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Abstract

The aim of this work is to create a web-based system that will assist its users in the cancer

diagnosis process by means of automatic classification of cytological images obtained
during fine needle aspiration biopsy. This paper contains a description of the study on the
quality of the various algorithms used for the segmentation and classification of breast
cancer malignancy. The object of the study is to classify the degree of malignancy of
breast cancer cases from fine needle aspiration biopsy images into one of the two classes
of malignancy, high or intermediate. For that purpose we have compared 3 segmentation
methods: k-means, fuzzy c-means and watershed, and based on these segmentations we
have constructed a 25—element feature vector. The feature vector was introduced as an
input to 8 classifiers and their accuracy was checked.

The results show that the highest classification accuracy of 89.02 % was recorded for
the multilayer perceptron. Fuzzy c—means proved to be the most accurate segmentation
algorithm, but at the same time it is the most computationally intensive among the three

studied segmentation methods.

1 Introduction

Nowadays the mammary gland cancer is one the
most common cancers present in the world [10]. In
Poland alone the number of diagnosed cases based
on data delivered by the National Cancer Registry
for both male and female breast cancer for year
2011 was 16643 [2]. Diagnosing cancer before it
starts to produce symptoms is an important matter.
Mostly because cancers that are found when they
are already causing symptoms tend to be larger and
are more likely to have already spread beyond the
breast. Therefore the treatment options are limited
since such cancers are less responsive to any kind
of therapy. In contrast, breast cancers which are di-
agnosed earlier are more likely to be smaller, still

confined to the breast with many efficient treatment
options available.

The size and spread range are some of the most
important factors in predicting the outlook of a pa-
tient’s survival. Nowadays there aren’t any fully
reliable, inexpensive nor non—invasive diagnostic
methods for the identification of breast pathology.

The most common diagnostic methods include:
self-examination (palpation), mammography or ul-
trasound imaging and fine needle aspiration biopsy
(FNA), each of them differs in a degree of sensitiv-
ity and invasiveness. FNA, being the most invasive
and the most accurate method, requires collecting
a tissue material directly from a tumor for micro-
scopic verification and examination in order to ex-
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clude or confirm the presence of cancerous cells [2].

To propose a proper treatment there is a need
for an estimation of cancer stage and its malignancy
grade. Cancer staging is a process of determining
the size and metastasis of the cancer that associates
a stage to a case. The most commonly used stag-
ing system for breast cancer nowadays is TNM (Tu-
mor, Nodes, Metastasis) [3]. Besides staging, when
predicting the progression of the cancer, it is essen-
tial to estimate its malignancy grade. In this pa-
per the scale proposed by Bloom and Richardson in
1957 [7] is used to determine the malignancy grade.
In this system tumor is assigned a low, intermedi-
ate or high malignancy grade. In order to obtain
the resulting virulence the cells polymorphy, ability
to reform histoformative structures and mitotic in-
dex needs to be evaluated. The evaluation process
proposed by the Bloom-Richardson scheme utilizes
three factors that use a point based scale for assess-
ing previously mentioned features. The malignancy
grade is then assigned based on the value calculated
by summation of all points awarded for each fac-
tor. This is a very difficult procedure that requires
extensive knowledge and experience of the cytolo-
gist making a diagnosis. It is well known that usu-
ally the human is the weakest link of any process
as he tends to make mistakes, so the diagnosis is
only as good as the pathologist making it. In order
to minimize the human factor an automatic com-
puter framework can be introduced which can as-
sist doctors during the diagnostic process. Due to
the importance of a proper and accurate determina-
tion of the breast cancer diagnosis many approaches
can be found in the literature that tackle this prob-
lem. One of them includes a firefly method for nu-
clei detection [22] or even an approach that involves
the analysis of thermograms [20]. In this paper we
deal with the classification of breast cancer based
on the fine needle aspiration biopsy. To the best
of our knowledge, the computerized breast cytol-
ogy classification problem was first investigated by
Wolberg et al. in 1990 [32]. The authors described
an application of a multi-surface pattern separation
method to cancer diagnosis. The proposed algo-
rithm was able to distinguish between a 169 ma-
lignant and 201 benign cases with 6.5% and 4.1%
error rates, respectively depending on the size of the
training set. When 50% of samples were used for
training, the method returned a larger error. Using
67% of sample images reduced the error to 4.1%.

