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Abstract

Biologically inspired artificial neural networks have been widely used for machine learn-
ing tasks such as object recognition. Deep architectures, such as the Convolutional Neural
Network, and the Deep Belief Network have recently been implemented successfully for
object recognition tasks. We conduct experiments to test the hypothesis that certain pri-
marily generative models such as the Deep Belief Network should perform better on the
occluded object recognition task than purely discriminative models such as Convolutional
Neural Networks and Support Vector Machines. When the generative models are run in a
partially discriminative manner, the data does not support the hypothesis. It is also found
that the implementation of Gaussian visible units in a Deep Belief Network trained on
occluded image data allows it to also learn to effectively classify non-occluded images. !

1 Introduction

Historically, partially occluded object recogni-
tion has been rather a challenging task. Most meth-
ods of solving this problem have relied on complex
preprocessing and feature extraction algorithms, of-
ten involving image segmentation and other extra
processing [23] [25] [24] [18]. More recent tech-
niques have proposed the use of generative model
reconstructions [20].

Convolutional Neural Networks (CNNs) are
feed-forward Artificial Neural Networks (ANNSs),
while Deep Belief Networks (DBNs) make use of
of Restricted Boltzmann Machines (RBMs) that use
recurrent connections. These networks differ fun-
damentally in that the DBN is capable of function-
ing as a generative model, whereas a CNN is merely
a discriminative model. A generative model is able
to model all variables probabilistically and there-

fore to generate values for any of these variables. In
that sense it can do things like reproduce samples
of the original input. A discriminative model on the
other hand models only the dependence of an un-
observed variable on an observed variable, which
is sufficient to perform classification or prediction
tasks, but which cannot reproduce samples as a gen-
erative model can. This seems to imply that DBN’s
ought to perform better on the task of partially oc-
cluded object recognition, as it should be possible
to make use of their generative effects to partially
reconstruct the image to aid in classification. We
wish to test this hypothesis in our work comparing
CNNs, and DBNs.

The preliminary results of these experiments
were previously published at the 13th International
Conference on Artificial Intelligence and Soft Com-
puting 2014 (ICAISC2014)[4]. This paper extends
and details further our research efforts, provid-
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ing additional information, analysis, and considera-
tions.

Section 2 describes in greater detail the learning
algorithms used these experiments. Section 3 de-
tails our methodology. Section 4 provides an anal-
ysis of the experimental results, as well as a more
detailed comparison. In Section 5, we discuss these
results. And in Section 6 we provide our conclu-
sions as well as consider future research possibili-
ties.

2 Learning Algorithms

In order to best contrast the effectiveness of
generative models with discriminative models on
the occluded object recognition task, we decided
to compare several different machine learning al-
goirthms: the SVM, the CNN, (two discriminative
models) and the DBN, (one generative model). Al-
though the SVM is not really a proper ANN strictly
speaking, its considerable popularity as a discrimi-
native classifier meant that it merits inclusion as a
kind of control.

2.1 Support Vector Machine

The well-worn SVM is a powerful discriminant
classifier that was first developed by Cortes & Vap-
nik [6]. Although not considered to be an ANN
proper, Collobert & Bengio [5] were able to show
that they possessed a number of similarities to Per-
ceptrons with the obvious exception of the actual
learning algorithm. In addition, CNNs were found
to be excellent feature extractors for classifiers such
as SVMs as seen in Huang & LeCun [14], as well as
Ranzato et al. [21]. This generally involves taking
the output of the lower layers of the CNN as feature
extractors for the classifier. SVMs are often used
with such feature extractors, but can also be trained
on raw data, as we choose to do.

2.2 Convolutional Neural Networks

Among the earliest of the hierarchical ANNs
based on the visual cortex’s architecture was the
Neocognitron, first proposed by Fukushima &
Miyake [8]. This network was based on the work of
neuroscientists Hubel & Wiesel [15], who famously
showed the existence of Simple and Complex Cells
in the visual cortex. A Simple Cell responds to ex-

citation and inhibition in a specific region of the vi-
sual field. A Complex Cell responds to patterns of
excitation and inhibition in anywhere a larger recep-
tive field. Together these cells effectively process
visual information and perform a delocalization of
features in the visual receptive field. Fukushima
took the notion of these Simple and Complex Cells
to create his Neocognitron, which attempted to im-
plement layers of the artificial equivalent of such
neurons in a hierarchical architecture [7]. However,
while promising in theory, the Neocognitron had
difficulty being implemented effectively, in part be-
cause it was originally proposed in the 1980s when
computers simply weren’t as fast as they are today.

A=

1| OF

H Subsampling Layer
Convolutional Layer (12 Feature Maps)
(12 Feature Maps)

Input Layer

Fully Connected Layers

Figure 1. The basic architecture of the CNN.

Then while working at AT&T labs, LeCun et
al [16] developed the more practical cnn, which
made use of multiple Convolutional and Subsam-
pling layers, while also implementing stochastic
gradient descent and backpropagation to construct
a feed-forward ANN that performed exceptionally
well on image recognition tasks such as the MNIST,
which consisted of digit characters. The Convolu-
tional Layer of the CNN is equivalent to the Simple
Cell Layer of the Neocognitron, while the Subsam-
pling Layer of the CNN is equivalent to the Com-
plex Cell Layer of the Neocognitron. In essence,
these layers function to delocalize features from the
visual receptive field, allowing such features to be
identified with a degree of shift invariance. This
unique structure also allows the CNN to have two
important advantages over a fully-connected ANN.
First, is the use of the local receptive field, and sec-
ond is weight-sharing. Both of these advantages
have the effect of decreasing the number of weight
parameters in the network, thereby making com-
putation of these networks significantly easier than
equivalent fully connected networks.
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Figure 2. A comparison between the
Convolutional layer and the Subsampling layer.
Circles represent the receptive fields of the cells of
the layer subsequent to the one represented by the
square lattice. On the left, an 8 x 8 input layer
feeds into a 6 x 6 convolutional layer using
receptive fields of size 3 x 3 with an offset of 1
cell. On the right, a 6 x 6 input layer feeds into a 2
x 2 subsampling layer using receptive fields of size
3 x 3 with an offset of 3 cells.

