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Abstract

In this paper, the detection of mines or other objects on the seabed from multiple side-scan
sonar views is considered. Two frameworks are provided for this kind of classification.
The first framework is based upon the Dempster—Shafer (DS) concept of fusion from a
single-view kernel-based classifier and the second framework is based upon the concepts
of multi-instance classifiers. Moreover, we consider the class imbalance problem which
is always presents in sonar image recognition. Our experimental results show that both
of the presented frameworks can be used in mine-like object classification and the pre-
sented methods for multi-instance class imbalanced problem are also effective in such

classification.

1 Introduction

To acquire high-resolution sonar imagery for
the detection of mine like objects (MLO) and other
objects of interest on the seabed, side-scan sonar
equipped vehicles such as Autonomous Underwa-
ter Vehicles (AUVs) are frequently used by military
forces or commercial organizations. For this pur-
pose, Automatic Target Recognition (ATR) meth-
ods have been successfully applied to detect possi-
ble objects or regions of interest in sonar imagery
[1]-[9]. Since many of the sonar images are of the
same object from different sonar passes, there are
multiple views of the same object at different ranges
and aspect of the sonar. It is anticipated that the ad-
ditional information obtained from additional views
at an object should improve the classification per-
formance over single-aspect classification. Recent

researches [2][4][5] prove this anticipation by ex-
perimental result and find that although it is possi-
ble to obtain an accurate classification based upon
a single image of an object, misclassifications can
be reduced if the detection is based upon multiple
views of the object.

In this paper, we use two methods combined
with data fusion methods and multi-instance classi-
fication methods to deal with the class imbalanced
problem in multi-view MLO classification. The first
method is the cost-sensitive boosting algorithm [48]
and the second is a classifier-independent method:
over-sampling of multi-views of the minority class.

The remainder of the paper is organized as
follows: Section II discusses previous work that
has been done both in multi-view based classifica-
tion and on the class imbalance problem. Section
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IIT presents the fusion methodologies. Section IV
presents the data preprocessing method used in our
research. In section V, we consider the classification
performance of all admissible multiple aspects in-
cluding double and triple aspects for different types
of mine like objects by studying the correct clas-
sification rates and the error rates as functions of
the angular difference between aspects. In section
VI, the class imbalance problem for single aspect
mine countermeasure missions (MCM) datasets and
a novel solution are presented. In section VII, the
class imbalance problem for multi aspects MCM
datasets and related concepts are presented and we
present a novel cost-sensitive AdaBoost algorithm
for this problem. This section also illustrates the
efficiency of our algorithm as determined by exper-
imentation, and offers some final remarks. Finally,
Section VIII presents the conclusion, followed by
the references.

2 Previous work

In these works, B. Zerr et al. [1] [3] firstly de-
scribed a method to estimate the three-dimensional
aspects of underwater objects using a sequence of
sonar images. The sonar images are segmented into
three kinds of regions: echo, shadow and back-
ground. A study they [2] conducted using sonar
images of various objects and height profiles as
features showed that the highest classification per-
formance when imaging an object twice can be
achieved with an angular increment of 90 degrees
between the two images. M. Couillard et al. [4]
extended this study and considered the classifica-
tion performance of all admissible secondary as-
pects for different types of mine like objects by
studying the correct classification rates and the error
rates as functions of the angular difference between
aspects. In their work, two different approaches
have been used to combine multiple images of an
object. The first one creates a new object for clas-
sification by combining the features of the two im-
ages to single vector. The second approach is sim-
ply to fuse the single aspect classification probabil-
ities obtained from the classifier according to the
desired angular increment between the images.

J. Fawcett et al. [5] investigated two approaches
for fusing multiple views: fuse-feature and fuse-
classification. In the first approach the two fea-

ture sets taken at different aspects were combined
to form a large feature vector. Then a kernel based
classifier was trained with this feature vector. In
the second approach, they fused two individual-
aspect classifications of two feature vectors using
the Dempster-Shafer (DS) theory, which has fre-
quently been used as an alternative to Bayesian the-
ory and fuzzy logic for data fusion.

S. Reed et al. [6] [7] have also investigated the
classification of a target by fusing several views us-
ing DS theory. They present a model to extend the
standard mine/not-mine classification procedure to
provide both shape and size information on the ob-
ject. The difference between their work and oth-
ers is that they generated the mass functions using
a fuzzy functions membership algorithm based on
fuzzy logic.

V. Myers and D. P. Williams [8] [9] introduced
a model for classifying targets in sonar images
from multiple views by using a partially observable
Markov decision process (POMDP). This POMDP
model allows one to adaptively determine which ad-
ditional views of an object would be most beneficial
in reducing the classification uncertainty.

In other related work, G. Dobeck fused multi-
ple images from different frequency bands [11], J.
Tucker et al. [12] fused multiple images from dif-
ferent platforms, and M. Azimi-Sadjadi et al. [13]
fused multiple images from multi-aspect target echo
classification.

These works have one common point in that
they all use fusion methods to combine different
views for classification. Although using fusion
methods such as Dempster-Shafer fusion of single
aspect classification results was shown to be effec-
tive in some cases [2][4][5], we can still anticipate a
number of challenges and limitations in some ATR
application using fusion methods[15]. Itis thus nec-
essary to develop other methods to combine dif-
ferent information from multiple views in this re-
search.

