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Abstract

Fuzzy clustering is a popular unsupervised learning method that is used in cluster analysis.
Fuzzy clustering allows a data point to belong to two or more clusters. Fuzzy c-means is
the most well-known method that is applied to cluster analysis, however, the shortcoming
is that the number of clusters need to be predefined. This paper proposes a clustering
approach based on Particle Swarm Optimization (PSO). This PSO approach determines
the optimal number of clusters automatically with the help of a threshold vector. The
algorithm first randomly partitions the data set within a preset number of clusters, and
then uses a reconstruction criterion to evaluate the performance of the clustering results.
The experiments conducted demonstrate that the proposed algorithm automatically finds
the optimal number of clusters. Furthermore, to visualize the results principal component
analysis projection, conventional Sammon mapping, and fuzzy Sammon mapping were
used.

1 Introduction

Data mining is a field that is also referred to as
exploratory data analysis, which is an analytic pro-
cess designed to explore data. Data mining aims
to search for consistent patterns or systematic re-
lationships between variables within the data. The
validation process then verifies the findings by ap-
plying the detected patterns to new subsets of data
[1]. The application areas in which data mining
is used for are astronomy, banking, customer rela-
tionship management, climate modeling, ecology,
finance, life sciences, monitoring, manufacturing,
network, retail, security, surveillance, web applica-
tions, etc. Data mining is a statistical analysis pro-
cess that identifies clusters among a collection of
data. The different tasks of data mining are classi-
fication, association, prediction, sequential pattern,
and clustering [2].

Clustering analysis is one of the popular ap-
proaches and has been widely used in data mining,

and is a process to identify groups or clusters based
on some similarity measures. Most clustering al-
gorithms can be categorized into two popular tech-
niques known as hierarchical and partitional clus-
tering. For hierarchical clustering, the output is a
tree showing a sequence of clusters whereby each
cluster being a partition of the data set. Hierar-
chical clustering on the other hand does not spec-
ify the number of clusters beforehand, and the out-
put is independent of the initial condition. Further-
more, hierarchical clustering is static, i.e., the data
points assigned to a cluster cannot be reassigned to
another cluster. In addition, hierarchical clustering
will fail to separate overlapping clusters due to the
lack of information regarding the global shape or
size of the clusters. Since partitional clustering re-
quires a fixed number of clusters to be specified a
priori, this is clearly a shortcoming. Usually objec-
tive functions such as square error function are used
as a criterion in the optimization process during the
data partitioning. Partitional clustering uses an it-
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erative process to both optimize the cluster centers
and the number of clusters. However, the challenge
is to find the “optimum” number of clusters since
it always requires prior knowledge about the data.
To summarize, the advantages of hierarchical algo-
rithms are the disadvantages of the partitional algo-
rithms and vice versa.

The goal of clustering is to divide data points
into homogeneous groups such that the data points
in the same group are as similar as possible, and
data points in different groups are as dissimilar as
possible [3, 2]. The strength of clustering is doc-
umented in different areas such as pattern recogni-
tion [4], machine learning, image analysis [5], in-
formation retrieval, etc. Clustering methods can
be categorized as either hard clustering [6, 7] or
fuzzy clustering [8] depending on whether a data
point belongs to a single cluster or several clusters
with different membership degrees. Fuzzy set the-
ory was proposed by Zadeh [9] in 1965. It is used
to describe the membership degrees in fuzzy cluster
analysis. Thus, each data point of a data set belongs
to two or more clusters with a membership degree
between 0 and 1. Due to the capability of handling
uncertainty and vagueness, the potential of fuzzy
clustering can be exploited to reveal the underly-
ing structures in data with regard to similarities or
dissimilarities among them [10].

One of the widely used methods in fuzzy clus-
tering is Fuzzy C-Means clustering (FCM) [11].
FCM attempts to partition a data set into a col-
lection of c fuzzy groups. The algorithm finds a
cluster center in each group such that the intra-
distance within the group is minimized, and the
inter-distance between each group is maximized.
Most of the fuzzy clustering methods that have been
applied recently use an extension of the FCM al-
gorithm. As we have mentioned before, partitional
clustering suffers from the following drawbacks:

– The number of clusters needs to be pre-
specified, and prior knowledge or ground truth
is required of the data.

– Most data points in overlapping areas cannot be
categorized correctly.

In order to address these two shortcomings, we pro-
posed a fuzzy c-means clustering approach using a
Particle Swarm Optimization (PSO) approach that

is applied to clustering analysis. The remainder of
this paper is organized as follows: In Section 2,
fuzzy c-means and PSO are introduced. The pro-
posed algorithm is described in Section 3, and a list
of validity indices is given in Section 4. The exper-
imental results and analysis is described in Section
5, and the paper is concluded in Section 6.

