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Abstract

The Firefly Algorithm (FA) is employed to determine the optimal parameter settings in
a case study of the osmotic dehydration process of mushrooms. In the case, the func-
tional form of the dehydration model is established through a response surface technique
and the resulting mathematical programming is formulated as a non-linear goal program-
ming model. For optimization purposes, a computationally efficient, FA-driven method is
used and the resulting optimal process parameters are shown to be superior to those from
previous approaches. The final section of this study provides a computational experimen-
tation performed on the FA to analyze its relative sensitivity over a range of the two key
parameters that most influence its running time.

1 Introduction

Commercial agronomy represents a multi-
billion dollar, worldwide enterprise. Within this in-
dustry, the annual global production of mushrooms
currently exceeds 6 million tonnes [1]. As with
many fresh fruits and vegetables, the high mois-
ture content of mushrooms renders them highly per-
ishable and, due to various enzymatic, microbial
and chemical reactions, they commence deteriora-
tion immediately upon harvesting [2] [3]. There-
fore, it becomes imperative to determine effective
preservation methods that retain the overall quality
and desirable features of the product. The preser-
vation of many agricultural commodities has often
been accomplished by employing various combina-
tions of drying using heat processing and dehydra-
tion[2] [3] [4]. The dehydration of fresh produce
generally extends their storage lives, decreases their
shipping weights, and reduces the need for special
packing requirements [2]. However, hot-air dried

products conventionally processed using tray, vac-
uum, or cabinet dryer techniques have not received
widespread acceptance due to the perceived dimin-
ished quality of the endproduct [2] [4] [5].

Recently, osmotic dehydration has been intro-
duced as a practical alternative preservation ap-
proach that is capable of producing a higher qual-
ity final product [6]. In osmotic dehydration, fresh
produce is immersed in a hypertonic solution where
the water content from the cells of the produce is
transferred into the solution due to the relative dif-
ferences in their solute concentrations [6]. In this
processing, osmotic dehydration removes a desired
portion of the water from within the fresh produce
resulting in a product of intermediate moisture con-
tent [7] [8]. Simultaneously, a corresponding trans-
fer of solid materials (normally sugar and/or salt)
occurs from the solution into the product [6] [9]
[10]. In terms of final product quality relative to
standard hot air drying methods, osmotic dehydra-
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tion causes only minimal thermal degradation due
to the low temperatures involved [6] [11] [12] [13].

Osmotic dehydration of fresh agricultural com-
modities can also be used as a pre-treatment to sup-
plemental dry-processing because it improves many
sensory, functional and nutritional properties [14].
The quality of the subsequent product is superior to
one without pre-treatment due to (i) the improve-
ments to texture of the fruits and vegetables, (ii) the
stability of the colour pigmentation during storage,
and (iii) increases in the solid gain transfer of sugar
and salt from the hypertonic solution [2] [11]. Thus,
in conjunction with other ensuing drying technolo-
gies, osmotic dehydration produces a superior qual-
ity, shelf-stable product for both local consumption
and export markets.

Water removal during the dehydration process
is influenced by many factors such as type and con-
centration of osmotic agents, temperature, circula-
tion/agitation of solution, solution-to-sample ratio,
thickness of food material, and any pre-treatments
[4] [6]. While an expanding market currently exists
for osmo-convective dehydrated fruits and vegeta-
bles in both domestic and world markets, only lim-
ited efforts have been undertaken to optimize the
requisite osmotic process parameters [2] [11] [15]
[16] [17] [18]. Specifically, an effective analysis
of the mass transport occurring within the osmosis
process measured in terms of water loss and solid
(sugar, salt) gains is of considerable commercial
and practical relevance [4] [6] [10].

In this study, the functional form of the osmotic
dehydration process for mushrooms is constructed
using a standard response surface technique [17]
[18] [19] [20] [21]. The format of the resulting op-
timization model is shown to be a non-linear goal
programming problem [15] [16] [17] [18]. This
study employs the Firefly Algorithm (FA) [17] [22]
[23] [24] to determine the optimal osmotic parame-
ters for the mushroom dehydration case considered
in [2]. It can be shown that the resulting osmotic
process parameters produced by the FA are superior
to those from the previous approaches. Extending
the approach introduced in [25], the final portion of
the study provides an extensive computational ex-
perimentation performed on the FA using the os-
motic dehydration model to determine the relative
sensitivity of the procedure over ranges of the two
key parameters that most influence its running time.

