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Abstract

Adaptive Particle Swarm Optimization (PSO) variants have become popular in recent
years. The main idea of these adaptive PSO variants is that they adaptively change their
search behavior during the optimization process based on information gathered during
the run. Adaptive PSO variants have shown to be able to solve a wide range of diffi-
cult optimization problems efficiently and effectively. In this paper we propose a Re-
pulsive Self-adaptive Acceleration PSO (RSAPSO) variant that adaptively optimizes the
velocity weights of every particle at every iteration. The velocity weights include the
acceleration constants as well as the inertia weight that are responsible for the balance be-
tween exploration and exploitation. Our proposed RSAPSO variant optimizes the velocity
weights that are then used to search for the optimal solution of the problem (e.g., bench-
mark function). We compare RSAPSO to four known adaptive PSO variants (decreasing
weight PSO, time-varying acceleration coefficients PSO, guaranteed convergence PSO,
and attractive and repulsive PSO) on twenty benchmark problems. The results show that
RSAPSO achives better results compared to the known PSO variants on difficult opti-
mization problems that require large numbers of function evaluations.

1 Introduction

Particle Swarm Optimization (PSO) is one of
the swarm intelligence methods [1]. The behavior
of PSO is inspired by bird swarms searching for op-
timal food sources, where the direction in which a
bird moves is influenced by its current movement,
the best food source it ever experienced, and the
best food source any bird in the swarm ever expe-
rienced. As for PSO, the movement of a particle is
influenced by its inertia, its personal best position,
and the global best position of the swarm.

PSO has several particles, and every particle
maintains its current objective value, its position, its
velocity, its personal best value, that is the best ob-
jective value the particle ever experienced, and its
personal best position, that is the position at which
the personal best value has been found. In addition,
PSO maintains a global best value, that is the best

objective value any particle has ever experienced,
and a global best position, that is the position at
which the global best value has been found. Basic
PSO [1] uses the following equation to move the
particles:

x(i)(n+1) = x(i)(n)+ v(i)(n+1),

n = 0,1,2, . . . , −1, (1a)

where x(i) is the position of particle i, n is the iter-
ation number with n = 0 referring to the initializa-
tion, is the total number of iterations, and v(i) is the
velocity of particle i, i= 1,2, . . . ,np, where np is the
number of particles. Basic PSO uses the following
equation to update the particle velocities:

v(i)(n+1) = wv(i)(n)+ c1r(i)1 (n)[x(i)p (n)− x(i)(n)]

+ c2r(i)2 (n)[xg(n)− x(i)(n)],

n = 0,1,2, . . . , −1, (1b)

  – 204
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where x(i)p (n) is the personal best position of parti-
cle i, and x(i)g (n) is the global best position of par-
ticle i, w is the inertia weight and is set to 1, and
the acceleration constants are c1 and c2. Both r(i)1

and r(i)2 are vectors with components having random
values uniformly distributed between 0 and 1. The
notation r(i)(n) denotes that a new random vector is
generated for every particle i at iteration n.

PSO can focus on either population/particle di-
versity or convergence of particles at any iteration.
Diversity favors particles that are searching a large
area coarsely, whereas convergence favors parti-
cles that are searching a small area intensively. A
promising strategy is to promote diversity of the
swarm in early iterations and convergence in later
iterations [2, 3], or assigning attributes to individual
particles to promote diversity or convergence [4].

Despite PSO’s simplicity, the success of PSO
largely depends on the selection of optimal values
for the control parameters w, c1, and c2. Non-
optimal values of the control parameters lead to
suboptimal solutions, premature convergence, stag-
nation, or divergent or cyclic behaviour [5, 6].
However, the optimal setting of the control param-
eters is dependent on the problem and might be dif-
ferent for the particles within the swarm. Since
finding the optimal control parameters manually
is very time-consuming, therefore, related work
has addressed this with PSO variants that adap-
tively change all or some of the control parameters.
For example, decreasing weight PSO decreases the
inertia weight w(n) linearly over time [2], time-
varying acceleration coefficients PSO changes not
only the inertia weight but also c1(n) and c2(n) over
time [2, 3], and guaranteed convergence PSO en-
sures that the global best particle searches within a
dynamically adapted radius [7, 8].

Other variants include the linear reduction of
the maximum velocity PSO [9], and non-linear ad-
justed inertia weight PSO [10]. PSO with dynamic
adaption [11] uses an evolutionary speed factor that
measures personal best value changes and an aggre-
gation degree that measures the relative position of
particles in the objective space to calculate the iner-
tia weight w.

APSO in [12] adapts the inertia weight of ev-
ery particle based on its objective value, the global
best value, and the global worst value. APSO in-

troduced in [13] changes its inertia weight based on
swarm diversity to reduce premature convergence
and hence to increase overall convergence. The
swarm diversity is calculated as a function of posi-
tions. Different variations of the self-tuning APSO
are discussed in [14, 15, 16].

Self-tuning APSO as described in [15] grants
every particle its own personal best weight ci

1 and
global best weight ci

2. Self-tuning APSO initial-
izes the personal best weights ci

1 and the global best
weights ci

2 randomly for every particle, and moves
the personal and global best weights towards val-
ues of particle i that yielded the most updates of
the global best position, where the distance of the
movement towards the personal best weight ci

1 and
the global best weight ci

2 are based on the total num-
ber of iterations [14]. In an update of self-tuning
APSO, the personal and global best weights are
moved in ever smaller steps for increasing numbers
of iterations [15].

It has been shown with past research that the
adaptation of the velocity weights improve the con-
verges speed of PSO compared to having fixed ve-
locity weights. Therefore, our approach is basically
inspired by other PSO variants that assign every
particle its own velocity weights [15, 16]. These
PSO variants usually adapt the velocity weights of
a certain particle that is selected based on a measure
of superior performance [16] and adopt these veloc-
ity weights for all other particles. This paper is an
extension of the work published as a short paper in
[17]. The organization of this paper is as follows:
In Section 2, details of the five PSO variants against
which we compare RSAPSO is given. Section 3 in-
troduces and describes the proposed RSAPSO vari-
ant. In Section 4, the benchmark problems used
to compare the variants with RSAPSO are outline.
Section 5 lists the conclusions reached from this
study.

