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Abstract

Recent studies have utilizes color, texture, and composition information of images to
achieve affective image classification. However, the features related to spatial-frequency
domain that were proven to be useful for traditional pattern recognition have not been
tested in this field yet. Furthermore, the experiments conducted by previous studies are
not internationally-comparable due to the experimental paradigm adopted. In addition,
contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT)
(i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution
of frequency analysis has been improved. Hence, the goal of this research is to achieve
the affective image-classification task by adopting a standard experimental paradigm in-
troduces by psychologists in order to produce international-comparable and reproducible
results; and also to explore the affective hidden patterns of images in the spatial-frequency
domain. To accomplish these goals, multiple human-subject experiments were conducted
in laboratory. Extended Classifier Systems (XCSs) was used for model building because
the XCS has been applied to a wide range of classification tasks and proved to be compet-
itive in pattern recognition. To exploit the information in the spatial-frequency domain,
the traditional EMD has been extended to a two-dimensional version. To summarize, the
model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate
over 86%. The result of the XCS was compared with other traditional machine-learning
algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used
for classification tasks. Contributed by proper selection of features for model building,
user-independent findings were obtained. For example, it is found that the horizontal vi-
sual stimulations contribute more to the emotion elicitation than the vertical visual stimu-
lation. The effect of hue, saturation, and brightness; is also presented.

1 Introduction

1.1 Scope

People experience emotion in their daily life by
feeling happy, angry and various emotions induced
by stimulus and events that are emotionally rele-
vant. Because it is human nature to pursue happi-

ness and avoid pain, a research finding related to
human emotion can be easily transferred to diverse
applications. For example, behavioral economics
[1], media studies and advertisement [2, 3]. Some
researches focused on the use of emotional relevant
stimulus to attract the attention of subjects, and to
make subjects remember more on the product pre-
sented [3]. In the area of image, print advertise-
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ment and the use of affective images for attracting
the attention of subjects during web browsing were
reported [2]. Guideline of extracting emotional rel-
evant features in a web page is also available [4].

Due to the development of personal computer,
software, and World-Wide-Web (WWW), people
nowadays generate huge amount of content (e.g.,
daily news, articles on variety topics and personal
data) and upload them to the internet every day. To
enable end users to explore the content on the in-
ternet, Google and Yahoo! such the search engine
provider index these contents. Currently most of the
web content indexing works are done based on text-
based technologies. Although text-based indexing
technologies are suitable for articles, the limitation
of the text-based method is obvious when images
are the indexing target. Traditionally, image search
is done based on the file name of the target image
and perhaps the description (e.g., tags) of the target
image. In the last decade, image search based on
content has been provided by Google Picture and
Yahoo! Image Search. However, there was lack of
attention to the development of the techniques of
indexing the affective characteristics of images, de-
spite equipped with such the technique, the industry
would be able to design new applications related to
human feelings and better user experience. For ex-
ample, an application that leads end users to target
images that may potentially ease their “feelings”.

1.2 Motivation

The affective characteristic of an image is de-
fined by the capability of an image in eliciting emo-
tional responses. Human beings have the ability to
recognize the affective characteristic embedded in
an image. Hence, to index the affective characteris-
tics of images on the internet, an intuitive approach
is to have a large number of people manually rate all
the images and calculate descriptive statistics from
the obtained ratings. However, this approach may
be impractical due to the cost of manpower and the
increasing speed of images around the world.

On the other hand, using Artificial Intelligence
(AI) and Machine Learning (ML) techniques, a
broad range of intelligent machines have been de-
signed to perform different pattern recognition tasks
[5-7]. An intelligent machine that can automatically
classify images based on their affective characteris-
tics could be built by given a number of instances

with proper selected features. Due to the lack of at-
tention on this issue in the literature, this study aims
to build an intelligent machine to perform affective
image-classification task.

1.3 Research Objectives

he proposed hypothesis is that a trained intel-
ligent machine can classify images based on their
ability in eliciting emotions, through the basic prop-
erties of these images. Wilson’s Extended Classi-
fier System (XCS) [8], a well-tested accuracy-based
Learning Classifier System (LCS) model, is to be
used to build the classification models in this re-
search. The XCS is proven to be capable of ex-
tracting complete, general, and readable rules from
a previously unknown dataset, which motivated its
suitability for this research work.

The overall goal of this research is to demon-
strate a novel method to classify images based on
their ability in eliciting emotions. This goal is di-
vided into the following two subgoals.

– To develop an intelligent machine that can iden-
tify images based on their capability in inducing
emotions. To examine the effect of basic proper-
ties (i.e. hue, saturation, and brightness) of im-
ages on their capability in inducing emotions.

– To develop an intelligent machine that can iden-
tify images based on their capability in inducing
emotions. To examine the effect of the proper-
ties of images in the spatial-frequency domain
on the capability of these images in inducing
emotions.

All the human-subject experiments conducted
in this research, and the manner of using data ob-
tained from human subjects were approved (Proto-
col No: 100-014-E and NCTU-REC-102-007) by
the Institution Review Board (IRB) of the National
Taiwan University Hospital Hsinchu Branch and
the IRB of National Chiao-Tung University, respec-
tively.

The built models were evaluated using 10-Fold
Cross Validation (CV) which is a traditional evalu-
ation method used in the literature and the results
were compared with the existing related systems.
In addition to the demonstration of the modeling
building process, this study also aims at providing
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the examination results of the factors that may in-
fluence the affective characteristics of images.

1.4 Paper Contribution

This research led to the following major con-
tributions to the field of affective computing [9] in
general and specifically to the field of affective im-
age classification.

This resarch:(1) Demonstrates a two-
dimensional version of the Hilbert-Huang Trans-
form (2D-HHT) for extracting features in the
spatial-frequency domain from images. (2) Demon-
strates the model-building process of an intel-
ligent machine for performing affective image-
classification task. (3) Examines the influence of
basic properties and also the properties in regard
to the spatial-frequency domain on the affective
characteristics of images. (4) All the results were
obtained from and validated by human-subject ex-
periments.

1.5 Paper Organization

The remainder of this research is organized as
follows. Chapter 2 describes the research method-
ology to be used in this work to achieve the over-
all goal. This chapter describes the framework,
the emotional stimuli, and the instruments to be
used for model building. Chapter 3 and chapter 4
present major contributions to fulfill the established
research objectives. Chapter 5 concludes this work.

Chapter 2 describes the research paradigm
adopted in this work to achieve the overall goal,
and briefly describes the instruments used. Chapter
2 also provides a detailed description of the XCSs
along with an overview of related studies.

The details of each literature review of related
work and the implemented systems are provided in
a separate contribution chapter, that are Chapter 3
and Chapter 4. These two chapters also provide
details of the problem domains experimented here
and the experimental setup used for collecting data
set or testing and evaluating the developed systems.
Chapter 3 and 4 describe the two affect detectors
that are successfully built from human-subject ex-
periments.

Chapter 5 presents the achieved objectives,
main conclusions from each contribution chapter,

and the future work that stems from this research
work.

2 Method and Materials

2.1 Emotion Theories

One of the difficulties in studying emotion is
that how to define it. Although there is a tendency
for researchers to intuitively define a set of discrete
basic emotions (e.g., happy, surprising, sad, and an-
gry [10]), recently the dimensional theory of emo-
tion, in replacement of the traditional assumption of
discrete emotions, has been proposed and demon-
strated to be more suitable than the traditional man-
ner of describing emotions in a number of studies
[11, 12].

Dimensional theory defines emotions by a two
dimensional affective space, of which the two di-
mensions are “valence” and “arousal”. The valence
represents that whether the emotion experienced is
pleasant whereas the arousal represents the ampli-
tude of the emotion aroused. The philosophy of the
theory adopted is illustrated in Figure 1.

Figure 1. Definition of emotions in a
two-dimension affective space

The dimensional theory of emotion explains
how human emotion is elicited and the roles of emo-
tional stimulus plays in emotion elicitation by re-
lating the emotion theory to the motivational sys-
tem of human. The motivational system guides hu-
man to behave in the tendency of “approach” or
”avoidance” when presented with emotionally rel-
evant stimulus (the “stimulus” can be an object, a
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scenario, or a type of circumstance)[13]. The rea-
son of a stimulus to be emotionally relevant could
be considered as a result of evolutionary process,
that is, can be related to the need of survival. For
example, the stimulus that stimulates positive emo-
tions is found related to food and sex, whereas
the stimulus that stimulates negative emotions was
found related to danger and death. The umbrella
term “emotionally relevant” can simply be under-
stood as a capability to elicit certain emotions of a
person (either positive or negative emotions) [14].

The dimensional theory of emotion has at-
tracted substantial attention in the field of psychol-
ogy since proposed, and is commonly adopted in
latest studies [3, 11, 15]. On the other hand, brain
scientists focused on biological proof. The path-
way, the mechanisms of brain, the autonomic ner-
vous system, and the organs, that are accounted for
emotion responses have being revealed [16]. Other
research reported the experimental results on the
relationship between emotion and decision making
[17], and also the relationship between emotion and
memory [18].

On the path of research in affective image clas-
sification [19-23], the achieved accuracy rates are
relatively low. Furthermore, the use of definition in
“discrete” emotions also caused these experiments
hard to reproduce in countries other than the United
States. Hence, this study adopts the paradigm of the
work related to the dimensional theory of emotion.

2.2 Instruments

2.3 International Affective Picture System
(IAPS)

Image is a type of visual stimulus that com-
monly used in human emotion study for emotion in-
duction. However, in past decades, due to cultural
difference, results obtained from different experi-
ments were incomparable. Subsequently, a stan-
dard affective picture system named International
Affective Picture System (IAPS) was proposed [24]
to help emotion research experimenter in providing
comparable experimental results.

The IAPS database is developed and distributed
by the NIMH Center for Emotion and Attention
(CSEA) at the University of Florida to provide a
set of normative emotional stimuli for experimen-
tal investigations of emotion and attention and can

be easily obtained through e-mail application. The
IAPS contains various affective pictures selected
based on the statistics obtained from experimental
results. These pictures are proved to be capable
in inducing diverse emotions in the affective space
[12]. The IAPS also describes a protocol that in-
cludes the constraint about the number of images
used in a single experiment and the distribution of
the emotions induced by the images selected.

The IAPS has attracted attention since proposal;
various experiments, for example, the empirical
studies on psychophysiological signals that are re-
lated to emotional responses [25], the experiments
of the effects of emotion on memory [26], and
the experiments for identifying the relationship be-
tween motivation and emotion [12], were conducted
using IAPS for emotion induction. The images used
in this research were solely selected from this IAPS
public database.

2.3.1 Self-Assessment Manikin (SAM)

To assess the two dimensions of the affective
space, the Self-Assessment Manikin (SAM), an af-
fective rating system devised by Lang [27] was used
to acquire the affective ratings. The SAM is a non-
verbal pictorial assessment that is designed to as-
sess the emotional dimensions (i.e. valence and
arousal) directly by means of two sets of graphical
manikins. The SAM has been extensively tested in
conjunction with the IAPS and IADS and used in
diverse theoretical studies and applications [3, 11,
15]. The SAM takes a very short time to complete
(5 to 10 seconds). The SAM was reported to be
capable of indexing cross-cultural results [28] and
the results obtained using a Semantic Differential
scale (the verbal scale provided in [29]). For using
the SAM, there is little chance of confusion with
terms as in verbal assessments. The SAM that we
used was identical to the 9-point rating scale version
of SAM that was used in [30], in which the SAM
ranges from a smiling, happy figure to a frowning,
unhappy figure when representing the affective va-
lence dimension. On the other hand, for the arousal
dimension, the SAM ranges from an excited, wide-
eyed figure to a relaxed, sleepy figure.

