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Table 1. The weight each parameter has on quality score for each database

DATABASE MC ME MO MS MA MD MB
CASIA -0.3426 0.4235 -0.4953 -0.3159 0.5066 0.4122 0.1481
UBIRIS 0.5766 0.4608 -0.3099 - 0.5 -0.16666 -0.3764 - 0.1577

IC 0.5050 0.5747 0.4028 -0.4073 -0.2051 -0.0392 -0.0780

References
[1] Gulmire, K. and Ganorkar,S., Iris recognition using

Gabor wavelet., International Journal of Engineer-
ing, 1(5), 2012.

[2] Masek, L.: Recognition of human iris patterns for
biometric identification. PhD thesis.

[3] Ma, L., Tan, T., Wang, Y. and Zhang, D.,:Personal
identification based on iris texture analysis., Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on, 25(12):1519– 1533, 2003.

[4] Daugman, J.:How iris recognition works., Circuits
and Systems for Video Technology, IEEE Transac-
tions on, 14(1):21–30, 2004.

[5] Fatukasi,O., Kittler, J., and Poh, N., :Quality con-
trolled multi-modal fusion of biometric experts., In
Progress in Pattern Recognition, Image Analysis
and Applications, pages 881–890. Springer, 2007.

[6] Kalka,N. D., Dorairaj, V.,Shah,Y. N., Schmid, N. A.
and Cukic B.,: Image quality assessment for iris bio-
metric., In Proceedings of the 24th Annual Meeting
of the Gesellscha it Klassikation, pages 445–452.
Springer, 2002.

[7] Sandre, S-L and Stevens, M. and Mappes, J.,: The
effect of predator appetite, prey warning coloration
and luminance on predator foraging decisions, Be-
haviour, vol.147, No. 9., 1121–1143, BRILL, 2010

[8] Du, Y. and Belcher, C. and Zhou, Z. and Ives, R.,:
Feature correlation evaluation approach for iris fea-
ture quality measure, Signal processing, Vol. 90, No.
4, 1176–1187, Elsevier, 2010

[9] Nill, N. B, IQF (Image Quality of Fingerprint) Soft-
ware Application, The MITRE Corporation, 2007

[10] Crete, F., Dolmiere,T., Ladret, P. and Nicolas, M.:
The blur effect: perception and estimation with a

new no-reference perceptual blur metric., Human
Vision and Electronic Image in XII, 6492:64920I,
2007.

[11] Li, Y.H., Savvides, M.: An automatic iris occlu-
sion estimation method based on high-dimensional
density estimation., Pattern Analysis Machine In-
telligence,IEEE Transactions on, pp 784-9-6,35(4),
2013.

[12] Yalamanchili, R. K.: Occlussion Metrics,West vir-
ginia University, 2011

[13] Bieroza, M. and Baker, A. and Bridgeman, J.,:
Classification and calibration of organic matter fluo-
rescence data with multiway analysis methods and
artificial neural networks: an operational tool for
improved drinking water treatment, Environmetrics,
Vol. 22, No.3, 256–270, Wiley Online Library, 2011

[14] Jeong, D. H. and Ziemkiewicz, C. and Ribarsky,
W. and Chang, R. and Center, C. V.,:Understanding
Principal Component Analysis Using a Visual An-
alytics Tool, Charlotte Visualization Center, UNC
Charlotte, 2009

[15] Suhr, D. D.:Principal component analysis vs. ex-
ploratory factor analysis, SUGI 30 Proceedings,
203–230, 2005

[16] Proença, H. and Alexandre, L.A., UBIRIS: A noisy
iris image database, International Conference on Im-
age Analysis and Processing, 2005

[17] Chinese Academy of Sciences Institute of
Automation., CASIA Iris Database,Online:
http://biometrics.idealtest.org/dbDetailForUser
.do?id=4, 2012

[18] Fairchild M, D:Color Appearance Models, Slides
from a tutorial at the IST/SID 12th Color Imaging
Conference, 2004.

MAXIMISING ACCURACY AND EFFICIENCY OF
TRAFFIC ACCIDENT PREDICTION COMBINING

INFORMATION MINING WITH COMPUTATIONAL
INTELLIGENCE APPROACHES AND DECISION TREES

Tatiana Tambouratzis1, Dora Souliou2, Miltiadis Chalikias3 and Andreas Gregoriades4

1Department of Industrial Management & Technology, University of Piraeus,
107 Deligiorgi St, Piraeus 185 34, Greece

2School of Electrical and Computer Engineering, National Technical University of Athens,
9 Iroon Polytechniou St, Zografou 15780, Greece

3Department of Business Administration, Technological Educational Institution of Peiraius,
250 Thivon and Petrou Ralli Av., 122 44 Egaleo, Greece

4Department of Computer Science & Engineering, European University Cyprus, Cyprus

Abstract

The development of universal methodologies for the accurate, efficient, and timely pre-
diction of traffic accident location and severity constitutes a crucial endeavour. In this
piece of research, the best combinations of salient accident-related parameters and ac-
curate accident severity prediction models are determined for the 2005 accident dataset
brought together by the Republic of Cyprus Police. The optimal methodology involves:
(a) information mining in the form of feature selection of the accident parameters that
maximise prediction accuracy (implemented via scatter search), followed by feature ex-
traction (implemented via principal component analysis) and selection of the minimal
number of components that contain the salient information of the original parameters,
which combined bring about an overall 74.42% reduction in the dataset dimensionality;
(b) accident severity prediction via probabilistic neural networks and random forests, both
of which independently accomplish over 96% correct prediction and a balanced propor-
tion of under- and over-estimations of accident severity. An explanation of the superiority
of the optimal combinations of parameters and models is given, as is a comparison with
existing accident classification/prediction approaches.

List of Abbreviations:
Accident classification/prediction (AC/P)
Adaptive Resonance Theory (ART)
Abbreviated Injury Scale (AIS)
Akaike Information Criterion (AIK)
Artificial neural network (ANN)
Association for the Advancement of Automotive
Medicine (AAAM)
Back-Propagation (BP)
Bayesian Belief Network (BBN)
Bayesian Information Criterion
Computational intelligence (CI)

Cross validation (CV)
Decision tree (DT)
Ensemble Methods (EMs)
Fisher’s linear discriminant analysis (LDA)
Fuzzy logic (FL)
Genetic algorithm (GA)
Information mining (IM)
Injury Severity Score (ISS)
Fatal (K), serious (A), moderate (B), minor (C), and none
(O) (KABCO)
Machine learning (ML)
Maximum Abbreviated Injury Scale (MAIS)
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Meta-learning algorithm (MLA)
Multi Layer Perceptron (MLP)
Na Bayes classifier (NBC)
Principal component (PC)
Principal component analysis (PCA)
Probabilistic neural network (PNN)
Random Committee (C)
Random Forest (RF)
Random Tree (RT)
Scatter Search (SS)
Republic of Cyprus police (RCP)
Traffic accident prevention (TAP)
Traffic accident record (TAR)

1 Introduction
Traffic accident prevention (TAP) is of paramount

importance to traffic safety and monitoring. Usually ex-
pressed as the short-time prediction of accident location
and severity, TAP is effectuated via the timely dispatch
of the police1 to locations of ”interest” for traffic moni-
toring and/or diversion as well as - if deemed necessary
- for casualty management. Owing to the crucial nature
of TAP, extensive - and usually redundant - accident-
related datasets are collected at various locations of in-
terest. Following information mining (IM) via the selec-
tion/extraction of pertinent accident-related information,
the reduced datasets are combined with appropriate pre-
diction models that afford maximally accurate as well
as efficient prediction of accident location and sever-
ity (also known as accident classification and prediction,
AC/P) across the locations of data collection.