2 Related Work

CM was first developed by [12] in 1973, and
was extended by [11] in 1981. Since then, FCM
is one of the best fuzzy clustering methods. Many
different variants of FCM have been introduced.
For example, the Gustafson-Kessel (GK) algorithm
[7] is a fuzzy clustering technique which can esti-
mate local covariance to partition data into subsets,
which can be well fitted with linear sub-models.
However, since considering a general structure of
the covariance matrix can have a substantial effect
on the modeling approach, the Gath-Geva algorithm
[13] was proposed to overcome this shortcom-
ing. Another algorithm, called Fuzzy C-Varieties
(FCV) [14] clustering algorithm, is a fuzzy cluster-
ing method for which the prototype of each cluster
is represented as a multi-dimensional linear vector.
The approach is similar to cluster analysis, however,
it uses the statistical method of principal component
analysis for the clustering task. Another algorithm,
referred to as generalized FCM algorithm, is pre-
sented in [15], in which setting of the algorithm pa-
rameters is being done automatically.

Related work lists many evolutionary compu-
tation methods that have been applied for cluster-
ing. For example, a hybrid technique based on
combining the k-means algorithm and Nelder-Mead
simplex search was applied for cluster analysis in
[16]. Another algorithm based on the combina-
tion of Genetic Algorithm (GA), k-means and log-
arithmic regression expectation maximization was
introduced in [17]. In [18], a k-means algorithm
that performs correct clustering without preassign-
ing the exact number of clusters was proposed. A
genetic k-means algorithm for cluster analysis was
introduced in [19]. In [20], a GA based method
to solve the clustering problem and experiment on
synthetic and real life data sets to evaluate the per-
formance was proposed. A GA algorithm that ex-
changes neighboring centers for k-means clustering
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this paper is organized as follows: In Section 2,
fuzzy c-means and PSO are introduced. The pro-
posed algorithm is described in Section 3, and a list
of validity indices is given in Section 4. The exper-
imental results and analysis is described in Section
5, and the paper is concluded in Section 6.

2 Related Work

CM was first developed by [12] in 1973, and
was extended by [11] in 1981. Since then, FCM
is one of the best fuzzy clustering methods. Many
different variants of FCM have been introduced.
For example, the Gustafson-Kessel (GK) algorithm
[7] is a fuzzy clustering technique which can esti-
mate local covariance to partition data into subsets,
which can be well fitted with linear sub-models.
However, since considering a general structure of
the covariance matrix can have a substantial effect
on the modeling approach, the Gath-Geva algorithm
[13] was proposed to overcome this shortcom-
ing. Another algorithm, called Fuzzy C-Varieties
(FCV) [14] clustering algorithm, is a fuzzy cluster-
ing method for which the prototype of each cluster
is represented as a multi-dimensional linear vector.
The approach is similar to cluster analysis, however,
it uses the statistical method of principal component
analysis for the clustering task. Another algorithm,
referred to as generalized FCM algorithm, is pre-
sented in [15], in which setting of the algorithm pa-
rameters is being done automatically.

Related work lists many evolutionary compu-
tation methods that have been applied for cluster-
ing. For example, a hybrid technique based on
combining the k-means algorithm and Nelder-Mead
simplex search was applied for cluster analysis in
[16]. Another algorithm based on the combina-
tion of Genetic Algorithm (GA), k-means and log-
arithmic regression expectation maximization was
introduced in [17]. In [18], a k-means algorithm
that performs correct clustering without preassign-
ing the exact number of clusters was proposed. A
genetic k-means algorithm for cluster analysis was
introduced in [19]. In [20], a GA based method
to solve the clustering problem and experiment on
synthetic and real life data sets to evaluate the per-
formance was proposed. A GA algorithm that ex-
changes neighboring centers for k-means clustering
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has been introduced in [21]. A combination of evo-
lutionary algorithm with an ant colony algorithm
for the clustering problem was presented in [21, 22].
A clonal selection based method has been combined
with FCM in [23].