Ratings are scored such that 8 represents a high
rating on each dimension (i.e. positive valence, high
arousal), and 0 represents a low rating on each di-
mension (i.e. negative valence, low arousal).
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Figure 2. The SAM used in this study, in which the upper row represents valence and the lower row
represents arousal

2.4 Extended Classifier Systems (XCSs)

2.4.1 Introduction

John Holland proposed Michigan-style Classi-
fier Systems (CSs) in 1975, which is the prototype
of the well-known classifier “LCS” [31]. LCS is
a rule-based online learning algorithm, which in-
corporates Genetic Algorithm (GA) as a rule dis-
covery component. Later on, Zeroth-level Classi-
fier System (ZCS) was proposed to increase the un-
derstandability and performance [32]. ZCS adopts
Q-learning (QL) like Reinforcement Learning (RL)
component and retains the GA component. Finally,
a classifier system known as XCS was proposed [8].
The XCS retain the QL and GA components in the
ZCS but the fitness value of the rules in the XCS is
referred to the accuracy of each rule on predicting
payoff. Due to the stable performance and the ca-
pability to generalize extracted rules, XCS gained
more attention from the main stream of research
than other classifiers since it has been proposed.

On the research path of XCS, several versions
of XCS have been developed to suit different needs
required for real world applications. While the orig-
inal XCS provides only binary string as input string
(condition input) and with single discrete value
as output, the XCS with real-value input (XCSR)
which allows the XCS to accept continuous in-
put have been proposed [33-35]. Lanzi suggested
adding internal memory to XCS (named XCSM) for
coping with complex non-Markovian environments
[36], XCSI reduces the size of evolved classifier
population [37], DXCS as a parallel version of XCS
enhances the scalability of XCS [38]. To have XCS

coping with function approximating tasks, Wilson
himself also provided his idea of having continuous
value as output in 2002 [39]. This idea is recently
extended to a more advanced version of XCS named
“Extended Classifier System for Function approxi-
mation task (XCSF)” [40].

Due to the development of the internet and
WWW protocols, researchers nowadays are able to
gather huge amount of data from the internet. To
extract information from these data, data warehouse
and data mining techniques have become popular
research area. ML algorithms have been adopted
widely for data mining tasks. XCS itself as one
of the most important classifier has also been cus-
tomized to fulfill the requirement of new tasks such
as knowledge discovery and structure identification
[41, 42] (e.g., probabilistic CS [43]). One of the
most important feature that XCS provides to data
mining tasks is its nature of being an online learn-
ing algorithm [44]. That is, XCS is able to adapt to
dynamic environment, and even adapt to the envi-
ronment in some extreme cases [45].

In practice, it is obvious that the characteristics
of most of systems change gradually from time to
time. The phenomena exist not only in the “sea-
sonal changes” and unexpected structural changes
in stock market, but also in the area of biomedi-
cal engineering (e.g. Heart Rate Variability (HRV)
indexes computed from Electrocardiogram (ECG)
that are usually used by psychophysiologists and
the physicians in hospital for estimating subject’s
physiological state) and other fields. The character-
istic of a system varies from time to time can make
classification tasks more difficult for traditional su-
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Figure 3. System architecture of XCS (for single-step problem)

pervised learning algorithm that does not provide
online learning mechanism.

The XCS has been applied to wide range of
classification tasks [46, 47] and is proved to be com-
petitive for pattern recognition [6]. A considerable
amount of literature describing applications based
on XCS has been published in the area of security
[48], finance [49, 50], medical research [51-53] and
chip design [54, 55]. In the area of finance, XCS
is known for its capability of financial time series
forecasting [56-58]. The XCS was also used for
developing personalized desktop by solving user-
context classification tasks [43, 59].

2.4.2 XCS Classifier System

Although the XCS can be applied for both
single-step problems and multi-step problems [8],
this section focuses on describing only the mecha-
nisms of XCS in solving single-step problems (i.e.
classification task) instead of multi-step problems
for simplicity. The flow of a typical XCS learn-
ing iteration is presented as follows: first, a detec-
tor obtains the environmental input (i.e. a binary
string) at the beginning of a typical iteration, and
uses the string for the matching process (see upper

left portion of Figure 3); second, during a classi-
fier matching process, the XCS searches for classi-
fiers in [P] which the covering condition space that
represented by a condition string (0, 1, # for each
bit, # indicates a bit that should be ignored, also
termed “don’t care” bit) includes the binary string
input. All of the matched classifiers are placed into
a match set (represents by [M]). If the [M] does
not meet the predefined criterion [8, 60, 61] (usu-
ally related to the level of coverage of the suggested
output (action string)), XCS applies a mechanism
termed “cover” to generate new classifiers of which
condition string matches the input binary string and
action string is chosen at random; third, the XCS
calculates the fitness weighted average prediction Pi

from each set of classifiers that suggests a same out-
put i (i.e. suggesting a same action) after [M] is gen-
erated; fourth, all Pi s are used to form a prediction
array (PA) for output selection process. The action-
selection regime is usually set to occasionally pick
up an output i, which owns the maximal predicted
payoff (i.e., max (Pi)) in the PA, and in the other
time pick up an output randomly for exploration
purpose; fifth, the XCS performs an action based on
the selected output; and finally, after performing the
action to the environment, a payoff function then
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Figure 3. System architecture of XCS (for single-step problem)

pervised learning algorithm that does not provide
online learning mechanism.

The XCS has been applied to wide range of
classification tasks [46, 47] and is proved to be com-
petitive for pattern recognition [6]. A considerable
amount of literature describing applications based
on XCS has been published in the area of security
[48], finance [49, 50], medical research [51-53] and
chip design [54, 55]. In the area of finance, XCS
is known for its capability of financial time series
forecasting [56-58]. The XCS was also used for
developing personalized desktop by solving user-
context classification tasks [43, 59].

2.4.2 XCS Classifier System

Although the XCS can be applied for both
single-step problems and multi-step problems [8],
this section focuses on describing only the mecha-
nisms of XCS in solving single-step problems (i.e.
classification task) instead of multi-step problems
for simplicity. The flow of a typical XCS learn-
ing iteration is presented as follows: first, a detec-
tor obtains the environmental input (i.e. a binary
string) at the beginning of a typical iteration, and
uses the string for the matching process (see upper

left portion of Figure 3); second, during a classi-
fier matching process, the XCS searches for classi-
fiers in [P] which the covering condition space that
represented by a condition string (0, 1, # for each
bit, # indicates a bit that should be ignored, also
termed “don’t care” bit) includes the binary string
input. All of the matched classifiers are placed into
a match set (represents by [M]). If the [M] does
not meet the predefined criterion [8, 60, 61] (usu-
ally related to the level of coverage of the suggested
output (action string)), XCS applies a mechanism
termed “cover” to generate new classifiers of which
condition string matches the input binary string and
action string is chosen at random; third, the XCS
calculates the fitness weighted average prediction Pi

from each set of classifiers that suggests a same out-
put i (i.e. suggesting a same action) after [M] is gen-
erated; fourth, all Pi s are used to form a prediction
array (PA) for output selection process. The action-
selection regime is usually set to occasionally pick
up an output i, which owns the maximal predicted
payoff (i.e., max (Pi)) in the PA, and in the other
time pick up an output randomly for exploration
purpose; fifth, the XCS performs an action based on
the selected output; and finally, after performing the
action to the environment, a payoff function then
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determines payoff (i.e. a numerical value) for XCS
to update the classifiers. The payoff function is a
function predefined by the user of XCS, to interpret
the environmental feedback into numeric form of
payoff (as a reward or punishment). The XCS uses
the payoff in a RL component to update parameters
(p, e, and F) of each classifier. The update process
is held in only an action set (represents by [A]). The
[A] is a set of classifiers (see bottom portion of Fig-
ure 3) that all suggest outputting i. The classifiers in
[A] are the classifiers responsible for the payoff (de-
termined from the environmental feedback) caused
by the performed action. During the update process,
the Rule (Classifier) Discovery part of XCS (see
left bottom portion of Figure 3), that is, the GA is
triggered occasionally to search for potentially ac-
curate classifiers in the classifier (condition-action
string representation) space. In addition, XCS per-
forms subsumption in both the update process and
GA, to enable “Macro-Classifier”s (classifiers that
are more general than others) to subsume other clas-
sifiers in order to reduce the number of redundant,
overlapped classifiers. The remainder of this chap-
ter provides details on the critical components of
XCS.

2.4.3 RL Component

The RL component of XCS applies a QL-style
update to the parameters of each classifier in [A]
during the update process. First the XCS updates
the prediction payoff p base on the received pay-
off using p ← p+β(R−p), in which R represents
the received payoff and β represents learning rate
(0 < β ≤ 1). Second, the prediction error ε is up-
dated using ε ← ε+β(|R−p|−ε). Third, the XCS
updates the fitness value F (used for the classifier
space searching done by using the GA). The F in
XCS is defined based on the accuracy of a classi-
fier. Hence, in calculating F, the XCS calculates an
accuracy value first using

κ=

{
1, if ε < ε0

α
(

ε
ε0

)−ν
, o.w.

Equation 1 Calculation of accuracy value of classi-
fiers in the XCS

in which the κ is set as 1 when ε is smaller than
ε(ε0 > 0) to tolerate a classifier that contains pre-
diction error if the prediction error is below ε0 . The
value of κ decreases substantially (depending on the

settings of the parameter α(0 < α < 1) and the ex-
ponent ν(ν > 0)) when a classifier’s value of ε in-
creases. After the update of κ, the XCS compares
it’s κ to that of other classifier’s (i.e. other classi-
fiers in the same [A]) by calculating its classifier’s
relative accuracy κ′

=κ/∑x∈[A] κx. Finally, the F of
the classifier is updated using F ← F+β(κ′−F).

2.4.4 Rule Discovery Component Using GA

The discovery component in XCS searches for
accurate classifiers in the classifier space by gener-
ating new classifiers using GA. The XCS applies the
GA to an [A] when the average elapsed time since
the last GA performed on all the classifiers in [A] is
greater than qGA. In GA, XCS selects two parent
classifiers with a probability proportional to their
fitness values. Two offspring classifiers are gen-
erated by applying crossover and mutation on the
copies of their parents. Most parameters of the par-
ents are inherited by their offspring, except for sev-
eral parameters that must be initialized; for exam-
ple, the fitness F, to be relatively pessimistic about
the quality of the offspring, is multiplied by 0.1.
After mutation, the generated offspring are inserted
into the population.

2.4.5 Macroclassifiers

The XCS extracts generalized rules (classifiers)
by reducing redundant classifiers. The idea of
macroclassifier is implemented by using an addi-
tional parameter termed numerosity num. A clas-
sifier with numerosity num = n is equivalent to n
regular classifiers. When XCS generates a new clas-
sifier, [P] is scanned to examine whether a macro-
classifier exists with the same condition and action
as that of the new classifier. If [P] has a classi-
fier with the same condition and action, the value
of num of the existing classifier (i.e. a macroclas-
sifier) with the same condition and action is incre-
mented by one instead of inserting the new classi-
fier into [P]. Otherwise, the new classifier is added
to the population with num set to one. Similarly,
when a macroclassifier experiences a deletion, the
value of num is decremented by one and the macro-
classifier with numerosity num = 0 is removed from
the [P]. The macroclassifier technique reduces re-
dundant classifiers and also speeds up the XCS in
generating [M].
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2.4.6 Classifier Deletion and Subsumption

XCS removes classifiers from [P] if the sum of
all num s of the classifiers in [P] exceeds a limit N
(i.e. maximum population size predefined by the
user of XCS) when inserting a new classifier into
[P] (by either using the cover mechanism or GA).
The probability of removing a classifier from [P]
is proportional to the estimation of the size of [A]s
(i.e. the [A] that the classifier usually appears in).
The XCS also increases the probability of deletion
of an experienced classifier with the value of F that
is substantially lower than the average value of F
of all classifiers in [P]. Subsumption deletion is a
method to improve the generalization capability of
XCS, and occurs after the update process of [A] and
G. Hence, the subsumption is also called action set
subsumption and GA subsumption [60]. During an
action set subsumption, XCS selects an experienced
classifier G with ε < ε0 first; then G subsumes all
the other classifiers in [A] that are less general than
G, and the num of G is incremented based on the
num s of the classifiers subsumed. The XCS also
operates GA subsumption when new classifiers (i.e.
offspring) are generated through the GA. The off-
spring are compared to their parent and subsumed if
the parent classifier is experienced (defined by the
times appeared in [A]) and more general.