This piece of research constitutes a step towards the
development of universal methodologies for the maxi-
mally accurate, efficient, and timely AC/P of accident
location and severity. The 2005 accident dataset brought
together by the Republic of Cyprus Police (RCP) has
been employed for establishing the best combinations of

– sets of salient TAP-related parameters from the
database that can predict accident location and sever-
ity, as determined via IM (including statistical and
feature selection/extraction techniques);

– classification/prediction models drawn from existing
and customarily used statistical, mathematical, ma-
chine learning (ML) and computational intelligence
(CI) methodologies.

Concerning IM, the most advantageous sets of parame-
ters have been found to be derived from (a) feature selec-
tion of the accident parameters, implemented via scat-
ter search (SS) either sequentially (Glover, 1977) or in
parallel (Fx GarcL et al., 2006), followed by (b) feature

extraction, implemented via principal component anal-
ysis (PCA) (Pearson, 1901) and the subsequent preser-
vation of only the first few principal components (PCs),
as given by the combination of the scree test (Cattell,
1966) and Kaiser rule (Kaiser, 1960). Overall, a re-
duction of 74.42% of the original TAP-related informa-
tion is effectuated. As far as AC/P is concerned, prob-
abilistic neural networks (PNNs) (Specht, 1998), and
the decision tree (DT)-based (Breiman, et al. 1984;
Quinlan, 1986) ensemble model of random forests (RFs)
(Breiman, 2001) have been found maximally accurate
for location- and condition-dependent accident severity
classification, both of them accomplishing over 96% cor-
rect predictions, and a balanced proportion of under- and
over-estimations of accident severity.

This paper is organised as follows: section 2 reports
on related research in the area of AC/P; section 3 intro-
duces the 2005 RCP dataset and describes IM imple-
mented via parameter selection and extraction; section
4 describes the various accident prediction and sever-
ity classification models used for AC/P of the present
dataset; section 5 reports on the prediction accuracy of
the various classification models implemented here, and
makes comparisons with existing research; finally, sec-
tion 6 concludes the paper.

2 Existing Research for Accident
Severity Classification/Prediction

Extensive research has been carried out on AC/P,
mainly concerning accident location and severity (for
a detailed reference review the author is referred to
Wang et al., 2011; Savolainen et al., 2011 and refer-
ences therein). The following subsections cover the three
major characteristics of AC/P, namely accident datasets,
prediction/classification models, and IM.

2.1 Accident Datasets and Characteristics
The datasets used in the various pieces of research

differ significantly in terms of size, duration of data col-
lection, number and nature of the collected input (inde-
pendent) parameters, number of collection points (loca-
tions), number of output (dependent) classes expressing
accident severity, proportion of records in each class etc.,
thus rendering a direct comparison between the various
approaches (and the produced results) far from straight-
forward. A further complication arises from the fact
that the independent parameters collected in the vari-
ous datasets tend to be distinct (i.e. not to be repeated
across datasets). A factor that is common in practically
all datasets however is that, in order to ensure that the
parameters affecting AC/P are included, some of the col-

1And the alertness, if so required, of ambulances.
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1And the alertness, if so required, of ambulances.
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lected independent parameters represent redundant, re-
peated, and/or irrelevant information.

The larger accident datasets usually comprise de-
tailed traffic accident records (TARs) collected at a va-
riety of locations over a significant number of years (e.g.
Sohn and Shin, 2001; Sohn and Lee, 2003; Chong et
al., 2004); as such, they demonstrate the inherent prob-
lems of changes in driving patterns, safety laws, and
road/traffic conditions over the years of data collection.
Conversely, the smaller datasets contain fewer - though
not necessarily less detailed - records that cover shorter
time intervals of data collection; although not always
as representative of general accident characteristics as
their larger counterparts, these smaller datasets tend to
be more accurate locally.

Another important factor in data collection is the
choice of accident severity classification format used for
representing the different accident severity classes (de-
pendent variable). As shown in Table I, the formats ap-
pearing in the literature involve anything from two to
seven classes (for a review the interested reader is re-
ferred to Mujalli and Ona, 2012):

a The most detailed seven-class abbreviated in-
jury scale (AIS) (AAAM 1985) constitutes an
anatomical-based coding system of injury descrip-
tion and severity classification. Created by the
Association for the Advancement of Automotive
Medicine (AAAM), it expresses the threat to life as-
sociated with the injury (rather than the actual sever-
ity of the injury, Khattak and Rocha, 2003). The six-
level maximum AIS (MAIS), constitutes a variant of
AIS that (i) does not consider the no-injury/property
loss levels of AIS, and (ii) expresses the AIS rating of
the most severe injury of an individual involved in an
accident; is is widely used by insurance companies
for setting life insurance.

b Unlike AIS, the five-class KABCO scale (MCMV-
TAR 1976) is used by law enforcement officials
for documenting injuries according to their severity
rather than their potential threat to life. Combined
with MAIS, accident severity can be related to crash
costs in terms of (i) the implementation of safety
analyses, and (ii) the willingness to invest in road in-
frastructure and car development in order to reduce
the risk of traffic accident fatalities.

c Various four-class formats, e.g. the injury severity
score (ISS)2 (Baker et al. 1974), which divides the
human body into six regions, calculates the sum of
squares of the AIS score of the (up to) three most
serious injuries of an individual involved in an acci-
dent, and subsequently determines the care required

for preserving life. Other less frequently used four-
class formats appear in (Shanthi and Geetha 2012;
Beshah et al., 2012).

d An assortment of three-class formats, as described
in (Rezaie et al., 2011; Abdelwahab and Abdel-Aty,
2001; Tavakoli et al. 2012).

e Binary classification formats, e.g. (Sohn and Shin,
2001; Shon and Lee, 2003).

It becomes clear from Table I that the different for-
mats - even those with similar numbers of classes - are
not always compatible. This is due not only to the objec-
tive of each format (as described above), but also to the
different groupings of the accident severity classes, with
both factors complicating the comparison of the various
formats. For instance:

Table 1. The accident classes according to
different classification formats; the grey cells

denote class(es) not used in a classification format.

– The various classes of injury are grouped in dis-
tinct ways under the various formats; the critical and
severe injury classes sometimes constitute distinct
classes, sometimes jointly express the incapacitating

2Although referred to the relevant literature as a four-class accident classification format, ISS can be considered as a six-class
format, as the extreme values of 0 and 75 of the ISS scale actually constitute independent classes (no injury and automatically
assigned fatality, respectively).
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 The various classes of injury are grouped in 

distinct ways under the various formats; the 
critical and severe injury classes sometimes 
constitute distinct classes, sometimes jointly 
express the incapacitating injury class, and 
are - at other times - grouped together with 
the serious, moderate (and under one format 
also with the minor) injury classes. 

Although the distinction between no-injury 
and property-loss is rather hard, the two 
classes surprisingly constitute separate 
classes in classification formats with a small 
(three or four only) number of classes. 

Minor injury sometimes constitutes a class of 
its own, is sometimes grouped with the 
moderate or non-incapacitating injury class, 
while it is - at other times - merged with the 
no injury/property loss class. 

 Fatality is grouped with all levels of injury in 
two-class classification. 

