) separately. »s <Angle>"180"</Angle>
For conciseness, we define the kinematic rules % <Maxi'}iziii‘;i;zztwi>
only for sit to stand, as shown in Listing 9. The pa- ” T e

rameters in the square parenthesis are the actual pa-
rameters used in the similarity calculation to adjust
to the systematic error of the Kinect measurement.
The rules for stand to sit are identical except that
the dynamic rule would consist of a set of reference
configurations in the reverse order.

Listing 9. The rules for sit to stand.

1 <KinematicRules>
2 <ExerciseName>"Sit to Stand"
<ExerciseName>

3 <DynamicRule>

4 <Configuration>

5 <Type>"JointAngle"</Type>

6 <CenterJoint>"HipCenter"
</CenterJoint>

7 <DownstreamJoint>"ShoulderCenter"
</DownstreamJoint>

8 <UpstreamJoint>"Left Knee"
</UpstreamJoint>

9 <Angle>"90[140]"</Angle>

10 <MaxAngleDeviation> "10"

</MaxAngleDeviation>
11 </Configuration>
12 <Configuration>

28 </DynamicRule>
29 <StaticRule>

30 <Configuration>
31 <Type>"BoneOrientation"</Type>
32 <DownstreamJoint>"LeftAnkle"

</DownstreamJoint>

33 <UpstreamJoint>"RightAnkle"
</UpstreamJoint>

34 <FrontalAngle>"0"</FrontalAngle>

35 <SagittalAngle>"90"</SagittalAngle>

36 <TransverseAngle>"-1"
</TransverseAngle>

37 <MaxAngleDeviation> "20"
</MaxAngleDeviation>

38 </Configuration>

39 </StaticRule>
40 </KinematicRules>

We define one dynamic rule and one static rule
for sit to stand. The dynamic rule concerns the
movement of the hip angle (formed by the torso and
the leg), while the static rule dictates the foot place-
ment during the entire exercise. The dynamic rule
includes three reference configurations, which rep-
resent the two monotonic segments for each itera-
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tion in terms of the hip angle. The first configura-
tion specifies that the hip angle must be 90 degrees
in the initial pose. During the first monotonic seg-
ment, the hip angle continuously decreases until it
reaches a minimum value of 60 degrees, which is
the second reference configuration and the start of
the second monotonic segment. During the second
segment, the hip angle continuously increases, un-
til it reaches a maximum of 180 degrees (i.e., the
standing pose). The static rule specifies that the two
ankles must be positioned in parallel to the frontal
plane and perpendicular to the sagittal plane.
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60 | Ankle Angle (correct run)

Hip Angle (wrong run) =
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Figure 8. The measured various variables for two
sit to stand runs using Microsoft Kinect sensor.

6.2.2 Similarity Calculation and Fuzzy Infer-
ence

Figure 8 shows the measured hip angle (for the
dynamic rule) and the ankle angle (for the static
rule) for two runs of sit to stand using an Microsoft
Kinect motion sensor. One run is correct with two
iterations, and the other is incorrect with a single
iteration. In the wrong run, the static rule is in-
tentionally violated by placing one foot in front the
other (instead of putting the two feet in parallel).
The hip angle refers to the angle formed between
the torso and the leg. It is calculated using two vec-
tors: one vector from the hip center to the head, and
the other from the hip center to the center of the
left and right knees (i.e., (left knee position + right
knee position)/2). The ankle angle refers to the an-
gle formed between the two ankles and the frontal
plane and it denotes the deviation from the expected
angle specified in the static rule for sit to stand.

As can be seen, for the correct run, the mea-
sured hip angle for the sitting pose is about 140 de-
grees instead of 90. Similarly, the minimum angles
are about 130 degrees for the second configuration

instead of 60 degrees. On the other hand, the maxi-
mum hip angle is about 175 degrees for the standing
pose. The measured deviation from the ideal orien-
tation (termed “ankle angle” in the figure) fluctuates
slightly around 10 degrees.

The distance between the observed hip angle
and the expected value can be calculated based on
Equation 1. Because it is the only parameter in each
configuration in the dynamic rule, it is also the dis-
tance for the configuration itself. The total distance
with respect to the dynamic rule can then be com-
puted using Equation 7.

The static rule defines one configuration with
a single parameter. The distance between the ob-
served deviation from the expected angle can be cal-
culated based on Equation 1 for each frame. The
distance is then aggregated using Equation 3. Be-
cause there is only a single configuration for the
static rule, the outcome is also the overall distance
with respect to the static rule. The fuzzified outputs
are shown in Figure 9. The first two iterations are
categorized as “Good” and the last iteration is clas-
sified as “Fair/Poor”.

Table 2. The inputs and the output for three
iterations of sit to stand.

Iteration 1 Iteration 2 Iteration 3

C1 0.076 0.041 0.358
C2 0.118 0.240 0.109
C3 0.052 0.070 0.054
Caynamic 0.082 0.117 0.174
Cstatic 0.479 0.468 1.926
Output 0.480 0.466 0.877

7 Conclusion

In this article, we presented a novel approach
to realtime motion assessment and feedback for re-
habilitation exercises based on the integration of
comprehensive kinematic modeling with fuzzy in-
ference. To facilitate the assessment of all impor-
tant aspects of a rehabilitation exercise, we devel-
oped a comprehensive kinematic model that cap-
tures the essential requirements for static poses, dy-
namic movements, as well as the invariance that
must be observed during an exercise. This model
was then expressed in terms of a set of kinematic
rules. During the actual execution of a rehabilita-
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tion exercise, we compare the similarity between
the observed motion data and the set of kinematic
rules by computing their distances. We then use the
distances for the kinematic rule as the inputs to a
fuzzy inference system to derive the overall qual-
ity of the execution of the current iteration. Both
the output from the fuzzy inference system for each
exercise, and the similarity results with respect to
the kinematic rules can be presented to the patient
as feedbacks in realtime. Hence, the integrated ap-
proach provides both a detailed categorical assess-
ment of the overall execution of the exercise and the
degree of adherence to individual kinematic rules.
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