2 Related Work and PSO Variants
used for Comparison

We are interested in finding the global minimum
of an objective function f (x) in a D-dimensional
search space of the form [xmin,xmax]

D. In order to
assess the performance of RSAPSO, we utilize four
related adaptive PSO variants: decreasing weight
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PSO, time-varying acceleration coefficients PSO,
guaranteed convergence PSO, and attractive and re-
pulsive PSO.

2.1 Decreasing Weight PSO (DWPSO)

DWPSO is similar to basic PSO, but the iner-
tia weight w(n) is decreased linearly over time [2].
Thus, DWPSO promotes diversity in early itera-
tions and convergence in late iterations. DWPSO
uses Equation 1b to determine the velocities of the
particles whereby the inertia weight w(n) is calcu-
lated using:

w(n) = ws − (ws −we)
n
−1

, (2)

where ws is the inertia weight for the first iteration,
and we is the inertia weight for the last iteration.

2.2 Time-Varying Acceleration Coeffi-
cients PSO (TVACPSO)

TVACPSO adapts the acceleration coefficients,
i.e., the personal weight c1(n) and global best
weight c2(n) over time besides the the inertia
weight w(n) [2, 3]. The idea is to have high
diversity during early iterations and high conver-
gence during late iterations. The inertia weight
w(n) is changed as in DWPSO using Equation (2).
TVACPSO uses the following equation to deter-
mine the velocities:

v(i)(n+1) = w(n)v(i)(n)

+ c1(n)r
(i)
1 (n)[x(i)p (n)− x(i)(n)]

+ c2(n)r
(i)
2 (n)[xg(n)− x(i)(n)],

n = 0,1,2, . . . , −1, (3a)

where the personal best weight c1(n), and the global
best weight c2(n) at iteration n are calculated using:

c1(n) = c1s − (c1s − c1e)
n
−1

,

c2(n) = c2s − (c2s − c2e)
n
−1

, (3b)

where c1s is the personal best weight for the first it-
eration, c1e is the personal best weight for the last
iteration, c2s is the global best weight for the first it-
eration, and c2e is the global best weight for the last
iteration.

2.3 Guaranteed Convergence PSO
(GCPSO)

GCPSO guarantees that the global best particle
searches within a dynamically adapted radius [7, 8].
This addresses the problem of stagnation and in-
creases local convergence by using the global best
particle to randomly search within an adaptively
changing radius at every iteration [8]. GCPSO, as
described in [2], uses the following equation to up-
date the position:

x(ig)(n+1) = xg(n)+w(n)v(ig)(n)

+ρ(n)(1−2r3(n)),

n = 0,1,2, . . . , −1, (4a)

GCPSO uses Equation (1b) to determine the ve-
locities v(i)(n). The personal best weight c1 and the
global best weight c2 are held constant. GCPSO
uses the following equation to update the velocity
of the global best particle:

v(ig)(n+1) =−x(ig)(n)+ xg(n)+w(n)v(ig)(n)

+ρ(n)(1−2r3(n)),

n = 0,1,2, . . . , −1, (4b)

where ig is the index of the particle that updated
the global best value most recently. The expres-
sion −x(ig)(n)+ xg(n) is used to reset the position
of particle ig to the global best position. r3(n) are
random numbers uniformly distributed between 0
and 1. The search radius is controlled by the search
radius parameter ρ(n). The search radius parameter
ρ(n) is calculated using:

ρ(n+1) =




2ρ(n), if σ(n+1)> σc,
1
2 ρ(n), if φ(n+1)> φc,

ρ(n), otherwise,

(4c)

where σc is the consecutive success threshold, and
φc is the consecutive failure threshold defined be-
low. Success means that using Equations (1) and
(4b) to update the particle positions results in an
improved global best value and position, and fail-
ure means it does not. The numbers of consecutive
successes σ(n) and failures φ(n) are calculated us-
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ing:

σ(n+1) =

{
0, if φ(n+1)> φ(n),
σ(n)+1, otherwise,

(4d)

φ(n+1) =

{
0, if σ(n+1)> σ(n),
φ(n)+1, otherwise.

(4e)

2.4 Attractive and Repulsive PSO (RPSO)

RPSO aims to overcome the problem of prema-
ture convergence [18]. It uses a diversity measure to
control the swarm by alternating between phases of
“attraction” and “repulsion”. The attraction phase
operates as basic PSO by the particles attracting
each other (see Equation (1b)). The repulsion phase
is done by inverting the velocity-update equation of
the particles as follows:

v(i)(n+1) = w(n)v(i)(n)

− c1r(i)1 (n)[x(i)p (n)− x(i)(n)]

− c2r(i)2 (n)[xg(n)− x(i)(n)],

n = 0,1,2, . . . , −1, (5a)

In the repulsion phase, the individual particle is no
longer attracted to, but instead repelled by the best
known particle position and its own previous best
position.

In the attraction phase, the swarm is contract-
ing, and therefore the diversity decreases. Once
the diversity drops below a lower bound, dlow, the
repulsion phase is switched to, so that the swarm
expands according to Equation (5a). When a di-
versity of dhigh is reached, the attraction phase is
switched on again. Therefore, there is an alterna-
tion between phases of exploitation and exploration
(attraction and repulsion).