Taking into account that it is quite hard for the 
police officers who arrive on the site of the 
accident to accurately establish the exact 
accident class for the more detailed formats in 
an unbiased fashion (Popkin et al., 1991), it is 
suggested that it might be preferable to have a 

relatively small but discriminating number of 
classes rather than many overlapping and/or 
hard-to-distinguish classes. 

2.2 AC/P
Various approaches to AC/P appear in the 
literature, including parametric and non-
parametric models.  
As far as the former models are concerned, 
statistical binary logit and probit, multinomial 
logit and probit, ordered logit and probit 
(Hardin and Hilbe, 2007) as well as regression 
(McCullagh and Nelder, 1989)) are 
implemented in Sohn and Lee, 2003; Quddus 
and Ison, 2011; Savolainen et al. 2011 and 
references therein.  
Existing research on AC/P using non-
parametric models is mainly centred on DTs 
and their combinations from ML, as well as 
artificial neural networks (ANNs) (Haykin, 
1999) and fuzzy logic (FL) (Zadeh, 1965) from 
CI.  
Concerning DTs, an interesting divide-and-
conquer approach is implemented in (Sohn and 
Lee, 20033) for improving DT-based AC/P 
accuracy, where the accident dataset is first 
submitted to clustering and a classification 
model is set up independently for each 
accident cluster. Prediction accuracy is 
reported as 91.7% in Chang & Wang (2006), 
99.73% in Shanthi & Geetha Ramani (2012), 
and near 100% in Mujalli & Ona (2012), with 
a substantial collection of DT-based classifiers 
(C4.5, CR-T, ID3, CS-CRT, CS-MC4, Naïve 
Bayes and Random Trees (RTs) (Breiman, 
2001) implemented, including combinations of 
RTs and the Arc-X4 Meta classifier (Breiman, 
1998), C4.5 (Quinlan,1993), Naïve Bayes 
(Langley et al., 1992) and RTs. 
Concerning ANN-based AC/P, the back 
propagation (BP) ANN - also known as multi-
layer perceptron (MLP) (Rumelhart et al., 
1986) - has been used consistently for 
performing accident severity classification 
(Mussone et al. 1999; Abdelwahab and Abdel-
Aty 2001; Sohn and Shin 2001; Rezaie et al. 
2011), despite its slow training and limited 
prediction accuracy of around 65% during 
testing (Abdelwahab and Abdel-Aty, 2001; 
Sohn and Shin, 2001). It has been 
demonstrated in Delen et al. (2006) that BP 
ANN prediction accuracy can be significantly 
improved (in their case to 89%) by employing 
a series of ANN combinations that implement 

                                                      
3 This piece of research also tests ANN-based in the same 
divide-and-conquer manner. 
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injury class, and are - at other times - grouped to-
gether with the serious, moderate (and under one for-
mat also with the minor) injury classes.

– Although the distinction between no-injury and
property-loss is rather hard, the two classes surpris-
ingly constitute separate classes in classification for-
mats with a small (three or four only) number of
classes.

– Minor injury sometimes constitutes a class of its
own, is sometimes grouped with the moderate or
non-incapacitating injury class, while it is - at other
times - merged with the no injury/property loss class.

– Fatality is grouped with all levels of injury in two-
class classification.

Taking into account that it is quite hard for the po-
lice officers who arrive on the site of the accident to ac-
curately establish the exact accident class for the more
detailed formats in an unbiased fashion (Popkin et al.,
1991), it is suggested that it might be preferable to have
a relatively small but discriminating number of classes
rather than many overlapping and/or hard-to-distinguish
classes.

2.2 AC/P
Various approaches to AC/P appear in the literature,

including parametric and non-parametric models.

As far as the former models are concerned, statisti-
cal binary logit and probit, multinomial logit and probit,
ordered logit and probit (Hardin and Hilbe, 2007) as well
as regression (McCullagh and Nelder, 1989)) are imple-
mented in Sohn and Lee, 2003; Quddus and Ison, 2011;
Savolainen et al. 2011 and references therein.

Existing research on AC/P using non-parametric
models is mainly centred on DTs and their combinations
from ML, as well as artificial neural networks (ANNs)
(Haykin, 1999) and fuzzy logic (FL) (Zadeh, 1965) from
CI.

Concerning DTs, an interesting divide-and-conquer
approach is implemented in (Sohn and Lee, 20033) for
improving DT-based AC/P accuracy, where the accident
dataset is first submitted to clustering and a classification
model is set up independently for each accident clus-
ter. Prediction accuracy is reported as 91.7% in Chang
& Wang (2006), 99.73% in Shanthi & Geetha Ramani
(2012), and near 100% in Mujalli & Ona (2012), with a
substantial collection of DT-based classifiers (C4.5, CR-
T, ID3, CS-CRT, CS-MC4, Na Bayes and Random Trees
(RTs) (Breiman, 2001) implemented, including combi-
nations of RTs and the Arc-X4 Meta classifier (Breiman,
1998), C4.5 (Quinlan,1993), Na Bayes (Langley et al.,
1992) and RTs.

Concerning ANN-based AC/P, the back propaga-
tion (BP) ANN - also known as multi-layer perceptron
(MLP) (Rumelhart et al., 1986) - has been used con-
sistently for performing accident severity classification
(Mussone et al. 1999; Abdelwahab and Abdel-Aty 2001;
Sohn and Shin 2001; Rezaie et al. 2011), despite its
slow training and limited prediction accuracy of around
65% during testing (Abdelwahab and Abdel-Aty, 2001;
Sohn and Shin, 2001). It has been demonstrated in De-
len et al. (2006) that BP ANN prediction accuracy can
be significantly improved (in their case to 89%) by em-
ploying a series of ANN combinations that implement
all-versus-all as well as one-versus-all binary classifi-
cations; clearly in this case, improved prediction accu-
racy comes at a non-negligible increase in computational
complexity. Other ANNs, such as adaptive resonance
theory (ART) ANNs (Grossberg, 1987) are combined
with FL, demonstrating superior performance over the
probit model (Abdel-Aty and Abdelwahab, 2004).

Alternative CI-based approaches to AC/P include
FL classifiers which - when optimised using genetic al-
gorithms (GAs) - reach 94.2% prediction accuracy (Be-
shah et al., 2012). Overall, it can be concluded that
the performance of DTs for AC/P is at least compara-
ble (Sohn and Shin, 2001; Chong et al., 2004; Chang &
Chien, 2013) to that of ANNs.

2.3 The Significance of Information Min-
ing

Further to dataset partitioning into clusters with sim-
ilar input and output parameter characteristics (e.g. Sohn
and Lee, 2003; Delen et al., 2006), IM in the form of
parameter selection and/or extraction has proved to be
effective at improving both classification accuracy and
efficiency (e.g. Chang & Wang 2006; Delen et al. 2006;
Milton et al., 2008; Mujalli & Ona, 2012; Chang &
Chien, 2013; Ma et al., 2008; Worku et al. 2013, and
the review paper by Savolainen et al., 2011). Especially
concerning feature selection and ranking for AC/P, be-
tween six and 11 input parameters have been determined
as salient in the related literature, for example:

– driver gender, vehicle speed, seatbelt use, vehicle
type, point of impact, and type of accident location
(Abdel-Aty & Abdelwahab 2004);

– driver age, seating position, drug involvement, man-
ner of collision, harmful event, protection system
(Shanthi & Geetha, 2012),

– frontal crash, 18-22 metre-wide highways, type of
vehicle at fault, ignoring length space, ignoring width
space, inability to control the vehicle, violating the
confidence speed and leftward deviation (Mussone

3This piece of research also tests ANN-based in the same divide-and-conquer manner.
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– Fatality is grouped with all levels of injury in two-
class classification.