3 HSV Patterns in the Affective
Image Classification

3.1 Literature Review

To predict emotions of subject induced by an
image, in 2005, Mikels et al. firstly categorized
images in IAPS into different categories to iden-
tify images that are especially excellent in induc-
ing emotions of subjects [62]. Later, a pioneering
study [19] on affective image classification reported
by Wu et al. applied the Support Vector Machine
(SVM) on identifying the relationships between vi-
sual features extracted from images, and the seman-
tic differential features (i.e. terms that given to sub-
jects to describe the onset image, such as beautiful-
ugly, dynamic-static, and tense-relaxed). The accu-
racy rate obtained in the study was relatively high
(i.e. 80%); however, there was only one subject in-
volved in the experiment, and the emotional state of
the subject was implicitly estimated through seman-

tic differential terms. To demonstrate the feasibility
in affective image classification, subsequently, ex-
periments with larger sample size (around 15 to 20
people) was conducted in [21, 23]; in these studies,
emotions were explicitly defined as discrete emo-
tional states, such as happy, surprising, sad, and
angry. Further examinations on various features in
affective image-classification task was reported by
Machajdik in [22]; however, the obtained accuracy
rates were relatively low (around 65%) in the be-
tween subject analysis in [21-23]. Latest findings
in [11, 12] highlighted the drawback on using dis-
crete emotion models, in which definition on emo-
tions using “terms” may be vague and inaccurate for
the subjects, and the use of discrete emotion model
is generally application dependent, which may bias
the collected dataset and the performance of clas-
sification model built. Furthermore, the use of dis-
crete definitions also makes the experiment results
hard to reproduce and hard to compare internation-
ally. Hence, this study argues that the affective
image classification studies should be conducted
based on dimensional emotion model to reduce the
difficulties in reproducing comparable results.

To clarify the objectives, the affective image
classification problem is formatted into a system
identification task (see Figure 4), the aim of the
problem is to identify how human subjects inter-
pret the affective characteristics of a given image;
for example, to identify the human subject response
by discovering rules, or training intelligent systems
to predict the response (currently most of the works
aimed on the later approach).

To evaluate the emotion elicitation of a subject,
despite numerous approaches are available. For
example, self-report [63], facial expression [64],
keystroke dynamics, user data, and psychophysio-
logical data [65]. This study decided to utilize self-
report as the measurement tool, because self-report
as a ground truth is considered to be more mean-
ingful in the proposed problem and also the related
future applications.

This study conducts an experimental study on
affective image classification by adopting dimen-
sional emotion model instead of applying discrete
emotion models that were typically used in pre-
vious studies [22]. The SAM was used in this
study to estimate the emotion elicitation of sub-
jects in the perspectives of dimensional emotion
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2.4.6 Classifier Deletion and Subsumption

XCS removes classifiers from [P] if the sum of
all num s of the classifiers in [P] exceeds a limit N
(i.e. maximum population size predefined by the
user of XCS) when inserting a new classifier into
[P] (by either using the cover mechanism or GA).
The probability of removing a classifier from [P]
is proportional to the estimation of the size of [A]s
(i.e. the [A] that the classifier usually appears in).
The XCS also increases the probability of deletion
of an experienced classifier with the value of F that
is substantially lower than the average value of F
of all classifiers in [P]. Subsumption deletion is a
method to improve the generalization capability of
XCS, and occurs after the update process of [A] and
G. Hence, the subsumption is also called action set
subsumption and GA subsumption [60]. During an
action set subsumption, XCS selects an experienced
classifier G with ε < ε0 first; then G subsumes all
the other classifiers in [A] that are less general than
G, and the num of G is incremented based on the
num s of the classifiers subsumed. The XCS also
operates GA subsumption when new classifiers (i.e.
offspring) are generated through the GA. The off-
spring are compared to their parent and subsumed if
the parent classifier is experienced (defined by the
times appeared in [A]) and more general.

3 HSV Patterns in the Affective
Image Classification

3.1 Literature Review

To predict emotions of subject induced by an
image, in 2005, Mikels et al. firstly categorized
images in IAPS into different categories to iden-
tify images that are especially excellent in induc-
ing emotions of subjects [62]. Later, a pioneering
study [19] on affective image classification reported
by Wu et al. applied the Support Vector Machine
(SVM) on identifying the relationships between vi-
sual features extracted from images, and the seman-
tic differential features (i.e. terms that given to sub-
jects to describe the onset image, such as beautiful-
ugly, dynamic-static, and tense-relaxed). The accu-
racy rate obtained in the study was relatively high
(i.e. 80%); however, there was only one subject in-
volved in the experiment, and the emotional state of
the subject was implicitly estimated through seman-

tic differential terms. To demonstrate the feasibility
in affective image classification, subsequently, ex-
periments with larger sample size (around 15 to 20
people) was conducted in [21, 23]; in these studies,
emotions were explicitly defined as discrete emo-
tional states, such as happy, surprising, sad, and
angry. Further examinations on various features in
affective image-classification task was reported by
Machajdik in [22]; however, the obtained accuracy
rates were relatively low (around 65%) in the be-
tween subject analysis in [21-23]. Latest findings
in [11, 12] highlighted the drawback on using dis-
crete emotion models, in which definition on emo-
tions using “terms” may be vague and inaccurate for
the subjects, and the use of discrete emotion model
is generally application dependent, which may bias
the collected dataset and the performance of clas-
sification model built. Furthermore, the use of dis-
crete definitions also makes the experiment results
hard to reproduce and hard to compare internation-
ally. Hence, this study argues that the affective
image classification studies should be conducted
based on dimensional emotion model to reduce the
difficulties in reproducing comparable results.

To clarify the objectives, the affective image
classification problem is formatted into a system
identification task (see Figure 4), the aim of the
problem is to identify how human subjects inter-
pret the affective characteristics of a given image;
for example, to identify the human subject response
by discovering rules, or training intelligent systems
to predict the response (currently most of the works
aimed on the later approach).

To evaluate the emotion elicitation of a subject,
despite numerous approaches are available. For
example, self-report [63], facial expression [64],
keystroke dynamics, user data, and psychophysio-
logical data [65]. This study decided to utilize self-
report as the measurement tool, because self-report
as a ground truth is considered to be more mean-
ingful in the proposed problem and also the related
future applications.

This study conducts an experimental study on
affective image classification by adopting dimen-
sional emotion model instead of applying discrete
emotion models that were typically used in pre-
vious studies [22]. The SAM was used in this
study to estimate the emotion elicitation of sub-
jects in the perspectives of dimensional emotion
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Figure 4. The affective image classification problem as a system identification task

model. The use of the experimental paradigm of
dimensional emotion model, on the other hand, ex-
tends the traditional discrete emotion classification
task into a continuous function approximation task,
hence, in this study, the performance of classifiers
were judged by Root Mean Square Error (RMSE)
for two-dimension affective space prediction, and
Mean Absolute Error (MAE) for one-dimension af-
fective space prediction, instead of accuracy rate.

The objective of the study is to upgrade the per-
formance of affective image classification. How-
ever, the results of previous studies, that obtained
from experimental designs based on discrete emo-
tional model, are hard to compare, and even incom-
parable in our case (because of the shift of perfor-
mance criteria). Hence, this study examines the
performance obtained from the described task, and
hopes to provide a baseline for future study instead.

3.2 Experimental Setup

3.2.1 Subjects

There were 16 university subjects participated
in the study (15 subjects is the typical sample size
required in the field of affective image classification
studies [19, 23]), ranging in age between 20 and 28
(M = 23.44, SD = 2.19; 10 men, 6 women). All sub-
jects reported they were healthy, with no history of
brain injury, cardiovascular problems, had normal
or corrected-to-normal vision, and normal range of
finger movement.

3.2.2 Experimental Procedure

To build an intelligent system that could pre-
dict the emotions of subjects elicit by image, a hu-

man subject experiment was conducted. The en-
tire experiment conducted in this study complies the
IAPS protocol of emotion inducement described in
[24] to guarantee the effectiveness of the emotion
induction procedure, and the clarity of the experi-
mental design for reproduction. During the experi-
ment, the subjects were requested to look at a screen
which sequentially presents images and to corre-
spondingly rate these images presented, by using
computer-based SAM (through the use of mouse).
The duration of the experiment was 10 minutes for
each subject. Each trial (i.e. presentation of an im-
age) started by presenting an image and displayed it
for 6 seconds, then presented the SAM on the screen
for the subject to manually rate the affective charac-
teristics (i.e. self-report the induced emotion) of the
presented image. The SAM was followed by a 15
s delay to ensure the emotional status of subject re-
turn to baseline before the start of next trial and a
reasonable length to keep the subjects involved in
the experiment.

3.2.3 Images Used

This study utilizes 20 images selected from
IAPS [66] database in complying the IAPS image
set selection protocol described in [66]. The im-
age ids of the used images are as follows: 1120,
1310, 1390, 1710, 1720, 2160, 2220, 2520, 2530,
2540, 3160, 3220, 3250, 4300, 4460, 4470, 4660,
4750, 5950, 8160, 8200, and 9250. These images
can be found in the IAPS database [66] using the
ids listed above. The order of the image presenta-
tion was randomized to eliminate the effects due to
the presentation sequence.
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3.2.4 Environment Setting

The images were presented using a general PC
with 32-inch (81.28 centimeters) monitor. The sub-
jects were sat in a comfortable bed at a distance of
approximately 1.5 meters away from the monitor in
an EMI shielding room (Acoustic Inc. US) in which
eliminates most of noise interferences and electri-
cal noises. The CO2 concentration of the environ-
ment was monitored during the entire experiment to
guarantee reasonable CO2 concentration (500 ppm
˜ 1,300 ppm) to keep subjects sustain their attention
during the experiment.

3.3 Method

3.3.1 HSV Model

This chapter adopts the approach of feature ex-
traction similar to the former studies [22, 23], in
which only basic features based on colors were ex-
traction from the image (HSV model, in our case)
instead of applying content based analysis, to elim-
inate the individual difference. Texture informa-
tion was not used in this study because of the
documentary-style natural of the IAPS images; im-
ages in the IAPS hold similar texture properties,
and the related features extracted from IAPS images
was reported useless in [22].

The HSV model is a cylindrical-coordinate rep-
resentation commonly used in the area of computer
graphics in replacement of RGB color model to ob-
tain more intuitive values. In the HSV model, H
represents hue, S represents saturation, and V rep-
resents value. Ordinarily, images stored in elec-
tronic devices such as personal computer are rep-
resented by a M×N matrix, in which the color of
each element is displayed using RGB color model.
The RGB model is a model consists of three co-
ordinates as following: R represents red values, G
represents green values and B represents blue val-
ues; red, green and blue are mixed together in a
cube. For affective features analysis, features ex-
tracted from HSV model provide a more perceptu-
ally relevant representation on images.