The same authors introduced a widely used data-
base of pre-extracted features of breast cancer nu-
clei obtained from fine needle aspiration biopsy im-
ages [24] (available as the Wisconsin Breast Can-
cer Database (WBCD) at the UCI Machine Learn-
ing Repository [1]). Later, in 1993, Street et al. [31]
used an active contour algorithm, called ’snake’ for
precise nuclei shape representation. The authors
also described 10 features of a nucleus used for
classification. They achieved a 97.3% classification
rate using a multi-surface method for classification.

Xiong et al. [33] used partial least squares re-
gression was used to classify that WBCD database
with 699 (241 malignant, 458 benign) cases with
a 96.57% classification rate. Numerous other re-
searchers have worked with the WBCD database
(see [25] and reference therein) with resulting clas-
sification rates ranging from 94.74% to 99.54%.

Malek et al. [23] used active contours to seg-
ment nuclei and classified 200 (80 malignant, 120
benign) cases using a fuzzy c-means classifier
achieving a 95% classification rate.

Niwas et al. [27] presented a feature extraction
method based on the analysis of nuclei Chromatin
texture using a complex wavelet transform. These
features were used with a k-nearest neighbor clas-
sifier where using a data set of 20 malignant and
25 benign cases they achieved a classification rate
of 93.33%. Filipczuk et al. [11] used a circu-
lar Hough transform to detect cell nuclei, which
are subsequently classified as correct or not by an
SVM. Using a k-nearest neighbor, naive Bayes, or
an SVM classifier on selected features sets, using
67 (42 malignant, 25 benign) cases, a classifica-
tion rate of 98.51% was achieved. George et al.
[14]) used a circular Hough transform to detect cell
nuclei, confirming these nuclei using thresholding
and fuzzy c-means clustering. Twelve features were
then passed to several neural network architectures
using 92 (47 malignant, 45 benign) cases (and the
WBCD database for comparison) with the best re-
sult being the probabilistic neural network with sen-
sitivity of 95.49% and specificity of 83.16%.

It is important to notice that the above men-
tioned approaches have concentrated on classify-
ing FNA slides as benign or malignant and are also
called malignancy diagnosis. The system presented
in the current study classifies a malignancy stage
of cancer, called malignancy grading. The biopsy
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being classified is nearly always malignant due to
the pre-screening process before taking an FNA.
Henceforth, in this paper, we are studying malig-
nancy grading, not malignancy diagnosis.

2 Proposed Framework

In Fig. 1 the general concept of the proposed
system is presented. It can be divided into two parts,
Browser part and server part.

— Browser part — Its main task is to provide user
with a set of operations which allow him to up-
load images to be processed and review results
of classification. Its secondary task is to send
data to a server in form of unprocessed images
and retrieve processed results. It may be seen as
a presentation layer of the system. The idea is
that it is user friendly and intuitive.

— Server part — It is a core layer of the system. It
performs all computational tasks including nec-
essary calculations and features extraction. It
handles all data structures essential for proper
classification process. It is also easily extend-
able by other algorithms with visible separation
between presentation, business and delegate lay-
ers.

- Image uploading
- Result displaying

User

9
&
g |

- Segmentation
- Feature extraction
- Classification

Figure 1. General concept of the automatic
web—based classification system.

The proposed web—based framework is divided
into three stages. The first is FNA cytological im-

ages segmentation followed by the feature extrac-
tion of the meaningful and indispensable features
describing segmented nuclei. The output vector of
extracted features is then transferred to the last part,
a classifier which classifies an image into one of the
two possible malignancy classes.

3 Segmentation

In this paper the focus is put on two image
clustering segmentation algorithms and one region
growing technique supported by histogram thresh-
olding. The algorithms that were applied for the
malignancy classification include a fuzzy c-means
and k—means clustering as well as a watershed seg-
mentation.