PSO has also been applied to data clustering. In
particular, two methods called PSO-V and PSOU
are introduced in [24], whereby a reformulated ob-
jective function of fuzzy c-means is minimized by
the PSO algorithm for the cluster analysis task. An-
other PSO-based fuzzy clustering algorithm is in-
troduced to overcome the shortcomings of FCM in
[25]. An ant colony clustering algorithm is applied
for solving the clustering task in [26]. The algo-
rithm uses the global pheromone update and heuris-
tic information to find clustering solutions. In [27],
a genetic fuzzy K-modes algorithm for clustering
categorical data is proposed, which uses a genetic
algorithm to obtain the global optimal clustering so-
lution. A hybrid data clustering algorithm that uses
the merits of PSO and K-harmonic means is pro-
posed in [28]. The hybrid algorithm helps to escape
from local optima, and thus overcomes the problem
of slow convergence of the PSO algorithm. A hy-
brid evolutionary algorithm, called FAPSO-ACO-
K, is introduced in [29]. The hybrid algorithm com-
bines PSO, ACO and k-means applied to cluster
analysis. Another method for dynamic parameter
adaptation in PSO is proposed in [30]. The pro-
posed algorithm uses fuzzy logic to improve the
convergence and diversity of the swarm in PSO.

The high computational cost and the slow con-
vergence rate severely limit the use of PSO on clus-
tering analysis. For these reasons, a chaotic map
PSO with an accelerated convergence rate strat-
egy was introduced in [31]. The algorithm works
by adopting chaotic maps and adaptive action to
avoid local minima. In [32], a hybrid fuzzy clus-
tering method based on FCM and FPSO is pro-
posed to overcome the shortcomings of PSO. An-
other modified version of PSO, known as Multi-
Elitist PSO (MEPSO), is proposed in [33]. This ap-
proach solves the hard clustering problem by auto-
matically determining the optimal number of clus-
ters. This approach shows that PSO is guaranteed
to solve clustering problems automatically.

This paper addresses the shortcoming of the
FCM algorithm, which is the predefined cluster
count. A clustering approach based on PSO is pro-

posed whose aim it is to automatically determine
the optimal number of clusters using a threshold
vector. The algorithm partitions the data set ran-
domly (within a preset maximum number of clus-
ters) and uses a reconstruction criterion to evaluate
the performance of the clustering results. This pa-
per is an extended version of [34].

3 Fuzzy C-Means and Particle
Swarm Optimization

3.1 Fuzzy C-means Clustering

Fuzzy clustering is a method of clustering that
allows one piece of data to belong to two or more
clusters. The FCM algorithm is an iterative parti-
tion clustering technique that was first introduced
by Dunn [12], and was then extended by Bezdek
[11]. FCM uses a standard least squared error
model that generalizes an earlier and very popular
non-fuzzy c-means model that produces hard clus-
ters of the data. An optimal c partition is iteratively
produced by minimizing the weighted within group
sum of squared error objective function

J =
n

∑
i=1

c

∑
j=1

(ui j)
md2(yi,c j) (1)

where Y = [y1,y2, ...,yn] is the data set in a d-
dimensional vector space, n is the number of data
items, c is the number of clusters that is defined by
the user where 2 ≤ c ≤ n, ui j is the degree of mem-
bership of yi in the jth cluster, m is a weighted ex-
ponent on each fuzzy membership, c j is the center
of cluster j, d2(xi,c j) is a square distance measure
between object yi and cluster c j.

An optimal solution with c partitions can be ob-
tained via an iterative process which is as follows:

– Input(c, m, ε, data)

– Initialize the fuzzy partition matrix U = [ui j]

– Iteration starts and set t=1

– Calculate the c cluster centers with Ut :

ci =
∑n

i=1(ui j)
myi

∑n
i=1(ui j)m (2)

– Calculate the membership Ut+1 using:

ui j =
1

∑c
k=1(

di j
dk j

)
2

(m−1)
(3)
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– If the stopping criteria is not met, t = t + 1 and
go to Step 4)

3.2 Particle Swarm Optimization

PSO was designed and introduced by Eber-
hart and Kennedy [35]. PSO is a population-based
search algorithm that simulates the choreography of
a bird flock. Each individual, called particle, within
the swarm is represented by a vector in a multidi-
mensional search space. A velocity vector is as-
signed to each particle to determine the next move-
ment of the particle. Each particle updates its ve-
locity based on the current velocity, best personal
position it has explored so far, and the global best
position explored by the swarm

The velocity and position of the particle at the
next iteration is updated as

Vi(t +1) = wVi(t)+ c1r1(Xl
i (t)−Xi(t))

+ c2r2(Xg −Xi(t)) (4)

Xi(t +1) = Xi(t)+Vi(t +1) (5)

for the ith particle, where w is the inertia weight,
Vi(t) is the previous velocity at iteration t of ith par-
ticle, c1 and c2 are coefficients. Generally, r1 and
r2 are random numbers between 0 and 1. (Xl

i (t)−
Xi(t)) is the difference between the local best Xl

i
of the ith particle and the previous position Xi(t).
Similarly, (Xg−Xi(t)) is the difference between the
global best Xg and the previous position Xi(t).