– Hue

Hue is simply the attribute represents visual sensa-
tion on various colors similar to red, green, blue, or
combinations of them. The value of hue is in the

interval of 0
◦

and 360
◦
(normalized to interval [0, 1]

in this study). The transformation from RGB to H
is demonstrated as following: Firstly, normalizes R,
G, and B of the target element into the interval [0,
1]. Secondly, calculates M, m and C from the nor-
malized R, G, B.

M = max(R,G,B) ;m = min(R,G,B) ;C = M−m

Equation 2 The transformation from RGB to H
(Step 2)

Thirdly, calculates H
′
and H.

H
′
=




0, if C = 0
G−B

C mod6, if M = R
B−R

C +2, if M = G
R−G

C +4, if M = B

Equation 3 The transformation from RGB to H
(Step 3)

H =60
◦×H

′

Equation 4 The transformation from RGB to H
(Step 4)

– Saturation

Saturation represents the level of colorfulness rela-
tive to its own brightness. The value of saturation is
in the interval [0, 1].

S =

{
0, if C = 0

C
M , o.w.

Equation 5 The calculation of saturation from the C
and the M value

– Value (Brightness)

The Value (brightness) represents the brightness
level relative to the brightness of a similarly illu-
minated white, defined as the largest component of
the RGB color of an element (i.e, M, 0 ≤ M ≤ 1)
to form a hexagonal pyramid out of the RGB cube
by projecting all three primary colors and the sec-
ondary colors such as cyan, yellow, and magenta
into the new plane.
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3.3.2 XCSF

The study applies XCSF to the affective image-
classification task to cope with any possible non-
linear characteristics contained in the target dataset.
The XCSF is an extension of the XCS, a machine
learning system based on Michigan-Style CSs. In
2002, XCSF, as a version of XCS used for function
approximation was proposed [39]. The XCSF al-
lows both real value inputs and real value outputs.
In addition, the version of XCSF implemented in
[67] allows multiple outputs The input accepts real
value by using rotating hyperrectangle and rotat-
ing hyperellipsoid for condition representation [33,
68]. On the other hand, instead of selecting a dis-
crete value as output according to fitness-weighted
prediction value, the classifiers in the XCSF di-
rectly map the desire output using the prediction
value produced by the linear approximation (i.e.
h
(−→x )

=−→ω −→x in which −→x represents the input vec-
tor and −→ω represents weight vector). Each classifier
in the XCSF updates its weight vector using Re-
cursive Least Squares (RLS) method [68]. For per-
forming the RLS, each classifier manage by XCSF
updates its weight vector using

−→ω ←−→ω+
−→
k
[

yt−
(−→

x∗−
−→
m∗

)T−→ω
]

Equation 6 Weight vector update of the XCSF based
on the performance of RLS

where yt represents target output, and
−→
k represents

the gain vector computed by

−→
k =

VT
(−→

x∗−
−→
m∗

)

λ+
(−→

x∗−
−→
m∗

)T
VT

(−→
x∗−

−→
m∗

)

Equation 7 The calculation of the gain vector in the
XCSF

The l (usually 0 ≤ λ ≤ 1) used in Equation 6
and Equation 7 represents the forget rate of RLS.
The lower the value of l is the higher the forget rate.
The value of l is set to 1.0 for having an infinite
memory (mostly used in time invariant problems).
The matrix V hold by each classifier updates recur-
sively using

VT=λ−1
[

I−−→
k
(−→

x∗−
−→
m∗

)T
]

VT

Equation 8 The update of matrix V in the XCSF

The fitness value used for the GA in the XCSF
is the relative classifier accuracy calculates from
system error [60]. For further detail, sufficient in-
formation about XCS can be found in Butz’s algo-
rithmic description of XCS [60], and also the re-
cent advances in XCSF [33, 39, 68]. To summarize,
the XCSF can be understood as a manager which
manages a set of classifiers. Each of the classi-
fiers maps from a subspace in the feature space to
the landscape-function output using a linear-fitting
method.

3.3.3 Model Building

The workflow of the preprocessing and model
building are provided in Figure 5 The workflow of
the built prediction model ; the preprocessing of
the image data was based on HSV model without
applying content based analysis, 6 features were
used for model building in this study, including:
average hue, standard deviation of hue, average
saturation, standard deviation of saturation, aver-
age brightness, and standard deviation of bright-
ness. The model was built to predict the induced
emotion rated by subjects in terms of valence and
arousal through SAM. The prediction of valence
and arousal can be real number herein according
to the definition of valence and arousal in the di-
mensional theory of emotion [11]. To avoid over-
fitting problem, a Leave-One-Out-Cross-Validation
(LOOCV) on leaving one sample at each time for
testing set and the remain samples for training set,
which is the standard practice for analyzing limited
dataset, was used for building the model.

For details on the setting of LR and XCSF
for building the models, the LR analysis was done
by using the Weka implementation of data mining
tools [69], in which Akaike criterion was used for
model selection and M5’s method was used for at-
tribute selection; all the co-linear attributes were ex-
cluded.

The XCSF used in this study was adopted from
the Java implementation version on XCSF con-
tributed by Stalph and Butz (2009) [67]. For pa-
rameters setting, a = 1.0; b = 0.1; d = 0.1; l = 1.0;
qGA = 50; e0 = 0.5; drls = 1000; qdel = 20; c = 1.0;
m = 1.0; qsub = 20; the GA subsumption was turned
on. Although the maximal population size N was
set to 6,400˜10,000 to maximize the performance of
XCSF, the number of classifiers quickly converged
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Figure 5. The workflow of the built prediction model

to 5,400 during the model training. To examine
the performance of the system, e0 was set to var-
ious values. However, it appears relatively small
effect on the learning performance in regard to the
learning speed and system error. During the model
training, the XCSF was sequentially presented with
20,000 instances randomly selected from the train-
ing dataset.

3.4 Results and Discussion

3.4.1 Collected Dataset

The collected dataset contains 20 images
(1024x768 JPEG) used in the experiment, and the
image affective ratings rated by 16 subjects through
SAM. The experiment totally acquired 320 rows
(actually, 318 rows, while two rows were excluded
due to machine mal functioning) of raw data (im-
ages, and the affective ratings of the images, 20
rows for each subject). Figure 6 presents the distri-
bution of the ratings selected by subjects on all im-
ages; it is observed that most subjects were aroused
with either unpleasant feelings or pleasant feelings
by the displayed images, no obvious skewed was
observed in the distribution of valence (histogram
was examined but not shown).

3.4.2 Model Performance and Discussion

The performance in regard to RMSE/MAE and
the standard deviation of MAEs (represents by SD)
achieved by LR and XCSF are provided in.

Table 1. The performance achieved by distinct
classifiers

The manner of calculating RMSE and MAE are
provided as following:

RMSE =

√
1

N−1

N

∑
i=1

[
(Vi−VPi)

2+(Ai−APi)
2
]

MAE =
1
N

N

∑
i=1

|Vi−VPi| or
1
N

N

∑
i=1

|Ai−APi|

Equation 9 The calculation of RMSE and MAE in
this research

in which N represents sample size; Vi and Ai rep-
resents the values of the valence and arousal corre-
sponds to the i-th sample; and VPi and APi repre-
sents the system prediction on the values of valence
and arousal corresponds to the i-th sample. The
MAEs are used here to evaluate the performance of
a built model in predicting valence and arousal. The
RMSE is always adopted when a classifier is used
for predicting valence and arousal in pairs, and the
MAEs are always adopted when a classifier is used
for predicting valence and arousal separately.
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Figure 6The distribution of the induced emotion of subjects on all images 

 
Table 1The performance achieved by distinct 
classifiers 

Prediction Results Affective Dimension  
 Valence  Arousal (Valence, Arousal)

Method MAE SD MAE SD RMSE 
uniRand 2.569 (N/A) 2.530 (N/A) (N/A)
largCount 1.613 (N/A) 1.480 (N/A) (N/A)
LR 1.482 1.021 1.481 1.070 2.564
XCSF 0.970 0.747 1.460 1.029 2.165

 

The manner of calculating RMSE and MAE 
are provided as following: 

 
RMSE

� � 1
N � 1� ��V� � V���� � �A� � A�����

�

���
 

MAE � 1
N� |V� � V��|

�

���
	or	 1N� |A�

�

���� A��| 
 
Equation 9The calculation of RMSE and MAE in 
this research 
 

in which N represents sample size; Vi and Ai 
represents the values of the valence and 
arousal corresponds to the i-th sample; and VPi 
and APi represents the system prediction on the 
values of valence and arousal corresponds to 
the i-th sample. The MAEs are used here to 
evaluate the performance of a built model in 
predicting valence and arousal. The RMSE is 
always adopted when a classifier is used for 
predicting valence and arousal in pairs, and the 
MAEs are always adopted when a classifier is 
used for predicting valence and arousal 
separately. 
While the emotional ratings are not uniformly 
distributed, the MAE of prediction can be 
artificially underestimated; hence, two models, 
1) uniRand: making predictions in a uniformly 
random manner, and 2) largCount: making 
constant predictions based on the weighted-
average valence, and weighted-average arousal, 
based on the ratings, in which average value of 
valance was nearly 3.931 and average value of 
arousal was nearly 4.349, were introduced to 
compare the MAE achieved by LR and XCSF. 
The performance of distinct classifiers is 
provided inTable 1. The performance of LR on 
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Figure 5. The workflow of the built prediction model

to 5,400 during the model training. To examine
the performance of the system, e0 was set to var-
ious values. However, it appears relatively small
effect on the learning performance in regard to the
learning speed and system error. During the model
training, the XCSF was sequentially presented with
20,000 instances randomly selected from the train-
ing dataset.

3.4 Results and Discussion

3.4.1 Collected Dataset

The collected dataset contains 20 images
(1024x768 JPEG) used in the experiment, and the
image affective ratings rated by 16 subjects through
SAM. The experiment totally acquired 320 rows
(actually, 318 rows, while two rows were excluded
due to machine mal functioning) of raw data (im-
ages, and the affective ratings of the images, 20
rows for each subject). Figure 6 presents the distri-
bution of the ratings selected by subjects on all im-
ages; it is observed that most subjects were aroused
with either unpleasant feelings or pleasant feelings
by the displayed images, no obvious skewed was
observed in the distribution of valence (histogram
was examined but not shown).

3.4.2 Model Performance and Discussion

The performance in regard to RMSE/MAE and
the standard deviation of MAEs (represents by SD)
achieved by LR and XCSF are provided in.

Table 1. The performance achieved by distinct
classifiers

The manner of calculating RMSE and MAE are
provided as following:
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in which N represents sample size; Vi and Ai rep-
resents the values of the valence and arousal corre-
sponds to the i-th sample; and VPi and APi repre-
sents the system prediction on the values of valence
and arousal corresponds to the i-th sample. The
MAEs are used here to evaluate the performance of
a built model in predicting valence and arousal. The
RMSE is always adopted when a classifier is used
for predicting valence and arousal in pairs, and the
MAEs are always adopted when a classifier is used
for predicting valence and arousal separately.
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Figure 6. The distribution of the induced emotion of subjects on all images

While the emotional ratings are not uniformly
distributed, the MAE of prediction can be artifi-
cially underestimated; hence, two models, 1) uni-
Rand: making predictions in a uniformly random
manner, and 2) largCount: making constant predic-
tions based on the weighted-average valence, and
weighted-average arousal, based on the ratings, in
which average value of valance was nearly 3.931
and average value of arousal was nearly 4.349, were
introduced to compare the MAE achieved by LR
and XCSF. The performance of distinct classifiers is
provided in Table 1. The performance of LR on pre-
dicting valence in regard to MAE is 1.483, which
is relatively low while the uniRand achieved only
2.570 and largCount achieved 1.614. In addition,
the MAE value achieved by XCSF on predicting
valence decreased the MAE value achieved by LR
from 1.483±1.02 to 0.971±0.747 (-0.512), demon-
strates the capability of XCSF on mapping func-
tions that possibly contain non-linearity by manag-
ing a set of linear classifiers. The MAE achieved by
XCSF was small and the standard deviation of the
MAE is tolerable.