2 Functional Form and Mathemat-
ical Model of the Osmotic Dehy-
dration Process

The first section of the analysis examines the
dehydration case of mushrooms taken from [2]. In
the case, a brine solution is employed for dehydra-
tion and the solid gain corresponds to the transport
of salt from the brine into the mushrooms. The
first step requires the construction of an appropriate
model of the responses to the three main osmotic
process parameters – (i) solution temperature, (ii)
hypertonic solution concentration and (iii) duration
of osmosis – on the water loss and solid gain of
the mushrooms. This functional representation can
then be used to predict the water loss and salt gain
impacts in the mushrooms over the requisite exper-
imental ranges of the three designated parameters.
Once the appropriate model has been constructed,
the next step is to optimize this model in order to
determine the maximum water loss and the opti-
mum salt gain achieved during dehydration. In the
subsequent formulations, let T represent the brine
solution temperature in oC, C be the salt solution
concentration in percent, and D be the duration of
the osmosis measured in minutes. For the response
variables, let WL be the percentage of water loss and
SG represent the solid gain of the product during
the dehydration process. In this instance, SG corre-
sponds to the percentage of salt gain in the mush-
rooms.

Response surface methods are statistical tech-
niques frequently used for optimization in empiri-
cal studies [19] [20] [21]. Response surfaces em-
ploy quantitative data in appropriately designed ex-
periments to simultaneously ascertain the various
variable relationships within multivariate problems
[21]. The equations constructed describe the effect
of various test variables on responses, determine in-
terrelationships among the test variables and rep-
resent the combined effect of all test variables in
any response. Response surfaces enable an exper-
imenter to undertake an efficient exploration of a
process or system [20] [21]. These approaches have
frequently been used in the optimization of food
processes [2] [11] [26] [27] [28] [29] [30] and will,
consequently, be employed in this study to deter-
mine the appropriate mathematical representation.
The proposed model can then be used to predict the
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water loss and salt gain in the dehydration of mush-
rooms over the different experimental ranges for the
process durations, brine concentrations and solution
temperatures.

For the osmotic dehydration process, it should
be noted that the exact mathematical representation
for the relationship between the parameters remains
unknown. Thus a response surface methodology
enables an empirical approximation to it using effi-
cient experimental design techniques [20] [21]. The
specific testing design actually contains the three
variables (T, C, D) each set at three levels using the
data taken from [2] in order to determine the cor-
responding water loss (WL) and salt gain (SG) re-
sponses. The design for the various combinations
of input variables and levels requires the various
experimental combinations shown in Table 1 (see
[2]), while the values determined for the response
variables WL and SG appear in last two columns of
Table 1.

Based upon the response surface experimental
design appropriately applied to the water loss and
the salt gain outputs of Table 1 [19] [20] [21], the
functional equations empirically determined for re-
sponses are:

WL = 19.58 – 0.13T + 1.7C + 0.98D + 0.00357TD
+ 0.00673CD – 343C2 – 0.0106D2

SG = – 13.87 + 0.11T + 1.09C + 0.14D –
0.000973T2 – 0.0296C2 – 0.00129D2.

Mehta et al. [2] established organoleptic ranges for
the osmotic dehydration parameters and restricted
their search for best parameter settings to values
within these ranges. Organoleptic properties refer
to sensory aspects of food including taste, sight,
smell, touch, dryness, moisture content, and stale-
fresh factors. In order to find values for the os-
motic dehydration parameters, Mehta et al. [2] con-
structed a number of contour plots by varying the
values of the three variables and observed the effect
that these had on their response functions. By su-
perimposing these contours onto a single chart, the
best settings for the temperature, concentration, and
duration variables were determined to be 44.89oC,
16.53% and 47.59 minutes, respectively. These set-
tings generate responses of 40.55% for water loss
and 2.98% for salt gain (see Table 2).

3 A Goal Programming Formula-
tion for Setting Osmotic Dehy-
dration Parameters

The determination of the parameters settings
can be viewed as a multi-response optimization pro-
cess and could, therefore, be transformed into a cor-
responding mathematical programming model [15]
[16] [17] [18]. In this section, this formulation will
be accomplished by converting the parameter set-
ting process into an equivalent goal programming
format.