2.3 Deep Belief Networks

The dbn, is one of the more recent develop-
ments in machine learning research. The DBN is a
recurrent ANN with undirected, bidirectional con-
nections. Structurally, it is made up of multiple lay-
ers of RBMs, such that it can be seen as a ‘deep’
architecture. To understand how this is an effective
structure, we must first understand the basic nature
of a recurrent ANN.

Recurrent ANNs differ from feed-forward
ANNSs in that their connections can form cy-
cles. Such networks cannot use feed-forward based
learning algorithms, but rather tend to have their
own variety of learning algorithms. The advantage
of recurrent ANNSs is that they can possess associa-
tive memory-like behaviour. Early recurrent ANNSs,
such as the Hopfield network [13], showed promise
in this regard, but suffered certain limitations. The
Hopfield network was only a single layer architec-
ture that was only able to learn very limited prob-
lems due to limited memory capacity. A multi-layer
generalization of the Hopfield Network was devel-
oped, known as the Boltzmann Machine [1], which
while able to store considerably more memory suf-
fered from being overly slow to train. Nevertheless,
the groundwork was laid for more sophisticated de-
velopments.

A Boltzmann Machine is considered an energy-
based model. This means that it has a scalar en-
ergy that represents a particular configuration of
variables. Such an energy-based model learns by
changing its energy function such that it has a shape
that possesses desirable properties. Commonly this
corresponds to having a low energy. Thus the al-
gorithm performs learning by trying to find a way
to minimize the energy of the Boltzmann Machine.
The energy of a Boltzmann Machine can be defined

by (1):
E(x,h)=
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This in turn is applied to a probability distribu-
tion:

P(x) = 2

where Z is the partition function:

z=Y et 3)

These equations we modify to incorporate hid-
den variables:

P(x,h) = “4)

h
—E(x,h)
~y ¢ 5)
7 Z
z=Y e tth (6)

X

The concept of Free Energy is borrowed from
physics, where it is the useable subset of energy,
and represents a marginalization of the energy in
the log domain:
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F(x)= —logZe_E(x‘h) (7
h

Let © represent the parameters of the model.
The data log-likelihood gradient thus becomes:

dlogP(x)  OF(x) 1 _pioF(x)
® o8 +E;e 20
_ OF(x) _ OF(x)
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Possession of this gradient enables us to per-
form a kind of stochastic gradient descent as a
means of finding that desired lowest energy state
mentioned earlier. However, in practice, this gradi-
ent is difficult to calculate for a regular Boltzmann
Machine, and while not intractable, it is a very slow
computation. Thus, a way to accelerate the process
was sought.

A variant of the Boltzmann Machine was first
known as a Harmonium [22], but later called a rbm,
which initially saw little use. Then a fast learning
algorithm for RBMs called Contrastive Divergence
was developed by Hinton [9]. Contrastive Diver-
gence uses Gibbs sampling within a gradient de-
scent process. The rbm itself primarily differs from
aregular general Boltzmann Machine by the simple
fact that it lacks the lateral or sideways connections
within layers. As such an rbm can be defined by the
much simpler energy function as follows:

E(v,h) = Z av; — Z

icvisible Jj€hidden

bjhj — Zv,-hjwivj
i.j
)
where v; and h; are the binary states of the vis-
ible unit i and hidden unit j, a; and b; are their

biases, and w; ; is the weight connection between
them [10].

Applying the data log-likelihood gradient from
earlier, we can now find the derivative of the log
probability of a training vector with respect to a
weight:

dlogp(v
aW’ij) = (vihj)data = (Vilj)modei (10)

where, the angle brackets enclose the expectations
of the distribution labeled in the subscript. And
thus, the change in a weight in an rbm is given by
the learning rule:

Aw; j = e((vilj)dara — (Vilj)moder) — (11)

where € is the learning rate.

(vihj)dara is fairly easy to calculate. If you take a
randomly selected training vector v, then the binary
state h; of each of the hidden units is 1 with proba-
bility:

plhj=1pv) =c(bj+} viwi;)  (12)

where o(x) a logistic sigmoid function such as
1/(1+exp(—x)).

Similarly, given a hidden vector, we can get an
unbiased sample of the state of a visible unit:

plvj=1lh) =oc(ai+} hjwj)  (13)
J

(Vi j)moder is much more difficult to calculate, and
so we use an approximation (vi/1;) econ instead. Ba-
sically this reconstruction requires first setting the
visible units to a training vector, and then comput-
ing the binary states of the hidden units in paral-
lel with equation 12. Next, set each v; to 1 with a
probability according to equation 13, and we get a
reconstruction.

AW,’J = £(<Vihj>data - <Vihj>recon) (14)

This learning rule attempts to approximate the
gradient of an objective function called the Con-
trastive Divergence (which itself is an approxima-
tion of the log-likelihood gradient), though it is not
actually following the gradient exactly. Despite this
approximation, the rule works quite well for many
applications, and is much faster than the previously
mentioned way of learning regular general Boltz-
mann Machines.
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Figure 3. The structure of the general Boltzmann
Machine and the rbm.