3.1 K-means clustering

One of the simplest unsupervised learning al-
gorithms that solves clustering problem. The algo-
rithm’s input parameter is only a number of input
clusters k which needs to be known before cluster-
ing process can begin. The main idea is to define
k centroids, one for each cluster, which should be
placed in cunning way since k means is a heuristic
algorithm and there is no guarantee that it will con-
verge to global optimum. Next step is to take each
point belonging to a given data set and associate
it to the nearest centroid. When all of the points
are assigned, the first step of the algorithm is com-
pleted and an initial grouping is done. Following
procedure is to re-calculate k new centroids as cen-
ters of the groups calculated initially. After that we
have new k centroids and the association procedure
for all of the data needs to be repeated [18]. The
consecutive steps of a generated loop make the k
centroids change their location until convergence is
reached. The aim of this algorithm is to minimize
an objective function which is a squared error func-
tion:
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where |[x/ — ¢;||* is a chosen distance measure
between a data point x; and the cluster centre, ¢; is

an indicator of the distance of the n data points from
their respective cluster centers.
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Here we use the RGB color distance between
pixel and a mean cluster RGB color as a measure of
distance. The initial clusters centroids are picked in
random fashion. The segmentation result is picked
as a cluster whose mean RGB value is the highest.
After empirically testing different setting of clusters
the conclusion was reached that the optimal number
of clusters is 3. Higher value of k resulted in dis-
patching of a meaningful data, sometimes even cre-
ating holes inside nuclei or jagged groups. When
using only 2 clusters, too much meaningless data
was introduced into a segmented image and the re-
sult was not satisfactory. Three clusters is a trade
off between processing meaningless data and dis-
carding potentially important information.

3.2 Fuzzy c-means clustering

Similarly to k-means, a fuzzy c-means is a
method of clustering but it allows one piece of data
to belong to two or more clusters in a fuzzy logic
fashion. In this algorithm each point has a degree of
cluster membership rather than completely belong-
ing to just one cluster as in the k-means segmenta-
tion. Because of that, it is possible that the points
on the edge of the cluster belongs to the cluster in a
lesser degree than those in the centre of it [4]. The
method was developed by J. C. Dunn [8] and im-
proved by J. C. Bezdek [5] and frequently used in
pattern recognition. The objective of this algorithm
is to minimize the following objective function:

N C
J:ZZM;?;Hx,-—chZ 2)
i=1j=1

where m is any real number greater than 1, u;;
is the degree of membership of x; in cluster j, x; is
the i—th dimension of the d—dimensional measured
data, c; is the d—dimension centre of the cluster and
|| * || is any norm expressing the similarity between
any measured data and the centre.

Fuzzy partitioning is carried out by iterative op-
timization of the objective function with update of
membership u;; and the cluster centers c;. The iter-
ations stops when the error of the result is lower
than set accuracy, or the number of iterations al-
ready computed is higher than maximum number of
iterations set. The parameters of the algorithm are:
desired accuracy, maximum number of iterations,
number of clusters, and m fuzzy parameter which

controls how much weight is given to the closest
centre and must be greater or equal to 1.

3.3 Watershed segmentation

The watershed algorithm exploits the properties
of grey-level images in a way that they may be seen
as topographic relief. The grey level of a pixel is in-
terpreted as an altitude in the relief. High intensity
denotes peaks and hills while low intensity denotes
valleys. The main idea is that each isolated valley
(local minima) of the image is filled with different
water color (label). When the water level rises con-
necting nearby peaks (gradients) it will merge with
water of other color. In order to prevent that, the
barriers are created in those locations where water
merges. The process of flooding and constructing
of barriers continues until all of the peaks are under
water. Finally, the barriers created with the algo-
rithm are a result of the segmentation process. Due
to a noise or local irregularities in the gradient im-
ages it is common to over-segment an image [30].