In this paper, including the data fusion method-
ology, we present two frameworks for multi-aspect
classification on side scan sonar images. The first
one uses the Dempster-Shafer (DS) theory on multi-
ple views of target which is not quite different from
the methods mentioned [2][4][5]. In the second
framework we use multi-instance method which is
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a methodology for a combination of the information
of multiple views of target.

On the other hand, when applying ATR meth-
ods to detect possible MLOs, the number of natu-
rally occurring clutter objects (such as rocks, ship-
wrecks or fish) that are detected always typically
far outweighs the relatively rare event of detecting
a mine. This means that the number of non-mine
like objects is always much greater than the number
of mine like objects. In this situation, the dataset
is “imbalanced”. A dataset is imbalanced if the
classes are not approximately equally represented.
In imbalanced datasets, the number of one class is
often much higher than the number of classes and
a default classifier always predicts “the majority
class”. For MLO classification, no matter whether
we make the classification based upon a single im-
age of an object or multiple images of an object,
the training data sets are always class imbalanced.
Our research shows that in both the cases of learn-
ing from single-view or multi-views of the objects,
the performance of classifiers always suffered from
the class imbalance problem.

For Automatic Target Recognition (ATR) meth-
ods used on MCM data sets, D. Williams et al.
[10] used infinitely imbalanced logistic regression
to solve the class imbalanced problem. That is the
only work related to the class imbalanced problem
of MLOs classification, especially in the case of
multi aspects class imbalanced problem of MLOs
classification.

3 Fusion methodologies

Data fusion is a technology which collates in-
formation from different sources considering the
same scene in an attempt to provide a more com-
plete description. When we try to combine multi-
aspects sonar images for classification, the most
common numerical fusion techniques used are
Bayesian probability theory, Fuzzy systems and
Dempster-Shafer theory.

Fuzzy systems contain a wealth of possible fu-
sion operators. However, many of the operators are
non-associative and the choice of operators is case
dependent, which means the order in which the in-
formation is fused has an impact on the final re-
sult. Bayesian and Dempster-Shafer models have

both been successfully applied but Dempster-Shafer
theory provides some features that Bayesian theory
does not. One of the most significant features is that
Dempster-Shafer theory can consider the union of
classes. This feature is used to improve the separa-
bility of different classes. Therefore the Dempster-
Shafer (DS) method is a popular data fusion method
which has been used by other authors for side scan
sonar image classification.

The Dempster-Shafer method is based on two
ideas: obtaining degrees of belief for one question
from subjective probabilities for a related question,
and Dempster’s rule for combining such degrees of
belief when they are based on independent items of
evidence.

The Dempster’s rule of combination is a purely
conjunctive operation (AND). The combination
rule results in a belief function based on conjunc-
tive pooled evidence. This rule can also be used for
multi aspect classification.

In DS theory, each unique class makes up
a set called the frame of discernment 6 =
{®1,my,...,0y}. Belief is attributed to hypothe-
ses within the power set through a basic probability
assignment, called the mass function m(A).

Suppose that we have two views of target S| and
S, and the mass functions m; (S), and m,(S),. Base
on the Despster’s rule, the mass after fusion for the
set A is:

Y.51nS,=A m (S1)ma(S2)

nip A) = (1)
) 1 —Yg,n5,=0m1(S1)m2(S2)
The classification rule for this case is

g (x1,x2) = argmaxmia(ey;) (2)

1

In our research, as many authors, we use
Dempster-Shafer theory as a choice for multi-aspect
classification. In our algorithm, we use a training
dataset for the single-aspect classifier and then save
the predicted class labels from the testing data. Us-
ing T cross validation we can get a T x M output
matrix. Let B; (k) ,k =1,2,...,T, correspond to the
ith column of the prediction vector for the kth test-
ing feature vector.

For n output vectors B;(k),i = 1,2,...n ob-
tained from n single-aspect classifications, the n



136

Wang X., Liu X., Japkowicz N. and Matwin S.

sets of masses are finally fused using Demsper’s
rule and the final decision is given by the classifi-
cation rule g (x1, X2, xp).

In training datasets of MLO classification, each
object has more than one view and each view is
saved as an instance in the dataset. Therefore each
object has a group of instances which has the same
label. We call this group of instances a “bag”. Bag
is a term originally used in multi-instance learning
which will be discussed in next section. In this pa-
per, the n sets of masses, which are also n bags, are
fused using Demsper’s rule to get the final decision.

4 Multi-instance methodologies

Multi-instance learning (MIL) is another frame-
work choice for multi-aspect classification. MIL is
concerned with supervised learning but differs from
normal supervised learning in two points: (1) it has
multiple instances in an example, and (2) only one
class label is observable for all the instances in an
example.

The multiple instances learning problem can de-
fined as:

Given:

— aset of bags B;,i = 1,...,N, their classification
¢(B)i{0,1}, and the instances e;;(j = 1,...,n;)
belonging to each bag.

— the existence of an unknown function f that
classifies individual instances as 1 or 0, and
for which it holds that ¢(B;) = 1 if and only
if there exists ¢;;B; : f(e;;) = 1 (multi-instance
constraint, MIC)

In our experiment we choose two popular multi-
instance learning algorithms: the decision tree and
the logistic regression methods.