4 Proposed Approach

The proposed algorithm is based on PSO and
FCM. The particle encoding, velocity encoding, de-
coding and clustering validation are described sepa-
rately below followed by the procedures of the pro-
posed algorithm.

4.1 Particle Encoding

A particle is a 2×k matrix, where k is the maxi-
mum number of clusters that is predefined. The first
row represents the centers. Each value in the second
row controls the activation of each center in the first

row.

Xi =

(
xi

1,1 xi
1,2 ... xi

1,k
ti
2,1 ti

2,2 ... ti
2,k

)
(6)

where xi
1,k represents the ith particle’s position in

cluster k. xi
1,k should be in the range of [xmin,xmax].

ti
2,k is the ith particle’s threshold value in the range

of [0,1]. If the threshold value is greater than 0.5,
the center is activated, otherwise it is deactivated.

4.2 Velocity Encoding

The velocity matrix has to have the same dimen-
sion as the position matrix with a range. Suppose
we set the range as [vmin,vmax], all values of the
velocity matrix have to be between vmin and vmax.
Thus, the ith velocity is denoted as:

Vi =

(
vi

x1,1 vi
x1,2 ... vi

x1,k
vi

t2,1 vi
t2,2 ... vi

t2,k

)
(7)

Similarly, k is the maximum number of clusters.
The first row represents the velocity of the centers,
and the second row represents the velocity of the
threshold values.

4.3 Decoding

Y = (y1,y2, ..,yn) is the data set with d dimen-
sions. The cluster centers can be decoded as C =
(c1,c2, ...ck) using Equation 2.

4.4 Clustering Validation Techniques

The aim of clustering validation is to evaluate
the clustering results by finding the best partition
that fits the underlying data. Thus, cluster validity
is used to quantitatively evaluate the results of clus-
tering algorithms. Compactness and separation two
widely considered criteria for measuring the quality
of the partitioning of a data set into different num-
bers of clusters. Conventional approaches use an
iterative approach by choosing different input val-
ues, and they select the best validity measure to de-
termine the ”optimum” number of clusters. A list of
validity indices for fuzzy clustering is listed below.

4.4.1 Dunn’s Index (DI)

The Dunn’s Index is proposed to identify the
compactness and separation of the clusters. The
function that uses to calculate the result of the clus-
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iterative approach by choosing different input val-
ues, and they select the best validity measure to de-
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The Dunn’s Index is proposed to identify the
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PARTICLE SWARM OPTIMIZATION BASED . . .

tering is as follow

DI = min{ min
j∈c,i̸= j

{
minx∈Ci,y∈Cj d(x,y)

maxk∈c{maxx,y∈C d(x,y)}
}}

(8)
where d(x,y) is the distance of the two cluster cen-
ters. DI takes its minimum value when the cluster
structure is optimal.

4.4.2 Weighted Inter-Intra (Wint) Index

The weighted inter-intra (Wint) measure is in-
troduced by Strehl [42] in 2002. It compares the
compactness of the data to its separation.

Wint = (1− 2c
n
) · (1−

∑i
1

n−|ci| ∑ j ̸=i inter(ci,c j)

∑i
2

|ci|−1 intra(ci)
)

(9)
where intra(ci) is the average intra-distance within
cluster i. inter(ci,c j) is the average inter-distance
between cluster i and cluster j. Wint obtains its
maximum value when the cluster structure is opti-
mal.

4.4.3 Least Squared Error (SE) Index

The weighted within cluster sum of squared er-
ror function is used [36]:

Jm =
n

∑
i=1

c

∑
j=1

um
i j||yi − c j||2 (10)

where yi is the ith data point with d dimensions. c j

is the value of the jth cluster, and ||yi − c j|| is the
Euclidean distance between yi and c j. Jm takes its
minimum value when the cluster structure is best.

4.4.4 Partition Coefficient (PC) Index

The partition coefficient (PC) is defined as [11]

PC =
1
n

n

∑
i=1

c

∑
j=1

u2
i j (11)

PC obtains its maximum value when the cluster
structure is optimal.

4.4.5 Partition Entropy (PE) Index

The partition entropy was defined as [14]

PE =−1
n

n

∑
i=1

c

∑
j=1

ui jlogb(ui j) (12)

where b is the logarithmic base. PE gets its mini-
mum value when the cluster structure is optimal.

4.4.6 Modified Partition Coefficient (MPC) In-
dex

Modification of the PC index, which can reduce
the monotonic tendency, is proposed by Dave in
1996 [37].