In case of over-segmentation, which is a very
common problem with watershed algorithm, results
would not be very meaningful for a problem of
nuclei segmentation. For this purpose a variation
of the watershed method, called marker-controlled
watershed, was applied. The principle here is the
same but instead of flooding from local minima, a
set of markers which will most certainly belong to a
foreground is used as points of origin. That way the
over-segmentation is prevented. The input markers
for marker—controlled watershed are calculated ac-
cording to the following:

1 Regions which will most certainly belong to a
foreground are specified and labelled

2 Regions which will most certainly belong to a
foreground or non-objects are specified and la-
belled

3 Remaining regions which we are uncertain are
labelled

A process starts with the RGB image converted
to a greyscale using Otsu’s binarization. From the
result of Otsu’s binarization two images are created.
The first is an image to which erosion was applied
in order to remove the boundary pixels. After that,
in order to isolate a foreground region, the distance
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transform with a proper threshold was applied. The
second image created from Otsu’s thresholding out-
put is a result of image dilation. With these two
images, the points 1) and 2) above are completed
and we can calculate remaining regions that can-
not be associated to foreground nor background.
The watershed algorithm is a solution to find them.
These areas are normally around the boundaries of a
foreground and background where the images meet.
It can be obtained by subtracting these two areas.
When the region labeling is done, the marker image
is ready and can be passed to the watershed algo-
rithm along with original image for segmentation.

4 Classification

Data classification is a process of identifying to
which set of categories (sub-populations or classes)
new observation belongs to. In image analysis it
would be an operation of assigning one set of cat-
egories to a new image based on classification of a
feature vector that was previously extracted based
on the segmentation results [9].

Classification is a process based on a training
set of data containing observations (or instances)
whose category membership are known [15]. This
means that in order to properly classify a new in-
stance the classifier has to have some set of previ-
ously made observations (for instances in form of
a database or a flat file) with instances that are a
base of prediction. These individual observations
are analyzed into a set of quantifiable properties.
The properties can be variously categorized, for ex-
ample as NAO, OBO, NABO or NOO for blood type.
Depending on the application, more common types
like integer-values or real-valued can also be as-
signed.

An algorithm that implements classification, es-
pecially in a concrete implementation, is known as
a classifier. The term “classifier” sometimes also
refers to the mathematical function, implemented
by a classification algorithm that maps input data
to a category.

In this study we have compared several classi-
fiers which include Naive Bayes classifier, Logistic
regression, Decision Trees, Decision table and neu-
ral networks.

4.1 Naive Bayes classifier

Naive Bayes classifier belongs to a family of
simple probabilistic classifiers that are based on a
Bayes theorem assuming that there is a very strong
(naive) independence between features. In other
words, a naive Bayes classifier assumes that a value
of one of the features is unrelated to the presence
or absence of any other feature, in scope of a class
variable. For instance, an orange may be considered
to be an orange if its color is orange, it is round,
and about 3” in diameter. However this classifier
considers each of these features to contribute in-
dependently to the probability that this fruit is an
orange, not taking into consideration the presence
or absence of other features. The advantage of this
approach is that used in this way it only requires
a small amount of training data to estimate the pa-
rameters necessary for classification. This is related
to independency of variables that the algorithm as-
sumes and we need to determine only the variances
of the variables for each class and not the entire co-
variance matrix [26].

4.2 Logistic regression

This method is otherwise known as a logit re-
gression which is a type of probabilistic statistical
classification model used when categorical depen-
dent variable (for instance a class label) can be only
one of the two values (on dichotomous scale). Usu-
ally values of features describing some observation
are based on occurrence or absence of some event
that is the topic of prediction. In such a case by us-
ing logistic regression it is possible to calculate a
probability of such an event. Formally, logistic re-
gression model is a general case of a linear model
in which the logit was used as a bounding function
[26].

4.2.1 Logistic model trees

Logistic model trees are a type of a classifica-
tion trees with logistic regression functions at the
leaves. The only changed parameter, during gener-
ation of the LMT, is a minimal number of instances
at which a node is considered for splitting and is set
to 15.
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4.2.2 Multinomial logistic regression

This is another classifier that uses logistic re-
gression, a multinomial logistic regression in par-
ticular, with a ridge estimator. It is it allowed to
perform an unlimited number of iterations and the
log-likelihood value of ridge is set to 1073,

4.3 Decision trees

Decision trees are a type of a predictive model
which maps observations of an item to conclusions
about the item’s target value. In this approach for
the classification process a tree structure is used
where leaves represent class labels and branches
represent conjunctions of features that lead to those
class labels [19].