The DBN is created by stacking RBMs to-
gether, as Hinton, Osindero, & Teh, [11] discov-
ered. This DBN is then trained in a greedy, layer-
wise fashion. In general, this involves pre-training
each RBM separately, starting at the bottom layer
and working gradually up to the top layer. All layers
thus have their weights initialized using unsuper-
vised learning in the pre-training phase, after which
fine-tuning using Backpropagation is performed us-
ing the labeled data, training in a supervised man-
ner.

Deep Belief Network

Figure 4. The structure of the DBN.

Mathematically, we can describe a DBN with
[ layers according to the joint distribution below,
given an observed vector x, and / hidden layers /¢

[2].

(15)

In this case, x = h°, while P(h*"!|n*) is a
visible-given-hidden conditional distribution in the
RBM at level k of the DBN, and P(h'~!, h!) is the
top-level RBM’s joint distribution.

The DBN, when introduced, produced then
state of the art performance on such tasks as the
MNIST. Later, DBNs were also applied to 3D ob-
ject recognition [19]. Ranzato, Susskind, Mnih, &
Hinton [20] also showed how effective DBNs could
be on occluded facial images.

3 Methodology

The object/image dataset we used was the small
NORB [17]. The small NORB consists of 5 object
categories and several thousand images per cate-
gory, for a total of 24300 images each in the training
and test sets. The small NORB proper technically
includes a pair of stereo images for each training
example, but for our purposes, we chose to only use
one of the images in the pair. Normal, non-occluded
images with the object fully visible in the image are
seen in figure 5. Occluded images were created by
occluding a random half of each image in the test
set with zeroes (black) as shown in figure 6.

Figure 5. Images from the small NORB
non-occluded data set.

For the SVMs we tested various parameters
from the literature, such as Huang & LeCun [14]
and Ranzato et al. [21] and eventually settled on
a Gamma value of 0.0005, and a C value of 40.
Gamma is how far a single training example affects
things, with low values being “’far” and high values
being “close”. C is the tradeoff between misclassi-
fying as few training samples as possible (high C)
and a smooth decision surface (low C). For code for
the SVMs, we used the library “LIBSVM” by Chih-
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Chung Chang and Chih-Jen Lin from the National
Taiwan University [3].

i
i"'

Figure 6. Images from the small NORB occluded

data set.
For the CNN, Sirotenko’s Matlab li-
brary “CNN - Convolutional neural network
class” (http://www.mathworks.com/matlabcentral/

fileexchange/24291-cnn-convolutional-neural-
network-class) was modified extensively to serve
our purposes. CNNs require very particular consid-
erations when implementing their architecture, as
there are a sizable number of parameters to describe
each layer. A method was devised to calculate a us-
able set of architecture parameters. The relationship
between layers can be described as follows. To cal-
culate the reasonable dimensions of a square layer
from either its previous layer (or next layer) in the
hierarchy requires at least some of the following
variables to be assigned. Let x be the width of the
previous (or current) square layer. Let y be the
width of the current (or next) square layer. Let r be
the width of the square receptive field of nodes in
the previous (or current) layer to each current (or
next) layer node, and f be the offset distance be-
tween the receptive fields of adjacent nodes in the
current (or next) layer. The relationship between
these variables is best described by the Equation
16.

x=(r=1f)
!

where,x >y, x>r> f,and f >0

y= (16)

For convolutional layers this generalizes be-
cause f = 1, to equation 17.

y=x—r+1 (17)

For subsampling layers, this generalizes be-
cause r = f, to equation 18.

Y= (18)

From this we can determine the dimensions of

each layer. The architecture for the CNN on the

NORB dataset is shown in Table 1, where S, C and

F represent convolutional, subsampling and fully
connected layers, respectively.

Table 1. The architecture of the CNN used on the
NORB dataset, based on Huang & LeCun [14].

CNN
Layer | Nodes | k or r | Feature Maps
S1 | 96x96
C2 | 92x92 5 8
S3 | 23x23 4 8
C4 | 18x18 6 24
S5 6x6 3 24
C6 1x1 6 24
Fl 100 1
F2 5 1

For the CNN, various other parameters were
also experimented with to determine the optimal
parameters to use in our experiments. We eventu-
ally settled on 100 epochs of training. The CNN
learning rate and learning rate decrement parame-
ters were determined by using Huang and LeCun’s
recommendations [14]. That is to say, the learn-
ing rate was initially set to 2.00E-05, and gradually
decremented to approximately 2.00E-07.

For the DBN we wused Stansbury’s
Matlab  library “Matlab  Environment for
Deep  Architecture  Learning  (MEDAL)”

(https://github.com/dustinstansbury/medal). Exper-
iments were also conducted on the parameters for
the DBN. DBNs use binary visible units by default.
However, a modification has been recommended
to implement Gaussian visible units for image data
[12]. Thus, DBNs using both binary and Gaussian
visible units were tested.
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Table 2. The parameters chosen as an optimal configuration for the DBNs.