MPC = 1− c
c−1

(1−PC) (13)

where c is the number of cluster. An optimal cluster
number is found by maximizing MPC to produce a
best clustering performance for a data set.

4.4.7 Fukuyama and Sugeno (FS) Index

Fukuyama and Sugeno proposed a validity
function in 1989 [38]. It is defined as

FS =
n

∑
i=1

c

∑
j=1

µm
i j||xi−c j||−

n

∑
i=1

c

∑
j=1

µm
i j||c j − c̄|| (14)

where c̄ = ∑c
j=1 c j/c. It measures the separation.

The first term equals to Jm which is the least squared
error. It measures the compactness. The best clus-
tering performance for a data set is found by maxi-
mizing the value of FS.

4.4.8 Xie-Beni (XB) Index

Xie and Beni proposed a validity function in
1991 [39], and later it was modified by Bezdek in
1995 [40].

XB =
Jm

n×mini̸= j ||zi − z j||2
(15)

XB reaches its minimum value when the cluster
structure is optimal.

4.4.9 Partition Coefficient and Exponential
Separation (PCAES) Index

The partition coefficient and exponential sepa-
ration (PCAES) index [41] is defined as

PCAES =
n

∑
i=1

c

∑
j=1

(ui j)
2

uM

−
c

∑
k=1

exp(−min
k ̸=i

||zi − zk||2/βT ) (16)

where uM = min1≤ j≤c{∑n
i=1 u2

i j} and βT =

(∑c
j=1 ||z j − z̄||2)/c. z̄ = ∑n

i=1(yi/n). PCAES takes
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its maximum value when the cluster structure is
optimal.

The procedure of the proposed algorithm is as
follows:

Input: data set Y = [y1,y2, ...,yn], number of
cluster c, fuzzification coefficient m.

Output: a n× c partition matrix U and corre-
sponding centers.

– Randomly initialize a swarm

– Iteration starts and set t=1

– Update the velocity of each particle using Equa-
tion 4

– Update the position of each particle using Equa-
tion 5

– Update the personal best and global best

– Calculate the partition matrix U

– If the stopping criterion is not met, t = t +1 and
go back to Step 3)

– The partition matrix U of the global best is used
to reconstruct the original data

– Calculate the reconstruction error. In order to
use a consistent method to evaluate the eight dif-
ferent indices, the reconstruction criterion (RC)
[43] is used. The reconstruction criterion uses
the cluster prototypes and partition matrix to
“reconstruct” the original data vectors. The re-
constructed version of the original data vectors,
Ŷ = [ŷ1, ŷ2, ..., ŷn], is calculated as

ŷi =
∑c

j=1 um
i jc j

∑c
j=1 um

i j
(17)

Once the reconstruction has been finished, the
squared error of the reconstruction vectors and
original vectors are evaluated using Equation 18.

E =
n

∑
i=1

||ŷi − yi||2 (18)

– Select the partition matrix and centers corre-
sponding to the minimum reconstruction error.

5 Experiments and Results

In this section, the experimental setup, datasets
and experimental study are described in detail.

5.1 Experimental Setup

The experiments are implemented and evalu-
ated on an ASUS desktop (Intel(R) Dual Core I3
CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13.
All measurements of the proposed algorithm are ex-
ecuted 30 times and the average is taken. The pa-
rameters required for the proposed algorithm are
listed in Table 1.

Table 1: Parameters and their values of the pro-
posed algorithm.

Parameter Value
Maximum number of cluster 10

Maximum iteration 50
Swarm size 25

Maximum run 30
Fuzzification coefficient (m) 2

5.2 Datasets

The experiments are conducted on a number of
datasets taken from the UCI repository [44], and
synthetic data sets were generated using Matlab.

The datasets are described in Table 2.

Table 2: Datasets used for the experiments.

Data Set Dimensions Instances Classes
Pinwheel 2 1000 2

Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2

Jain 2 373 2
Thyroid 5 215 2

Iris 4 150 3
DIM032 32 320 5
DIM064 64 320 5
DIM128 128 320 5
DIM256 256 320 5

5.3 Experimental Study

5.3.1 Use of Synthetic Data

In order to investigate the clustering perfor-
mance with different numbers of clusters, we use a
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All measurements of the proposed algorithm are ex-
ecuted 30 times and the average is taken. The pa-
rameters required for the proposed algorithm are
listed in Table 1.

Table 1: Parameters and their values of the pro-
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Maximum run 30
Fuzzification coefficient (m) 2

5.2 Datasets

The experiments are conducted on a number of
datasets taken from the UCI repository [44], and
synthetic data sets were generated using Matlab.