4.1 Multi-instance Tree

Similar to a single-instance decision tree (like
C4.5), the multi-instance tree is based on the infor-
mation gain of a feature of the instance, the dif-
ference of the multi-decision tree and the single-
decision tree is that instead of using the feature of
one instance to develop the information gain, the
growing of a multi-instance tree is based on the in-
formation gain of a feature to set of instances. The

concept of information gain and entropy are ex-
tended to bags of instances in the MIL framework.
Suppose S is a collection of instances which be-
long to p(S) positive bags and n(S) negative bags,
F is the feature being considered as the splitting cri-
terion and S,, is the collection of instances whose
value of feature F is n. The extended information
gain and entropy are defined as (3) and (4):

In this paper we use the multi-instance tree in-
ducer (MITI) proposed by Blockeel et al. [16]. It
implements the top-down decision tree learning ap-
proach known from propositional tree inducers such
as C4.5 [17], with two key modifications: (a) nodes
are expanded in best-first order guided by a heuris-
tic that aims to identify pure positive leaf nodes as
quickly as possible, and (b) whenever a pure posi-
tive leaf node is created, all positive bags containing
instances in this leaf node are deactivated.

4.2 Multi-instance Logistic Regression
(MILR)

For single-instance classification, Logistic Re-
gression [49] assumes a parametric form for the dis-
tribution Pr(Y |X), then directly estimates its pa-
rameters from the training data. The parametric
model assumed by Logistic Regression in the case
where Y is a boolean is:

1
PriY=1|X)= 5
4 %) L+exp (wo+ il @iXi) ®
and
iy 0 X;
Priy —0|x) = -SP@FEL 0X) )

- 14-exp (COQ+ Z?:l OJiXi)

However, the standard logistic regression model
[49] does not apply to multi-instance data because
the instances’ class labels are masked by the “col-
lective” class label of a bag. X. Xu and E. Frank
[14] use a two-stage framework to upgrade linear
logistic regression and boosting to MI data.

The instance-level class probabilities are given
by

1
P :1 e
ry=1[x) 1 +exp(—Px)
and |
Pr(y=0|x) =

~ 1+exp(Bx)
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p(S)

Entropy,.; (S) = Cp(s)+n(S) xlogz (P( )

InfoGain

multi

respectively, where B is the parameter vector to be
estimated.

Given a bag b with n instances X; € b, we as-
sume that the bag-level class probability is either
given by

Pr(Y|b)==Y Pr(y| x) (7)
i=1

or by

Priy=1]b) 1§
IOgPr(y:O\b) - nZlOgPr(y:M X;) ®)

From (6) we can get (9) and (10).

Based on (9) and (12) we can estimate the pa-
rameter vector [ by maximizing the bag-level bi-
nomial log-likelihood function (11) where N is the
number of bags.

As wusual, the maximization of the log-
likelihood function is carried out via numeric op-
timization because there is no direct analytical so-
lution. The optimization problem can be solved
very efficiently because we are working with a lin-
ear model.

S Class imbalance problem in
Multi-Views MLO classification

For classification on single-views of mine like
object (MLO) detection, we can apply many exist-
ing approaches such as sampling methods [27] [31]
or cost-sensitive classification methods [29] [34]
[36]. For classification on multi-views of MLO de-
tection, to our knowledge there are very few discus-
sions related to the multi-instance class imbalanced
problems.

For the single-instance data imbalance problem,
the machine learning community has addressed the
issue of class imbalances in two different ways to
solve the skewed vector space problem. The first

(S,F) = Entropyu; (S) —
e neValues(F) p(s)+n(S)

p(S) o n(s) , n(s)
s+n<s>> p<s>+n<s>”g2<p<s>+n<s>> )

y p(sn) +n(sy)

X Entropymulti (Sn) (4)

method, which is classifier-independent, is to bal-
ance the distributions by considering the represen-
tative proportions of class examples in the distri-
bution of the original data. The simplest way to
balance a dataset is to under-sample or over-sample
(randomly or selectively) the majority class, while
maintaining the original minority class population
[34]. One of the most common pre-processing
methods to balance a dataset, Synthetic Minor-
ity Over-sampling Technique (SMOTE) [31], over-
samples the minority class by taking each minor-
ity class sample and introducing synthetic exam-
ples along the line segments joining any or all of
the k minority class nearest neighbors. Evidence
shows that synthetic sampling methods are effec-
tive when dealing with learning from imbalanced
data [27] [31] [34].

Working with classifiers to adapt datasets is
another way to deal with the single-instance im-
balanced data problem. The theoretical foun-
dation and algorithms of cost-sensitive methods
naturally apply to imbalanced learning problems
[29][30]. Thus, for imbalanced learning domains,
cost-sensitive techniques provide a viable alter-
native to sampling methods. Recent research
[27][29][34] suggests that assigning distinct costs
to the training examples is a fundamental approach
of this type, and various experimental studies of this
[23][25][36] have been performed using different
kinds of classifiers.

The work of [48] provides a cost-sensitive
boosting algorithm for imbalanced multi-instance
classification. This algorithm makes modifications
based on the original Adaboost algorithm [19] for
imbalanced multi-instance datasets.