Equation (5b) sets the sign-variable dir to either
1 or -1 depending on the diversity values as given in
Equation (5c):

dir =

{
−1, if diversity(S)< dlow,

1, if diversity(S)> dhigh,
(5b)

diversity(S) =
1

|S|× |L|
×

|S|

∑
i=1

���� N

∑
j=1

(pi j − p̄ j)2,

(5c)

where S is the swarm, |S| is the swarm size, |L| is the
length of the longest diagonal in the search space, N
is the dimensionality of the problem, pi j is the jth

value of the ith particle, and p̄ j is the jth value of the
average point p. Finally, Equation (5d) is modified
by multiplying the sign-variable dir by the social
and personal components that decide whether the
particles are attracted to, or repelled by each other:

v(i)(n+1) = w(n)v(i)(n)

+dir(c1r(i)1 (n)[x(i)p (n)− x(i)(n)]

+ c2r(i)2 (n)[xg(n)− x(i)(n)]),

n = 0,1,2, . . . , −1, (5d)

2.5 Dealing with Search Space Violations

If a particle attempts to leave the search space,
our strategy is to return it along its proposed path
through a series of correcting iterations. In particu-
lar, we use:

x̆(i)(ň+1) = x̆(i)(ň)− v̆(i)(ň+1),

ň = 0,1, ...,̆ −1, (6a)

where x̆(i)(ň+1) is the corrected position, v̆(i) is the
corrected velocity, ň is the count for the correcting
iterations, and˘is the total number of correcting iter-
ations. The initial corrected position x̆(i)(0) is set to
the position x(i)(n+1), which is outside the search
space. The corrected velocities v̆(i) are calculated
using:

v̆(i)(ň+1) = αv̆(i)(ň),

ň = 0,1, ...,̆ −1, (6b)

where α is the correction factor, and the initial cor-
rected velocity v̆(i)(0) is set to the velocity v(i)(n+
1) that caused the particle to attempt to leave the
search space. Equation (6a) is used until the cor-
rected position x̆(i)(ň+ 1) is in the search space or
the limit on the total number of correcting itera-
tions ˘ is reached. If ˘ is reached, the components of
x̆(i)(̆) still outside the search space are clamped to
the boundary of the search space. Based on good
performance in empirical experiments, the values
chosen are α = 0.54 and˘= 4.
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v̆(i)(ň+1) = αv̆(i)(ň),
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3 Proposed Variant: Repulsive
Self-adaptive Acceleration PSO
(RSAPSO)

Our RSAPSO variant is inspired by other PSO
variants that assign every particle its own velocity
weights [15, 16]. These variants typically move the
velocity weights of all particles toward the velocity
weights of a certain particle that is selected based
on a measure of superior performance [16].

For example, self-tuning APSO moves the ve-
locity weights towards the settings of the particle
that yielded the most updates of the global best po-
sition [15, 16]. Controlled APSO [19] adaptively
changes the personal best weights c(i)1 (n) and the
global best weights c(i)2 (n) based on the distance
between the positions and the global best position.
Inertia weight APSO [12] allows every particle its
own inertia weight w(i)(n) that is changed using a
function of the objective values and the global best
value. Optimized PSO [20] uses multiple PSO sub-
swarms, each having their own parameter settings,
in an inner iteration to solve the original optimiza-
tion problem. The parameter settings are then opti-
mized in an outer iteration of PSO for a fixed num-
ber of iterations.

Inspired by the optimized PSO variant [20], we
treat the problem of finding good velocity weights
as an optimization problem. In RSAPSO every par-
ticle has its own velocity weights, i.e., its inertia
weight w(i), personal best weight c(i)1 , and global
best weight c(i)2 . A particular setting of the velocity
weights is referred to as the position of the veloc-
ity weights. An objective function for the velocity
weights is used to quantify how well the positions of
the velocity weights perform for solving the overall
optimization problem. Using the calculated objec-
tive values of the velocity weights, RSAPSO takes
a step toward optimizing the velocity weights. The
velocity weights are optimized in a fixed auxiliary
search space.

Compared to optimized PSO [20], the RSAPSO
approach of optimizing the velocity weights after
every (outer) PSO iteration is more efficient since
only one additional PSO instance (for optimizing
the velocity weights) is executed and only for one
(inner) iteration. An advantage of RSAPSO is that
the velocity weights can adapt themselves to dy-

namic changes, e.g., different particle distributions
at different iterations.

RSAPSO uses the following equation, with the
notation used in Equation (1b), to update the veloc-
ities of particles:

v(i)(n+1) = w(i)(n)v(i)(n)

+ c(i)1 (n)r(i)1 (n)[x(i)p (n)− x(i)(n)]

+ c(i)2 (n)r(i)2 (n)[xg(n)− x(i)(n)],

n = 0,1,2, . . . , −1, (7a)

An auxiliary objective function is used to quan-
tify the success of particles as a function of their
velocity weights. There are reliable and directly
employable entities to measure the success of par-
ticles. In particular, we use the improvement in the
objective value of the particle [21], the number of
updates of the global best position that the particle
yielded [15, 16], and the number of updates of the
personal best position that the particle yielded. We
propose the following objective function for the ve-
locity weights, selected based on good performance
in empirical experiments:

f̃ (i)(n) = e(i)(n)
(
1+wlu

(i)
l (n)+wgu(i)g (n)

)
,

n = 1,2, . . . , −1, (7b)

where f̃ (i)(n) is the objective value of the velocity
weights for particle i at iteration n, e(i)(n) is the nor-
malized improvement described below, u(i)l is the
number of times particle i updated its personal best
position, u(i)g is the number of times particle i up-
dated the global best position, wl is the local weight
factor used to weigh the number of personal best
updates u(i)l , and wg is the global weight factor used
to weigh the number of global best updates u(i)g . The
value of wg is usually set to a larger number than the
value of wl because updates to the global best posi-
tion are relatively more important. Equation (7b)
is thus used to guide the evolution of the positions
of the velocity weights towards optimal values. Al-
ternative objective functions are possible, e.g., ones
that use the normalized improvements e(i)(n), or the
local and global best update counters individually.
The normalized improvements e(i)(n) are calculated
as follows, based on good performance in empirical
experiments:

e(i)(n) =
δ(i)(n)
σ(n)

, (7c)
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where σ(n) is the normalization sum (which has to
be greater than zero), and δ(i)(n) is the difference in
the objective values calculated using:

δ(i)(n) = f (i)(n)− f (i)(n−1), (7d)

where f (i) is the objective value of particle i.