Parameters - DBN
Parameters Learning Rate Epochs
Visible | Layers | Hidden | Pre-Training | Fine-Tune | Pre-Training | Fine-Tune
Binary 2 2000 0.1 0.01 200 50
Binary 2 4000 0.1 0.01 200 50
Gaussian 2 4000 0.001 0.001 200 50

In addition, two different quantities of hidden
nodes were used, 2000 and 4000 respectively for
the binary visible unit based DBNs. This was be-
cause prior experiments used to determine the effec-
tiveness of various parameter configurations found
unexpectedly that the binary units in combination
with 2000 hidden nodes seemed to actually per-
form better than the combination of binary units and
4000 hidden nodes. Gaussian visible units on the
other hand, showed a greater degree of effectiveness
at 4000 hidden nodes, than at 2000 hidden nodes,
which was more within expectation. We tested mul-
tiple configurations for these reasons. Eventually,
through systematic efforts involving testing various
parameters at different values and looking at the
change in performance, we settled on the Layer,
Learning Rate, and Epoch parameters for the Vis-
ible and Hidden Node cases shown in Table 2. Hin-
ton’s guide also provided some suggested values
that we took into consideration [10].

In Table 2, Visible indicates the type of visible
unit used in the input layer. Layers indicates the
number of RBMs in the DBN. Hidden indicates the
number of hidden nodes per layer. Learning Rate is
divided between the learning rate for the DBN dur-
ing initial pre-training, and during fine-tuning us-
ing Backpropagation. Epochs is similarly divided.
Epochs indicates the number of times the network
was trained on the training data.

Some additional parameters we settled on are
shown in Table 3, some of which were based on
experimentation, while others were simply default
settings that worked well. Momentum indicates the
parameter for momentum as described by Hinton
[10]. Weight Penalty indicates the value by which
weights were penalized by during training. Batch
Size indicates the number of samples in each batch
fed to the network during learning. “Begin Anneal
At” indicates at what Epoch Simulated Annealing
is started. “Number of Gibbs Sampling” indicates

how many times during Contrastive Divergence the
Gibbs sampling process was run. Sparsity is a pa-
rameter that controls the degree to which sparsity
affects the network. “Start to Vary Eta At” indicates
at what Epoch the learning rate starts to be varied.
“Display Every” is a parameter for indicating how
often information is displayed during the training
process.

Finally, experiments were performed with the
optimized parameters for the SVMs, CNNs, and
DBNs on the small NORB image dataset. Each
of the training and testing sets consisted of 24300
images. These experiments consisted of three dif-
ferent methods of training: one which consisted
of training exclusively on the non-occluded train-
ing set, followed by testing on both a non-occluded
test set and an occluded test set; one which con-
sisted of training exclusively on the occluded train-
ing set, followed by testing on both a non-occluded
test set and an occluded test set; and finally one
which consisted of training on a mixture of non-
occluded and occluded images, followed by testing
on both a non-occluded test set and an occluded test
set. Three replicates were performed for each ex-
perimental setup and averaged.

Table 3. The parameters chosen as an optimal
configuration for the DBNS.

Parameters - DBN
Momentum 0.5
Weight Penalty 2.00E-04
Batch Size 100
Begin Anneal At 50
Number of Gibbs Sampling | 1
Sparsity 0.01
Start to Vary Eta At 50
Display Every 20
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4 Analysis and Results

4.1 Support Vector Machines

Table 4 provides a direct comparison of the non-
occluded, occluded, and mixed trained SVMs. The
results show that when the SVM is trained with only
non-occluded training images, its object recogni-
tion performance on non-occluded test images is
reasonably good (83% accuracy), but the same al-
gorithm performs poorly on the occluded test im-
ages (20% accuracy). On the other hand, when the
SVM is trained with only occluded training images,
it performs reasonably well at object recognition on
the occluded test images (69% accuracy), but per-
forms poorly on the non-occluded test images (20%
accuracy).

The results also showed that training the SVM
on the mixed data set containing both non-occluded
and occluded images, led it to do well at object
recognition on the non-occluded test images (81%
accuracy), on the occluded test images (69% accu-
racy), and also on the mixed test images (75% ac-
curacy). These accuracies on the non-occluded test
images are comparable to the SVMs trained on the
non-occluded training images (i.e., 81% vs. 83%).
Furthermore, its accuracy on the occluded test im-
ages is comparable to the SVMs trained on the oc-
cluded training images (i.e., 69% vs. 69%).

When comparing performance on the mixed test
data set, the SVM performed better if trained with
the mixed training data set (75% accuracy), than if
it was trained using the non-occluded training im-
ages (51% accuracy), or the occluded training im-
ages (45% accuracy) alone.

When testing the SVM on the same training
data set as it was trained on, the accuracy on the
object recognition task was slightly lower when us-
ing the mixed training images (97% accuracy) than
if it was trained exclusively on the non-occluded
training images (99.9% accuracy), or exclusively on
the occluded training images (99% accuracy). To
understand this, the concept of overfitting must be
considered. Overfitting occurs when a learning al-
gorithm learns to fit itself to the training data, rather
than learning the general concept that it is desired
to learn from the training data. In such an instance,
the performance on the test data can actually de-
crease while accuracy on the original training data
continues to increase. Obviously, performance on

the original training data should be better than per-
formance on previously unseen test data, but it is
possible that if the difference between the two per-
formances is significant, this could indicate some
degree of overfitting.

4.2 Convolutional Neural Networks

Table 5 provides a direct comparison of the non-
occluded, occluded, and mixed trained CNNs. The
results show that when the CNN is trained with only
non-occluded training images, its object recogni-
tion performance on non-occluded test images is
reasonably good (83% accuracy), but the same al-
gorithm performs poorly on the occluded test im-
ages (20% accuracy). On the other hand, when the
CNN is trained with only occluded training images,
it performs reasonably well at object recognition on
the occluded test images (59% accuracy), but per-
forms poorly on the non-occluded test images (30%
accuracy), albeit notably better than the equivalent
SVM.