The original AdaBoost [19] iteratively updates
the distribution function over the training data. This
means that for every iterationt = 1,...,T, where T
is a given number of the total number of iterations,
the distribution function D; is updated sequentially,
and used to train a new hypothesis:
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M Pr(y=1] x)]"

exp (;BY; xi)

P ) _ ©)
oty M Pr(y=1] %)) + L Pr(y=0] x)]r 1 +exp (B x)
M Pr(y=0] )]’ !
0l ) _ (10)
O b= 1 | s £ P =0 w1+ e (1BE )
N
LL=) [yilogPr(y=1|b)+(1—y,)logPr(y=0]|b)] an

i=1

Dy (i) exp(—0uyih (xi))
Z

Dy (i) = (12)

whereo,;, = %ln (%) is the weight updating
parameter, h(x;) is the prediction output of hy-
pothesis h¢ on the instance x;, € is the error of
hypothesis h; over the training data, and Z; is a nor-
malization factor. Here each x; is an n-tuple of at-
tribute values belonging to a certain domain or in-
stance space X, and y; is a label in a label set Y.

Schapire and Singer [24] used a generalized
version of Adaboost. As shown in [24], the train-
ing error of the final classifier is bounded as:

%]{i:H(x,-) £yl <[Iz (3

where

Z, = ZDI (i)exp (—0yyihy (x;))

<Y D, (i) (Hyzh()+ 1+y2h<>>
| (14)

Minimizing Z; on each round, o is induced as:

it D (i
0 — L [ Bzt Dr () (15)
2 Ziv)’i?éht(xi) Dy (i)

The weighting strategy of AdaBoost identifies sam-
ples on their classification outputs as correctly clas-
sified or misclassified. However, it treats samples of
different classes equally. The weights of misclassi-
fied samples from different classes are increased by
an identical ratio, and the weights of correctly clas-
sified samples from different classes are decreased
by an identical ratio.

Given: A multi-instance training dataset with a set of
bags x;, i = 1, ..., N, where each bag can consist of an arbitrary
number of instances and a given label:

x = {xtx% .. x{yi}i=1,..,Ny; € {~1,+1}, and each
instance xin ! is an M-tuple of attribute values belonging to a
certain domain or instance space R.

Initialize D, (i) = 1/m .

Fort=1,..., T && the constraint condition 7 is satisfied
Train a weak learner using distribution D,.

Get a weak hypothesis h;: y = R.

Choose a; € R.

Dy (i) = 22D (4)

Update:

where Z, is a normalization factor (chosen so that D;,,
will be a distribution).

Output the final hypothesis:

H(y) = sign(X_; ach.(x)) (15)

Figure 1. Cost-sensitive Adaboost for
Multi-Instance Learning Algorithm

Since boosting is suitable for cost-sensitive
adaption, motivated by [6]’s analysis and methods
for choosing oy, and several cost-sensitive boost-
ing methods [30] [36] [29] for imbalanced sin-
gle instance learning have been proposed in recent
years. The work of [48] applied cost-minimizing
techniques to the combination schemes of ensem-
ble methods for imbalanced multi-instance datasets.
This learning objective expects that the weighting
strategy of a boosting algorithm will preserve a
considerable weighted sample size of the minority
class. A preferred boosting strategy is one that can
distinguish different types of samples, and boost
more weights on those samples associated with
higher identification importance.

To denote the different identification impor-
tance among bags, each bag is associated with a cost
item. For an imbalanced multi-instance dataset,
there are many more bags with class label y = —1
than bags with class label y = +1. Using the same




AUTOMATED APPROACH TO CLASSIFICATION OF MINE-LIKE . .. 139

learning framework as AdaBoost, the cost items can
be fed into the weight update formula of AdaBoost
(Eq. (1)) to bias the weighting strategy. The pro-
posed methods are similar to those proposed in Ref.
[18]. Fig. 1 shows the proposed algorithms.

In the original adaboost, K, (y;,y;) is given as
expal(—oyyih (%;)). In Cost-sensitive Adaboost for
Multi-Instance Learning Algorithm, the modifica-
tions of K; (;,y;) are then given by:

Abl:
K (Xi,y;) = exp(—=Cioyyih (i) (16)

Ab2:
K (Xi,y;) = Cexp(—ouyihy (x:) — (17)

Ab3:
K (Xi»y;) = Ciexp(—=Cioyyihy (i) (18)

Ab4:

K (Xiy;) = Crexp(—Cr ot yiy (%i)) (19)

Respectively, for o, and 1, from [48] we can get
(20)-(27)

On the other hand, similar to single-view
MLO classification, we can also apply bag over-
sampling, a classifier-independent method on im-
balanced multi-views MLO classification. The
Bag_Over_Sampling is a bag level over-sampling
approach in which the minority class is over-
sampled with replacement.

We have presented two approaches for the class
imbalance problem in Multi-views MLO classifi-
cation. One advantage of these approaches is that
both of them are learner independent. Therefore
these two approaches can be applied for the multi-
instance learning and the DS fusion methods which
are presented in previous two sections.

6 Data preprocessing

The first step of this classification task is the
segmentation of the sonar images into three distinct
regions: highlight or target echo (sound scattered
by the target by active sonar), shadow (regions of
low acoustic energy created by an object or seabed

feature blocking the sound propagation) and back-
ground or seabed.

Figure 2. Example of an image processing result
on an image provided by the Ocean System Lab,
Heriot-Watt University

In mine countermeasure missions (MCM),
sonar images collected by AUVs will convey impor-
tant information about the underwater conditions.
How to properly process the sonar images will have
a significant impact on the subsequent MLOs detec-
tion and classification stages.