This tool allows for visual and explicit repre-
sentation of decisions and decision making process
(see fig. 2). An insight into what features are taken
into account during classification process and in
what way can be made. Opposed to neural networks
the decision trees are human readable and the pro-
cess of classification can be understood without any
problems and neural networks are more like black
boxes.

Dependent variable: PLAY

Play 9
Don't Play 5

OUTLOOK ?.

sunny / ovell'cast \ rain
' v RN

Play 2 Play 4 Play 3
Don't Play 3 Don't Play 0 Don't Play 2
WINDY ?,

\ FALSE
X

Play 2 Play 0 Play 0 Play 3
Don't Play 0 Don't Play 3 Don't Play 2 Don't Play 0

/ \
HUMIDITY ?

<=170 >70 TRUE

Figure 2. Example of a decision tree. Taken from
Wikipedia.
Here we applied a C4.5, PART and a decision
stump variants of a decision trees.

C4.5

This is an algorithm used to generate a decision
tree developed by Ross Quinlan [28]. The C4.5
builds trees using the concept of information en-
tropy. At each node of the tree, algorithm chooses
the attribute of the data that most effectively splits

its set of samples into subsets of each class. The cri-
terion of splitting is the difference of entropy. The
attribute with the highest entropy is chosen to make
adecision. The C4.5 then recurs on the smaller sub-
sets of data. In this work the following parameters
were used for this algorithm:

— Confidence factor for pruning is equal to 0.25,

— Minimum number of instances per leaf is equal
to 2,

— Number of data for reduced error pruning is
equal to 3.

PART

PART is a decision list algorithm which uses
divide-and-conquer technique. Builds a partial C4.5
decision tree in each iteration and makes the best
leaf into a rule. The decision list is a representation
of Boolean functions [29]. The parameters for gen-
erating the component decision trees of PART is the
same as for the C4.5 algorithm.

Decision stump

This ia a machine learning model consisting of
one-level decision tree. It makes predictions based
on the value of a single input feature [17].

Depending on the input feature there are two
possibilities for creating the stump:

— Creating a leaf for each possible feature value,

— Creating a leaf that corresponds to the one cho-
sen category and the other leaf to all other cate-
gories.

4.4 Decision table

Decision tables are a precise and compact way
of modelling complicated logic. They are similar to
flowcharts and if-then-else set of statements which
associate conditions with actions to be performed.
Each decision corresponds to a variable, relation or
predicate whose possible values are listed among
the condition alternatives. Decision table is a hier-
archical breakdown of the data with two attributes at
each level of hierarchy. Decisions are made by the
inducer the same way as in the decision tree, but the
attributes are evaluated across the entire level of the
tree rather than on a specific sub-tree. The result of
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course is presented as a hierarchical table instead of
a tree [13]. Parameters used for this algorithm are
as follows:

— Number of folds for cross validation is equal to
10,

— The method used for finding good attribute com-
binations is BestFirst (greedy hillclimbing aug-
mented with backtracking facility).

4.5 Neural networks

Here we have implemented a multilayer percep-
tron which is a feedforward artificial neural network
model mapping sets of input data into a set of appro-
priate outputs. Perceptron is a function that maps
input feature vector (real-values) to an output value
f(x) (binary—values) [6]:

1 ifwxx+b>0
0 otherwise

o= ®
where w is a vector of real-valued weights same
size as the input features vector, w * x is the dot
product (weighted sum) and b is a bias — constant
term independent from any input value.

Multilayer perceptron utilizes a supervised
learning technique called backpropagation for train-
ing the network. Moreover it is a modification of a
standard linear perceptron which is able to distin-
guish data that is not linearly separable [16].

The parameters for the applied MLP are follow-
ing:
— 3 hidden layers,

— Learning rate, which is the amount the weights
are updated, equals to 0.3,

— The momentum parameter, which is applied to
the weights during the update, equals to 0.2.

5 Data set and feature set

5.1 Data set

The database used in this paper consists of 346
FNA images used for the breast cancer diagnosis
with known malignancy grade. All of the images
are stained with the HE technique (Haematoxylin
and Eosin) which stains nuclei with purple and

black color, cytoplasm with shades of pink and uses
orange and red colors for red blood cells. At this
point it has to be mentioned that the focus of this
study was to classify the malignancy of the breast
cancer. This is due to the fact that tissue collected
during the FNA examination is always cancerous.
Therefore, there is no need to check if the case is
benign or malignant. It is more important to deter-
mine cancer’s malignancy.