In practice, early iterations might yield large ab-
solute values of δ(i), whereas late iterations might
only yield small absolute values of δ(i). Therefore,
we propose the following normalization to fairly ac-
count for the contribution of the velocity weights
from late iterations:

σ(n) =

{
∑np

i=1−δ(i)(n), for δ(i)(n)< 0,
1, otherwise.

(7e)

In other words, the normalization sum σ(n) makes
objective values of the velocity weights comparable
for different n. This normalization is chosen based
on good performance in empirical experiments.

The velocity weights are optimized using one
step of PSO in an inner iteration, resulting in the
following overall iteration to update the positions
of the velocity weights:

x̃(i)(n+1) = x̃(i)(n)+ ṽ(i)(n+1),

n = 1,2, . . . , −1, (7f)

ṽ(i)(n+1) = w̃(n)ṽ(i)(n)

+ c̃1(n)r̃
(i)
1 (n)[x̃(i)p (n)− x̃(i)(n)]

+ c̃2(n)r̃
(i)
2 (n)[x̃(i)g (n)− x̃(i)(n)],

n = 1,2, . . . , −1, (7g)

where x̃(i)(n) is the position of the velocity weights,
ṽ(i)(n) is the velocity of the velocity weights, x̃(i)p (n)
is the personal best position of the velocity weights,
x̃(i)g (n) is the global best position of the velocity
weights, w̃(n) is the inertia weight for optimiz-
ing the velocity weights, c̃1(n) is the personal best
weight for optimizing the velocity weights, c̃2(n) is
the global best weight for optimizing the velocity
weights, and r̃(i)1 (n) and r̃(i)2 (n) are random vectors
with components that are uniformly distributed be-
tween 0 and 1 for every particle i and iteration n.

Equations (7f) and (7g) are used after Equation
(1a) and (7a) have been used to update the positions

of the particles, and the new objective values have
been calculated. The first component of x̃(i)(n) is
used as the inertia weight w(i)(n), the second com-
ponent of x̃(i)(n) is used as the personal best weight
c(i)1 (n), and the third component of x̃(i)(n) is used as
the global best weight c(i)2 (n) as given in Equation
(7a).

The proposed RSAPSO switches between
phases based on the mean separation of particles.
If RSAPSO is in the attractive phase and con-
verges, it switches to the repulsive phase once it
has reached a small enough mean separation value.
This can counter the trapping in a local optimum. If
RSAPSO is in the repulsive phase, it switches to the
attractive phase once it has reached a large enough
mean separation. Similarly, four-state APSO uses
the mean separation to decide in which of the four
states it is in as given in [22]. The attractive-
repulsive PSO [18] switches between phases based
on a calculated diversity factor that is calculated
similarly to the mean separation.

We propose the following objective function for
the velocity weights that adapt itself to the current
phase:

f̄ (i)(n) =

{
f̃ (i)(n), if a(n) = 1,

−s(i)(n), if a(n) = 2,
(7h)

where f̄ (i)(n) is the objective value of the veloc-
ity weights, and a(n) is the phase indicator. If
RSAPSO is in the attractive phase a(n) = 1, the ob-
jective value of the velocity weights f̄ (i)(n) is set to
f̃ (i)(n) as calculated in Equation (7b). If RSAPSO
is in the repulsive phase a(n) = 2, the objective
value of the velocity weights f̄ (i)(n) is set to the
negation of the mean separation s(i)(n). This objec-
tive function for the velocity weights was selected
for RSAPSO since good performance of the veloc-
ity weights is indicated by f̃ (i)(n) in the attractive
phase, and −s(i)(n) in the repulsive phase. In par-
ticular, in the attractive phase we focus on conver-
gence by rewarding good objective values of the ve-
locity weights f̃ (i)(n), and in the repulsive phase we
focus on diversity by rewarding high mean separa-
tion values s(i)(n).

The attractive-repulsive PSO [18] switches to
the repulsive phase if its diversity factor goes below
an absolute lower threshold value and switches to
the attractive phase if its diversity factor goes above
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with components that are uniformly distributed be-
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Equations (7f) and (7g) are used after Equation
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has reached a small enough mean separation value.
This can counter the trapping in a local optimum. If
RSAPSO is in the repulsive phase, it switches to the
attractive phase once it has reached a large enough
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the mean separation to decide in which of the four
states it is in as given in [22]. The attractive-
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on a calculated diversity factor that is calculated
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where f̄ (i)(n) is the objective value of the veloc-
ity weights, and a(n) is the phase indicator. If
RSAPSO is in the attractive phase a(n) = 1, the ob-
jective value of the velocity weights f̄ (i)(n) is set to
f̃ (i)(n) as calculated in Equation (7b). If RSAPSO
is in the repulsive phase a(n) = 2, the objective
value of the velocity weights f̄ (i)(n) is set to the
negation of the mean separation s(i)(n). This objec-
tive function for the velocity weights was selected
for RSAPSO since good performance of the veloc-
ity weights is indicated by f̃ (i)(n) in the attractive
phase, and −s(i)(n) in the repulsive phase. In par-
ticular, in the attractive phase we focus on conver-
gence by rewarding good objective values of the ve-
locity weights f̃ (i)(n), and in the repulsive phase we
focus on diversity by rewarding high mean separa-
tion values s(i)(n).