Taking into account that it is quite hard for the po-
lice officers who arrive on the site of the accident to ac-
curately establish the exact accident class for the more
detailed formats in an unbiased fashion (Popkin et al.,
1991), it is suggested that it might be preferable to have
a relatively small but discriminating number of classes
rather than many overlapping and/or hard-to-distinguish
classes.

2.2 AC/P
Various approaches to AC/P appear in the literature,

including parametric and non-parametric models.

As far as the former models are concerned, statisti-
cal binary logit and probit, multinomial logit and probit,
ordered logit and probit (Hardin and Hilbe, 2007) as well
as regression (McCullagh and Nelder, 1989)) are imple-
mented in Sohn and Lee, 2003; Quddus and Ison, 2011;
Savolainen et al. 2011 and references therein.

Existing research on AC/P using non-parametric
models is mainly centred on DTs and their combinations
from ML, as well as artificial neural networks (ANNs)
(Haykin, 1999) and fuzzy logic (FL) (Zadeh, 1965) from
CI.

Concerning DTs, an interesting divide-and-conquer
approach is implemented in (Sohn and Lee, 20033) for
improving DT-based AC/P accuracy, where the accident
dataset is first submitted to clustering and a classification
model is set up independently for each accident clus-
ter. Prediction accuracy is reported as 91.7% in Chang
& Wang (2006), 99.73% in Shanthi & Geetha Ramani
(2012), and near 100% in Mujalli & Ona (2012), with a
substantial collection of DT-based classifiers (C4.5, CR-
T, ID3, CS-CRT, CS-MC4, Na Bayes and Random Trees
(RTs) (Breiman, 2001) implemented, including combi-
nations of RTs and the Arc-X4 Meta classifier (Breiman,
1998), C4.5 (Quinlan,1993), Na Bayes (Langley et al.,
1992) and RTs.

Concerning ANN-based AC/P, the back propaga-
tion (BP) ANN - also known as multi-layer perceptron
(MLP) (Rumelhart et al., 1986) - has been used con-
sistently for performing accident severity classification
(Mussone et al. 1999; Abdelwahab and Abdel-Aty 2001;
Sohn and Shin 2001; Rezaie et al. 2011), despite its
slow training and limited prediction accuracy of around
65% during testing (Abdelwahab and Abdel-Aty, 2001;
Sohn and Shin, 2001). It has been demonstrated in De-
len et al. (2006) that BP ANN prediction accuracy can
be significantly improved (in their case to 89%) by em-
ploying a series of ANN combinations that implement
all-versus-all as well as one-versus-all binary classifi-
cations; clearly in this case, improved prediction accu-
racy comes at a non-negligible increase in computational
complexity. Other ANNs, such as adaptive resonance
theory (ART) ANNs (Grossberg, 1987) are combined
with FL, demonstrating superior performance over the
probit model (Abdel-Aty and Abdelwahab, 2004).

Alternative CI-based approaches to AC/P include
FL classifiers which - when optimised using genetic al-
gorithms (GAs) - reach 94.2% prediction accuracy (Be-
shah et al., 2012). Overall, it can be concluded that
the performance of DTs for AC/P is at least compara-
ble (Sohn and Shin, 2001; Chong et al., 2004; Chang &
Chien, 2013) to that of ANNs.

2.3 The Significance of Information Min-
ing

Further to dataset partitioning into clusters with sim-
ilar input and output parameter characteristics (e.g. Sohn
and Lee, 2003; Delen et al., 2006), IM in the form of
parameter selection and/or extraction has proved to be
effective at improving both classification accuracy and
efficiency (e.g. Chang & Wang 2006; Delen et al. 2006;
Milton et al., 2008; Mujalli & Ona, 2012; Chang &
Chien, 2013; Ma et al., 2008; Worku et al. 2013, and
the review paper by Savolainen et al., 2011). Especially
concerning feature selection and ranking for AC/P, be-
tween six and 11 input parameters have been determined
as salient in the related literature, for example:

– driver gender, vehicle speed, seatbelt use, vehicle
type, point of impact, and type of accident location
(Abdel-Aty & Abdelwahab 2004);

– driver age, seating position, drug involvement, man-
ner of collision, harmful event, protection system
(Shanthi & Geetha, 2012),

– frontal crash, 18-22 metre-wide highways, type of
vehicle at fault, ignoring length space, ignoring width
space, inability to control the vehicle, violating the
confidence speed and leftward deviation (Mussone

3This piece of research also tests ANN-based in the same divide-and-conquer manner.
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et al., 1999, focusing upon accidents in urban high-
ways);

– alcohol usage, seatbelt use, vehicle type, colli-
sion type, contributing circumstance, impact posi-
tion, number of vehicles involved, accident location
(Chang and Chien, 2013);

– driver age, driver gender, alcohol usage, restraint sys-
tem, eject, vehicle body type, vehicle role, vehicle
age, rollover, road surface condition, and light con-
ditions (Chong et al., 2004).

It is interesting that, despite the significant variety in the
collected independent parameters, factors such as driver
age and gender, substance abuse, seatbelt/protection sys-
tem, vehicle type and speed, time/light conditions, acci-
dent location (subsuming manner of collision, rollover,
and many of the causes of accident found in Mussone
et al. (1999)) constitute important independent variables
for AC/P across datasets.

3 Proposed AC/P Methodology
Similar to existing work (Shanthi and Ramani,

2012), this piece of research is focused upon select-
ing the most accurate and efficient models for AC/P.
The tested models include statistical models, DTs,
ANNs, and meta-learning algorithms (MLAs) (Vilalta
and Drissi, 2002), the latter combining multiple classi-
fiers for improving performance. In more detail:

a The most significant parameters that cause - or con-
tribute to - accident occurrence and severity are ini-
tially determined, and only these are retained. Such
a procedure improves efficiency, while it can also
increase accident prediction accuracy by eliminat-
ing redundant and/or irrelevant information. Since
different feature selection techniques (Molina et al.
2002) tend to produce different - though perhaps
overlapping - sets of accident-related parameters, the
Akaike and Schwartz (or Bayesian) information cri-
teria (AIC (Akaike, 1974; 1980) and BIC (Schwarz
and Gideon, 1978), respectively) have been used for
deriving the optimal subsets of independent parame-
ters.

b A transformation of the retained parameters into in-
dependent (orthogonal) components is subsequently
implemented via PCA. Only the first few PCA com-
ponents that contain the pertinent information of
the retained parameters are used, thus boosting the
computational efficiency of accident prediction while
also preserving prediction accuracy. The combina-
tion of the two criteria scree test and Kaiser’s rule

has been employed for selecting the number of re-
tained principal components. The scree test operates
by creating the curve of the cumulative information
contained in the principal components, and select-
ing the point at which the curve changes slope as the
principal component cut-off point; Kaiser’s rule, on
the other hand, uses the eigenvalues of the compo-
nents in order to only retain those whose eigenvalues
are greater than 1. This combination has been imple-
mented as it has been found capable of overcoming
the disadvantages of each methodology when used
alone, namely a not always clear change in slope
for the scree test, and the excessive stringency of the
Kaiser rule that more often than not results in the cut-
ting off of more principal components than is appro-
priate.