The datasets are described in Table 2.

Table 2: Datasets used for the experiments.

Data Set Dimensions Instances Classes
Pinwheel 2 1000 2

Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2

Jain 2 373 2
Thyroid 5 215 2

Iris 4 150 3
DIM032 32 320 5
DIM064 64 320 5
DIM128 128 320 5
DIM256 256 320 5

5.3 Experimental Study

5.3.1 Use of Synthetic Data

In order to investigate the clustering perfor-
mance with different numbers of clusters, we use a

PARTICLE SWARM OPTIMIZATION BASED . . .

synthetic data set, named pinwheel, to test the clus-
tering performance using K-means [46], K-medoid
[47], FCM, Gustafson-Kessel (GK) and our pro-
posed algorithm (FPSO). K-means is one of the
unsupervised learning methods that uses an itera-
tive refinement technique. The number of desired
cluster, k, is defined in advance. K-medoid is an-
other unsupervised learning method related to the
K-means algorithm. Similarly, the K-medoid clas-
sifies the data set into k clusters. However, K-
medoid is more robust to noise and outliers as com-
pared to K-means. Unlike K-means, the medoid is
defined as the data point whose average dissimilar-
ity within the cluster is minimal. K-means and K-
medoid are traditional hard clustering techniques,
while FCM, GK and FPSO are soft clustering tech-
niques. The nine validity indices listed in Equations
8-16 are used.

The cluster performance of the pinwheel data
set is displayed in Figure 1. The first figure is the
original data set. As can be seen, the cluster centers
are different using Kmeans, K-medoid, FCM, GK
and FPSO, respectively.

Figure 2 shows the performance of the pinwheel
data set using the K-means algorithm. Figure 3
shows the performance of the pinwheel data set us-
ing the K-medoid algorithm. Since K-means and K-
medoid are algorithms using hard partitioning, the
DI index, Wint index and SE index are used for val-
idation.

In Figure 4, the performance of the pinwheel
data set using FCM is given. Figure 5 shows the
performance of the pinwheel data set using the GK
algorithm. The performance of the proposed algo-
rithm (FPSO) is displayed in Figure 6. The correct
number of clusters found for the nine indices are
listed in Table 3. The correct cluster number for
the pinwheel data set is 2. The correct number of
clusters found measuring DI using the five different
algorithms are 5, 5, 7, 10, and 7, respectively. The
correct number of clusters found applying Wint are
consistent with the correct cluster number. The cor-
rect number of clusters found by SE is consistent
with 10. As the number of clusters increases, the SE
values decrease. PC, PE and MPC using the FCM,
GK and FPSO algorithms find the correct cluster
number. Measuring FS using the FCM, GK and
FPSO algorithm are similar to SE. As the number
of clusters increases, the FS values decrease. The

correct number of clusters found applying XB us-
ing the FCM, GK and FPSO algorithms are 10, 7,
and 10, respectively. The correct number of clus-
ters found measuring PCAES using the FCM, GK
and FPSO algorithms are 4, 10, and 8, respectively.
Overall, the Wint, PC, PE and MPC indices, which
outperform the other indices, find the correct num-
ber of clusters.

5.3.2 Use of Real-World Data

In this section, we investigate the behavior of
the clustering results using nine different validity
measures listed.

In Table 4, the reconstruction errors of the trans-
fusion data set, where c ranges from 2 to 9, have
been calculated using the proposed algorithm by ap-
plying Equations 8-16. As shown by the results, the
values in bold identifying the minimum reconstruc-
tion errors with different cluster numbers for each
measure. 6 out of 8 cases show that c = 2 is the
correct number of clusters. This indicates that the
proposed FPSO can find the best number of clus-
ters automatically.

Due to the stochastic nature of our proposed al-
gorithm, we tested the proposed algorithm on 30
runs and calculated the average number of clus-
ters as listed in Table 5. The standard deviation
values are given as well. The correct numbers of
clusters using different validity measures are tabu-
lated, respectively. In all the cases, the number of
clusters predicted by FPSO is close to the correct
number of clusters. DI, SE, XB and PCAES do
not find the correct number of clusters. Wint can
identify the correct number of clusters but only for
low-dimensional datasets. MPC returns the correct
number of clusters, but with larger standard devi-
ation values. PC and PE find the correct number
of clusters consistently, however, as the number of
dimension increases, the accuracy decreases.