All of the images were digitalized with Olym-
pus BX 50 microscope with mounted CCD-IRIS
camera. The digitalization process was conducted
at the Department of Pathology of the Wroctaw
Medical University, Poland with a help of a PC
class computer with MultiScan Base 08.98 soft-
ware. The images are recorded with a resolution
of 764x571 pixels with a printing density of 96 dpi.
Because at the Wroctaw Medical University, Poland
there was no low malignancy cases recorded since
2004, our database consist only of images with high
(G3) and medium (G2) malignancy samples, there-
fore the classification is considering only these two
cases.

5.2 Feature set

In order to obtain meaningful classification re-
sults, a set of features needs to be calculated from
the segmented images. In this section a list of ex-
tracted parameters is discussed. To assure that the
process of malignancy classification is performed
only on important and necessary features, a vector
of 25 features was built. The vector consists of both
low and high magnification features (based on low
and high magnification images). In this study the
extracted features chosen for classification process
are a mixture of features introduced by authors of
[21] and [12] as an attempt to create larger vector
utilizing advantages of both sets. In the end the fol-
lowing set of features was extracted:

1 Low magnification features:

— Area of groups — average number of nu-
clei pixels. This feature provides representa-
tion of the tendency of groups to create large
groups. When this feature is large there is
one couple of big groups present in the im-
age.
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— Number of groups — feature which de-
termines the number of groups that were
not discarded during the image segmentation
process. High value of this feature suggests a
large number of small groups in the image.

— Dispersion — statistical variation of cluster
areas. Small values of this feature represents
groups of similar size present in the image.

2 High magnification features:

— Nuclei area — same as area of groups but for
high magnification images.

— Perimeter of a nucleus —length of a nuclear
envelope. Computed as an average number
of pixels in the group which has at least one
neighboring pixel which is not a part of that
group.

— Convexity — ratio of the nucleus area and
its convex hull (minimal area of the convex
polygon containing the nucleus).

— X—centroid — alias major axis length. The
average of longest diameter of a nuclei. The
length of the nuclei along the x axis.

— Y—centroid — alias minor axis length. The
average of shortest diameter of a nuclei. The
length of the nuclei along the y axis.

— Orientation — calculated from the binary
representation of the nucleus and image mo-
mentum.

— Vertical projection — average sum of all seg-
mented pixels on y axis in horizontal direc-
tion.

— Horizontal projection — the average sum of
all segmented pixels on x axis in vertical di-
rection.

— Luminance mean — average luminance of all
segmented nuclei groups in the image.

— Luminance variance — statistical variation
of luminance for each group.

— Eccentricity — measure of how much the nu-
clei deviates from the circle. Calculated from
image moments.

— Distance from weight centroid — for the
need of this feature a segmented image bi-
nary centroid coordinates are calculated. Us-
ing the coordinated a distance to each nu-
clei is calculated as na average Euclidean dis-
tance between the centroid and the nucleus.

— Distance from color centroid — calculated
as an average of the distance between the
color cluster meant used during the segmen-
tation and the subsequent groups of average
color.

3 Original image features:

— Histogram mean — set of three features ex-
tracted as a histogram mean of a Red, Green
and Blue channels.

— Histogram energy — set of three features
where the histogram energy for each RGB
channel is calculated.

— Histogram variance — statistical variation of
histogram mean. Calculated for each channel
separately.

6 Results

In this section we will present the results ob-
tained in this study. The first set of results is devoted
to segmentation. There are a couple of things that
can be noticed based on segmentation results (see
Fig. 3 and 4). First observation is that the water-
shed segmentation algorithm, even with the mark-
ers approach, is an algorithm with the least preci-
sion for the task at hand. It discards whole mean-
ingful elements in the image and even makes holes
in the properly detected nuclei. Its usefulness for
segmenting low magnification images is question-
able, however the output for the high magnification
image is better but not ideal.