In the MCMs, a large part of sonar images col-
lected by AUVs represent the background—seabed.
In MLOs detection and classification, we are more
interested in the object that lies on the seabed rather
than the background. The areas from the images
with only background information can be simply
discarded. Image segmentation is a widely used
image processing technique to detect target objects
and segment the original images into small pieces
that contain the target objects. The foreground ob-
jects are assumed to have a more complex texture
than the seabed. Thus, the foreground object areas
are obtained by using local range and standard de-
viation filters.

Instead of dealing with the whole sonar image,
image segmentation allows us to only process the
smaller pieces, reducing the future computational
load. In this step, our goal is to delete image data
that contain only background information and re-
duce the amount of data to be processed. Therefore
whether the size, shape and location of the target
object are accurately found is not a main concern in
this step.

The objective of the image processing proce-
dures at this point is data reduction rather than
MLOs detection. Thus, a relatively high false alarm
rate is acceptable.

Fig. 2 illustrates the extraction of foreground
objects from a sonar image which was provided
by the Ocean Systems Lab, Heriot-Watt University.
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1 1+ Ziv)’i:ht (%) GDi (i)~ Zf-.\’i#hr (%) GiD (i)
Ol _Ab1 —jln < 1= Yy (17) CiD’(i)+Zi~)fi#ht(xi) CiD, (i) (20)
Mawt: Y, GD()> Y GCD,(i) 1)
i,yi=hi(Xi) i,yi7h, (Xi)
U i) GD: (0)
O app=xln| o= . (22)
2 (Zi,yi#h,(x,-) GiD, (i)
Mapi: ), GD()> ), GCD(i) (23)
i,yi=h (Xi) iyi#h (Xi)
T]tA}ﬁ:lln LiGD, (i>+2i:)’i:]’lr(Xi) Cisz (i)_ Zi,y,-;éh,(x,») Cith (l) (24)
2 Zl ClDt (l) - Zlyl:h,(x,) Clth (l)+ Zl,yﬁéh,(xl) Clth (l)
Naz: Y, CD(i)> Y CD,(i) 25)
i,yi=h (i) iyi#h (Xi)
OCtAb4:lln Zz CIZD; (i)"i'Zi,y,-:h,(xi) C14Dt (l) - Zi,yi;&h,(x,-) C14Dz (l) (26)
2 \ LiCPD, (i) = Liyimn () G Dr (i) + Liyn () i D, (0)
Navs: Y, CD(i)> Y CID,(i) 27
i,yi=h (%) i,yi#h (%)

Areas that do not have a reasonable size will be ig-
nored.

For object detection tasks, an object should be
detected through a single view, no matter where and
how it lies on the seabed. Therefore, the features
used should be robust to the location and orienta-
tion of the object. The grayscale histogram, a sim-
ple but informative statistical feature, is considered.
In many image recognition systems, many complex
features are used, but such features will inevitably
increase the computational complexity, impeding
the real time detection. The histogram is easy to
calculate and robust to rotation. The distribution of
the grayscale value can be well described by this
feature.

In our experiment, the grayscale value (0-255)
is divided into 16 bins with width 16. The grayscale
histograms are normalized to the frequency that a
pixel value falls into each bin. The MLOs are la-
beled as the positive examples.

7 Experimental Results Of Mullti-
aspects Images Classification

7.1 Classification on multi-views of object

In the experiments, we study the classification
performances as a function of the number of aspects
and compare the experimental result using DS and
Multi-instance classifiers.

The binary dataset used in this empirical study
is described in TABLE 1. which has binary class.
The negative examples denote the non_MLOs and
the positive examples denote the MLOs. In this
experiment each object has three views so we can
study the classification performances as a function
of the number of views. ROC curves are chosen
as the measure technique for the classification. The
experimental results are shown in Figure 3 and Fig-
ure 4.

Figure 3 shows the ROC curves as a function of
the number of aspects using MITI as the classifier
and Figure 4 shows the ROC curves using DS with
decision tree as the classifier. We can find that for
both classifiers, with more views used for classifi-
cation, the performance is better.
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Table 1. Multi-views mlo datasets

Datasets | # objects | # attribute | # positive examples | # negative examples
MLO, # 360 #16 # 180 180
Table 2. Multi-instance class imbalanced datasets
Datasets | # objects | # attribute | # min objects | % min objects | # min instances | % min instances
MLO; 561 16 58 10.34 116 10.34
MLO, 555 16 64 11.53 144 12.18
MLO3 425 16 65 15.29 158 17.67
7.2 Classification on class imbalanced  single aspect classifier. The Dempster-Shafer (DS)

multi-views of object

The datasets utilized in our empirical study are
described in TABLE II. The percentage of minor-
ity bags varies from 8.27% to 15.29%. All datasets
have a binary class. All of these datasets have more
than one “view” on an object.

comparisan babween diffarent views
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Figure 3. Classification performances as a
function of the number of aspects using MITT as
the classifier

To manage the significant number of possible
combinations of images for multiple views, two fu-
sion approaches are used to fuse the output proba-
bilities.

The first approach is to use a multi-instance
learning method to study the classification perfor-
mances as a function of the number of aspects and
the Multi-instance logistic regression classifier is
chosen as the multi-aspect classifier. The second
approach is fusing the output probabilities from the

method is used to fuse the results as a decision fu-
sion method and the logistic regression classifier is
chosen as the single aspect classifier.
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Figure 4. Classification performances as a
function of the number of aspects using DS on
decision tree as the classifier

Since in learning from extremely imbalanced
data, a trivial classifier that predicts every case as
the majority class can still achieve very high accu-
racy, the overall classification accuracy is often not
an appropriate measure of performance. We choose
Gmean [2] and F-measure as the measures for our
algorithm and experiment. The definition of Gmean
is listed in Table II1.

