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Abstract

This work presents an analysis of Higher Order Singular Value Decomposition (HO-
SVD) applied to reduction of dimensionality of 3D mesh animations. Compression error
is measured using three metrics (MSE, Hausdorff, MSDM). Results are compared with a
method based on Principal Component Analysis (PCA) and presented on a set of anima-
tions with typical mesh deformations.

1 Introduction

The goal of this paper is to provide an anal-
ysis of Higher Order Singular Value Decomposi-
tion [1] (HO-SVD) applied to reduction of dimen-
sionality of dynamic mesh animations. The inten-
tion is to employ tensor decomposition as an ele-
ment of a compression algorithm. The paper in-
cludes an estimation of lossy reconstruction qual-
ity using three error metrics and a comparison with
a method based on Principal Component Analysis
(PCA). Results are presented using a diverse set of
well-known mesh animations, representing several
common cases of 3D shape deformation.

The paper is an extension of [2], with corrected
equations, detailed description of algorithms and
improved presentation of methods.

A compression algorithm usually consist of el-
ements including compensation of motion ( like in
[3]), reduction of dimensionality and entropy en-
coding [4]. In this work we will concentrate on
HO-SVD-based dimensionality reduction with only
a simplified approach to frame aligning.

HO-SVD is a multi-linear generalization of Sin-
gular Value Decomposition. It has been shown (e.g.
in [5]) that HO-SVD is an efficient method for di-
mensionality reduction of data represented as ten-
sors, also called N-way arrays. Consecutive frames
of a 3D animation can naturally be represented as a

3-mode tensor (a data cube), by stacking arrays of
their vertices.

When using PCA-based compression, dimen-
sionality reduction is often applied to animation
frames (e.g. [6], [7]), reducing their number to a se-
quence of significant key-frames. On the contrary,
HO-SVD allows for multidimensional reduction of
the data tensor. In our experiment we truncated
the number of components obtained through tensor
decomposition, associated with mesh vertices and
animation frames. Proportion of reduced compo-
nents was found using a simple heuristic procedure.
Reduction of components associated with 3D co-
ordinates of vertices is not advised since it results
in a significant loss of information and low qual-
ity of reconstructed data. For estimation of recon-
struction quality we used three metrics. The Mean
Squared Error (MSE) and the Hausdorff distance
are both widely used for measuring 3D mesh distor-
tions. Additionally, we decided to include a percep-
tual method, the Mesh Structural Distortion Mea-
sure (MSDM), since according to [8], it correlates
well with human perception of errors in 3D data.
An example of a distortion resulting from a lossy
reconstruction of an animation using HO-SVD is
presented in Fig.1.

The article is organised as follows. In the two
following subsections, the related work and HO-
SVD decomposition are presented. Definitions and
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Figure 1. A fragment of a reconstructed animation sequence for Chicken animation. Panel (a) presents an
original model, in further panels the data tensor is compressed to (b): 5.1%, (c): 2.1%, and (d): 1.1% of its

original size.

methodology of our experiments are presented in
Section 2. Obtained results can be found in Sec-
tion 3, while their summary along with our com-
ments are presented in Section 4.

1.1 Related work

Due to their amount, data generated by using
3D scanners or animation software require effec-
tive compression methods for their storage, trans-
mission, and processing. Particularly, compression
of dynamic mesh animations is a subject to inten-
sive research. A dimensionality reduction for 3D
animations using PCA was introduced in [6] and re-
fined in [7] where authors performed motion clus-
tering on an animation and applied PCA to its sub-
segments. PCA-based compression is presented in
[9] and [10]. Methods employing mesh connec-
tivity are presented in [3] and [11]. Frame-based
Animated Mesh Compression was also promoted
within the MPEG-4 standard and is described in
[12].

Higher Order Singular Value Decomposition
(HO-SVD) may be treated as a natural extension of
PCA for high-dimensional data. A survey of tensor
properties as well as the description of higher-order
tensor decomposition is provided in [13].

Tensor decomposition was successfully applied
to compression and classification of images [14],
face recognition [15] or watermarking of videos
[16]. In [17] HO-SVD was applied to Level-of-
Detail reduction in animation of human crowds.
In [18] authors presented the decomposition of a
motion tensor and applied it for animation dimen-

sionality reduction, denoising and gap filling. In
[19], an approach based on tensor decomposition
and scalable hierarchical volume representation of
spatial data is used for fast 3D visualization.