The attractive-repulsive PSO [18] switches to
the repulsive phase if its diversity factor goes below
an absolute lower threshold value and switches to
the attractive phase if its diversity factor goes above

REPULSIVE SELF-ADAPTIVE ACCELERATION . . .

an absolute upper threshold value. We use the same
mechanism but replace the diversity factor with the
mean separation. Specifically, we use the following
equation to switch between the phases:

a(n+1) =





1, if a(n) = 2 ∧ s(n)> su(n),
2, if a(n) = 1 ∧ s(n)< sl(n),
a(n), otherwise,

(7i)

where sl(n) is the mean separation absolute lower
threshold, and su(n) is the mean separation abso-
lute upper threshold.
RSAPSO starts in the attractive phase a(n) = 1.
If the mean separation s(n) falls below the mean
separation absolute lower threshold sl(n), RSAPSO
changes from the attractive phase a(n) = 1 to the
repulsive phase a(n + 1) = 2. If the mean sepa-
ration s(n) rises above the mean separation abso-
lute upper threshold su(n), RSAPSO changes from
the repulsive phase a(n) = 2 to the attractive phase
a(n+1) = 1.

To the best of our knowledge, the adaptive
change of the mean separation absolute lower sl(n)
and upper threshold su(n) is novel. This concept al-
lows for increased accuracy and convergence as the
algorithm proceeds. Furthermore, it can be used if
good values for the mean separation absolute lower
and the mean separation absolute upper threshold
are not known. The mean separation absolute lower
and upper threshold, sl(n) and su(n) respectively,
are adapted as follows:

sl(n+1) =

{
sl(n)

s̆l
, if a(n) = 2 ∧ s(n)> su(n),

sl(n), otherwise,
(7j)

su(n+1) =

{
su(n)

s̆u
, if a(n) = 2 ∧ s(n)> su(n),

su(n), otherwise,
(7k)

where s̆l is the mean separation absolute lower di-
visor and s̆u is the mean separation absolute upper
divisor. The mean separation absolute lower thresh-
old sl(n) is divided by the mean separation absolute
lower divisor s̆l , and the mean separation absolute
upper threshold su(n) is divided by the mean sep-
aration absolute upper divisor s̆u if the algorithm
switches from the repulsive phase to the attractive
phase at iteration n. Both the mean separation ab-
solute lower sl(n+1) and upper threshold su(n+1)
remain the same if the algorithm does not switch
from the repulsive phase to the attractive phase;

i.e., the mean separation absolute lower threshold
sl(n + 1) and upper threshold su(n + 1) are only
changed after a full cycle through the attractive and
repulsive states.

Algorithm 1 outlines our RSAPSO variant.
RSAPSO calculates the mean separation after
the local and global best positions are updated.
RSAPSO requires the mean separation to decide
whether a phase switch is required. If so, the objec-
tive function for the velocity weights, and the search
space for the velocity weights are switched to their
counterparts in the new phase. The search space
for the velocity weights in the attractive phase must
mainly yield positive velocity weights. The search
space for the velocity weights in the repulsive phase
must mainly yield negative velocity weights. All
velocity weights have to be reinitialized in the new
search space for the velocity weights if a phase
switch occurs. The personal best positions and val-
ues of the velocity weights and the global best po-
sition and value of the velocity weights are reset
since if their values were discovered in the attrac-
tive phase, they cannot be used in the repulsive
phase and vice versa. In case a switch from the
repulsive to the attractive phase occurs, i.e., one
phase cycle is finished, the mean separation abso-
lute lower and upper threshold are updated using
Equations (7j) and (7k). If no phase switch occurs,
RSAPSO follows the flow of optimizing the veloc-
ity weights; however, it uses Equation (7h) instead
of Equation (7b) as the objective function for the
velocity weights.

mainly yield negative velocity weights. All veloc-
ity weights have to be reinitialized in the new search
space for the velocity weights if a phase switch oc-
curs. The personal best positions and values of the
velocity weights and the global best position and
value of the velocity weights are reset since if their
values were discovered in the attractive phase, they
cannot be used in the repulsive phase and vice versa.
In case a switch from the repulsive to the attractive
phase occurs, i.e., one phase cycle is finished, the
mean separation absolute lower and upper thresh-
old are updated using Equations (7j) and (7k). If
no phase switch occurs, RSAPSO follows the flow
of optimizing the velocity weights; however, it uses
Equation (7h) instead of Equation (7b) as the objec-
tive function for the velocity weights.

Algorithm 1 Description of RSAPSO
initialize positions and velocities
initialize positions of velocity weights
calculate objective values
update local and global best positions and values
repeat

update positions
calculate objective values
update local and global best positions and values
calculate mean distance
if phase changed then

update mean absolute lower/upper threshold if necessary
switch objective function/search space for velocity weights
reinitialize positions of velocity weights
reset local/global best positions/values of velocity weights

else
calculate objective values of velocity weights
update local/global best positions/values of velocity weights
update positions of velocity weights

end if
until maximum number of generations reached
report final results

4 Experiments and Results

4.1 Benchmark Problems

Twenty optimization benchmark problems are used
to compare our RSAPSO algorithm with the cho-
sen PSO variants. All the benchmark problems from
the semi-continuous challenge [23] are used, includ-
ing the Ackley, Alpine, Griewank, Parabola, Rosen-
brock, and Tripod test problems. Some of the op-
timization problems from [24] have been selected
based on their shapes to guarantee a diverse set of
problems, including the Six-hump Camel Back, De
Jong 5, Drop Wave, Easom, Goldstein–Price, Axis
Parallel Hyper-ellipsoid, Michalewicz, and Shubert
test problems [23]. We also use optimization prob-
lems from [25] to expand our benchmark set. These
include the Generalized Penalized, Non-continuous
Rastrigin, Sphere, Rastrigin, and Step test problems
[25]. In addition, Schaffer’s F6 test problem from
[20] is used. For ease of comparison, we normalized
the benchmark problems in order for all to have a
global optimum of 0.0.

Table 1 lists the benchmark functions, their prop-
erties, bounds on x, and the search space dimensions.