Specificity: true Negative Rate

TN
Acc™ =

=" 2
TN +FP 28)

Sensitivity: true Positive Rate
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Table 3. Confusion matrix

Predicted Positive Class

Predicted Negative Class

Actual Positive class

TP (True Positive)

FN (False Negative)

Actual Negative class

FP (False Positive)

TN (True Negative)

Table 4. Multi-instance class imbalanced datasets

Datasets | # objects | # attribute | # cylinder | % manta | # wedding.ake
MLO, 279 16 93 93 93
TP classification.
14CC+ = W (29)
T 7.4 Statistical test method
Gmean = (Acc™ x Ac c+) 1/2 (30) As Friedman’s test [40] is a non-parametric sta-

TABLE XII and TABLE XIII show the exper-
imental results of this study. Comparing the as-
pect classification rates with the two multi-aspect
approaches, we see that collecting multiple views
produces a significant increase in Gmean and F-
measure for classification. Moreover, the multi-
instance learning method gets better classifica-
tion performance than the Dempster-Shafer (DS)
method with single aspect classifier on all shapes
on the same number of aspects combined.

7.3 Classification on MLOs with multi-
views

We have three different shapes of MLOs which
are cylinder, manta and wedding_cake shapes. After
making a classification of MLOs and non_MLOs,
we can keep on making a classification on what
kind of shape the MLO belongs to. TABLE IV
shows the details of this dataset. TABLE V to
TABLE VII show the confusion matrices result-
ing from single-aspect classification using decision
tree, multi-aspects classification using MITI and
multi-aspects classification using DS with decision
tree respectively.

TABLE VIII to TABLE X give the confusion
matrices resulting from single-aspect classification
using Logistic Regression, multi-aspects classifica-
tion using MILR and multi-aspects classification
using DS with Logistic Regression respectively.

From these classification results we can see that
the classification performance, both on using the
multi-instance framework and data fusion frame-
work, were improved by using more “views” in the

tistical test for multiple classifiers and multiple do-
mains, we performed it on the results in TABLE XII
and TABLE XIII. The null hypothesis for this test is
that all the classifiers perform equally, and rejection
of the null hypothesis means that there is at least one
pair of classifiers with significantly different perfor-
mance. This test is performed on the multiplication
results of Gmean and F-measure.

Friedman’s test result is shown in the TABLE
XI.

Since Friedman’s test shows that these clas-
sifiers perform differently, we then applied Ne-
menyi’s post-hoc test [40] to determine which clas-
sifier has better performance than others. By com-
paring their q values [40] with the critical value
qc = 3.22, we can determine if one classifier is bet-
ter than the other one: positive and bigger than g¢
—lose; negative and the absolute value larger than
qc —win; other cases —equal.

The scores of all the classifiers in TABLE XII
and TABLE XIII are presented in TABLE XIV. The
result of 4-2-0 for Abl means that this classifier
wins 4 times, ties 2 times, and loses zero times.
If we set the scores as win=1, equal=0 and lose=
-1, the score of each classifier can be calculated.
The total score of these classifiers using MITI and
DS with decision tree as base learners can also be
calculated. From the result we can find that Abl,
Ab3 and Ab4 show better performance in these
classifiers dealing with class imbalanced multiple
views classification. On the other hand, combined
with MITI, cost-sensitive boosting method has the
chance to get the best performance in all presented
classifiers.
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Table 5. The Confusion Matrices Resulting From Single-Aspect Classification Using Decision Tree

(a) Single Aspect
Cylinder | Manta | Wedding_Cake
Cylinder 58.9 249 16.2
Manta 11.9 73.5 14.6
Wedding_Cake 11.4 16.2 72.4

Table 6. The Confusion Matrices Resulting From Multi-Aspects Classification Using MITI

(b) Multi_Aspects
Cylinder | Manta | Wedding_Cake
Cylinder 80.6 11.8 7.5
Manta 8.6 83.3 8.1
Wedding_Cake 10.2 3.2 86.6

Decision Tree

Table 7. The Confusion Matrices Resulting From Multi-Aspects Classification Using DS Fusion With

() Multi_Aspects
Cylinder | Manta | Wedding_Cake
Cylinder 73.6 17.2 9.2
Manta 4.8 84.4 10.8
Wedding_Cake 8.6 7.0 84.4

Table 8. The Confusion Matrices Resulting From Single-Aspect Classification Using Logisitic Regreesion

(a) Single Aspect
Cylinder | Manta | Wedding_Cake
Cylinder 58.9 22.7 18.4
Manta 30.8 55.1 14.1
Wedding_Cake 4.9 15.1 80.0

Table 9. The Confusion Matrices Resulting From Multi-Aspects Classification Using MILR

(b) Multi Aspects
Cylinder | Manta | Wedding_Cake
Cylinder 72.6 16.7 10.7
Manta 10.3 76.3 54
Wedding_Cake 8.1 3.8 88.1

Logisitic Regreesion

Table 10. The Confusion Matrices Resulting From Multi-Aspects Classification Using DS Fusion With