To further examine the performance of XCSF

on this task, the performance of classifiers on pre-
dicting valence values in terms of MAE are illus-
trated in Figure 7, in which x-axis represents va-
lence and y-axis represents MAE. The MAE on
each valence is represented by four bars: the MAE
achieved by uniRand, largCount, XCSF, and LR, re-
spectively. The MAE achieved by XCSF is smaller
than the MAE of LR, uniRand and largCount at
most of the emotional ratings; the MAE of XCSF
is only larger than uniRand at the rating with the
largest count. A skew on MAE was observed for
those ratings that represent for “being pleasant”,
that is, 5˜8, possibly due to the sample size of the
rating, while in Table 1, the numbers of samples of
valence equals to 5, 6, 7 are larger than the numbers
of samples of valence equals to 0 and 1.

Conversely, the MAE of XCSF in valence 0 and
8 are also high. The finding suggests that insuf-
ficient on sample size of a class may lead to low
performance of XCSF on approximating the corre-
sponding output value even the training instances
were selected from the training dataset randomly
during the XCSF iterative training process. How-
ever, the MAE of XCSF at valence value equals to
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distributed, the MAE of prediction can be 
artificially underestimated; hence, two models, 
1) uniRand: making predictions in a uniformly 
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constant predictions based on the weighted-
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based on the ratings, in which average value of 
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arousal was nearly 4.349, were introduced to 
compare the MAE achieved by LR and XCSF. 
The performance of distinct classifiers is 
provided inTable 1. The performance of LR on 
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4.0 is not the lowest, indicating that the larger sam-
ple size may only guarantee the efficacy of XCSF
in function approximation but not eliminating all
existing errors. We observed that approximately
30 samples (which is nearly 10% of the number of
raw data), is sufficient for XCSF to approximate a
valence value in the collected dataset. Otherwise,
for example, the MAEs of XCSF on predicting the
samples that valence equals to 0 and 8 are relatively
high, in which the numbers of samples were small.
To explain the extreme cases happened in valence
0 and valence 8 in the psychological perspective,
we’ve noticed that some of the subjects reported
that they tend to select ratings in the middle of the
scale rather than selecting those ratings represent
for extreme cases. Such phenomenon may cause
the non-linearity of the distances between the lev-
els of valence and arousal. Further clarification is
required for this issue; a well-designed transforma-
tion may be adequate.

Figure 7. The MAE of XCSF on each valence
value. The standard deviation of MAE made by

XCSF is nearly 0.54˜0.91.

Figure 8. The MAE of XCSF on each arousal
value. The standard deviation of MAE made by

XCSF is nearly 0.27˜0.91

Figure 8 also presents similar phenomenon.
The MAEs achieved by XCSF in each level of

arousal mostly outperform the MAEs of LR. How-
ever, in general, the MAEs achieved by XCSF at
each level were increased, and the decreases in er-
ror are not sufficiently significant. The results pro-
vide that MAE of LR and XCSF did not outperform
largCount in the prediction on arousal. Such obser-
vation indicates that the prediction model of arousal
built by LR and XCSF did not adequately identify
the problem structure, possibly due to the ineffec-
tiveness of SAM on estimating subjects’ arousal,
while some of subjects reported that during the ex-
periment the definition of “being aroused” can be
easily confused with the definition of the tendency
of valence. The confusion was possibly caused by
the cultural difference, but similar results were not
highlighted previously in the main stream of the re-
search.

To further identify the discovered knowledge,
the prediction models built by LR are provided in
Equation 10 and Equation 11.

Valence = -2.3147 * Avg Saturation + 4.6681
* Avg Brightness + 12.8186 * SD Brightness -
0.3798 Equation 10 The model of predicting va-
lence based on HSV properties Arousal = 3.4657 *
SD Saturation - 3.3625 * SD Brightness + 4.3804

Equation 11 The model of predicting arousal based
on HSV properties

From Equation 10, the saturation of an image
tends to lower the valence, whereas the brightness
tends to enhance the pleasant feelings, and the ef-
fect of standard deviation of brightness on valence
is even more substantial. On the other hand, the af-
fective characteristics of an image making people
feel aroused, is negative correlated with the stan-
dard deviation of brightness, whereas the standard
deviation of saturation increases the effect.

Gender information was not used for model
building because the effect of gender is eliminated
by the use of IAPS protocol, the use of gender in-
formation did not substantially improve the perfor-
mance during this study as well. By contrast to
the gender information, within subject analysis was
also applied to the dataset using LR and XCSF.
The result indicates that without using the content
within the image, the effects of individual differ-
ence is relatively small (not shown here).

In regard to the concerns of the application of
this study, the RGB model is device-dependent, due
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4.0 is not the lowest, indicating that the larger sam-
ple size may only guarantee the efficacy of XCSF
in function approximation but not eliminating all
existing errors. We observed that approximately
30 samples (which is nearly 10% of the number of
raw data), is sufficient for XCSF to approximate a
valence value in the collected dataset. Otherwise,
for example, the MAEs of XCSF on predicting the
samples that valence equals to 0 and 8 are relatively
high, in which the numbers of samples were small.
To explain the extreme cases happened in valence
0 and valence 8 in the psychological perspective,
we’ve noticed that some of the subjects reported
that they tend to select ratings in the middle of the
scale rather than selecting those ratings represent
for extreme cases. Such phenomenon may cause
the non-linearity of the distances between the lev-
els of valence and arousal. Further clarification is
required for this issue; a well-designed transforma-
tion may be adequate.

Figure 7. The MAE of XCSF on each valence
value. The standard deviation of MAE made by

XCSF is nearly 0.54˜0.91.

Figure 8. The MAE of XCSF on each arousal
value. The standard deviation of MAE made by

XCSF is nearly 0.27˜0.91

Figure 8 also presents similar phenomenon.
The MAEs achieved by XCSF in each level of

arousal mostly outperform the MAEs of LR. How-
ever, in general, the MAEs achieved by XCSF at
each level were increased, and the decreases in er-
ror are not sufficiently significant. The results pro-
vide that MAE of LR and XCSF did not outperform
largCount in the prediction on arousal. Such obser-
vation indicates that the prediction model of arousal
built by LR and XCSF did not adequately identify
the problem structure, possibly due to the ineffec-
tiveness of SAM on estimating subjects’ arousal,
while some of subjects reported that during the ex-
periment the definition of “being aroused” can be
easily confused with the definition of the tendency
of valence. The confusion was possibly caused by
the cultural difference, but similar results were not
highlighted previously in the main stream of the re-
search.

To further identify the discovered knowledge,
the prediction models built by LR are provided in
Equation 10 and Equation 11.

Valence = -2.3147 * Avg Saturation + 4.6681
* Avg Brightness + 12.8186 * SD Brightness -
0.3798 Equation 10 The model of predicting va-
lence based on HSV properties Arousal = 3.4657 *
SD Saturation - 3.3625 * SD Brightness + 4.3804

Equation 11 The model of predicting arousal based
on HSV properties

From Equation 10, the saturation of an image
tends to lower the valence, whereas the brightness
tends to enhance the pleasant feelings, and the ef-
fect of standard deviation of brightness on valence
is even more substantial. On the other hand, the af-
fective characteristics of an image making people
feel aroused, is negative correlated with the stan-
dard deviation of brightness, whereas the standard
deviation of saturation increases the effect.

Gender information was not used for model
building because the effect of gender is eliminated
by the use of IAPS protocol, the use of gender in-
formation did not substantially improve the perfor-
mance during this study as well. By contrast to
the gender information, within subject analysis was
also applied to the dataset using LR and XCSF.
The result indicates that without using the content
within the image, the effects of individual differ-
ence is relatively small (not shown here).

In regard to the concerns of the application of
this study, the RGB model is device-dependent, due
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to the color elements (such as phosphors or dyes)
and their response to the individual R, G, and B lev-
els vary from manufacturer to manufacturer, differ-
ent devices may detect or reproduce a given RGB
value distinctively, or even in the same device over
time. Such characteristics may cause variations in
the proposed experimental results. However, sim-
ilar problem may also occur in other studies that
utilize IAPS, but currently, of our best knowledge,
no previous study reports further problem due to it.

4 Spatial-Frequency Patterns in
the Affective Image Classification

4.1 Literature Review

To index the affective characteristics of images,
an intuitive approach is to have a large number of
people manually rate all the images and calculate
descriptive statistics from the ratings. On the other
hand, recent studies utilize color, texture, and com-
position information of images; also the application
of content analysis, to achieve affective image clas-
sification [22, 70].

However, the features related to spatial-
frequency domain that are proven to be useful for
pattern recognition have not been explored yet. In
addition, contributed by recent advances in method-
ology, the resolution in frequency analysis has been
improved. Hence, this chapter aims to solve the af-
fective image-classification task by using the fea-
tures related to spatial-frequency domain, and the
XCSF [68] (i.e. one of a latest version of LCS [71]).
The dataset used for the classification task is col-
lected from a human-subject experiment conducted
in our laboratory. The performance of the built
intelligent machine in performing affective image-
classification task was validated by 10-Fold CV.
The proposed method may be applied to other im-
ages in real-word.

4.2 Experimental Setup

4.2.1 Subjects

There were 16 university subjects participated
in the study (15 subjects is the typical sample size
required in the field of affective image classification
studies [19, 23]), ranging in age between 20 and 28
(M = 23.44, SD = 2.19; 10 men, 6 women). All sub-

jects reported they were healthy, with no history of
brain injury, cardiovascular problems, had normal
or corrected-to-normal vision, and normal range of
finger movement.

4.2.2 Experimental Procedure

To build an intelligent system that could pre-
dict the emotions of subjects elicit by image, a hu-
man subject experiment was conducted. The en-
tire experiment conducted in this study complies the
IAPS protocol of emotion inducement described in
[24] to guarantee the effectiveness of the emotion
induction procedure, and the clarity of the experi-
mental design for reproduction. During the experi-
ment, the subjects were requested to look at a screen
which sequentially presents images and to corre-
spondingly rate these images presented, by using
computer-based SAM (through the use of mouse).
The duration of the experiment was 10 minutes for
each subject. Each trial (i.e. presentation of an im-
age) started by presenting an image and displayed it
for 6 seconds, then presented the SAM on the screen
for the subject to manually rate the affective charac-
teristics (i.e. self-report the induced emotion) of the
presented image. The SAM was followed by a 15
s delay to ensure the emotional status of subject re-
turn to baseline before the start of next trial and a
reasonable length to keep the subjects involved in
the experiment.

4.2.3 Images Used

This study utilizes 20 images selected from
IAPS [66] database in complying the IAPS image
set selection protocol described in [66]. The im-
age ids of the used images are as follows: 1120,
1310, 1390, 1710, 1720, 2160, 2220, 2520, 2530,
2540, 3160, 3220, 3250, 4300, 4460, 4470, 4660,
4750, 5950, 8160, 8200, and 9250. These images
can be found in the IAPS database [66] using the
ids listed above. The order of the image presenta-
tion was randomized to eliminate the effects due to
the presentation sequence.

4.2.4 Environment Setting

The images were presented using a general PC
with 32-inch (81.28 centimeters) monitor. The sub-
jects were sat in a comfortable bed at a distance of
approximately 1.5 meters away from the monitor in
an EMI shielding room (Acoustic Inc. US) in which
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eliminates most of noise interferences and electri-
cal noises. The CO2 concentration of the environ-
ment was monitored during the entire experiment to
guarantee reasonable CO2 concentration (500 ppm
˜ 1,300 ppm) to keep subjects sustain their attention
during the experiment.