Table 1: Description of Test Problems.
Function Name [xmin ,xmax ] D
F1 Ackley [-30,30] 30
F2 Alpine [-10,10] 10
F3 Six-hump Camel Back [-2,2] 2
F4 De Jong 5 [-65.536,65.536] 2
F5 Drop Wave [-5.12,5.12] 2
F6 Easom [-100,100] 2
F7 Generalized Penalized [-50,50] 30
F8 Griewank [-300,300] 30
F9 Goldstein–Price [-2,2] 2
F10 Axis Parallel Hyper-ellipsoid [-5.12,5.12] 100
F11 Michalewicz [0,π] 10
F12 Non-continous Rastrigin [-5.12,5.12] 30
F13 Parabola [-20,20] 200
F14 Rastrigin [-10,10] 30
F15 Rosenbrock [-10,10] 30
F16 Schaffer’s F6 [-100,100] 2
F17 Shubert [-10,10] 2
F18 Sphere [-100,100] 100
F19 Step [-100,100] 30
F20 Tripod [-100,100] 2
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4 Experiments and Results

4.1 Benchmark Problems

Twenty optimization benchmark problems are
used to compare our RSAPSO algorithm with the
chosen PSO variants. All the benchmark problems
from the semi-continuous challenge [23] are used,
including the Ackley, Alpine, Griewank, Parabola,
Rosenbrock, and Tripod test problems. Some of the
optimization problems from [24] have been selected
based on their shapes to guarantee a diverse set of
problems, including the Six-hump Camel Back, De
Jong 5, Drop Wave, Easom, Goldstein–Price, Axis
Parallel Hyper-ellipsoid, Michalewicz, and Shubert
test problems [23]. We also use optimization prob-
lems from [25] to expand our benchmark set. These
include the Generalized Penalized, Non-continuous
Rastrigin, Sphere, Rastrigin, and Step test problems
[25]. In addition, Schaffer’s F6 test problem from
[20] is used. For ease of comparison, we normal-
ized the benchmark problems in order for all to have
a global optimum of 0.0.

Table 1 lists the benchmark functions, their
properties, bounds on x, and the search space di-
mensions.

4.2 Parameter Settings

The parameters are set to the values described
as follows:

– search space for velocity weights: [−0.5,2.0];

– search space for personal best weights:
[−1.0,4.2];

– search space for global best weights: [−1.0,4.2];

– wl = 1;

– wg = 6;

– ws = 0.9;

– we = 0.4;

– c1s = 2.5;

– c1e = 0.5;

– c2s = 0.5;

– c2e = 2.5;

– percentage of particles selected for mutation of
their velocity weights: 33;

– iterations before resetting best positions and ve-
locity weights: 50;

– initialization space for inertia weights: [0.4,0.9];

– initialization space for personal best weights:
[0.5,2.5];

– initialization space for global best weights:
[0.5,2.5];

– reinitialization space for

– inertia weights: [0.5,0.8];

– reinitialization space for personal best weights:
[0.6,2.4];

– reinitialization space for global best weights:
[0.6,2.4];

– α̃ = 0.5;

– m̌ = 10;

– m̌u = 2.5.

4.3 Experimental Setup

We compare the PSO variants on four exper-
iments using four different numbers of function
evaluations (FE) including initialization.

– The first experiment uses np = 10 particles and
= 100 iterations resulting in a total of 1,000 FE.

– The second experiment uses np = 20 particles
and = 500 iterations resulting in a total of
10,000 FE.

– The third experiment uses np = 40 particles
and = 2,500 iterations resulting in a total of
100,000 FE.

– The fourth experiment uses np = 100 particles
and = 10,000 iterations resulting in a total of
1,000,000 FE.

If the FE are the dominant expense, all the variants
considered require approximately the same CPU
time for a given number of FE. All calculations are
performed in double precision. The results reported
are best, mean and standard deviation from 30 runs
performed.
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a global optimum of 0.0.
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– m̌u = 2.5.

4.3 Experimental Setup

We compare the PSO variants on four exper-
iments using four different numbers of function
evaluations (FE) including initialization.

– The first experiment uses np = 10 particles and
= 100 iterations resulting in a total of 1,000 FE.

– The second experiment uses np = 20 particles
and = 500 iterations resulting in a total of
10,000 FE.

– The third experiment uses np = 40 particles
and = 2,500 iterations resulting in a total of
100,000 FE.

– The fourth experiment uses np = 100 particles
and = 10,000 iterations resulting in a total of
1,000,000 FE.

If the FE are the dominant expense, all the variants
considered require approximately the same CPU
time for a given number of FE. All calculations are
performed in double precision. The results reported
are best, mean and standard deviation from 30 runs
performed.
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Table 1. Description of Test Problems.

Function Name [xmin,xmax] D
F1 Ackley [-30,30] 30
F2 Alpine [-10,10] 10
F3 Six-hump Camel Back [-2,2] 2
F4 De Jong 5 [-65.536,65.536] 2
F5 Drop Wave [-5.12,5.12] 2
F6 Easom [-100,100] 2
F7 Generalized Penalized [-50,50] 30
F8 Griewank [-300,300] 30
F9 Goldstein–Price [-2,2] 2
F10 Axis Parallel Hyper-ellipsoid [-5.12,5.12] 100
F11 Michalewicz [0,π] 10
F12 Non-continous Rastrigin [-5.12,5.12] 30
F13 Parabola [-20,20] 200
F14 Rastrigin [-10,10] 30
F15 Rosenbrock [-10,10] 30
F16 Schaffer’s F6 [-100,100] 2
F17 Shubert [-10,10] 2
F18 Sphere [-100,100] 100
F19 Step [-100,100] 30
F20 Tripod [-100,100] 2

4.4 Results

Analyzing the results, as shown in Tables 2
to 5 (best mean values are given in bold), reveal
that RSAPSO improves with increasing numbers
of FE, scoring best compared to the other variants
for 100,000 and 1,000,000 FE. Figure 1 shows the
results counting the number of wins, i.e., number
of times an algorithm scored best in terms of best
mean value on the benchmark functions.