The results also showed that training the CNN
on the mixed data set containing both non-occluded
and occluded images, led it to do well at object
recognition on the non-occluded test images (77%
accuracy), on the occluded test images (67% ac-
curacy), and also on the mixed test images (72%
accuracy). This accuracy on the non-occluded test
images is comparable to the CNNs trained on the
non-occluded training images (i.e., 77% vs. 83%).
Furthermore, the mixed trained CNN’s accuracy on
the occluded test images is notably better than the
CNNss trained on the occluded training images (i.e.,
67% vs. 59%).

When comparing performance on the mixed test
data set, the CNN performed better if trained with
the mixed training data set (72% accuracy), than if
trained with the occluded training images (44% ac-
curacy) alone.

When testing the CNN on the same training data
set as it was trained on, the accuracy on the object
recognition task was significantly lower when us-
ing the mixed training images (83% accuracy) than
if it was trained exclusively on the non-occluded
training images (96% accuracy). Testing on the oc-
cluded training images actually had the lowest per-
formance of the three options (69% accuracy). It is
possible that this suggests that there was less over-
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Table 4. A comparison of the accuracy results of the non-occluded, occluded, and mixed trained SVMs.

SVM - NORB
Training Training Test Mixed Test Non-Occluded Test | Occluded Test
Non-Occluded | 0.999 £+ 0.003 | 0.513+0.001 | 0.825 £ 0.007 0.200+0.003
Occluded 0.994 £0.0001 | 0.446+0.0002 | 0.200£0.0001 0.692 £+0.0005
Mixed 0.973+£0.0003 | 0.754 £ 0.001 | 0.813+0.001 0.694 + 0.0005

Note: Mean of 3 replicates =+ standard error.

Table 5. A comparison of the accuracy results of the non-occluded, occluded, and mixed trained CNNs.

CNN - NORB
Training Training Test | Mixed Test Non-Occluded Test | Occluded Test
Non-Occluded | 0.955 £ 0.000 | 0.515+0.000 | 0.831 £ 0.000 0.199+0.000
Occluded 0.6934+0.003 | 0.444£0.017 | 0.304+0.031 0.585+0.002
Mixed 0.832+£0.002 | 0.717 £ 0.003 | 0.769 £0.009 0.665 + 0.010

Note: Mean of 3 replicates =+ standard error.

fitting on mixed and occluded training images than
on the non-occluded training images.

4.3 Deep Belief Networks

Tables 6-8 provide a direct comparison of the
non-occluded, occluded, and mixed trained DBNs,
with the differences between each table resulting
from the effects of choosing different visible units
and number of hidden units in the ANN. An ANN
is generally divided into layers, with the first layer
being the input or visible layer containing visible
units, while the last layer is the output layer. In be-
tween these two layers, can be any number of hid-
den layers containing hidden nodes. For the pur-
poses of experimentation, two different types of vis-
ible units, binary and Gaussian, were used, while
two different amounts of hidden nodes were used
as well, 2000 and 4000 respectively for the binary
units. This was because prior experiments used
to determine the effectiveness of various parameter
configurations found that the binary units in combi-
nation with 2000 hidden nodes seemed to actually
perform better than the combination of binary units
and 4000 hidden nodes, which was different than
expected. Gaussian units on the other hand, showed
greater effectiveness at 4000 hidden nodes, than at
2000 hidden nodes, which was expected. For this
reason, we tested multiple configurations as shown.

For simplicity, we can refer to these configura-
tions as B-2000 for binary visible units and 2000
hidden nodes, B-4000 for binary visible units and

4000 hidden nodes, and G-4000 for Gaussian visi-
ble units and 4000 hidden nodes.

Table 6 shows specifically the performance of
the DBNs using binary visible units and having
2000 hidden nodes. As expected, the DBN trained
on the non-occluded training images achieves a re-
spectable performance (87% accuracy) on the non-
occluded test images, while not performing so well
on the occluded test images (21% accuracy). Con-
versely, the DBN trained on the occluded training
images managed to achieve reasonably good results
on the occluded test images (71% accuracy), while
not fairing so well on the non-occluded test images
(19% accuracy).

The DBN trained on the mixed training im-
ages managed a somewhat lower performance on
the non-occluded test set than the DBN trained ex-
clusively on the non-occluded training images (68%
vs. 87% accuracy), and a slightly lower perfor-
mance on the occluded test set than the DBN trained
exclusively on the occluded training images (68%
vs. 71% accuracy).

When comparing performance on the mixed test
data set, the DBN performed better if trained with
the mixed training data set (68% accuracy), than if
it was trained using the occluded training images
(45% accuracy) alone.

When testing the DBN on the same training data
set as it was trained on, the accuracy on the object
recognition task was significantly lower when using
the mixed training images (83% accuracy) or the
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Table 6. A comparison of the accuracy results of the non-occluded, occluded, and mixed trained DBNs

using binary visible units with 2000 hidden nodes.

DBN - Binary Visible Unit w/ 2000 Hidden Nodes

Training Training Test Mixed Test Non-Occluded Test | Occluded Test
Non-Occluded | 0.993 £ 0.0002 | 0.545+0.000 | 0.873 &+ 0.007 0.214£0.004
Occluded 0.847+£0.007 | 0.451£0.026 | 0.193+0.044 0.708 £+ 0.009
Mixed 0.832+0.013 | 0.680 £ 0.013 | 0.676+0.037 0.684+0.020

Note: Mean of 3 replicates + standard error.