Based upon the organoleptic requirements es-
tablished for the parameters and response functions
in [2], the technical constraints for the problem can
be specified as:

26.18 ≤ WL ≤ 45.04
0.33 ≤ SG ≤ 3.24

35 ≤ T ≤ 55
10 ≤ C ≤ 20
30 ≤ D ≤ 60

Additional organoleptic preferences can be ap-
plied to the responses and variables for the solution.
The targets for these desired criteria are summa-
rized in Table 3. From a hierarchical preference at-
tainment perspective, several of these criteria can be
recognized as more important attributes to achieve
than the others. Namely, from a dehydration per-
spective, the water loss should be as high as possi-
ble within the indicated range, while from a taste
perspective, the salt gain needs to be as close to
2.98% as possible. The relative importance for the
achievement of these hierarchy targets is indicated
in the last column of Table 3.

Hence, from a mathematical perspective, each
of these desired targets can be specified as a defini-
tive goal and the entire formulation can then be
transformed into a conventional goal programming
problem. An objective function that appropriately
penalizes deviations from the desired targets must
be created and, in the subsequent mathematical pro-
gramming formulation, a percentage deviation ob-
jective weighted by the relative importance of each
goal is employed. Consequently, the problem of
determining osmotic dehydration parameter values
can be transformed into the following non-linear
goal programming formulation.
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Table 1. Response Surface Experimental Design Layout for 3 Variables and 3 Levels

Level
for
T

Temperature
(oC)

Level
for
C

Concentration
(%)

Level
for
D

Duration
(Mins)

Water
Loss (%)

Salt
Gain
(%)

1 55 1 20 0 45 44.93 3.24
1 55 -1 10 0 45 36.38 1.03
-1 35 1 20 0 45 39.70 2.56
-1 35 -1 10 0 45 29.92 0.59
1 55 0 15 1 60 43.92 2.90
1 55 0 15 -1 30 34.23 2.24
-1 35 0 15 1 60 37.09 2.34
-1 35 0 15 -1 30 29.54 1.73
0 45 1 20 1 60 45.04 3.03
0 45 1 20 -1 30 35.51 2.22
0 45 -1 10 1 60 33.69 1.06
0 45 -1 10 -1 30 26.18 0.33
0 45 0 15 0 45 38.05 2.57
0 45 0 15 0 45 38.44 2.64
0 45 0 15 0 45 38.27 2.64
0 45 0 15 0 45 38.55 2.79
0 45 0 15 0 45 38.60 2.82

Table 2. Best Osmotic Dehydration Parameters Determined by Mehta et al

Temperature
(oC)

Concentration
(%)

Duration
(Mins)

Water
Loss (%)

Salt Gain
(%)

44.89 16.53 47.59 40.55 2.98

Table 3. Ranges for Process Variables and Response Goals in the Osmotic Dehydration

Parameter Goal Requirement Lower
Limit

Upper
Limit

Relative Importance

Temperature
(oC)

1 Minimize 35 55 Important

Concentration
(%)

2 Minimize 10 20 Important

Duration (Mins) 3 Minimize 30 60 Important
Water Loss (%) 4 Maximize 23.02 44.05 Very Important
Salt Gain (%) 5 Target = 2.98 0.33 3.24 Very Important
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Minimize W1*P1 + W2*P2 + W3*P3 + W4*N4 +
W5*(P5 + N5)

s.t. P1 = T – 35

N1 = 55 – T

P2 = C – 10

N2 = 20 – C

P3 = D – 30

N3 = 60 – D

P4 = WL – 26.18

N4 = 45.04 – WL

P5 = SG – 2.98

N5 = 2.98 – SG

P6 = SG – 0.33

N6 = 3.24 – SG

Pi ≥ 0, Ni ≥ 0

i = 1, 2, 3, 4, 5, 6

In order to complete the transformation of the
problem into the series of defined goals, several ad-
ditional deviation variables have been introduced.
Namely, for the goal model, define Pi and Ni, i = 1
to 6, to be the positive and negative deviations, re-
spectively, from the disparate goal targets and con-
straint limits shown for the variables in Table 3.
Let Wi correspond to weighting factors applied to
goal i, i = 1 to 5, to reflect the relative importance
in achieving that goal’s target. Each Wi also con-
tains the appropriate denominator constant required
to transform the deviation variables into the requi-
site percentage deviation value format. Thus, solv-
ing the goal programming model would be equiva-
lent to determining optimal parameter values for the
osmotic dehydration process.