5.4 Visualization of Clustering Results

Since the validity measures reduce the overall
evaluation to a certain number, therefore there is
some loss of information. In order to better ana-
lyze the results, a low-dimensional graphical rep-
resentation of the clusters is adopted. A toolbox
implemented by [45] is used to visualize the clus-
ter results using the proposed algorithm. Principal
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Figure 1: Synthetic data set

Table 3: Index values with varying c using pinwheel data set.

Indices Kmeans K-medoid FCM GK FPSO
DI 5 5 7 10 7

Wint 2 2 2 2 2
SE 10 10 10 10 10
PC - - 2 2 2
PE - - 2 2 2

MPC - - 2 2 2
FS - - 10 10 10
XB - - 10 7 10

PCAES - - 4 10 8
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Figure 2: Kmeans using 3 different validity indices
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Figure 3: K-medoid using 3 different validity indices
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Table 4: Reconstruction error with varying c using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
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Table 4: Reconstruction error with varying c using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
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Table 4: Reconstruction error with varying c using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
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Table 4: Reconstruction error with varying c using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4

PARTICLE SWARM OPTIMIZATION BASED . . .

Table 5: Nine different indices using the proposed algorithm.

DI Wint SE PC PE MPC FS XB PCAES FPSO k
Transfusion 5.70 2.63 9.43 2.17 2.13 3.67 2.73 9.63 6.87 2.42 2

std. 1.84 0.49 0.86 0.38 0.35 2.15 1.05 0.56 2.29 0.58
Haberman 5.90 2.93 9.97 2.00 2.00 6.50 2.07 9.83 8.80 2.24 2

std. 0.55 0.25 0.18 0.00 0.00 1.50 0.25 0.75 2.51 0.15
Breast 6.13 3.00 8.43 3.27 2.17 5.30 2.13 9.77 6.83 2.64 2

std. 1.96 0.00 1.43 1.72 0.38 2.45 0.35 0.63 2.09 0.62
Jain 7.30 2.97 9.57 2.87 2.10 3.60 3.37 7.90 6.47 2.25 2
std. 1.64 0.56 0.68 0.82 0.31 1.52 2.75 2.20 2.22 0.15

Thyroid 4.27 2.83 9.90 2.10 2.03 4.27 2.00 9.53 8.10 2.24 2
std. 1.87 0.38 0.31 0.40 0.18 2.21 0.00 0.68 1.99 0.24
Iris 3.83 2.93 9.00 2.53 2.30 4.13 2.40 9.57 6.30 2.55 2
std. 1.58 0.52 1.62 0.94 0.47 2.06 0.89 0.57 2.58 0.7

DIM032 6.33 2.73 7.90 4.60 4.00 4.90 3.73 7.40 6.40 5.34 5
std. 1.07 0.64 1.83 1.43 1.91 1.44 1.10 1.30 2.04 2.08

DIM064 7.17 3.20 7.77 5.47 5.50 5.53 2.00 9.43 7.40 5.94 5
std. 2.63 1.92 1.83 1.33 1.41 1.46 0.00 1.01 1.92 1.50

DIM128 6.90 2.57 8.27 5.63 5.57 5.77 2.00 8.37 8.03 5.90 5
std. 2.02 0.57 1.55 1.25 1.38 1.04 0.00 1.97 1.35 1.24

DIM256 8.57 2.57 8.57 6.43 6.13 6.70 2.00 9.13 8.57 6.52 5
std. 1.19 0.50 1.43 1.65 1.72 1.56 0.00 1.07 1.33 1.16

Component Analysis (PCA) projection, Conven-
tional Sammon Mapping (CSM), and Fuzzy Sam-
mon Mapping (FSM) are used. The dimensions of
DIM032, DIM064, DIM128 and DIM256 are 32,
64, 128 and 256, respectively. The correct number
of clusters is 5. Figure 7 lists the performance of
PCA, CSM and FSM using the four data sets. The
black cross represents the identified cluster centers.
Obviously, the correct number of clusters can be
seen by looking at the figure. As the number of
dimension increases, the performance of the PCA,
CSM and FSM decrease.

The performance of the mapping are listed in
Table 6. The mean square error of the re-calculated
membership values (P), two different original and
re-calculated validity measures (F and F*), and
the Sammon stress coefficient (S) are listed in the
parenthesis. As the number of dimension increases,
the FSM is better than PCA and CSM in terms of
smaller P, F* and S values. The performance of
PCA, CSM and FSM are the same in terms of F
values.

6 Conclusion

This paper proposed an algorithm to overcome
the drawbacks of traditional partition clustering,
which is that the number of clusters needs to be pre-
defined. The proposed algorithm uses using PSO
and FCM with a threshold vector to control and
identify the optimal number of clusters. The algo-
rithm solves the clustering problem via an iterative
fuzzy partition process.