(©) Multi Aspects
Cylinder | Manta | Wedding_Cake
Cylinder 69.4 19.9 10.7
Manta 16.7 75.3 8.0
Wedding_Cake 7.0 8.1 84.9
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Table 11. Friedman’s test result of TABLE XII

Friedman x>

df

p-value

Critical >

22.7143

6

0.000898

12.59

22.7143 > 12.59, hypothesis rejected

Table 12. Friedman’s test result of TABLE XIII

Friedman y°

df

p-value

Critical x>

16.7143

6

0.000898

12.59

16.7143 > 12.59, hypothesis rejected

8 Conclusions

In this paper, we have considered the improving
in the classification of sidescan sonar images ob-
tained by using feature sets corresponding to multi-
ple sonar views of the same object. There are two
basic ways in which the multiple feature sets can
be utilized. The first approach consists of fusing
the multiple individual classification of the multiple
feature vectors with the DS method. The second
approach uses multi-instance classification methods
to classify multiple feature vectors. Tree methods
and Logistic Regression methods were chosen as
the base learners for these two approaches in our
experiments.

Moreover, class imbalanced problem in MLO
classification was also considered in this paper. We
presented two frameworks to deal with the multiple
views class imbalanced problem in MLO classifica-
tion. The first framework is a classifier-independent
approach which uses bag over-sampling method to
increase the minority instance numbers. The second
framework is the Cost-sensitive boosting method
for multiple views classification.

Our experimental results show that for MLO
classification, given multiple views of an object,
knowledge of the classification performance of
multiple views is needed as by revisiting some of
the contacts at suboptimal aspects, the overall sur-
vey time can be reduced. Using the multi-aspect
side scan sonar images of various mine-like object
shapes and non mine-like objects, we constructed
secondary view classification curves to be used in
conjunction with a path planning algorithm.

We have also studied the classification perfor-
mances as a function of the number of aspects.
Comparing the aspect classification rates with two
multi-aspect approaches on different shapes, we

see that collecting multiple views produces a sig-
nificant increase in hit rate and a significant de-
crease in error rate for all mine shapes. More-
over, the multi-instance learning method gets bet-
ter classification performance than the Dempster-
Shafer (DS) method with the single aspect classifier
on all shapes on the same number of aspects com-
bined.

For the multi-views class imbalance prob-
lem, we have provided two novel frameworks for
this problem: using data generated method or a
cost-sensitive boosting method. Based on these
methods, we have presented experimental analy-
sis using different learning algorithms with MLO
datasets. Experimental evidence derived from stan-
dard datasets was presented to support the cost-
sensitive optimality of the proposed algorithms. We
found that the cost-sensitive boosting with MIL
consistently and significantly outperformed all the
other methods tested.
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Table 13. Comparison of all presented algorithms for Class Imbalanced problem with MITI

Datasets Methods TPR,in TNR,in Gmean Precision Recall F-measure
Base Learner 7.842.0 97.840.2 27.543.6 76.6+5.0 41.446.9 53.747.1
Bag_Over-Sampling 18.4+4.6 90.8+1.3 40.9+5.1 65.6+5.9 64.717.2 65.246.5

Adaboost 9.842.9 97.240.2 30.844.6 75.946.2 47.148.3 58.148.1

MLO _1 Abl 224434 93.1+0.4 45.743.6 75.74£3.0 70.6+4.6 73.1£3.8
Ab2 12.1£2.9 94.9140.4 33.843.9 69.1+4.3 53.246.6 60.1+5.6

Ab3 54.6+2.3 75.8+1.4 64.3+1.8 69.3+2.1 91.240.7 78.7£1.6

Ab4 54.942.7 75.6+1.9 64.4+1.5 69.2+1.3 91.3+0.9 78.74£0.9

Base Learner 439459 96.740.3 65.244.3 92.940.8 85.5+3.1 89.1+2.1
Bag_Over-Sampling 47.7+4.7 94.740.2 67.243.4 89.9+1.2 87.3+2.2 88.5+1.7

Adaboost 451423 96.11+0.4 65.8+1.6 92.0+0.7 86.2+1.1 89.0+0.7

MLO 2 Abl 68.843.6 93.440.4 80.1+2.3 91.240.9 94.440.9 92.740.9
Ab2 59.4+1.6 94.0+0.4 74.7£0.9 90.9+0.3 91.840.5 91.3+0.2

Ab3 84.4+3.1 83.3+1.7 83.8+1.3 83.5t1.1 97.6+0.5 90.0+0.5

Ab4 84.4+1.0 82.5+0.8 83.440.8 82.840.7 97.61+0.2 89.6+0.5

Base Learner 49.5+1.4 95.940.5 68.9+1.1 92.4+1.1 84.4+0.7 88.240.8
Bag_Over-Sampling 59.243.1 91.940.5 73.842.1 88.0+1.1 88.9+1.2 88.4+1.1

Adaboost 56.2+1.5 95.440.4 73.2+1.0 92.440.7 87.6+0.7 90.0+0.6

MLO 3 Abl 72.340.5 90.740.7 81.0+0.6 88.6+0.9 93.540.2 91.0+0.5
Ab2 67.943.8 91.940.6 79.0+£2.3 89.440.8 92.1+1.3 90.7£1.0