In the following analysis, five-fold cross validation
(CV) (Devijver and Kittler 1982) is used for evaluating
prediction accuracy: the dataset is randomly divided into
five practically equal parts, with four parts used for set-
ting up the model, and the remaining part reserved for
testing it. The training and testing of each model is re-
peated five times4 , and prediction accuracy is evaluated
by averaging the results of the five folds used for testing
(with each fold being used exactly once as the test set).
The results of each tested model are computed using the
same parameter values over all folds.

3.1 Dataset Description and Pre-
Processing

As shown in Table II, the 2005 RCP accident dataset
comprises 1407 records, with each record consisting of
43 input parameters that have been collected on-the-spot
by police officers, eye witnesses and the involved par-
ties, and a single output parameter pertaining to accident
severity.

4Using each part of the dataset four times in the training set and once in the test set.
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Table 2. Input accident parameters grouped by
type (global, local, temporal, accident-related,

driver and car); grey cells correspond to the
parameters retained following feature selection.

The 43 input parameters describe a wide variety of

accident-related characteristics grouped into the follow-
ing six classes: global (concerning the vicinity/locality
of the accident), local (concerning the morphology and
road layout at the location of the accident), temporal
(concerning time-varying variables at the location of the
accident), and purely accident-, driver- and car-related
classes. The output parameter takes on three values cor-
responding to light, serious and fatal accidents i.e. be-
longs to the three-class accident-severity format of Sec-
tion 2.1. The small number of the output (accident sever-
ity) parameter values facilities data collection on the site
of the accident, thus providing superior differentiation
over two-class classification, while simplifying classi-
fication compared to formats with more classes. Even
though there is still uncertainty and room for error under
this format5, it has the advantage of (i) being straight-
forward for the purpose of further action (e.g. dispatch
of police officers only, or of police officers and ambu-
lance(s) to the spot), (ii) more robust to errors of col-
lection and/or judgment when compared to the more de-
tailed accident classification formats, and (iii) easier to
analyse.

Having 55 (3.91%), 512 (36.39%), and 840
(58.70%) records corresponding to fatal, serious and
light accidents, respectively, the 2005 RCP dataset is
heavily imbalanced, with fatal accidents - which it is
of paramount importance to predict - constituting a very
small proportion of the records.

In order (a) not to interfere with the data collection
process, (b) to simulate real operating conditions, and (c)
to boost the generalisation and robustness-to-noise prop-
erties of the prediction models, dataset pre-processing is
minimal: the entire dataset is retained for the ensuing
analysis, with (i) parameter values that are missing or
fall outside the range of valid values being substituted
by the mean of the values of the other records for that
parameter, and (ii) input categorical parameters that take
on more than distinct 12 values having their values re-
grouped into fewer categories.

A preliminary statistical analysis (Tambouratzis et
al. 2010) of the collected parameters employing
the Spearman correlation coefficient values (Spearman
1904), and the p-values (Goodman, 1999) shows that
the input parameters “area” and “police district” provide
practically the same information (correlation coefficient
of 0.9952), while - despite their names - the input pa-
rameters “area” and “residential area” contain distinct
information (correlation coefficient of 0.4276), as do the
input parameters “police district” and “residential area”
(correlation coefficient of 0.4302). Taking into account
these findings, only the “police district” input has been

5For instance, a thin line exists between light and serious accidents; serious accidents may actually be fatal if mortality occurs
after prolonged hospitalisation instead of on the accident site or during transfer to the hospital.
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Kaiser’s rule, on the other hand, uses the 
eigenvalues of the components in order to 
only retain those whose eigenvalues are 
greater than 1. This combination has been 
implemented as it has been found capable 
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G
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order, stop/give way/round about, 
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categorical 1:6 

Month (January, ...) 

Te
m

po
ra

l 
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second cause (as in main 
cause plus none)
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D
riv

er
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Ca
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vehicle worthiness 
certificate  

categorical 1:2 

output parameter takes on three values 
corresponding to light, serious and fatal 

Tambouratzis T., Souliou D., Chalikias M., Gregoriades A.

Table 2. Input accident parameters grouped by
type (global, local, temporal, accident-related,

driver and car); grey cells correspond to the
parameters retained following feature selection.

The 43 input parameters describe a wide variety of

accident-related characteristics grouped into the follow-
ing six classes: global (concerning the vicinity/locality
of the accident), local (concerning the morphology and
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of the accident, thus providing superior differentiation
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though there is still uncertainty and room for error under
this format5, it has the advantage of (i) being straight-
forward for the purpose of further action (e.g. dispatch
of police officers only, or of police officers and ambu-
lance(s) to the spot), (ii) more robust to errors of col-
lection and/or judgment when compared to the more de-
tailed accident classification formats, and (iii) easier to
analyse.

Having 55 (3.91%), 512 (36.39%), and 840
(58.70%) records corresponding to fatal, serious and
light accidents, respectively, the 2005 RCP dataset is
heavily imbalanced, with fatal accidents - which it is
of paramount importance to predict - constituting a very
small proportion of the records.

In order (a) not to interfere with the data collection
process, (b) to simulate real operating conditions, and (c)
to boost the generalisation and robustness-to-noise prop-
erties of the prediction models, dataset pre-processing is
minimal: the entire dataset is retained for the ensuing
analysis, with (i) parameter values that are missing or
fall outside the range of valid values being substituted
by the mean of the values of the other records for that
parameter, and (ii) input categorical parameters that take
on more than distinct 12 values having their values re-
grouped into fewer categories.

A preliminary statistical analysis (Tambouratzis et
al. 2010) of the collected parameters employing
the Spearman correlation coefficient values (Spearman
1904), and the p-values (Goodman, 1999) shows that
the input parameters “area” and “police district” provide
practically the same information (correlation coefficient
of 0.9952), while - despite their names - the input pa-
rameters “area” and “residential area” contain distinct
information (correlation coefficient of 0.4276), as do the
input parameters “police district” and “residential area”
(correlation coefficient of 0.4302). Taking into account
these findings, only the “police district” input has been

5For instance, a thin line exists between light and serious accidents; serious accidents may actually be fatal if mortality occurs
after prolonged hospitalisation instead of on the accident site or during transfer to the hospital.
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of paramount importance to predict - constituting a very
small proportion of the records.
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minimal: the entire dataset is retained for the ensuing
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fall outside the range of valid values being substituted
by the mean of the values of the other records for that
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5For instance, a thin line exists between light and serious accidents; serious accidents may actually be fatal if mortality occurs
after prolonged hospitalisation instead of on the accident site or during transfer to the hospital.
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removed from the dataset and is not used in the ensuing
analysis.

3.2 Information Mining (Input Parameter
Selection and Extraction)

In order to determine the minimal information that
is pertinent for accident severity prediction into the three
classes of fatal, serious and light accidents, the 42 in-
put parameters resulting from pre-processing are ini-
tially submitted to feature selection. By removing re-
dundant information, the number of input parameters re-
quired for AC/P is reduced; additionally, by removing
irrelevant information, the input-output relationship be-
tween accident-related parameters and accident severity
becomes clearer and, thus, easier to model.

Since searching the entire set of subsets of indepen-
dent parameters for determining the subset that most ac-
curately predicts the output parameter value constitutes
an NP-hard optimisation problem (Kohavi and John,
1997), two distinct lines of approach are usually fol-
lowed for parameter selection:

a) filter methods, which assess the parameters indepen-
dently of the problem at hand and filter out the irrelevant
and redundant attributes, and

b) wrapper methods, which employ machine learning
techniques for evaluating the derived parameter subsets
based on the output criterion.