For 1,000 FE (Table 2), DWPSO, GCPSO, and
RSAPSO score best on 2 benchmark functions,
RPSO scores best on only 1 benchmark function,
and TVACPSO outperforms the other algorithms
scoring best on 12 benchmark functions.

For 10,000 FE (Table 3), TVACPSO and RPSO
score best on 5 benchmark functions, DWPSO and
GCPSO score best on 7 benchmark functions, and
RSAPSO scores best on 8 benchmark functions.

For 100,000 FE, as shown in Table 4, reveal that
TVACPSO and RPSO score best on 7 benchmark
functions, DWPSO, and GCPSO score best on 8
benchmark functions, and RSAPSO scores best on
10 benchmark functions.

Figure 1. Number of wins versus number of
function evaluations

For 1,000,000 FE (Table 5) DWPSO,
TVACPSO and GCPSO have the best mean value
for 9 benchmark functions, RPSO for 11 bench-
mark functions, and RSAPSO scores best on 14
benchmark functions.

For 1,000,000 FE, the optimum value of 0.0 was
achieved by all PSO variants, measuring the best
value on 7 benchmark functions, for 100,000 FE
only on 6 benchmark functions, and for 10,000 FE
only on 2 benchmark functions. This demonstrates
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Figure 1: Number of wins versus number of function
evaluations

For 1,000,000 FE (Table 5) DWPSO, TVACPSO
and GCPSO have the best mean value for 9 bench-
mark functions, RPSO for 11 benchmark functions,
and RSAPSO scores best on 14 benchmark func-
tions.

For 1,000,000 FE, the optimum value of 0.0 was
achieved by all PSO variants, measuring the best
value on 7 benchmark functions, for 100,000 FE only
on 6 benchmark functions, and for 10,000 FE only on
2 benchmark functions. This demonstrates that with
increasing numbers of FE more benchmark functions
are solved optimally.

In terms of the average values achieved, for
1,000,000 FE, 0.0 was achieved by the PSO variants
41 times, for 100,000 FE 28 times, and for 10,000
FE 16 times.

A Friedman ranking test [26] was applied on the
average results for the four different FE. Table 6
shows the average ranks obtained by each PSO vari-
ant. All the results for all four different FE are not
statistically significant at the 5% significance level.
The post hoc procedures of Bonferroni-Dunn and
Hochberg confirmed this. However, as the previous
discussion outlined, our approach has the best rank
for 1,000,000 FE, even though the results are not sta-
tistically significant.

Algorithm 1,000 FE 10,000 FE 100,000 FE 1,000,000 FE
DWPSO 3.275 2.85 2.65 3.275
TVACPSO 2 2.7 3.15 3.475
GCPSO 2.975 2.7 2.75 2.8
RPSO 3.15 3.375 3.55 2.8
RSAPSO 3.6 3.375 2.9 2.65

Table 6: Average rankings of the algorithms (Fried-
man)

Figure 2 shows the function value for 1,000,
10,000, 100,000 and 1,000,000 FE for benchmark
functions F9, F11, F12, and F14. It confirms
once more that our proposed RSAPSO first performs
poorly for 1,000 FE, however, showing improved
values with increasing numbers of FE by scoring best
for 100,000 and 1,000,000 FE.

Overall, the experiments have shown that for in-
creasing FE our proposed RSAPSO variant scored
better than the other PSO variants. Looking at the
particular benchmark functions that are multimodal,
which are F4, F5, F7, F12, F16, and F17, RSAPSO
as expected scored best on these functions with the
exception of F17. As mentioned in literature [18],
RPSO has shown to work particularly well on mul-
timodal functions, which is most likely due to the
switching between attractive and repulsive phases.
This allows the algorithm to adopt good velocity val-
ues and together with the repulsive and attractive
phase it helps to move the particle towards better
solutions. The results on the benchmark functions
confirms this by the implemented RPSO as well as
our proposed RSAPSO variant showing the better re-
sults.

5 Conclusion

We proposed a repulsive and adaptive PSO variant,
named RSAPSO, for which every particle has its
own velocity weights, i.e., inertia weight, personal
best weight and global best weight. An objective
function for the velocity weights is used to measure
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Figure 2. Function value versus FE for different benchmark functions.

that with increasing numbers of FE more bench-
mark functions are solved optimally.

In terms of the average values achieved, for
1,000,000 FE, 0.0 was achieved by the PSO variants
41 times, for 100,000 FE 28 times, and for 10,000
FE 16 times.

A Friedman ranking test [26] was applied on
the average results for the four different FE. Table 6
shows the average ranks obtained by each PSO vari-
ant. All the results for all four different FE are not
statistically significant at the 5% significance level.
The post hoc procedures of Bonferroni-Dunn and
Hochberg confirmed this. However, as the previous
discussion outlined, our approach has the best rank
for 1,000,000 FE, even though the results are not
statistically significant.

Figure 2 shows the function value for 1,000,
10,000, 100,000 and 1,000,000 FE for benchmark
functions F9, F11, F12, and F14. It confirms once
more that our proposed RSAPSO first performs
poorly for 1,000 FE, however, showing improved
values with increasing numbers of FE by scoring
best for 100,000 and 1,000,000 FE.

Overall, the experiments have shown that for in-
creasing FE our proposed RSAPSO variant scored
better than the other PSO variants. Looking at
the particular benchmark functions that are multi-

modal, which are F4, F5, F7, F12, F16, and F17,
RSAPSO as expected scored best on these func-
tions with the exception of F17. As mentioned in
literature [18], RPSO has shown to work particu-
larly well on multimodal functions, which is most
likely due to the switching between attractive and
repulsive phases. This allows the algorithm to adopt
good velocity values and together with the repulsive
and attractive phase it helps to move the particle to-
wards better solutions. The results on the bench-
mark functions confirms this by the implemented
RPSO as well as our proposed RSAPSO variant
showing the better results.