Another observation is that k-means and fuzzy
c—means algorithms provided similar results. The
reason behind that is that they are based on the same
principle. However when taking a closer look at
the results it became obvious that fuzzy c-means
is slightly better and more accurate. It provides
a less jagged borders than in the other two meth-
ods. It is also better at recognizing similar parts
in the original image where other two algorithms
tend to classify background data as nuclei. This is
mostly visible when low magnification results are
compared. K—means is classifying some parts of the
image which are a little darker than the surrounding
pixels (but not being nuclei) while fuzzy c—means
properly recognizes them as background and dis-
cards them.
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What is also worth noticing is that the fuzzy c—
means, despite being the best algorithm for segmen-
tation out of the three investigated methods, is also
the one which has the highest computational times.
Somewhere around 45 seconds for an image of a
size 764x571 pixels is really high compared to the
other algorithms which take no longer than 5 sec-
onds. For watershed segmentation we noted a time
not longer than 1 second. The difference in qual-
ity between k—means and fuzzy c-means is really
small, but the gain on the performance when us-
ing the k-means is really high. Here we checked if
classification results support this conclusion. This
is why we constructed a feature vector based on
the achieved segmentations. The feature that where
used to build the feature vector was described in
section 5.2. In table 1 an example of such a vec-
tor is presented for all the segmentation algorithms.
In this case the same segmentation algorithm was
used to calculate both the low and high magnifica-
tion features. From that table we can notice that wa-
tershed algorithm is not the best choice for the task
of automatic segmentation. In comparison with the
remaining two algorithms is significant. Another
fact is that the fuzzy c—means is better at picking
clusters because the average distance from the RGB
centroid of particular groups in the segmented im-
age and luminance variance of those groups is less
than 1073.

The last set of results to be presented in this
work is the comparison of the accuracy of applied
classification algorithms. Table 2 contains perfor-
mance results of used classifiers for different com-
binations of segmentation algorithms. The results
were obtained by using the 10—fold cross validation
technique which assesses how the results of statisti-
cal analysis will generalize to new and independent
data set. Its purpose is to check the model against
the overfitting problem which occurs when model
is too dependent on the training data set.

7 Conclusion

In this work three segmentation algorithms and
classifiers were compared for the problem of cre-
ation of a web-based decision supporting system
for automatic breast cancer malignancy grading.
Whole process of decision making starting with im-
age acquisition moving into image segmentation

and feature extraction, ending with classification
step was described. Algorithms chosen for compar-
ison are a result of scrupulous literature review and
showed to be very precise in the described appli-
cation. The suggested feature vector obtained from
segmented images allows for a high quality classi-
fication of FNA breast cancer images.

The main conclusion is that the described ap-
proach provided promising results. The error rate
around 15 % for most of the cases indicates that the
problem of automatic classification of breast cancer
FNA images can be resolved by the proposed solu-
tion but it still needs some improvements to be more
accurate. Not all of the combinations and classifiers
however are as good as the others. The best two
are the multilayer perceptron and logistic regres-
sion. Both are in a scope of minimizing the error
rate and providing the best prediction for G3 cases
being classified as G3. Other algorithms were good
for minimizing the error rate but due to the fact that
the data was severely unbalanced (136 samples of
G2 and only 37 samples of G3) they mostly failed
with correct classification of G3 samples. The opti-
mistic results were also obtained with the C4.5 de-
cision tree algorithm which shows a room for future
improvement.

For the segmentation task, the following com-
binations of algorithms showed the best nuclei rep-
resentation:

— Watershed for low magnification and k-means
for high magnification (MLP - 89.02 %; Logis-
tic regression 83.81 %)

— Fuzzy c-means for low magnification and k-
means for high magnification (MLP - 88.44 %;
Logistic regression 83.24 %)

— K-means for low magnification and fuzzy c—
means for high magnification (MLP - 87.28 %;
Logistic regression 84.97 %)

— Only k—means (MLP - 88.44 %; Logistic regres-
sion 83.81 %)

— Only fuzzy c-means (MLP - 88.44 %; Logistic
regression 86.70 %)

Another conclusion is that the increase of recogni-
tion rate of minority class in almost all cases leads
to decreased accuracy for majority class objects.
However as stated before the early detection of high
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malignancy breast cancer is vital for the life of pa-
tients and provides some means of efficient treat-
ment. Therefore that trade-of is worth its cost.