4 A Goal Programming, Firefly
Algorithm-driven Optimization
Approach

While numerous different techniques could
have been used to solve the resulting optimization
problem, the method actually applied uses an FA
procedure. For optimization, Yang [23] has proved
that the FA is more computationally efficient than
other such commonly-used metaheuristics as simu-

lated annealing, enhanced particle swarm optimiza-
tion, and genetic algorithms. Thus, the FA repre-
sents a very computationally efficient solution pro-
cedure. This section provides a brief outline of the
FA procedure, while more comprehensive descrip-
tions can be found in [22] and [23].

The FA is a population-based, nature-inspired
metaheuristic in which each firefly within the pop-
ulation corresponds to one potential solution to the
problem. All FA procedures employ three specific
rules: (i) The fireflies within a population are uni-
sex, so that one firefly will be attracted to other
fireflies irrespective of their sex; (ii) Attractiveness
between any two fireflies is proportional to their
brightness, implying that the less bright firefly will
move towards the brighter one; and (iii) The explicit
brightness of any firefly is explicitly determined by
the corresponding value of its objective function.
For maximization problems, the brightness can be
considered proportional to the value of the objec-
tive function. Yang (2010) demonstrates that the FA
approaches the global optima whenever the number
of fireflies n ∞ and the number of iterations t, is set
so that t >>1. In reality, the FA has been shown
to converge extremely quickly into both local and
global optima [22] [23]. The basic operational steps
of the FA are summarized in Table 4 [23].

There are two important requirements that must
be determined for the FA: (i) the variation of light
intensity and (ii) the formulation of attractiveness.
Without loss of generality, it can always be assumed
that the attractiveness of a firefly is determined by
its brightness which in turn is associated with the
encoded objective function. In the simplest case,
the brightness of a firefly at a particular location X
would be its calculated objective value F(X). How-
ever, the attractiveness, b, between fireflies is rel-
ative and will vary with the distance ri j between
firefly i and firefly j. In addition, light intensity de-
creases with the distance from its source, and light
is also absorbed in the media, so the attractiveness
should be allowed to vary with the degree of absorp-
tion. Consequently, the overall attractiveness for a
firefly specified as

β = β0 exp(-γr2)

where β0 is the attractiveness at distance r = 0 and γ
is the fixed light absorption coefficient for the spe-
cific medium. The distance ri j between any two
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Table 4. Pseudo Code of the Firefly Algorithm

Objective Function F(X), X = (x1, x2,. . . xd)
Generate the initial population of n fireflies, Xi, i = 1, 2,. . . , n
Light intensity Ii at Xi is determined by F(Xi)
Define the light absorption coefficient γ
while (t < MaxGeneration)
for i = 1: n , all n fireflies
for j = 1: n ,all n fireflies (inner loop)
if (Ii < I j), Move firefly i towards j; end if
Vary attractiveness with distance r via e−γr

end for j
end for i
Rank the fireflies and find the current global best solution G∗

end while
Postprocess the results

fireflies i and j located at Xi and X j, respectively,
is calculated using the Euclidean norm. The move-
ment of a firefly i that is attracted to another more
attractive (i.e. brighter) firefly j can therefore be
specified as

Xi = Xi +β0exp(−γ(ri j)
2)(Xi −−X j)+αεi.

In this expression, the second term is the move-
ment due to relative attraction and the third term
represents a randomization component. Yang [23]
states that α represents a randomization parameter
selected within the range [0,1] and εi corresponds
to a vector of random numbers drawn from either a
standard normal or a uniform (generally [-0.5,0.5])
distribution. This expression represents a random
walk biased toward brighter fireflies. Furthermore,
if β0 = 0, it becomes a simple random walk. The
parameter γ portrays the variation of attractiveness
and its value can determine the algorithm’s rate of
convergence. Normally, γ is typically set between
0.1 to 10 in most practical applications [23]. For the
computational approaches for the FA considered in
this study, the variation of attractiveness parameter
γ is fixed at 5 while the randomization parameter α
is initially set at 0.6, but is then gradually decreased
to a value of 0.1 as the procedure approaches its
maximum number of iterations (see [23]).