4.3 Method

4.3.1 Two-Dimensional Hilbert-Huang Trans-
form (2D-HHT)

Spatial-frequency analysis on images is one of
the well-known techniques used in the field of im-
age processing and computer vision [72, 73]. The
information in frequency domain was found abun-
dant by physiologists [74]. It was found that various
spatial-frequencies can lead to distinct characteris-
tics of visual stimulations. Moreover, the orienta-
tion of visual stimulation can cause different effica-
cies in stimulations of cortical receptors [75, 76].

Traditionally, Fast Fourier Transform (FFT) is
used to transform an image into frequency domain.
However, due to the assumption of that series of
target data should be at least piecewise stationary,
the FFT-based techniques (e.g., spectrogram), is
not suitable for modeling local phenomena or when
higher resolution is required. Hence, recently HHT
was proposed to obtain higher frequency resolution
toward Instantaneous Frequency (IF) [77]. Later,
the use of such concept in spatial-frequency anal-
ysis was also reported [78]. The HHT is a two-
phase transformation, which firstly apply an Empir-
ical Mode Decomposition (EMD) on the target data
series to extract Intrinsic Mode Functions (IMFs).
Secondly, Hilbert Transform (HT) is applied to each
IMF to obtain required frequency domain informa-
tion (i.e., IF). The EMD is a shifting process that
can be used to extract IMFs from a data series X(s).
The IMF is defined as a monocomponent by satis-
fying the criterias as following:

1 has the number of zero crossings and extrema
one difference at most,

2 symmetric with respect to the local mean, and

3 the X(s) should has at least two extrema.

After the procedure of EMD, n IMFs, namely,
IMF1, IMF2, IMF3, . . . , IMFn, and the

residuals(rn), denoted as

X(s)=
n

∑
j=1

Cj+rn

Equation 12 The decomposition of an input signal
based on the EMD provided in Equation 12, are ex-
tracted from X(s). The residuals (rn) is a data series
which is the remainder series of target data series af-
ter the EMD shifting process removes all the IMFs
from the original target data series.

The procedure of EMD, different from the
Fourier and Wavelet Decomposition, is fully data-
driven. By being adaptive and unsupervised, the
EMD improves the efficiency of signal decompo-
sition and can be applied to the non-linear and non-
stationary signal (details on the procedure of the
EMD please refer to [77]). After the EMD, the HT
is then applied to each IMF

Yj (s)=
1
π

∫ ∞

−∞

Cj (τ)
s−τ

dτ

Equation 13 Transforming each IMF j extracted by
the EMD into Y j(s)

Each IMFj can be represented by the conju-
gate pair of Y j(s) and C j(s), hence can be repre-
sented by an analytical signal Z(s) = C j(s) + iY j(s)
= a(s)eiq(s), in which the amplitude

aj (s)=
√

Cj (s)
2+Yj (s)

2

Equation 14 The computation of amplitudes in HT

and phase q j(s) = arctan(Y j(s)/C j(s)). Based on the
definition stated above, the IF j can be derived by
applying a derivative on q j(s) (i.e. w j=dq j(s)/ds).
Then, an analytical representation of X(s), can be
derived

X(s)=
n

∑
j=1

aj (s) [i
∫

ωj (s)ds]

Equation 15 Analytical representation of the input
signal based on the HHT

Originally, the EMD was proposed to decom-
pose one-dimensional data. To construct a 2D-
HHT, the concept of EMD was extended to 2D in
this study based on the concept listed as follows:

1 identify the extrema (maxima and minima) of
the image by sliding a 3-by-3 grid;

2 generate two smooth 2D surfaces to fit the found
maxima and minima;
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Figure 9. The illustration of the data processing in this study, the application of 2D EMD on IAPS picture
1120

3 compute the local mean by averaging two sur-
faces; and

4 the equation of applying 2D-EMD then can be
rewrite from Equation 12, to

f(x,y)=∑n
j=1 Cj (x,y)+rn (x,y).

Equation 16 The decomposition of a 2D input sig-
nal based on the 2D-EMD

The data processing done in this study is illus-
trated in Figure 9. The original image (1024x768
resolutions) was first down-sampled to 128x128
resolutions. The color setting was changed from
RGB color into gray color. Second, the 2D EMD is
applied to the image. For extracting IFs from IMFs,
this study applies the concept of partial HT by ap-
plying 1D HT to each orientation (i.e. each row and
each column) and unit, in order to extract spatial-
frequency features that account for different orien-
tations of visual stimulations [75]. The IF analysis
method used in this study was inspired by the work
in [79] which provides a show case on estimating
the changes of IF data series. This study mainly
adopts three indexes as follows: 1) F Q IMF j rep-
resents frequency value in the 1st quarter of the his-
togram area of IFx; 2) A I IMF j represents the ra-
tio between the 1st and the 2nd halves of the his-
togram area of IF j; 3) M I IMF j represents the ra-
tio between the maxima found in the 1st and 2nd

halves of the histogram area of IF j. This study
applies totally 12 features listed below as follows:
1) The vertical side (the direction of applying 1D

HT) F Q IMF1, the horizontal side (the direction
of applying 1D HT) F Q IMF1, the vertical side
A I IMF1, the horizontal side A I IMF1, the ver-
tical side M I IMF1, the horizontal side M I IMF1;
2) the vertical side F Q IMF2, the horizontal side
F Q IMF2, the vertical side A I IMF2, the horizon-
tal side A I IMF2, the vertical side M I IMF2, the
horizontal side M I IMF2.

We totally acquired 318 rows of the feature vec-
tor from the collected data set. The method that we
use to build the prediction model is introduced in
the following section.

4.3.2 Model Building

Models were built to predict the emotion rat-
ings rated by subjects in terms of valence and
arousal through SAM. The prediction of valence
and arousal can be real number herein according to
the definition of valence and arousal in the dimen-
sional theory of emotion [11]. Besides the XCSF,
this study also applies several well-known machine-
learning techniques for comparison purpose. Zero-
R is a majority voting learning scheme that predicts
the majority class in any data set. In a classifi-
cation task, the Zero-R classifies an instance into
the majority class, whereas in a prediction task, the
Zero-R predicts the mean value of all the instances.
Thus, the performance of the Zero-R can be consid-
ered as a baseline performance of the classification
class, which should be beaten by any algorithm that
learns decision boundaries from the data set without
over-fitting. One-layer method such as LR [80] and
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multi-layered method with transfer function such
as Radial-Basis-Function (RBF) Network [69] were
used in this study. The LOOCV which leaves one
sample out at each time as a testing set and the
remaining samples as a training set was used for
model building.

The XCSF used in this study was adopted from
the Java implementation version on XCSF con-
tributed by Stalph and Butz (2009) [67]. For pa-
rameters setting, a = 1.0; b = 0.1; d = 0.1; l = 1.0;
qGA = 50; e0 = 0.5; drls = 1000; qdel = 20; c = 1.0;
m = 1.0; qsub = 20; the GA subsumption was turned
on. Although the maximal population size N was
set to 6,400˜10,000 to maximize the performance of
XCSF, the number of classifiers quickly converged
to 5,400 during the model training. To examine
the performance of the system, e0 was set to var-
ious values. However, it appears relatively small
effect on the learning performance in regard to the
learning speed and system error. During the model
training, the XCSF was sequentially presented with
20,000 instances randomly selected from the train-
ing dataset.

4.4 Results and Discussion

4.4.1 Collected Dataset

The collected dataset contains 20 images
(1024x768 JPEG) used in the experiment, and the
image affective ratings rated by 16 subjects through
SAM. The experiment totally acquired 320 rows
(actually, 318 rows, while two rows were excluded
due to machine mal functioning) of raw data (im-
ages, and the affective ratings of the images, 20
rows for each subject). Figure 6 presents the distri-
bution of the ratings selected by subjects on all im-
ages; it is observed that most subjects were aroused
with either unpleasant feelings or pleasant feelings
by the displayed images, no obvious skewed was
observed in the distribution of valence (histogram
was examined but not shown).

4.4.2 Model Performance and Discussion

The performance evaluation based on MAE and
the standard deviation (represents by SD) of the
MAEs achieved by the methods used is provided in
Table 2. The ZeroR represents the Zero-R classifier,
LinearReg represents the LR model, and RBFNet
represents the RBF network. The number of nodes

(clusters) of the RBF network was set to 200 based
on the result of the examination on the performance
changes caused by the number of nodes.

The MAE of a prediction model which predicts
at random on the value of valence and arousal is 4.0.
Hence, the MAE 1.453±1.076 achieved by the LR
seems to be fair.

Table 2. The performance achieved by benchmark
classifiers and XCSF

The MAE achieved by the RBF network is
0.949±0.747, which further shows a reduction of
the error by 35%. This result indicates the existence
of the non-linearity characteristic of the dataset
collected. The MAE achieved by the XCSF was
0.950±0.755. The equivalence in the performance
of RBF network and XCSF indicates the capabil-
ity of XCSF on mapping non-linear functions. The
mechanism of the XCSF in model building by man-
aging a set of linear classifiers seems to be compa-
rable to the multi-layered based method with non-
linear transfer function. To further examine the per-
formance of the XCSF, the MAEs of the XCSF on
each valence and arousal value are also provided
in Figure 10 and Figure 11. To compare the MAE
achieved by the XCSF, the MAEs that achieved by
uniRand, a classifier that makes predictions in a uni-
formly random manner are also included in these
figures.

The performance of the XCSF in predicting
each valence value is illustrated in Figure 10 in
which x-axis represents the valence value, y-axis
represents the MAE value. The MAEs that the clas-
sifiers achieved on each valence are represented by
three bars. The right most bar represents the MAE
achieved by the XCSF. The MAEs of uniRand and

Zero-R classifier, LinearReg represents the LR 
model, and RBFNet represents the RBF 
network. The number of nodes (clusters) of the 
RBF network was set to 200 based on the 
result of the examination on the performance 
changes caused by the number of nodes. 
The MAE of a prediction model which predicts 
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is 4.0. Hence, the MAE 1.453±1.076 
achievedby theLR seems to be fair. 
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Method Statistics 
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SD of MAE 1.110 1.065 
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SD of MAE 1.076 1.083 
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SD of MAE 0.747 1.021 
XCSF MAE 0.950 1.461 
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The MAE achieved by the RBF network is 
0.949±0.747, which further shows a reduction 
of the error by 35%.This result indicates the 
existence of the non-linearity characteristic of 
the dataset collected. The MAE achieved by 
the XCSF was 0.950±0.755. The equivalence 
in the performance of RBF network and XCSF 
indicates the capability of XCSF on mapping 
non-linear functions.The mechanism of the 
XCSF inmodel building by managing a set of 
linear classifiers seems to be comparable to the 
multi-layered based method with non-linear 
transfer function. To further examine the 
performance of the XCSF, the MAEs of the 
XCSF on each valence and arousal value are 
also provided in Figure 10andFigure 11. To 
compare the MAE achieved by the XCSF, the 
MAEs that achieved by uniRand, a classifier 
that makes predictions in a uniformly random 
manner are also included in these figures. 
The performance of the XCSF in predicting 
each valence value is illustrated in Figure 10 in 
which x-axis represents the valence value, y-
axis represents the MAE value. The MAEs that 
the classifiers achieved on each valence are 
represented by three bars. The right most bar 
represents the MAE achieved by the XCSF. 
The MAEs of uniRand and ZeroR are 
represented by the first and the second bar. 