Among filter methods, correlation- and
probabilistic-based evaluators are used for finding sets of
parameters that have good predictive ability but are not
correlated with each other, e.g. CfsSubsetEval (Hall,
1998), and ConsistencySubsetEval (Liu and Setiono
1996). Both forward and backward subset selection
(Devijver and Kittler, 1982) are tested here as well
as combinations of the two, the latter involving start-
ing with a subset of independent parameters, and either
adding or deleting parameters at each step according to
the criterion of maximum increase of prediction ability.

Wrapper methods generate a list of ranked param-
eters by estimating, usually via CV, the ability of each
independent parameter to predict the dependent (output)
parameter. Each wrapper method is based on a different
estimation function, e.g. the chi-squared statistic with
respect to the class attribute for ChiSquaredAttributeE-
val, the information gain with respect to the value of the
class attribute by InfoGainAttributeEval etc. (Hall et al.
2009) etc. The consistency-based evaluator, combined
with SS, has been found to produce the optimal subset of
18 retained parameters (highlighted in Table II), with op-
timality confirmed by both the Akaike and the Schwarz
Information criteria. It is worth mentioning that these
parameters agree to a considerable degree with the sig-
nificant independent parameters discussed in section 2.3.

The final step of parameter extraction is imple-
mented via PCA for further compressing the information
contained in the 18 parameters which result from feature
selection. Concerning the selection of only the first few
PCA components which carry the most significant input
parameter-related information, (a) a change in slope at
the 11th PCA component is indicated by the scree test,
while only the first nine PCA components are retained
according to Kaiser’s rule. Taking into account, how-
ever, (a) the tendency of the Kaiser rule to excessively
“cut” PCA components, and (b) the eigenvalues of the
10th and 11th components assume values just below 1,
the first 11 PCA components are retained. In order to
verify this choice, all the models presented in the next
section are also tested by using the first one, two, three,
and so on up to the total of 11 PCA components, with
the optimal results reported in each case.

4 AC/P Models
Four kinds of models are employed for AC/P in terms of
severity:

I. Three statistical models:

– The well-known probabilistic Na Bayes Classifier
(NBC) (Langley et al., 1992; Ramoni and Sebastiani,
2001), which is elegant and simple but can - due to
its assumption of independence - perform in a sub-
optimal manner when the input parameters are highly
correlated.

– The Bayesian Belief Network (BBN) (Heckerman,
1997), which constitutes a trainable probabilistic
graphical model that improves over NBC by express-
ing parameters and conditional dependencies as a di-
rected acyclic graph (DAG).

– Fisher’s linear discriminant analysis (LDA) (Fisher
1936), which determines the optimal linear combi-
nation of the input parameters such that classification
accuracy is maximised.

II. Two DTs:

– C4.5(J48) (Quinlan, 1993), where the input param-
etes are selected according to the maximisation of the
information gain.

– CART (Breiman et al., 1984), where the Gini impu-
rity function (GIF) (Gini C., 1909; Gini C., 1912) is
used as the selection measure of the input parame-
ters.
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III. Two ANN architectures:

– The BP ANN.

– PNNs (Specht 1998), which are based on the
Bayesian classification of categorical outputs. A
single presentation of each training pattern is suffi-
cient for training, with the created non-linear deci-
sion surface (boundary) between classes approaching
the Bayes optimal for increasing sizes of the training
set and an appropriate value of the smoothing param-
eter σ.

IV. Three MLAs:

– Bagging (also known as bootstrap aggregating,
Breiman (1996)), where the repeated sampling of the
dataset according to the uniform probability distribu-
tion reduces the variance of the base classifier, thus
preventing overfitting while boosting generalisation.

– Random Tree (RT), which considers a fixed number
of randomly chosen parameters at each node as can-
didates for splitting the dataset.

– Random Forest (RF) (Breiman, 2001), which com-
bines the predictions made by multiple DTs cre-
ated by introducing randomness in both the training
dataset and the training algorithm.

– Random committee (RC) (Hall et al. 2009), which
constitutes a combination of RTs each derived using
a different random seed.

5 AC/P Results - Comparisons with
Existing Research

The investigation into the most accurate and efficient
combination of technique and model for AC/P proceeds
by employing each model presented in section 4 to the
following input parameter sets:

– The 42 input parameters resulting from pre-
processing. This provides the measure of accuracy
reached by each model when the original dataset is
used.

– The set of 18 input parameters remaining after the
application of feature selection. This determines
whether prediction accuracy can be maintained - or
even improved – when using an appropriately se-
lected subset of the original parameters. An improve-
ment not only supports that the removal of irrelevant
and/or repeated parameters better exposes the rela-
tionship between input and output parameters, but
can also be used to suggest a minimal set of parame-
ters that needs to be collected in an accident dataset.

– The further reduced set of transformed parameters
that result from PCA feature extraction of the 18 pa-
rameters used in the previous step. Each model is
tested with the first one, two, three, ... up to 18 PCA
components, and the prediction accuracy of each
model is reported with the number of PCA compo-
nents that maximise prediction accuracy; when this
number equals 11, the combination of the scree test
and Kaiser’s rule for determining the optimal num-
ber of retained PCA components is further supported/
conformed.

Table 3. Proportion of correct AC/P per accident
severity class as well as overall; over- and

under-estimations (42 original input parameters).

The proportions of correctly predicted (a) fatal, se-
rious, and light accidents, (b) accidents independent of
class, and proportions of (c) underestimated and overes-
timated predictions overall, are employed for evaluating
and comparing prediction accuracy of the various combi-
nations of techniques (i.e. sets of parameters) and mod-
els. For the evaluation, the accuracy of predicting fatal
accidents, the percentage of correct predictions overall,
and the balance of over- and underestimations (otherwise
the bias towards overestimations rather than underesti-
mations) are of particular interest, as these are crucial
for the accurate (or - at worst - conservative/pessimistic)
prediction of accident severity.

Table III illustrates the prediction results attained by
the models when the 42 original parameters are used.
The RC and RF DT-based ensemble models, together
with the PNN, are found to be the most accurate, with
prediction accuracy being around - or exceeding - 95%.
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presented in section 4 to the following input 
parameter sets: 
• The 42 input parameters resulting from pre-
processing. This provides the measure of 
accuracy reached by each model when the 
original dataset is used. 
• The set of 18 input parameters remaining 
after the application of feature selection. This 
determines whether prediction accuracy can be 
maintained - or even improved – when using 
an appropriately selected subset of the original 
parameters. An improvement not only supports 
that the removal of irrelevant and/or repeated 
parameters better exposes the relationship 
between input and output parameters, but can 
also be used to suggest a minimal set of 
parameters that needs to be collected in an 
accident dataset. 
• The further reduced set of transformed 
parameters that result from PCA feature 
extraction of the 18 parameters used in the 
previous step. Each model is tested with the 
first one, two, three, ... up to 18 PCA 
components, and the prediction accuracy of 
each model is reported with the number of 
PCA components that maximise prediction 
accuracy; when this number equals 11, the 
combination of the scree test and Kaiser’s rule 
for determining the optimal number of retained 
PCA components is further supported/ 
conformed. 
The proportions of correctly predicted (a) fatal, 
serious, and light accidents, (b) accidents 
independent of class, and proportions of (c) 
underestimated and overestimated predictions 
overall, are employed for evaluating and 
comparing prediction accuracy of the various 
combinations of techniques (i.e. sets of 
parameters) and models. For the evaluation, 
the accuracy of predicting fatal accidents, the 
percentage of correct predictions overall, and 
the balance of over- and underestimations 
(otherwise the bias towards overestimations 
rather than underestimations) are of particular 
interest, as these are crucial for the accurate (or 
- at worst - conservative/pessimistic) 
prediction of accident severity.  
Table III illustrates the prediction results 
attained by the models when the 42 original 
parameters are used. The RC and RF DT-based 

ensemble models, together with the PNN, are 
found to be the most accurate, with prediction 
accuracy being around - or exceeding - 95%. 
These are followed by the DT-based ensemble 
model of bagging, the single-DT 
methodologies (CART and C4.5) and the BPN, 
thus demonstrating a general agreement with 
the results produced by existing research as far 
as the superiority of DT- and ANN-based 
models for AC/P is concerned. The RC and 
PNN models have the additional advantage of 
being conservative6, as shown by the balance 
between over- and under-estimations. 
Statistical models are not found satisfactory for 
AC/P. 
 