1.2 Higher Order Singular Value Decom-
position

Higher Order Singular Value Decomposition,
also called Tucker decomposition, is a generalisa-
tion of SVD from matrices to tensors (N-way ar-
rays). In this section we recall basic facts about
tensors and HO-SVD. We follow conventions pre-
sented in [13].

To describe this decomposition, first we will re-
call basic notions regarding operations on tensors.
Let a tensor

T = {ti1,i2,...,in}I1−1,I2−1,...,IN−1
i1,i2,...,in=0 ∈ ℜI1,I2,...,IN (1)

be given - we say that this tensor has n modes. Each
of the indices corresponds to one of the modes i.e.
il to mode l.

By multiplication of tensor T by matrix U =
{uild}Il−1,D

il ,d=0 ∈ ℜIl ,D in mode l we define tensor T ′ ∈
ℜI1,...,Il−1,D,Il+1,...,IN , such that

T ′ = (T ×l U)i1...il−1d il+1...iN =
Il−1

∑
il=0

ti1i2...il ...iN uild .

(2)

By unfolding tensor T in mode l we define ma-
trix T(l) such that
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Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.
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SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.
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Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the
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Figure 1. A fragment of a reconstructed animation sequence for Chicken animation. Panel (a) presents an
original model, in further panels the data tensor is compressed to (b): 5.1%, (c): 2.1%, and (d): 1.1% of its

original size.

methodology of our experiments are presented in
Section 2. Obtained results can be found in Sec-
tion 3, while their summary along with our com-
ments are presented in Section 4.

1.1 Related work

Due to their amount, data generated by using
3D scanners or animation software require effec-
tive compression methods for their storage, trans-
mission, and processing. Particularly, compression
of dynamic mesh animations is a subject to inten-
sive research. A dimensionality reduction for 3D
animations using PCA was introduced in [6] and re-
fined in [7] where authors performed motion clus-
tering on an animation and applied PCA to its sub-
segments. PCA-based compression is presented in
[9] and [10]. Methods employing mesh connec-
tivity are presented in [3] and [11]. Frame-based
Animated Mesh Compression was also promoted
within the MPEG-4 standard and is described in
[12].

Higher Order Singular Value Decomposition
(HO-SVD) may be treated as a natural extension of
PCA for high-dimensional data. A survey of tensor
properties as well as the description of higher-order
tensor decomposition is provided in [13].

Tensor decomposition was successfully applied
to compression and classification of images [14],
face recognition [15] or watermarking of videos
[16]. In [17] HO-SVD was applied to Level-of-
Detail reduction in animation of human crowds.
In [18] authors presented the decomposition of a
motion tensor and applied it for animation dimen-

sionality reduction, denoising and gap filling. In
[19], an approach based on tensor decomposition
and scalable hierarchical volume representation of
spatial data is used for fast 3D visualization.

1.2 Higher Order Singular Value Decom-
position

Higher Order Singular Value Decomposition,
also called Tucker decomposition, is a generalisa-
tion of SVD from matrices to tensors (N-way ar-
rays). In this section we recall basic facts about
tensors and HO-SVD. We follow conventions pre-
sented in [13].

To describe this decomposition, first we will re-
call basic notions regarding operations on tensors.
Let a tensor

T = {ti1,i2,...,in}I1−1,I2−1,...,IN−1
i1,i2,...,in=0 ∈ ℜI1,I2,...,IN (1)

be given - we say that this tensor has n modes. Each
of the indices corresponds to one of the modes i.e.
il to mode l.

By multiplication of tensor T by matrix U =
{uild}Il−1,D

il ,d=0 ∈ ℜIl ,D in mode l we define tensor T ′ ∈
ℜI1,...,Il−1,D,Il+1,...,IN , such that

T ′ = (T ×l U)i1...il−1d il+1...iN =
Il−1

∑
il=0

ti1i2...il ...iN uild .

(2)

By unfolding tensor T in mode l we define ma-
trix T(l) such that

DIMENSIONALITY REDUCTION OF . . .

(T(l))i, j = ti1...il−1 j il+1...iN , (3)

where

i = 1+
N

∑
k=1
k �=l

Jk and Jk =
k−1

∏
m=1
m�=l

Im.

Given tensor T , defined as in Eq. (1), a new sub-
tensor Tin=α can be created according to the equa-
tion with the following elements:

Til=α = {ti1i2...il−1il+1...in}I1−1,I2−1,...,α,...,IN−1
i1=0,i2=0,...,il=α,...,in=0 ∈

ℜI1,I2,...,1,...,IN .