 
Figure 10The MAE of XCSF on each valence value. 
The standard deviation of MAE made by XCSF is 
nearly 0.58~0.91. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 

 
Figure 11The MAE of XCSF on each arousal value. 
The standard deviation of MAE made by XCSF is 
nearly 0.26~0.69. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 
The MAE achieved by the XCSF is smaller 
than the MAE achieved by uniRand and ZeroR 
at most ratings (i.e. the value of valence and 
arousal). The MAE of XCSF is only larger 
than the MAE of ZeroR at the ratings near the 
mean values. A skew on the value of MAEs is 
observed for the largest and lowest valence 
values (i.e. 0~1 and 8). This is possibly due to 
the sample size of these ratings, since the 
numbers of samples of valence equals to 0, 1, 
and 8 are smaller. This finding suggests that 
insufficient sample size of a class (e.g., valence 
= 8) may lead to bad performance of XCSF in 
predicting the corresponding output value. 
However, the MAE of XCSF at valence 4.0 
was not the lowest, which indicates that the 
larger sample size  only guarantees the efficacy 
of XCSF in function approximation instead of 
eliminating all exist errors. In our observation, 
approximately 30 samples (which is nearly 
10% of the number in our collected data set) is 
sufficient for the XCSF to build a model to 
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multi-layered method with transfer function such
as Radial-Basis-Function (RBF) Network [69] were
used in this study. The LOOCV which leaves one
sample out at each time as a testing set and the
remaining samples as a training set was used for
model building.

The XCSF used in this study was adopted from
the Java implementation version on XCSF con-
tributed by Stalph and Butz (2009) [67]. For pa-
rameters setting, a = 1.0; b = 0.1; d = 0.1; l = 1.0;
qGA = 50; e0 = 0.5; drls = 1000; qdel = 20; c = 1.0;
m = 1.0; qsub = 20; the GA subsumption was turned
on. Although the maximal population size N was
set to 6,400˜10,000 to maximize the performance of
XCSF, the number of classifiers quickly converged
to 5,400 during the model training. To examine
the performance of the system, e0 was set to var-
ious values. However, it appears relatively small
effect on the learning performance in regard to the
learning speed and system error. During the model
training, the XCSF was sequentially presented with
20,000 instances randomly selected from the train-
ing dataset.

4.4 Results and Discussion

4.4.1 Collected Dataset

The collected dataset contains 20 images
(1024x768 JPEG) used in the experiment, and the
image affective ratings rated by 16 subjects through
SAM. The experiment totally acquired 320 rows
(actually, 318 rows, while two rows were excluded
due to machine mal functioning) of raw data (im-
ages, and the affective ratings of the images, 20
rows for each subject). Figure 6 presents the distri-
bution of the ratings selected by subjects on all im-
ages; it is observed that most subjects were aroused
with either unpleasant feelings or pleasant feelings
by the displayed images, no obvious skewed was
observed in the distribution of valence (histogram
was examined but not shown).

4.4.2 Model Performance and Discussion

The performance evaluation based on MAE and
the standard deviation (represents by SD) of the
MAEs achieved by the methods used is provided in
Table 2. The ZeroR represents the Zero-R classifier,
LinearReg represents the LR model, and RBFNet
represents the RBF network. The number of nodes

(clusters) of the RBF network was set to 200 based
on the result of the examination on the performance
changes caused by the number of nodes.

The MAE of a prediction model which predicts
at random on the value of valence and arousal is 4.0.
Hence, the MAE 1.453±1.076 achieved by the LR
seems to be fair.

Table 2. The performance achieved by benchmark
classifiers and XCSF

The MAE achieved by the RBF network is
0.949±0.747, which further shows a reduction of
the error by 35%. This result indicates the existence
of the non-linearity characteristic of the dataset
collected. The MAE achieved by the XCSF was
0.950±0.755. The equivalence in the performance
of RBF network and XCSF indicates the capabil-
ity of XCSF on mapping non-linear functions. The
mechanism of the XCSF in model building by man-
aging a set of linear classifiers seems to be compa-
rable to the multi-layered based method with non-
linear transfer function. To further examine the per-
formance of the XCSF, the MAEs of the XCSF on
each valence and arousal value are also provided
in Figure 10 and Figure 11. To compare the MAE
achieved by the XCSF, the MAEs that achieved by
uniRand, a classifier that makes predictions in a uni-
formly random manner are also included in these
figures.

The performance of the XCSF in predicting
each valence value is illustrated in Figure 10 in
which x-axis represents the valence value, y-axis
represents the MAE value. The MAEs that the clas-
sifiers achieved on each valence are represented by
three bars. The right most bar represents the MAE
achieved by the XCSF. The MAEs of uniRand and
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ZeroR are represented by the first and the second
bar.

Figure 10. The MAE of XCSF on each valence
value. The standard deviation of MAE made by
XCSF is nearly 0.58˜0.91. Based on the SAM

ratings, the maximal MAE is 8 and minimal MAE
is 0.

Figure 11. The MAE of XCSF on each arousal
value. The standard deviation of MAE made by
XCSF is nearly 0.26˜0.69. Based on the SAM

ratings, the maximal MAE is 8 and minimal MAE
is 0.

The MAE achieved by the XCSF is smaller than
the MAE achieved by uniRand and ZeroR at most
ratings (i.e. the value of valence and arousal). The
MAE of XCSF is only larger than the MAE of Ze-
roR at the ratings near the mean values. A skew on
the value of MAEs is observed for the largest and
lowest valence values (i.e. 0˜1 and 8). This is pos-
sibly due to the sample size of these ratings, since
the numbers of samples of valence equals to 0, 1,
and 8 are smaller. This finding suggests that insuf-
ficient sample size of a class (e.g., valence = 8) may
lead to bad performance of XCSF in predicting the
corresponding output value. However, the MAE of
XCSF at valence 4.0 was not the lowest, which in-
dicates that the larger sample size only guarantees

the efficacy of XCSF in function approximation in-
stead of eliminating all exist errors. In our obser-
vation, approximately 30 samples (which is nearly
10% of the number in our collected data set) is suf-
ficient for the XCSF to build a model to predict a
valence value in our collected dataset. On the other
hand, this phenomenon happened in valence 0 and
8 could also be explained by a psychological ap-
proach. That is, some of the subjects reported that
they tended to rate the values in the middle of the
scale rather than those values that represent extreme
emotional experiences. This may cause the non-
linear characteristics of the distances between the
levels of valence and arousal. Further clarification
is required for this issue; an appropriate transfor-
mation may be applied to the data to improve the
result.

Similar results can be found in Figure 11,
in which for the ZeroR, the prediction was set
to 3.937. The MAE achieved by the XCSF in
each level of arousal substantially outperformed the
MAE of uniRand and ZeroR. However, the Figure
11 shows the increase of the MAEs achieved by
the XCSF at each level of arousal. This could be
explained by that most subjects reported that dur-
ing the experiment, they confused the definition of
“being aroused” with “the tendency of valence”.
The reaction of the subjects is possibly caused by
the cultural difference, but similar results were not
highlighted previously in the research community
that applies the IAPS and SAM.

Gender information was not used for model
building, but the within-subject analysis was con-
ducted. However, we found that without the ap-
plying content analysis to the image, the effect of
individual difference is relatively small. To further
examine the performance of the XCSF in this task,
the ROC curve of the
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RBF network was set to 200 based on the 
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The MAE of a prediction model which predicts 
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The MAE achieved by the RBF network is 
0.949±0.747, which further shows a reduction 
of the error by 35%.This result indicates the 
existence of the non-linearity characteristic of 
the dataset collected. The MAE achieved by 
the XCSF was 0.950±0.755. The equivalence 
in the performance of RBF network and XCSF 
indicates the capability of XCSF on mapping 
non-linear functions.The mechanism of the 
XCSF inmodel building by managing a set of 
linear classifiers seems to be comparable to the 
multi-layered based method with non-linear 
transfer function. To further examine the 
performance of the XCSF, the MAEs of the 
XCSF on each valence and arousal value are 
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compare the MAE achieved by the XCSF, the 
MAEs that achieved by uniRand, a classifier 
that makes predictions in a uniformly random 
manner are also included in these figures. 
The performance of the XCSF in predicting 
each valence value is illustrated in Figure 10 in 
which x-axis represents the valence value, y-
axis represents the MAE value. The MAEs that 
the classifiers achieved on each valence are 
represented by three bars. The right most bar 
represents the MAE achieved by the XCSF. 
The MAEs of uniRand and ZeroR are 
represented by the first and the second bar. 

 
Figure 10The MAE of XCSF on each valence value. 
The standard deviation of MAE made by XCSF is 
nearly 0.58~0.91. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 

 
Figure 11The MAE of XCSF on each arousal value. 
The standard deviation of MAE made by XCSF is 
nearly 0.26~0.69. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 
The MAE achieved by the XCSF is smaller 
than the MAE achieved by uniRand and ZeroR 
at most ratings (i.e. the value of valence and 
arousal). The MAE of XCSF is only larger 
than the MAE of ZeroR at the ratings near the 
mean values. A skew on the value of MAEs is 
observed for the largest and lowest valence 
values (i.e. 0~1 and 8). This is possibly due to 
the sample size of these ratings, since the 
numbers of samples of valence equals to 0, 1, 
and 8 are smaller. This finding suggests that 
insufficient sample size of a class (e.g., valence 
= 8) may lead to bad performance of XCSF in 
predicting the corresponding output value. 
However, the MAE of XCSF at valence 4.0 
was not the lowest, which indicates that the 
larger sample size  only guarantees the efficacy 
of XCSF in function approximation instead of 
eliminating all exist errors. In our observation, 
approximately 30 samples (which is nearly 
10% of the number in our collected data set) is 
sufficient for the XCSF to build a model to 
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Zero-R classifier, LinearReg represents the LR 
model, and RBFNet represents the RBF 
network. The number of nodes (clusters) of the 
RBF network was set to 200 based on the 
result of the examination on the performance 
changes caused by the number of nodes. 
The MAE of a prediction model which predicts 
at random on the value of valence and arousal 
is 4.0. Hence, the MAE 1.453±1.076 
achievedby theLR seems to be fair. 
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Method Statistics 
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SD of MAE 1.110 1.065 
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SD of MAE 1.076 1.083 
RBFNet MAE 0.950 1.471 

SD of MAE 0.747 1.021 
XCSF MAE 0.950 1.461 

SD of MAE 0.755 1.011 
 
The MAE achieved by the RBF network is 
0.949±0.747, which further shows a reduction 
of the error by 35%.This result indicates the 
existence of the non-linearity characteristic of 
the dataset collected. The MAE achieved by 
the XCSF was 0.950±0.755. The equivalence 
in the performance of RBF network and XCSF 
indicates the capability of XCSF on mapping 
non-linear functions.The mechanism of the 
XCSF inmodel building by managing a set of 
linear classifiers seems to be comparable to the 
multi-layered based method with non-linear 
transfer function. To further examine the 
performance of the XCSF, the MAEs of the 
XCSF on each valence and arousal value are 
also provided in Figure 10andFigure 11. To 
compare the MAE achieved by the XCSF, the 
MAEs that achieved by uniRand, a classifier 
that makes predictions in a uniformly random 
manner are also included in these figures. 
The performance of the XCSF in predicting 
each valence value is illustrated in Figure 10 in 
which x-axis represents the valence value, y-
axis represents the MAE value. The MAEs that 
the classifiers achieved on each valence are 
represented by three bars. The right most bar 
represents the MAE achieved by the XCSF. 
The MAEs of uniRand and ZeroR are 
represented by the first and the second bar. 

 
Figure 10The MAE of XCSF on each valence value. 
The standard deviation of MAE made by XCSF is 
nearly 0.58~0.91. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 

 
Figure 11The MAE of XCSF on each arousal value. 
The standard deviation of MAE made by XCSF is 
nearly 0.26~0.69. Based on the SAM ratings, the 
maximal MAE is 8 and minimal MAE is 0. 
 