Optimizing the goal programming problem using
the FA-driven procedure, the best process param-
eters for the osmotic dehydration of the mushrooms
were calculated. The resulting values are shown in
Table 5. Comparing these values to those found by

Mehta et al. [2], it can be seen that the salt con-
centration increases by 2.5%, the required temper-
ature increases by 9oC, while the duration of dehy-
dration remains essentially unchanged. In terms of
the two key response variables, the resulting water
loss increases by 4.5%, while the salt gain remains
at its desired organoleptic target of 2.98%. Conse-
quently, since the water loss response – which is ob-
viously the fundamental feature of the osmotic de-
hydration process – has been increased significantly
from that determined in [2], this goal programming
solution provides a significant improvement.

In any given optimization problem, for a very
large number of fireflies n >> k where k is the num-
ber of local optima, the initial locations of the n fire-
flies should be distributed as uniformly as possible
to ensure that a comprehensive search throughout
the search domain occurs. As the FA proceeds, the
fireflies should converge into all of the local optima,
including the global ones. By comparing the best
solutions among all these optima, the global optima
can easily be determined. As noted above, the FA
approaches the global optima whenever the number
of fireflies n → ∞ and the number of iterations t, is
set so that t >>1 [23]. In reality, the FA has a ten-
dency to converge very quickly into both local and
global optima [22] [23] [31].

As can be observed in Table 4, the two param-
eters that most directly impact the solution running
time of the FA are the values selected for n and t.
Obviously, for practical applications, the desire is to
be able to determine the best solution in the shortest
period of time. This would correspond to setting n
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Generate the initial population of n fireflies, Xi, i = 1, 2,. . . , n
Light intensity Ii at Xi is determined by F(Xi)
Define the light absorption coefficient γ
while (t < MaxGeneration)
for i = 1: n , all n fireflies
for j = 1: n ,all n fireflies (inner loop)
if (Ii < I j), Move firefly i towards j; end if
Vary attractiveness with distance r via e−γr

end for j
end for i
Rank the fireflies and find the current global best solution G∗

end while
Postprocess the results

fireflies i and j located at Xi and X j, respectively,
is calculated using the Euclidean norm. The move-
ment of a firefly i that is attracted to another more
attractive (i.e. brighter) firefly j can therefore be
specified as

Xi = Xi +β0exp(−γ(ri j)
2)(Xi −−X j)+αεi.

In this expression, the second term is the move-
ment due to relative attraction and the third term
represents a randomization component. Yang [23]
states that α represents a randomization parameter
selected within the range [0,1] and εi corresponds
to a vector of random numbers drawn from either a
standard normal or a uniform (generally [-0.5,0.5])
distribution. This expression represents a random
walk biased toward brighter fireflies. Furthermore,
if β0 = 0, it becomes a simple random walk. The
parameter γ portrays the variation of attractiveness
and its value can determine the algorithm’s rate of
convergence. Normally, γ is typically set between
0.1 to 10 in most practical applications [23]. For the
computational approaches for the FA considered in
this study, the variation of attractiveness parameter
γ is fixed at 5 while the randomization parameter α
is initially set at 0.6, but is then gradually decreased
to a value of 0.1 as the procedure approaches its
maximum number of iterations (see [23]).

Optimizing the goal programming problem using
the FA-driven procedure, the best process param-
eters for the osmotic dehydration of the mushrooms
were calculated. The resulting values are shown in
Table 5. Comparing these values to those found by

Mehta et al. [2], it can be seen that the salt con-
centration increases by 2.5%, the required temper-
ature increases by 9oC, while the duration of dehy-
dration remains essentially unchanged. In terms of
the two key response variables, the resulting water
loss increases by 4.5%, while the salt gain remains
at its desired organoleptic target of 2.98%. Conse-
quently, since the water loss response – which is ob-
viously the fundamental feature of the osmotic de-
hydration process – has been increased significantly
from that determined in [2], this goal programming
solution provides a significant improvement.