The accuracy of the obtained results is very
promising despite the fact that the proposed meth-
ods are not able to handle properly all of the test
cases. The detection of overlapping nuclei in the
images could be improved as well as the bright-
ness of the images. The segmentation quality could
also improve by the introduction of pre-processing
methods to the input images which should resolve
most of the mentioned problems. Also a recogni-
tion rate could be improved by the introduction of
more attributes with high classification power to the
feature vector that were not tested in this study.
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Figure 3. Low magnification segmentation results. a) Original image, b) K-means segmentation, c¢) Fuzzy
c—means segmentation, d) Watershed segmentation.
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Figure 4. High magnification segmentation results. a) Original image, b) K-means segmentation, c¢) Fuzzy
c—means segmentation, d) Watershed segmentation
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Table 1. Sample results of feature extraction for three segmentation algorithms.

Feature K-means | Fuzzy c—means | Watershed
Groups area [px] 360.9 387.8 6893.2
Number of groups 118 110 5
Dispersion 2137 2226 8010
Nuclei area [px] 1959.3 1836.8 3079.8
Perimeter [px] 236.0 220.5 323.3
Convexity 0.918 0.927 0.873
X—centroid 52.00 49.36 70.64
Y-centroid 46.75 44.60 64.51
Orientation 0.526 0.527 0.417
Vertical projection 82.64 80.70 178.62
Horizontal projection 61.55 60.11 133.03
Luminance mean 153.42 146.95 171.17
Luminance variance 10.54 0.00 20.36
Eccentricity 0.039 0.039 0.152
Distance from centroid 363 369 359
Histogram mean for:
R channel 246.2 246.2 246.2
G channel 209.83 209.83 209.83
B channel 199.18 199.18 199.18
Histogram variance for:
R channel 21.93 21.93 21.93
G channel 40.22 40.22 40.22
B channel 28.57 28.57 28.57
Histogram energy for:
R channel 0.22 0.22 0.22
G channel 0.037 0.037 0.037
B channel 0.014 0.014 0.014
Distance from
centroid RGB 7 0 -
Computing time [ms] 1220 38593 156
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Table 2. Error rates for different segmentation set—ups.

Segmentation C4.5 PART | Decision | Decision | Multilayer | LMT | Logistic | Naive
set—up table table perceptron Bayes
Low magnification
watershed,

High magnification | 16.18 % | 15.61% | 15.03 % | 16.18 % 1561 % | 12.14% | 14.45 % | 17.92 %
Fuzzy c-means
Low magnification
watershed,
High magnification | 18.50 % | 18.50% | 16.19 % | 17.34 % 1098 % | 11.56 % | 16.18 % | 17.34 %
K-means
Low magnification
Fuzzy c—means,
High magnification | 16.76 % | 20.23% | 17.92 % | 25.43 % 15.03% | 15.61 % | 15.61 % | 35.84 %
watershed
Low magnification
Fuzzy c-means,
High magnification | 23.12 % | 15.61% | 20.23 % | 23.12 % 11.56 % | 18.50 % | 16.76 % | 19.07 %
K-means
Low magnification
K-means,
High magnification | 16.76 % | 17.91% | 17.91 % | 25.43 % 1445 % | 15.02% | 16.18 % | 36.42 %
watershed
Low magnification
K-means,
High magnification | 20.23 % | 20.81% | 20.23 % | 21.39 % 1272 % | 19.07 % | 15.03 % | 18.50 %
Fuzzy c-means
Low magnification
and
High magnification | 15.03 % | 15.03% | 16.18 % | 18.50 % 16.76 % | 14.45 % | 16.76 % | 38.15 %
watershed
Low magnification
and
High magnification | 17.92 % | 18.50% | 18.50 % | 21.39 % 11.56 % | 16.76 % | 13.29 % | 19.07 %
Fuzzy c-meanss
Low magnification
and
High magnification | 19.65 % | 16.18% | 17.34 % | 17.92 % 11.56 % | 15.61 % | 16.18 % | 17.92 %

K—means