The MAE achieved by the XCSF is smaller 
than the MAE achieved by uniRand and ZeroR 
at most ratings (i.e. the value of valence and 
arousal). The MAE of XCSF is only larger 
than the MAE of ZeroR at the ratings near the 
mean values. A skew on the value of MAEs is 
observed for the largest and lowest valence 
values (i.e. 0~1 and 8). This is possibly due to 
the sample size of these ratings, since the 
numbers of samples of valence equals to 0, 1, 
and 8 are smaller. This finding suggests that 
insufficient sample size of a class (e.g., valence 
= 8) may lead to bad performance of XCSF in 
predicting the corresponding output value. 
However, the MAE of XCSF at valence 4.0 
was not the lowest, which indicates that the 
larger sample size  only guarantees the efficacy 
of XCSF in function approximation instead of 
eliminating all exist errors. In our observation, 
approximately 30 samples (which is nearly 
10% of the number in our collected data set) is 
sufficient for the XCSF to build a model to 

0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

uniRand ZeroR XCSF

0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

uniRand ZeroR XCSF



118 Po-Ming Lee and Tzu-Chien Hsiao

Figure 12. The ROC curve made by XCSF on
prediction of the event when valence of the image

is rated smaller than 4 (neutral).

Figure 13. The ROC curve made by XCSF on
prediction of the event when valence of the image

is rated larger than 4 (neutral)

XCSF in predicting the value of valence of an
image being rated smaller or larger than 4 (i.e. 4 is
the value of valence that represents a neutral state)
are provided in Figure 12 and Figure 13. The re-
sult shows that the AUC achieved by the XCSF is
significantly (p-value < .000) larger than the ran-
dom classifier the AUC of predicting valence < 4 is
0.913, in which the AUC of predicting valence > 4
is 0.914). However, the AUC achieved by the XCSF
in predicting the value of arousal being smaller or
larger than 4 is relative small (p-value < .005). The
AUC of predicting arousal < 4 is 0.594 and the
AUC of predicting arousal > 4 is 0.573. The accu-
racy rates achieved by the XCSF on the cut-off point
are: 84.3% (for predicting valence < 4), 86.8% (va-
lence > 4), and 53.1% (arousal < 4), and 56.0%

(arousal > 4). In addition, the ROC curve of RBF
network was also examined because the MAE made
by RBF network was favorable in comparison with
the MAE made by XCSF. The results are provided
in Table 3.

Table 3. The results of ROC Curve Produced by
XCSF and RBF network

To further identify the extracted knowledge, the
prediction models built by the LR are provided in
Equation 17 and Equation 18.

Valence = 3.2893 * F Q IMF1 col + 0.3651 *
F Q IMF1 row + 2.6606 * A I IMF1 row + 0.4394
* F Q IMF2 row - 0.2629 * A I IMF2 col + 2.335
* A I IMF2 row- 1.0522

Equation 17 The model of predicting valence based
on spatial-frequency properties

Arousal = -2.4297 * F Q IMF1 col - 0.9253 *
F Q IMF1 row + 0.1896 * A I IMF1 col - 1.2495
* A I IMF1 row + 0.4578 * M I IMF1 col - 0.3721
* A I IMF2 col + 0.1047 * M I IMF2 col + 7.0513

Equation 18 The model of predicting arousal based
on spatial-frequency properties

For building models by the LR, Akaike crite-
rion was used for model selection and the M5’s
method was used for attribute selection, in which
all the co-linear attributes were excluded. The equa-
tions show that F Q IMF1 col, F Q IMF1 row, and
A I IMF2 row were the main factors that affect
the affective ratings during the experiment. The
F Q IMF1 col, F Q IMF1 row, and A I IMF2 row
show positive relationship to the rating of valence.
These results indicate that the stimulations from
horizontal side are more effective than the stimu-
lations from vertical side. The horizontal side of
the image may contain abundant information. Con-
versely, the affective characteristics of an image in

predict a valence value in our collected dataset. 
On the other hand, this phenomenon happened 
in valence 0 and 8 could also be explained by a 
psychological approach. That is, some of the 
subjects reported that they tended to rate the 
values in the middle of the scale rather than 
those values that represent extreme emotional 
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Figure 12. The ROC curve made by XCSF on
prediction of the event when valence of the image

is rated smaller than 4 (neutral).

Figure 13. The ROC curve made by XCSF on
prediction of the event when valence of the image

is rated larger than 4 (neutral)

XCSF in predicting the value of valence of an
image being rated smaller or larger than 4 (i.e. 4 is
the value of valence that represents a neutral state)
are provided in Figure 12 and Figure 13. The re-
sult shows that the AUC achieved by the XCSF is
significantly (p-value < .000) larger than the ran-
dom classifier the AUC of predicting valence < 4 is
0.913, in which the AUC of predicting valence > 4
is 0.914). However, the AUC achieved by the XCSF
in predicting the value of arousal being smaller or
larger than 4 is relative small (p-value < .005). The
AUC of predicting arousal < 4 is 0.594 and the
AUC of predicting arousal > 4 is 0.573. The accu-
racy rates achieved by the XCSF on the cut-off point
are: 84.3% (for predicting valence < 4), 86.8% (va-
lence > 4), and 53.1% (arousal < 4), and 56.0%

(arousal > 4). In addition, the ROC curve of RBF
network was also examined because the MAE made
by RBF network was favorable in comparison with
the MAE made by XCSF. The results are provided
in Table 3.

Table 3. The results of ROC Curve Produced by
XCSF and RBF network

To further identify the extracted knowledge, the
prediction models built by the LR are provided in
Equation 17 and Equation 18.

Valence = 3.2893 * F Q IMF1 col + 0.3651 *
F Q IMF1 row + 2.6606 * A I IMF1 row + 0.4394
* F Q IMF2 row - 0.2629 * A I IMF2 col + 2.335
* A I IMF2 row- 1.0522

Equation 17 The model of predicting valence based
on spatial-frequency properties

Arousal = -2.4297 * F Q IMF1 col - 0.9253 *
F Q IMF1 row + 0.1896 * A I IMF1 col - 1.2495
* A I IMF1 row + 0.4578 * M I IMF1 col - 0.3721
* A I IMF2 col + 0.1047 * M I IMF2 col + 7.0513

Equation 18 The model of predicting arousal based
on spatial-frequency properties

For building models by the LR, Akaike crite-
rion was used for model selection and the M5’s
method was used for attribute selection, in which
all the co-linear attributes were excluded. The equa-
tions show that F Q IMF1 col, F Q IMF1 row, and
A I IMF2 row were the main factors that affect
the affective ratings during the experiment. The
F Q IMF1 col, F Q IMF1 row, and A I IMF2 row
show positive relationship to the rating of valence.
These results indicate that the stimulations from
horizontal side are more effective than the stimu-
lations from vertical side. The horizontal side of
the image may contain abundant information. Con-
versely, the affective characteristics of an image in
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regard to making people feel aroused, is negative
correlated with F Q IMF1 col and A I IMF1 row.
In addition, the offset of the equation 3 is +7.0513.
These results indicate that the effects of activation
in motivational system due to a visual stimulus are
influenced by the asymmetric of cortical receptors
responsible for distinctive directions of the spatial-
frequency visual stimulations.

5 Conclusion

The overall goal of this study was to build an intelli-
gent machine that can classify images based on their
affective characteristics, especially the classifica-
tion based on features extracted from the spatial-
frequency domain. To achieve this goal, two novel
affect detectors, two speed-up techniques for the
XCS, and a novel 2D approach of applying the HHT
method were developed. The developed systems
were built and validated using multiple human-
subject experiments and compared with the existing
related systems. The rest of this chapter presents the
achieved objectives, main conclusions from each
contribution chapter, and the future work that stems
from this research work.

5.1 Achieved Objectives

The following research objectives have been
fulfilled by this work to achieve the overall research
goal.

– For the first time, high resolution spatial-
frequency features were extracted from the
given images and used in building an affective
classification model. By utilizing the proposed
novel 2D feature-extraction method, the devel-
oped algorithm readily demonstrated spatial-
frequency calculation at a resolution that exist-
ing 2D-FFT, wavelet-based methods, and HHT
cannot.

– For the first time, conducted controlled experi-
ments on this issue that adopt standard instru-
ments which make the results cross-cultural and
comparable to future studies which follow the
same standard. The use of the dimensional the-
ory of emotions in this study enabled the use
of rich standard methodology and paradigms for
conducting experiments. When without the use

of these methods, the obtained results were hard
to compare and reproduce, leading the demon-
strated techniques controversial.

In addition to achieving the above established
research objectives, this work provided a detailed
investigation and analysis of the models built for
classifying images. This analysis revealed that no
matter which the images are and who the subjects
are, the strength of a specific frequency band in a
specific directions on the influence of the affective
characteristics could be the same (i.e. image inde-
pendent and user independent). Further, the intro-
duced 2D-HHT method are not simply another way
of obtaining spatial-frequency features as the pro-
posed methods fundamentally change the way that
an ordinary 2D-FFT functions can do for improving
resolution (e.g., windowing). Also that a standard
2D-FFT does not use all available amplitude infor-
mation and do not decompose the given image to
extract frequency domain information, whereas the
developed HHT based 2D method effectively ex-
ploit the hidden information in an image by using
EMD.

5.2 Main Conclusions

This section presents the main conclusions and
highlights from the two major contribution chapters
(Chapter 3 and Chapter 4).

On the patterns in the affective image classifica-
tion, two models were built and validated based on
multiple human-subject experiments. These mod-
els were built based on HSV properties of images
and the features extracted from spatial-frequency
domain through a 2D HHT method. By using the
proposed 2D HHT method, this study obtains high
resolution information in the spatial-frequency do-
main. The result indicates that both the models
show comparable results to the results that were re-
ported in the previous studies.

The XCSF was demonstrated to adequately
approximate the output landscape of the affec-
tive image-classification problem in the collected
datasets. The relationships between the used fea-
tures and the affective characteristics of images
were examined and shown in Equation 10, Equa-
tion 11, Equation 17, and Equation 18. The prop-
erty of images in the HSV and the spatial-frequency
domain is proved to be influential to the affective
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characteristics of images. These user-independent
results are favorable because less object-detection
technique is required for model building. Moreover,
there should be less possible interference due to in-
dividual difference which should have been elimi-
nated during the model-building process.

5.3 Future Work

For suggested future work, applications on in-
dexing affective characteristics of the images on the
internet, or providing feedbacks to the users to im-
prove the quality of life; for example, to ease peo-
ple, or to excite people; are possible future work. In
future, the results produced by this study should be
replicated using images obtain from sources other
than the IAPS database, to validate the experimental
results in regard to generality. Further examination
on the mechanisms and pathway between the affec-
tive information contained in the spatial-frequency
domain and the cortical receptors in human eye, is
also suggested.

5.4 Closing Remarks

This research work has shown that images can
be indexed based on their affective characteristics.
The 2D nature and the complexity in the images
added additional difficulties to the task. The use
of HSV models and high-resolution 2D spatial-
frequency feature-extraction method such as the
2D-HHT can led the systems to build accurate,
maximally general and compact models in index-
ing various IAPS images as well as pictures in real-
world. Effectively exploiting the combined power
of 2D-HHT and the XCSF, various real-value mod-
eling and function approximation problems could
be solved in a simple and straight forward manner.
Understanding of the affective image-classification
task reveals that the standard spatial-frequency fea-
ture extraction methods do not exploit all available
information embedded in the amplitude matrix of
images, whereas the developed 2D-HHT based sys-
tems effectively exploit the embedded-features and
spatial information during the model-building pro-
cess. This study has shown a new perspective of
indexing images based on their affective character-
istics, not just a new feature extraction method for
indexing images, which is needed to replicate hu-
man capabilities and should lead to various novel
applications.
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