In any given optimization problem, for a very
large number of fireflies n >> k where k is the num-
ber of local optima, the initial locations of the n fire-
flies should be distributed as uniformly as possible
to ensure that a comprehensive search throughout
the search domain occurs. As the FA proceeds, the
fireflies should converge into all of the local optima,
including the global ones. By comparing the best
solutions among all these optima, the global optima
can easily be determined. As noted above, the FA
approaches the global optima whenever the number
of fireflies n → ∞ and the number of iterations t, is
set so that t >>1 [23]. In reality, the FA has a ten-
dency to converge very quickly into both local and
global optima [22] [23] [31].

As can be observed in Table 4, the two param-
eters that most directly impact the solution running
time of the FA are the values selected for n and t.
Obviously, for practical applications, the desire is to
be able to determine the best solution in the shortest
period of time. This would correspond to setting n
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Table 5. Optimal Process Parameters Determined for the Osmotic Dehydration of Mushrooms

Temperature
(oC)

Concentration
(%)

Duration
(Mins)

Water
Loss (%)

Salt
Gain
(%)

Mehta et al. [2] 44.89 16.53 47.59 40.55 2.98
FA Solution 54.043 19.031 46.777 45.04 2.98

and t at the minimum possible values that produce
the best solution(s). Using terminology from com-
putational complexity, the search time for the FA is
linear in t, but is a second order polynomial in n.

However, since the FA’s search process incorpo-
rates random components within its solution search,
the parameter setting is clearly not a strictly de-
terministic issue – determining appropriate values
for n and t reflects a component of choice on the
part of the decision-maker. Consequently, an subse-
quent sensitivity analysis was performed for differ-
ent combinations of the number of fireflies, n, and
the number of iterations, t, on the solution quality.
Specifically, the value of the firefly parameter was
set at n = 20, 50, 100, 150, 200, 250, 250, 500 and
the value for the number of iterations was set at t
= 100, 250, 500, 1000, 1500, 2500. For 30 runs
of each parametric combination of fireflies and it-
erations, the corresponding responses for the water
loss and salt gain were recorded. The average val-
ues of these responses over the 30 runs per combi-
nation are provided in Table 6 and visual represen-
tation of these values appears in Figures 1 and 2,
respectively.

Figure 1. Average Water Loss (%) in the
Mushrooms for Different Parameter Settings of the

Firefly Algorithm

Figure 2. Average Salt Gain (%) in the
Mushrooms for Different Parameter Settings of the

Firefly Algorithm

As might have been reasonable to anticipate a
priori, it is interesting to observe that more con-
sistent solutions (i.e. where the average values are
closer to optimal) are obtained when the values for
either the number of fireflies or the number of iter-
ations are relatively larger. Namely larger values of
n or t tend to produce solutions closer to the actual
optimal solution on average, while combinations
involving smaller parameter values tend to exhibit
more solution variability in terms of both water loss
and salt gain. While there are multiple approaches
that can be undertaken to parse these results, Fig-
ures 3 and 4 provide comparisons of the average
water loss and salt gain responses obtained for the
minimum and maximum number of iterations con-
sidered in the experimentation. From Figures 3 and
4, it can be observed that at t = 2500, the FA al-
ways produces optimal water loss and near-optimal
salt gain solutions, on average, for any number of
fireflies (i.e. the FA always generated near-optimal
solution in each of the 30 runs). Conversely, at t =
100, the average water loss and salt gain values indi-
cate that there can be some variability in the quality
of the solution obtained irrespective of the number
of fireflies employed in the FA process. However,
the solutions are all very good. The indication from
this examination is that the more iterations used, the
better the solution quality obtained by the FA.
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Table 6. Average Salt Gain (%) and Water Loss (%) for Different Parameter Settings of the Firefly
Algorithm

No. of
Fireflies

Number of Iterations

100 250 500 1000 1500 2500
SG WL SG WL SG WL SG WL SG WL SG WL

20 3.00 45.01 2.69 42.60 2.89 43.24 2.93 43.67 2.88 45.03 2.93 45.03
50 3.04 45.04 2.89 45.04 2.96 45.04 2.96 45.04 2.94 45.04 2.90 45.03
100 2.94 45.01 2.95 45.03 3.02 45.04 3.03 45.04 2.95 45.04 2.98 45.04
150 3.00 45.04 2.93 45.04 2.92 45.03 2.92 45.04 3.01 45.04 2.93 45.04
200 3.00 45.04 2.92 45.04 2.92 45.04 2.94 45.04 3.01 45.03 2.98 45.04
250 2.98 45.04 2.99 45.03 3.03 45.04 2.98 45.04 2.98 45.04 3.01 45.04
500 3.04 45.03 2.94 45.04 2.99 45.03 2.93 45.04 2.99 45.04 3.03 45.04