5 Conclusion

We proposed a repulsive and adaptive PSO vari-
ant, named RSAPSO, for which every particle has
its own velocity weights, i.e., inertia weight, per-
sonal best weight and global best weight. An objec-
tive function for the velocity weights is used to mea-
sure the suitability of the velocity weights for solv-
ing the overall optimization problem. Due to the
calculated objective values of the velocity weights,
RSAPSO is able to improve the optimization pro-
cess. In particular, the RSAPSO variant adapts the
velocity weights before it optimizes the solution of
the problem (e.g., benchmark function). The advan-
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Figure 2: Function value versus FE for different benchmark functions.

the suitability of the velocity weights for solving the
overall optimization problem. Due to the calculated
objective values of the velocity weights, RSAPSO is
able to improve the optimization process. In particu-
lar, the RSAPSO variant adapts the velocity weights
before it optimizes the solution of the problem (e.g.,
benchmark function). The advantage of RSAPSO
is that the velocity weights adapt themselves to dy-
namic changes, e.g., different particle distributions at
different iterations.

We evaluated our RSAPSO algorithm on twenty
benchmark functions and compared it with four
PSO variants, namely decreasing weight PSO, time-
varying acceleration coefficient PSO, guaranteed
convergence PSO, and attractive and repulsive PSO.
Our RSAPSO variant achieves better results than the

other variants for higher numbers of FE in particular
for 1,000,000 FE. A possible reason for RSAPSO’s
poorer performance for 1,000 and 10,000 FE is that
the optimization of the velocity weights takes sev-
eral iterations to have a beneficial effect since more
knowledge of the optimization problem is acquired
by then. In addition, RSAPSO has shown to work
particularly well on multimodal functions due to the
incorporated attractive and repulsive phases for the
optimization of the velocity weights.

Since RSAPSO has longer running times depend-
ing on the difficulty and the dimensionality of the
problem, future work will parallelize the algorithm
using Hadoop’s MapReduce methodology in order to
speed up the optimization process. Furthermore, we
would like to extend RSAPSO to integrate the idea
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Figure 2. Function value versus FE for different benchmark functions.

that with increasing numbers of FE more bench-
mark functions are solved optimally.

In terms of the average values achieved, for
1,000,000 FE, 0.0 was achieved by the PSO variants
41 times, for 100,000 FE 28 times, and for 10,000
FE 16 times.

A Friedman ranking test [26] was applied on
the average results for the four different FE. Table 6
shows the average ranks obtained by each PSO vari-
ant. All the results for all four different FE are not
statistically significant at the 5% significance level.
The post hoc procedures of Bonferroni-Dunn and
Hochberg confirmed this. However, as the previous
discussion outlined, our approach has the best rank
for 1,000,000 FE, even though the results are not
statistically significant.

Figure 2 shows the function value for 1,000,
10,000, 100,000 and 1,000,000 FE for benchmark
functions F9, F11, F12, and F14. It confirms once
more that our proposed RSAPSO first performs
poorly for 1,000 FE, however, showing improved
values with increasing numbers of FE by scoring
best for 100,000 and 1,000,000 FE.

Overall, the experiments have shown that for in-
creasing FE our proposed RSAPSO variant scored
better than the other PSO variants. Looking at
the particular benchmark functions that are multi-

modal, which are F4, F5, F7, F12, F16, and F17,
RSAPSO as expected scored best on these func-
tions with the exception of F17. As mentioned in
literature [18], RPSO has shown to work particu-
larly well on multimodal functions, which is most
likely due to the switching between attractive and
repulsive phases. This allows the algorithm to adopt
good velocity values and together with the repulsive
and attractive phase it helps to move the particle to-
wards better solutions. The results on the bench-
mark functions confirms this by the implemented
RPSO as well as our proposed RSAPSO variant
showing the better results.

5 Conclusion

We proposed a repulsive and adaptive PSO vari-
ant, named RSAPSO, for which every particle has
its own velocity weights, i.e., inertia weight, per-
sonal best weight and global best weight. An objec-
tive function for the velocity weights is used to mea-
sure the suitability of the velocity weights for solv-
ing the overall optimization problem. Due to the
calculated objective values of the velocity weights,
RSAPSO is able to improve the optimization pro-
cess. In particular, the RSAPSO variant adapts the
velocity weights before it optimizes the solution of
the problem (e.g., benchmark function). The advan-
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Table 6. Average rankings of the algorithms (Friedman)

Algorithm 1,000 FE 10,000 FE 100,000 FE 1,000,000 FE
DWPSO 3.275 2.85 2.65 3.275
TVACPSO 2 2.7 3.15 3.475
GCPSO 2.975 2.7 2.75 2.8
RPSO 3.15 3.375 3.55 2.8
RSAPSO 3.6 3.375 2.9 2.65
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REPULSIVE SELF-ADAPTIVE ACCELERATION . . .

tage of RSAPSO is that the velocity weights adapt
themselves to dynamic changes, e.g., different par-
ticle distributions at different iterations.

We evaluated our RSAPSO algorithm on twenty
benchmark functions and compared it with four
PSO variants, namely decreasing weight PSO, time-
varying acceleration coefficient PSO, guaranteed
convergence PSO, and attractive and repulsive PSO.
Our RSAPSO variant achieves better results than
the other variants for higher numbers of FE in
particular for 1,000,000 FE. A possible reason
for RSAPSO’s poorer performance for 1,000 and
10,000 FE is that the optimization of the velocity
weights takes several iterations to have a beneficial
effect since more knowledge of the optimization
problem is acquired by then. In addition, RSAPSO
has shown to work particularly well on multimodal
functions due to the incorporated attractive and re-
pulsive phases for the optimization of the velocity
weights.

Since RSAPSO has longer running times de-
pending on the difficulty and the dimensionality of
the problem, future work will parallelize the algo-
rithm using Hadoop’s MapReduce methodology in
order to speed up the optimization process. Further-
more, we would like to extend RSAPSO to integrate
the idea of moving bound behavior that would allow
expert knowledge about the search space for the ve-
locity weights to be incorporated.
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