For the evaluation of our algorithm we gener-
ated a synthetic dataset as well as used 6 datasets
from the UCI repository. We compared our al-
gorithm with hard clustering approaches such as
Kmeans and K-medoid as well as with fuzzy clus-
tering algorithms such as FCM and GK. Nine differ-
ent validity indices were used to evaluate the per-
formance. Furthermore, measures such principal
component analysis projection, conventional sam-
mon mapping, and fuzzy sammon mapping were
used to visualize the clustering results. Overall, the
results show that the proposed algorithm can iden-
tify the correct number of clusters on all the data set
tested. However, due to the slow convergence and
the stochastic nature of the PSO algorithm, the pre-
diction results of a single run vary and thus make it
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Table 4: Reconstruction error with varying c using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
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Figure 7: Data sets using Principal Component Analysis (PCA) projection, Sammon mapping and fuzzy
Sammon mapping

Table 6: Mapping using the proposed algorithm.

Datasets PCA CSM FSM
DIM032 (0.0030 0.9826 0.9975 0.0821) (0.0104 0.9826 0.9495 0.2953) (0.0023 0.9826 0.9742 0.0780)
DIM064 (0.0011 0.9939 0.9995 0.1329) (0.0005 0.9939 0.9931 0.0553) (0.0005 0.9939 0.9920 0.0556)
DIM128 (0.0008 0.9956 0.9998 0.1252) (0.0050 0.9956 0.9765 1.5603) (0.0004 0.9956 0.9941 0.0498)
DIM256 (0.0046 0.2003 0.2010 0.1138) (0.0262 0.2003 0.2081 34.2770) (0.0044 0.2003 0.2001 0.0482)
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Figure 7: Data sets using Principal Component Analysis (PCA) projection, Sammon mapping and fuzzy
Sammon mapping

Table 6: Mapping using the proposed algorithm.

Datasets PCA CSM FSM
DIM032 (0.0030 0.9826 0.9975 0.0821) (0.0104 0.9826 0.9495 0.2953) (0.0023 0.9826 0.9742 0.0780)
DIM064 (0.0011 0.9939 0.9995 0.1329) (0.0005 0.9939 0.9931 0.0553) (0.0005 0.9939 0.9920 0.0556)
DIM128 (0.0008 0.9956 0.9998 0.1252) (0.0050 0.9956 0.9765 1.5603) (0.0004 0.9956 0.9941 0.0498)
DIM256 (0.0046 0.2003 0.2010 0.1138) (0.0262 0.2003 0.2081 34.2770) (0.0044 0.2003 0.2001 0.0482)
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Figure 7: Data sets using Principal Component Analysis (PCA) projection, Sammon mapping and fuzzy
Sammon mapping

Table 6: Mapping using the proposed algorithm.

Datasets PCA CSM FSM
DIM032 (0.0030 0.9826 0.9975 0.0821) (0.0104 0.9826 0.9495 0.2953) (0.0023 0.9826 0.9742 0.0780)
DIM064 (0.0011 0.9939 0.9995 0.1329) (0.0005 0.9939 0.9931 0.0553) (0.0005 0.9939 0.9920 0.0556)
DIM128 (0.0008 0.9956 0.9998 0.1252) (0.0050 0.9956 0.9765 1.5603) (0.0004 0.9956 0.9941 0.0498)
DIM256 (0.0046 0.2003 0.2010 0.1138) (0.0262 0.2003 0.2081 34.2770) (0.0044 0.2003 0.2001 0.0482)
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Table 6: Mapping using the proposed algorithm.

Datasets PCA CSM FSM
DIM032 (0.0030 0.9826 0.9975 0.0821) (0.0104 0.9826 0.9495 0.2953) (0.0023 0.9826 0.9742 0.0780)
DIM064 (0.0011 0.9939 0.9995 0.1329) (0.0005 0.9939 0.9931 0.0553) (0.0005 0.9939 0.9920 0.0556)
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PARTICLE SWARM OPTIMIZATION BASED . . .

difficult to prediction the correct number of clusters.
Unlike K-means and FCM, the proposed algorithm
needs to be executed repeatedly in order to find the
correct solution. In addition, the maximum number
of clusters has to be predefined, and the iterative
process to identify the optimal number of clusters
is computationally expensive.

As for future work, it would be interesting to
improve the proposed algorithm to achieve more
stable predictions with fewer runs. Moreover, we
are planning to explore the proposed algorithm
with big datasets, and therefore parallelization tech-
niques are necessary.
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