Table 7. A comparison of the accuracy results of the non-occluded, occluded, and mixed trained DBNs

using binary visible units with 4000 hidden nodes.

DBN - Binary Visible Unit w/ 4000 Hidden Nodes

Training Training Test | Mixed Test Non-Occluded Test | Occluded Test
Non-Occluded | 0.989 £ 0.002 | 0.520£0.008 | 0.841 £ 0.014 0.203 £0.002
Occluded 0.852+0.007 | 0.458£0.014 | 0.208 £0.022 0.708 £ 0.006
Mixed 0.866+0.008 | 0.673 = 0.001 | 0.653 £0.004 0.693 £0.004

Note: Mean of 3 replicates + standard error.

Table 8. A comparison of the accuracy results of the non-occluded, occluded, and mixed trained DBNs

using Gaussian visible units with 4000 hidden nodes.

DBN - Gaussian Visible Unit w/ 4000 Hidden Nodes

Training Training Test | Mixed Test Non-Occluded Test | Occluded Test
Non-Occluded | 0.981 £ 0.003 | 0.550£0.002 | 0.832 =+ 0.006 0.258 +0.013
Occluded 0.786+0.001 | 0.673£0.002 | 0.693 +0.006 0.6524+0.005
Mixed 0.860+0.016 | 0.697 = 0.023 | 0.714+£0.044 0.679 + 0.006

Note: Mean of 3 replicates =+ standard error.

Table 9. Comparison of the accuracy results of the Classifier Algorithms on the Non-Occluded Training

Images

Trained On Non-Occluded Training Image Set

Classifier Training Test Mixed Test Non-Occluded Test | Occluded Test
SVM 0.999 £+ 0.003 | 0.513+0.001 | 0.825+0.007 0.200+0.003
CNN 0.955+0.000 | 0.5154+0.000 | 0.831=£0.000 0.199 £0.000
DBN (B-2000) | 0.993£0.0002 | 0.545+0.000 | 0.873 + 0.007 0.214£0.004
DBN (B-4000) | 0.989£0.002 | 0.520£0.008 | 0.841+0.014 0.203 £0.002
DBN (G-4000) | 0.981£0.003 | 0.550 + 0.002 | 0.832+0.006 0.258 + 0.013

Note: Mean = standard error.
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occluded training images (85% accuracy), than if it
was trained exclusively on the non-occluded train-
ing images (99% accuracy).

Table 7 shows specifically the performance of
the DBNs using binary visible units and having
4000 hidden nodes. As expected, the DBN trained
on the non-occluded training images achieves a re-
spectable performance (84% accuracy) on the non-
occluded test images, while not performing so well
on the occluded test images (20% accuracy). Con-
versely, the DBN trained on the occluded training
images managed to achieve reasonably good results
on the occluded test images (71% accuracy), while
not fairing so well on the non-occluded test images
(21% accuracy).

The DBN trained on the mixed training im-
ages managed a somewhat lower performance on
the non-occluded test set than the DBN trained ex-
clusively on the non-occluded training images (65%
vs. 84% accuracy), and a slightly lower perfor-
mance on the occluded test set than the DBN trained
exclusively on the occluded training images (69%
vs. 71% accuracy).

When comparing performance on the mixed test
data set, the DBN performed better if trained with
the mixed training data set (67% accuracy), than if
it was trained using the occluded training images
(46% accuracy) alone.

When testing the DBN on the same training data
set as it was trained on, the accuracy on the object
recognition task was significantly lower when using
the mixed training images (87% accuracy) or the
occluded training images (85% accuracy), than if it
was trained exclusively on the non-occluded train-
ing images (99% accuracy).

Table 8 shows specifically the performance of
the DBNs using Gaussian visible units and having
4000 hidden nodes. As expected, the DBN trained
on the non-occluded training images achieves a re-
spectable performance (83% accuracy) on the non-
occluded test images, while not performing so well
on the occluded test images (26% accuracy). Con-
versely, the DBN trained on the occluded training
images managed to achieve reasonably good results
on the occluded test images (65% accuracy), while
also doing quite well on the non-occluded test im-
ages (69% accuracy). This discovery of better per-
formance when trained with occluded images and

tested with non-occluded images in G-4000 could
be due to the generative model’s ability to learn to
classify whole images using features learned from
the partial images of the occluded images.

The DBN trained on the mixed training im-
ages managed a somewhat lower performance on
the non-occluded test set than the DBN trained ex-
clusively on the non-occluded training images (71%
vs. 83% accuracy), and a slightly higher perfor-
mance on the occluded test set than the DBN trained
exclusively on the occluded training images (68%
vs. 65% accuracy). This superior performance by
the mixed trained SVM on the occluded test set was
unexpected, and could be due to the larger size of
the mixed training data set, which essentially in-
cludes all the images from the non-occluded train-
ing data set, and all the images from the occluded
training data set.

When comparing performance on the mixed test
data set, the DBN performed better if trained with
the mixed training data set (70% accuracy), than if
it was trained using the occluded training images
(67% accuracy) alone.

When testing the DBN on the same training data
set as it was trained on, the accuracy on the object
recognition task was significantly lower when using
the mixed training images (86% accuracy) or the
occluded training images (79% accuracy), than if it
was trained exclusively on the non-occluded train-
ing images (98% accuracy).

4.4 Comparison

Table 9 compares the various classification
algorithms that have been trained on the non-
occluded images. As expected, the performance
on the non-occluded test images is reasonably high
(83-87% accuracy). Conversely performance on the
occluded test images is expectedly poor (20-26%
accuracy).