TABLE III Proportion of correct AC/P per accident 
severity class as well as overall; over- and under-
estimations (42 original input parameters). 
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81.82 93.95 97.86 95.81 2.91 1.28 

 
Table IV illustrates the prediction results 
attained by the same models when only the 18 
input parameters derived from feature selection 
are used. Classification accuracy improves for 
the PNN, which now constitutes the most 
accurate model for AC/P, remains unchanged 
for RF and falls slightly for RC, thus showing 
that IM in the form of parameter selection not 
only does not impair - but may actually 
improve - performance, also increasing 

                                                      
6 Owing to the significantly larger number of light 
accidents in the dataset and the small number of fatal 
accidents, underestimations would be expected to be 
more abundant. 
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III. Two ANN architectures:

– The BP ANN.

– PNNs (Specht 1998), which are based on the
Bayesian classification of categorical outputs. A
single presentation of each training pattern is suffi-
cient for training, with the created non-linear deci-
sion surface (boundary) between classes approaching
the Bayes optimal for increasing sizes of the training
set and an appropriate value of the smoothing param-
eter σ.

IV. Three MLAs:

– Bagging (also known as bootstrap aggregating,
Breiman (1996)), where the repeated sampling of the
dataset according to the uniform probability distribu-
tion reduces the variance of the base classifier, thus
preventing overfitting while boosting generalisation.

– Random Tree (RT), which considers a fixed number
of randomly chosen parameters at each node as can-
didates for splitting the dataset.

– Random Forest (RF) (Breiman, 2001), which com-
bines the predictions made by multiple DTs cre-
ated by introducing randomness in both the training
dataset and the training algorithm.

– Random committee (RC) (Hall et al. 2009), which
constitutes a combination of RTs each derived using
a different random seed.

5 AC/P Results - Comparisons with
Existing Research

The investigation into the most accurate and efficient
combination of technique and model for AC/P proceeds
by employing each model presented in section 4 to the
following input parameter sets:

– The 42 input parameters resulting from pre-
processing. This provides the measure of accuracy
reached by each model when the original dataset is
used.

– The set of 18 input parameters remaining after the
application of feature selection. This determines
whether prediction accuracy can be maintained - or
even improved – when using an appropriately se-
lected subset of the original parameters. An improve-
ment not only supports that the removal of irrelevant
and/or repeated parameters better exposes the rela-
tionship between input and output parameters, but
can also be used to suggest a minimal set of parame-
ters that needs to be collected in an accident dataset.

– The further reduced set of transformed parameters
that result from PCA feature extraction of the 18 pa-
rameters used in the previous step. Each model is
tested with the first one, two, three, ... up to 18 PCA
components, and the prediction accuracy of each
model is reported with the number of PCA compo-
nents that maximise prediction accuracy; when this
number equals 11, the combination of the scree test
and Kaiser’s rule for determining the optimal num-
ber of retained PCA components is further supported/
conformed.

Table 3. Proportion of correct AC/P per accident
severity class as well as overall; over- and

under-estimations (42 original input parameters).

The proportions of correctly predicted (a) fatal, se-
rious, and light accidents, (b) accidents independent of
class, and proportions of (c) underestimated and overes-
timated predictions overall, are employed for evaluating
and comparing prediction accuracy of the various combi-
nations of techniques (i.e. sets of parameters) and mod-
els. For the evaluation, the accuracy of predicting fatal
accidents, the percentage of correct predictions overall,
and the balance of over- and underestimations (otherwise
the bias towards overestimations rather than underesti-
mations) are of particular interest, as these are crucial
for the accurate (or - at worst - conservative/pessimistic)
prediction of accident severity.

Table III illustrates the prediction results attained by
the models when the 42 original parameters are used.
The RC and RF DT-based ensemble models, together
with the PNN, are found to be the most accurate, with
prediction accuracy being around - or exceeding - 95%.

MAXIMISING ACCURACY AND EFFICIENCY OF. . .

These are followed by the DT-based ensemble model of
bagging, the single-DT methodologies (CART and C4.5)
and the BPN, thus demonstrating a general agreement
with the results produced by existing research as far as
the superiority of DT- and ANN-based models for AC/P
is concerned. The RC and PNN models have the addi-
tional advantage of being conservative6, as shown by the
balance between over- and under-estimations. Statistical
models are not found satisfactory for AC/P.

Table IV illustrates the prediction results attained by
the same models when only the 18 input parameters de-
rived from feature selection are used. Classification ac-
curacy improves for the PNN, which now constitutes the
most accurate model for AC/P, remains unchanged for
RF and falls slightly for RC, thus showing that IM in
the form of parameter selection not only does not im-
pair - but may actually improve - performance, also in-
creasing efficiency. The same observations can be made
for the bagging, CART, C4.5 and BPN models. Predic-
tion accuracy of the BN and the NB further deteriorates,
while LDA improves though not to a satisfactory level.
As the accuracy of the statistical models remains well
under 70%, these models are not considered further.

Table 4. Proportion of correct AC/P per accident
severity class as well as overall; over- and

under-estimations following feature selection (18
original parameters).

Concerning PCA information compression of the 18
input parameters, Table V illustrates prediction accuracy
for the best results attained when testing each model with

the first one, two, three, . . . , through to 18 PCs; the num-
ber of PCs that are found optimal for each model are
shown in the second column of the Table. It is clear
that 10 or 11 constitutes the optimal number of PCAs
retained for all models, thus confirming the combination
of the scree test and Kaiser’s rule. All the models show
minimal variations in prediction accuracy, with only the
PNN and RFs showing an actual improvement over fea-
ture selection (i.e. whrn using the 18 selected parame-
ters), thus confirming that an increase in both efficiency
and accuracy can be implemented via PCA. The PNN re-
mains superior in terms of both accuracy and conserva-
tive prediction, as also supported by the balance in over-
and under-estimations of accident severity.

Table 5. Proportion of correct AC/P per accident
severity class as well as overall; over- and

under-estimations following feature extraction
(combination of scree test and Kaiser’s rule on the
selected and PCA-transformed parameters). The

number of PCA components demonstrating
optimal AC/P are shown in the second column of

the Table.

These results show that DTs, ensemble methods, and
the PNN benefit from IM, combining efficiency with su-
perior AC/P. These findings are in agreement with the
results appearing in the relevant literature, especially the
overall consensus that DTs are superior to other mod-
els, including BPNs. Furthermore, the good prediction
capability of the PNN puts forward (for the first time)
this kind of ANN as an appealing model for performing
AC/P.