Figure 3. Comparison of Average Water Loss (%)
in the Mushrooms from Runs of 100 Generations

and 2500 Generations in the Firefly Algorithm

Figure 4. Comparison of Average Salt Gain (%) in
the Mushrooms from Runs of 100 Generations and

2500 Generations in the Firefly Algorithm

Similar to the preceding analysis, Figures 5 and
6 provide a comparison of the average water loss
and salt gain responses obtained for the minimum
and maximum number of fireflies considered. From
these Figures, it can be seen that at n = 500 fireflies,
the FA always produces near-optimal water loss and
salt gain solutions, on average, for any number of
iterations. Namely, the average solutions are all

extremely close to optimal. Conversely, at n = 20
fireflies, the average water loss and salt gain values
show that there can be considerable variability in
the quality of the solution obtained irrespective of
the number of iterations employed in the FA. These
findings clearly illustrate that the more fireflies used
in the FA, the better the solution quality.

Figure 5. Comparison of Average Water Loss (%)
in the Mushrooms from Runs with 20 Fireflies and

Runs with 500 Fireflies

Figure 6. Comparison of Average Salt Gain (%) in
the Mushrooms Between Runs with 20 Fireflies

and Runs with 500 Fireflies
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the quality of the solution obtained irrespective of
the number of iterations employed in the FA. These
findings clearly illustrate that the more fireflies used
in the FA, the better the solution quality.

Figure 5. Comparison of Average Water Loss (%)
in the Mushrooms from Runs with 20 Fireflies and

Runs with 500 Fireflies

Figure 6. Comparison of Average Salt Gain (%) in
the Mushrooms Between Runs with 20 Fireflies

and Runs with 500 Fireflies

A PARAMETRIC TESTING OF THE FIREFLY ALGORITHM IN . . .

It should be further reinforced that Table 6
shows the average response values for each com-
bination of n and t. While the FA in the larger
parameter value combinations tend to converge to
the overall optimal solution, the smaller combina-
tions would also frequently produce this optimal
value within their set of the 30 runs. However,
there would also be occasions where divergent so-
lution values were found within the runs, thereby
distorting the overall averages. Given the running
time complexities for the FA, a combination of a
relatively smaller value of n combined with a rel-
atively larger value for t would be preferable from
both a solution time and solution accuracy perspec-
tive. Table 6 shows that even the intermediate val-
ues in the experimental ranges considered for n and
t tend to consistently produce very high quality so-
lutions. The experimentation for this specific prob-
lem would indicate that the value for t needs to be
set somewhere in the range of 500 to 1000 itera-
tions, while the value for n should be between 100
and 150 fireflies if always being able to calculate
the true optimal solution is required.

5 Conclusion

In this study, an empirical response surface
approach was employed to provide the functional
form of the osmotic dehydration responses for
mushrooms. Using these estimates of the functional
form, the resulting optimization model was for-
mulated into a non-linear goal programming prob-
lem. The optimal solution to the goal program-
ming problem was found using a computationally
efficient, FA-directed procedure and the osmotic
parameters determined were shown to be superior
to those found in all previous instances. Compu-
tational experimentation on the goal programming
model tested the relative solution effectiveness of
the FA over its key running-time parameters of
the number of iterations and the number of fire-
flies. This experimentation demonstrated that for
intermediate-to-high values of either of the two key
parameters, the FA would always determine overall
optimal solutions, while lower values of either pa-
rameter produced greater variability in the solution
quality. Since the running time complexity of the
FA is linear in the number of iterations but polyno-
mial in the number of fireflies, these results would

seem to confirm that it would be more computa-
tionally practical to run the FA using a relatively
larger number of iterations in combination with a
“reasonable” number of fireflies than vice versa.
Since an FA can clearly be modified to solve a di-
verse spectrum of “real world” problems beyond the
context of fresh produce dehydration, the compu-
tational findings from this sensitivity analysis can
obviously be extended into numerous other “real
world” settings. These extensions will be consid-
ered in future research.
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