Performance on the mixed test images appears
to be the average of the non-occluded and occluded
test image performances (51-55% accuracy).

Performance on the original training images is
very high across the board (96-99% accuracy).

Table 10 compares the various classification al-
gorithms that have been trained on the occluded
images. While the SVM, DBN (B-2000), and the



16

Lin Chu J., Krzyzak A.

DBN (B-4000) achieve around chance on the non-
occluded test images (19-21% accuracy), the CNN
achieves a somewhat higher than chance result
(30% accuracy), and the DBN (G-4000) achieves
a remarkably high result (69% accuracy). These
results are unusual because one would expect that
classifiers trained on the occluded test set exclu-
sively might perform at chance on the non-occluded
test set (20% accuracy). However, several of the
algorithms used achieved significantly higher num-
bers on a test set type that it wasn’t trained on.
This suggests that learning the occluded set is ac-
tually sometimes useful to classifying on the non-
occluded set. Meanwhile, the performance on the
occluded test images is closer to expected (59-71%
accuracy).

Performance on the mixed test images appears
to be the average of the non-occluded and occluded
test image performances (44-67% accuracy).

Performance on the original training images is
more varied than with the non-occluded (69-99%
accuracy), though still consistently higher than per-
formance on the test images.

Table 11 compares the various classification al-
gorithms that have been trained on the mixed im-
age set. As expected, the performance on the non-
occluded test images is reasonable (65-81% accu-
racy), albeit within a significantly wider range than
the performance on the occluded test images (67-
69% accuracy).

Performance on the mixed test images appears
to be the average of the non-occluded and occluded
test image performances (67-75% accuracy).

Performance on the original training images
(83-97% accuracy) is lower than with the non-
occluded images though less varied than the oc-
cluded images, and it remains consistently higher
than performance on the test images.

5 Discussion

Our experiments appear to show that when
training a classifier on only the non-occluded train-
ing set, the occluded task is a particularly chal-
lenging one for both discriminative models, such as
SVMs and CNNs, and generative models, namely
the DBNs. In general, training on the non-occluded
images tends to lead to good performance on the

non-occluded test set, but poor performance on the
occluded test set, while in most cases, training on
the occluded images leads to good performance on
the occluded test set, and poorer performance on the
non-occluded test set.

However, it appears that training on the oc-
cluded training set only, for DBNs using Gaussian
visible units at least, produces a highly unusual re-
sult of good performance on the non-occluded test
set (69% accuracy). This behaviour is not readily
apparent with the DBN using binary visible units
(19-21% accuracy). A much less pronounced but
similar effect is also visible with the CNN (30% ac-
curacy), which is not seen at all with SVM, which
performs at chance (20% accuracy). It may well be
that this is because the SVM is a purely discrimina-
tive model. The CNN, while also a discriminative
model, is also an ANN, which perhaps gives it some
greater similarity to the DBN. Nevertheless, the un-
expectedly good performance of the Gaussian vis-
ible unit based DBN on the dataset type it wasn’t
trained on is something perhaps worth looking into
for future research. Note though that this seems to
come at a cost to performance on occluded test set,
as it was the only classifier that performed better on
the dataset type it wasn’t trained on (69% accuracy),
than on the type it was trained on (65% accuracy).

Training the SVM, the CNN, and the DBN
with Gaussian visible units on a mixed training set
containing both non-occluded and occluded images
leads to slightly worse performance on the non-
occluded test set than an exclusively non-occluded
trained classifier, and slightly better performance on
the occluded test set than an exclusively occluded
trained classifier. These results suggest that mixed
training actually improves performance on the oc-
cluded problem to an extent. It is potentially pos-
sible that these classifiers are benefiting from the
more complete images in the non-occluded part of
the training set.

Meanwhile, training a DBN with binary visi-
ble units on a mixed training set containing both
non-occluded and occluded images causes it to per-
form worse on the non-occluded test set than a pure
non-occluded training set, and is worse but is very
close in performance on the occluded test set to
that trained on a pure occluded training set. This
is anticipated, as a mixed training set should yield
mediocre performance on both test sets compared to
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Table 10. Comparison of the accuracy results of the Classifier Algorithms on the Occluded Training

Images
Trained On Occluded Training Image Set
Classifier Training Test Mixed Test Non-Occluded Test | Occluded Test
SVM 0.994 + 0.0001 | 0.44640.0002 | 0.200+0.0001 0.692 + 0.0005
CNN 0.6934+0.003 | 0.444+0.017 | 0.304£0.031 0.58540.002
DBN (B-2000) | 0.847+£0.007 | 0.451+£0.026 | 0.193+£0.044 0.708 + 0.009
DBN (B-4000) | 0.852+0.007 | 0.458+0.014 | 0.208 £0.022 0.708 £ 0.006
DBN (G-4000) | 0.786£0.001 0.673 £+ 0.002 | 0.693 + 0.006 0.652 4+0.005

Note: Mean = standard error.

Table 11. Comparison of the accuracy results of the Classifier Algorithms on the Mixed Training Images

Trained On Mixed Training Image Set
Classifier Training Test Mixed Test Non-Occluded Test | Occluded Test
SVM 0.973 £ 0.0003 | 0.754 £+ 0.001 | 0.813 £ 0.001 0.694 £ 0.0005
CNN 0.832+0.002 | 0.717£0.003 | 0.769 +0.009 0.665+0.010
DBN (B-2000) | 0.832£0.013 | 0.680£0.013 | 0.6764+0.037 0.6844+0.020
DBN (B-4000) | 0.866£0.008 | 0.673£0.001 | 0.653+0.004 0.693 +£0.004
DBN (G-4000) | 0.860£0.016 | 0.697+0.023 | 0.714 +0.044 0.679 £ 0.006

Note: Mean = standard error.

classifiers trained exclusively on the non-occluded
or the occluded training sets.