6Owing to the significantly larger number of light accidents in the dataset and the small number of fatal accidents, underestima-
tions would be expected to be more abundant.

efficiency. The same observations can be made 
for the bagging, CART, C4.5 and BPN models. 
Prediction accuracy of the BN and the NB 
further deteriorates, while LDA improves 
though not to a satisfactory level. As the 
accuracy of the statistical models remains well 
under 70%, these models are not considered 
further. 
TABLE IV Proportion of correct AC/P per accident 
severity class as well as overall; over- and under-
estimations following feature selection (18 original 
parameters). 
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Concerning PCA information compression of 
the 18 input parameters, Table V illustrates 
prediction accuracy for the best results attained 
when testing each model with the first one, 
two, three, …, through to 18 PCs; the number 
of PCs that are found optimal for each model 
are shown in the second column of the Table. 
It is clear that 10 or 11 constitutes the optimal 
number of PCAs retained for all models, thus 
confirming the combination of the scree test 
and Kaiser’s rule. All the models show 
minimal variations in prediction accuracy, with 
only the PNN and RFs showing an actual 
improvement over feature selection (i.e. whrn 
using the 18 selected parameters), thus 
confirming that an increase in both efficiency 
and accuracy can be implemented via PCA. 
The PNN remains superior in terms of both 
accuracy and conservative prediction, as also 
supported by the balance in over- and under-
estimations of accident severity.  

TABLE V  Proportion of correct AC/P per accident 
severity class as well as overall; over- and under-
estimations following feature extraction 
(combination of scree test and Kaiser’s rule on the 
selected and PCA-transformed parameters). The 
number of PCA components demonstrating optimal 
AC/P are shown in the second column of the Table.  
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These results show that DTs, ensemble 
methods, and the PNN benefit from IM, 
combining efficiency with superior AC/P. 
These findings are in agreement with the 
results appearing in the relevant literature, 
especially the overall consensus that DTs are 
superior to other models, including BPNs. 
Furthermore, the good prediction capability of 
the PNN puts forward (for the first time) this 
kind of ANN as an appealing model for 
performing AC/P.  

Conclusion 
The combination of information mining and 
parametric as well as non-parametric accident 
classification and prediction models has been 
investigated for predicting traffic accident 
severity on the 2005 accident dataset brought 
together by the Republic of Cyprus Police.  
Despite the lack of any kind of standardisation 
of the accident datasets to date, the selected set 
of accident-related parameters for the accident 
dataset used here has been found to have many 
common points with the sets of independent 
parameters deemed as important in the relevant 
literature.  
The application of parameter selection 
followed by feature extraction and the 
preservation of only the first few salient 
components (implemented by a combination of 
the scree test and Kaiser’s rule), coupled with 

efficiency. The same observations can be made 
for the bagging, CART, C4.5 and BPN models. 
Prediction accuracy of the BN and the NB 
further deteriorates, while LDA improves 
though not to a satisfactory level. As the 
accuracy of the statistical models remains well 
under 70%, these models are not considered 
further. 
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severity class as well as overall; over- and under-
estimations following feature selection (18 original 
parameters). 
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Concerning PCA information compression of 
the 18 input parameters, Table V illustrates 
prediction accuracy for the best results attained 
when testing each model with the first one, 
two, three, …, through to 18 PCs; the number 
of PCs that are found optimal for each model 
are shown in the second column of the Table. 
It is clear that 10 or 11 constitutes the optimal 
number of PCAs retained for all models, thus 
confirming the combination of the scree test 
and Kaiser’s rule. All the models show 
minimal variations in prediction accuracy, with 
only the PNN and RFs showing an actual 
improvement over feature selection (i.e. whrn 
using the 18 selected parameters), thus 
confirming that an increase in both efficiency 
and accuracy can be implemented via PCA. 
The PNN remains superior in terms of both 
accuracy and conservative prediction, as also 
supported by the balance in over- and under-
estimations of accident severity.  

TABLE V  Proportion of correct AC/P per accident 
severity class as well as overall; over- and under-
estimations following feature extraction 
(combination of scree test and Kaiser’s rule on the 
selected and PCA-transformed parameters). The 
number of PCA components demonstrating optimal 
AC/P are shown in the second column of the Table.  
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These results show that DTs, ensemble 
methods, and the PNN benefit from IM, 
combining efficiency with superior AC/P. 
These findings are in agreement with the 
results appearing in the relevant literature, 
especially the overall consensus that DTs are 
superior to other models, including BPNs. 
Furthermore, the good prediction capability of 
the PNN puts forward (for the first time) this 
kind of ANN as an appealing model for 
performing AC/P.  

Conclusion 
The combination of information mining and 
parametric as well as non-parametric accident 
classification and prediction models has been 
investigated for predicting traffic accident 
severity on the 2005 accident dataset brought 
together by the Republic of Cyprus Police.  
Despite the lack of any kind of standardisation 
of the accident datasets to date, the selected set 
of accident-related parameters for the accident 
dataset used here has been found to have many 
common points with the sets of independent 
parameters deemed as important in the relevant 
literature.  
The application of parameter selection 
followed by feature extraction and the 
preservation of only the first few salient 
components (implemented by a combination of 
the scree test and Kaiser’s rule), coupled with 
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6 Conclusion
The combination of information mining and para-

metric as well as non-parametric accident classification
and prediction models has been investigated for predict-
ing traffic accident severity on the 2005 accident dataset
brought together by the Republic of Cyprus Police.

Despite the lack of any kind of standardisation of
the accident datasets to date, the selected set of accident-
related parameters for the accident dataset used here has
been found to have many common points with the sets
of independent parameters deemed as important in the
relevant literature.

The application of parameter selection followed by
feature extraction and the preservation of only the first
few salient components (implemented by a combina-
tion of the scree test and Kaiser’s rule), coupled with
PNNs and RFs, has been found to cause a noteworthy
(74.42%) reduction in the original accident-related infor-
mation (i.e. a significant increase in computational effi-
ciency), while still improving on accident severity pre-
diction accuracy (97% for the PNNs, with a balanced
proportion of over- and under-estimations of accident
severity).

Future research will focus upon confirming the
superiority of PNNs as accident severity classifica-
tion/prediction models using existing datasets of the rel-
evant literature, also putting forward a set of independent
parameters that are not only salient, but also sufficient,
for traffic accident severity prediction.
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6 Conclusion
The combination of information mining and para-

metric as well as non-parametric accident classification
and prediction models has been investigated for predict-
ing traffic accident severity on the 2005 accident dataset
brought together by the Republic of Cyprus Police.

Despite the lack of any kind of standardisation of
the accident datasets to date, the selected set of accident-
related parameters for the accident dataset used here has
been found to have many common points with the sets
of independent parameters deemed as important in the
relevant literature.

The application of parameter selection followed by
feature extraction and the preservation of only the first
few salient components (implemented by a combina-
tion of the scree test and Kaiser’s rule), coupled with
PNNs and RFs, has been found to cause a noteworthy
(74.42%) reduction in the original accident-related infor-
mation (i.e. a significant increase in computational effi-
ciency), while still improving on accident severity pre-
diction accuracy (97% for the PNNs, with a balanced
proportion of over- and under-estimations of accident
severity).

Future research will focus upon confirming the
superiority of PNNs as accident severity classifica-
tion/prediction models using existing datasets of the rel-
evant literature, also putting forward a set of independent
parameters that are not only salient, but also sufficient,
for traffic accident severity prediction.
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