Ab3 87.7£2.1 82.7+1.7 85.2+1.3 83.6+1.4 97.540.5 90.0+0.9

Ab4 91.3+2.1 77.6+£2.7 84.2+1.7 80.3+2.0 98.31+0.4 88.4+1.2

Base Learner 45.043.7 96.31+0.3 65.842.8 922412 89.9+1.4 91.1+1.3
Bag_Over-Sampling 48.142.8 96.1+0.3 68.0+2.0 92.440.8 91.1+0.9 91.740.8

Adaboost 49.242.1 96.54+0.2 68.9+1.5 93.440.4 91.540.7 92.440.5

MLO_4 Abl 67.5+£3.4 94.840.2 80.0+2.1 92.840.6 95.840.6 94.31+0.6
Ab2 54.243.5 95.440.4 71.942.3 92.240.7 92.840.9 92.540.8

Ab3 91.3+13 92.54+0.4 91.940.8 92.440.5 99.11+0.1 95.740.3

Ab4 79.4+2.1 94.3140.2 86.5+1.2 93.31+0.3 97.740.3 95.540.3

Table 14. Comparison of all presented algorithms for class imbalanced problem with DS on decision Tree

Datasets Methods TPR,in TNRin Gmean Precision Recall F-measure
Base Learner 34.541.2 89.540.6 55.543.6 76.6+1.7 82.0+1.9 79.242.2
Bag_Over-Sampling 41.443.1 87.5+£0.9 60.2+0.8 76.810.8 86.0+0.2 81.1+1.1

Adaboost 31.0+£2.9 88.710.2 52.5t4.6 73.314.2 79.612.3 76.31+2.2

MLO _1 Abl 36.2+3.6 88.31+0.9 56.5+2.5 75.5+£0.7 83.1+£0.8 79.11£0.9
Ab2 37.940.3 87.912.1 57.7t1.2 75.811.4 84.1+0.6 79.7£1.2

Ab3 43.14+3.8 85.7£5.4 60.8+3.6 75.1£1.2 86.810.5 80.5t1.6

Ab4 46.61+2.6 82.3+8.9 61.916.8 72.54£3.2 88.310.1 79.6+1.7

Base_Learner 51.6+2.5 88.0+0.6 67.4+2.1 81.1+1.6 89.1+0.3 84.910.6
Bag_Over-Sampling 57.842.3 87.4+1.6 71.1+£1.2 82.1+2.1 91.31+0.2 86.4+1.2

Adaboost 51.6+3.4 90.240.3 68.2+2.1 84.1+1.5 89.1+£0.5 86.5+0.9

MLO 2 Abl 594423 89.410.6 72.9+1.1 84.910.8 91.840.3 88.240.5
Ab2 71.9+1.3 84.1+0.6 77.8%1.1 81.940.5 95.110.1 88.0+0.3

Ab3 78.1+£2.1 81.3+0.8 79.7+£1.2 80.7+0.2 96.51+0.2 87.910.3

Ab4 75.0t1.6 81.3+0.9 78.11£0.8 80.0+1.0 95.810.1 87.240.4

Base_Learner 60.0£2.1 91.1+0.3 73.910.6 87.1£0.3 89.3+0.2 88.240.2

MLO 3 Bag_Over-Sampling 63.11£1.6 88.31+0.9 74.610.4 84.410.2 90.4+0.4 87.310.1
Adaboost 58.5+3.2 92.840.2 73.6+2.4 89.0+1.0 88.6t1.1 88.840.9

Abl 72.343.1 89.7+0.7 80.5+2.1 87.6+£0.9 93.5+£0.7 90.4+0.9

Ab2 69.242.1 88.1+1.3 78.1£2.0 85.3+0.3 92.6+0.2 88.840.3

Ab3 66.2+1.6 88.3+0.9 76.4£1.6 85.0+1.0 91.5+0.1 88.2+0.6

Ab4 67.7£1.5 86.7+1.2 76.6£1.1 83.540.6 92.14£0.3 87.6+£0.4

Base_Learner 49.243.6 92.340.3 67.4+2.6 86.4+0.8 91.5+£0.8 88.9+0.6
Bag_Over-Sampling 55.6+4.3 90.1+0.4 70.843.2 84.9+0.9 93.3+1.2 88.9+0.8

Adaboost 57.14£2.6 94.0+£0.2 73.3+£2.0 90.5+0.2 93.7+0.1 92.0£0.1

MLO_4 Abl 84.1+1.2 89.4+0.2 86.7£1.0 88.840.5 98.3+0.2 93.3+0.2
Ab2 93.440.3 84.7+1.0 89.1+0.6 86.0+0.7 99.4+0.0 92.240.3

Ab3 96.8+0.1 81.4+1.5 88.840.2 83.9+1.1 99.740.0 91.140.1

Ab4 92.1+0.1 82.841.3 87.3+0.4 84.2+0.6 99.240.1 91.140.1
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Table 15. Comparison using the statistical test method (sorted by score from high to low)

Base_ | Bag Over- |\ jhoost Abl Ab2 Ab3 Ab4
Learner Sampling
MITI GmeanX (F-measure) 0-0-6 1-2-3 1-2-3 4-2-0 1-2-3 4-2-0 4-2-0
Score -0 -2 -2 4 -2 4 4
.. GmeanX (F-measure) 0-2-4 0-2-4 0-2-4 3-3-0 3-3-0 3-3-0 3-3-0
DS+Decision tree Score W W W 3 3 3 3
Total score -10 -6 -6 7 1 7 7