While training a SVM, CNN, and a DBN with
Gaussian visible units on a mixed training set leads
to better relative performance on the non-occluded
test image set than on the occluded test image set, it
appears that the reverse is the case with DBNs with
binary visible units, which had better relative per-
formance on the occluded test image set than on the
non-occluded test image set. This is a somewhat
curious discovery, and may be indicative of the dif-
ferences between binary and Gaussian visible units.

When compared to other research work in the
literature, the experiments performed on the SVM
and CNN did not exceed the performance of the re-
sults from Huang and LeCun [14]. Huang and Le-
Cun were able to achieve 88.4% accuracy with their
SVM on the small NORB dataset, and 93.8% accu-
racy with their CNN on the small NORB dataset
[14]. The SVM in our experiments, with the same
parameters as Huang and LeCun [14], achieved
82.5% £ 0.7% accuracy, while our CNN achieved
83.1% accuracy. Our best performing algorithm
was actually a DBN using binary visible units and
2000 hidden nodes, which achieved 87% accuracy.
In comparison, Nair and Hinton [19], achieved
93.5% accuracy with their DBN on the standard

small NORB dataset, and 94.8% accuracy with their
DBN using extra unlabeled data. Thus, on the non-
occluded images, we did not quite achieve the best
results in the literature.

A significant possible reason for our relatively
inferior performance was that we chose to take only
one of the two stereo images in the NORB dataset
to be used by our learning algorithms. On the other
hand, the top performing results in the literature
generally made use of both stereo images. We made
the decision not to use the stereo pair images pri-
marily because of practical limitations on our part,
namely that it would double the size of the dataset
in memory, and that in the case of the CNN it would
require a considerable amount of extra modifica-
tion to the architecture of the network. Thus, we
chose to save both memory and time by using only
the single image. This was an important choice,
as we were significantly limited in the amount of
RAM available on our computers, and the amount
of time required to train with even this limited ver-
sion of the NORB was rather substantial already.
Also, in real life situations, it is often difficult to ob-
tain stereo images without resorting to some special
robotic vision setup. Conversely, single images are
readily available in many datasets, CCTV cameras,
and Internet searches.



18

Lin Chu J., Krzyzak A.

In so far as occluded images are concerned,
there remains a lack of results in the literature that
are directly comparable to our work. What seems
to be the the most similar work done so far would
be the research of Ranzato et al. [20]. Their work
on classifying facial expressions includes some use
of occlusion. Rather than making use of NORB,
they used the CK dataset, and the TFD, classify-
ing 7 different facial expressions, rather than 5 ob-
jects. Their Type 3 - right half, Type 4 - bottom half,
and Type 5 - top half occlusions are most similar to
the occlusions we used in our experiments. Impor-
tantly, their deep generative model actually attempts
to reconstruct the image first before classifying, un-
like our experiments. This thus takes full advantage
of the unique properties of generative models. As
such, they achieved fairly impressive results in their
experiments.

Overall, the results of Ranzato et al. [20], in
combination with our own results, appear to sug-
gest that the advantage of implementing a genera-
tive model comes from the reconstruction process
that Ranzato et al. [20] were able to use, and is
not merely a result of classification using a gener-
ative model discriminatively as we did. Further re-
search naturally could involve the actual implemen-
tation of some kind of reconstruction process simi-
lar to what Ranzato et al. [20] used, except on the
small NORB dataset, to determine whether or not
this conjecture actually holds.

Furthermore, a possible reason why the perfor-
mance of the generative DBN did not exceed the
discriminative models could be due to the fact that
the DBNs were fine-tuned with Backpropagation.
As such a process is inherently discriminative rather
than generative, the final resulting network may per-
haps behave more like a discriminative model than
a generative model. If this is the case, we should be
able to see some difference in the accuracy of the
model when it has only been pre-trained, and not
yet fine-tuned with Backpropagation. To truly test
this possibility, it may be necessary to run the exper-
iments again using a generative model that is fully
generative through and through, such as a DBM.

6 Conclusion

It would therefore appear to us that our original
hypothesis that the generative models would per-

form significantly better on the occluded task than
the discriminative models lacks empirical support.
Rather, it appears that, when run in a partially dis-
criminative manner, the generative model, in our
case the DBN, appears to perform approximately
equally well to discriminative models, such as the
SVM and the CNN. This strongly implies that, with
regards to other findings in the literature which use
generative models and do in fact show notable dif-
ferences, that these differences are primarily due
to the implementation of additional reconstruction
processes, and is not due merely to the architecture
and training algorithm itself.

In addition, with regards to certain DBNs that
implement Gaussian visible units, when trained on
the occluded training set and tested on the non-
occluded dataset, they show a remarkable perfor-
mance that perhaps warrants additional investiga-
tion. Furthermore, these results may suggest that,
at least when using this particular variant of DBN,
intentionally occluding data sets may allow for
good performance on both the non-occluded and
occluded tasks. Such techniques could very well
prove useful in tasks in which the original training
set is non-occluded, but the real-world test data may
include occlusions, such as in the case of real-world
face recognition from CCTV cameras.

In any case, it appears that all of the tested
learning algorithms are potentially competitive
methods of performing partially occluded object
recognition, as long as the training data is appro-
priately pre-processed with at least some artificial
occlusions.
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