(4)

The scalar product 〈A,B〉 of tensors A,B ∈
ℜI1,I2,...,IN is defined as

〈A,B〉=
I1−1

∑
i1=0

I2−1

∑
i2=0

. . .
IN−1

∑
iN=0

bi1,i2,...,inai1,i2,...,in . (5)

We say that if scalar product of tensors equals
0, then they are orthogonal.

The Frobenius norm of tensor T is given by

||T ||=
√

〈T,T 〉. (6)

Given tensor T , in order to find its HO-SVD,
in the form of the so called Tucker operator
CU (1), . . . ,U (N), such that C ∈ ℜI1,...,IN and U (k) ∈
ℜIk×Ik are orthogonal matrices, Algorithm 1.2 can
be used.

Algorithm 1: HO-SVD algorithm

Tensor C is called the core tensor and has the
following useful properties.

– Reconstruction:

T =C×1 U (1)×2 U (2)×3 . . .×N U (N), (7)

where U (i) are orthogonal matrices;

– Orthogonality:

〈Cil=α,Cil=β〉= 0 (8)

for all possible values of l, α and β, such that
α �= β;

– Order of sub-tensor norms:

||Cin=1|| ≤ ||Cin=2|| ≤ . . .≤ ||Cin=In || (9)

for all n.

Therefore, informally, one can say that larger
magnitudes of a core tensor are denoted by low val-
ues of indices. This property is the basis for the
development of compression algorithms based on
HO-SVD.

Formally

T̃ = C̃×1 Ũ (1)×2 Ũ (2)×3 . . .×N Ũ (N), (10)

where

C̃ = {ci1,i2,...,in}R1−1,R2−1,...,RN−1
i1,i2,...,in=0 ∈ ℜR1,R2,...,RN

(11)

is a truncated tensor in such a way that in each
mode l indices span from 0 to Rl − 1 ≤ Il − 1 and
Ũ (l) ∈ℜRl×Il matrices whose columns are orthonor-
mal and rows form orthonormal basis in respective
vector spaces. A visualization of 3-mode truncated
tensor is provided in Fig. 2

Given (Rl)
N
l=1 one can form tensor T̃ that ap-

proximates tensor T in the sense of their euclidean
distance ||T̃ − T ||. This approximation can be ex-
ploited to form lossy compression algorithms of
signals that are indexed by more than two indices.
It should by noted that the choice of (Rl)

N
l=1 in a

given application is non-obvious and depends on
the properties of processed signals.

2 Method

Our experiments aim to assess the effective-
ness of HO-SVD for reduction of dimensionality
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(1) ×2 Ũ
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where
C̃ = {ci1,i2,...,in}R1−1,R2−1,...,RN−1

i1,i2,...,in=0 ∈ RR1,R2,...,RN (11)

is a truncated tensor in such a way that in each mode l indices span from 0 to
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Figure 1. A fragment of a reconstructed animation sequence for Chicken animation. Panel (a) presents an
original model, in further panels the data tensor is compressed to (b): 5.1%, (c): 2.1%, and (d): 1.1% of its

original size.
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where

C̃ = {ci1,i2,...,in}R1−1,R2−1,...,RN−1
i1,i2,...,in=0 ∈ ℜR1,R2,...,RN

(11)

is a truncated tensor in such a way that in each
mode l indices span from 0 to Rl − 1 ≤ Il − 1 and
Ũ (l) ∈ℜRl×Il matrices whose columns are orthonor-
mal and rows form orthonormal basis in respective
vector spaces. A visualization of 3-mode truncated
tensor is provided in Fig. 2

Given (Rl)
N
l=1 one can form tensor T̃ that ap-

proximates tensor T in the sense of their euclidean
distance ||T̃ − T ||. This approximation can be ex-
ploited to form lossy compression algorithms of
signals that are indexed by more than two indices.
It should by noted that the choice of (Rl)

N
l=1 in a

given application is non-obvious and depends on
the properties of processed signals.

2 Method

Our experiments aim to assess the effective-
ness of HO-SVD for reduction of dimensionality

DIMENSIONALITY REDUCTION OF . . .

(T(l))i, j = ti1...il−1 j il+1...iN , (3)

where

i = 1+
N

∑
k=1
k �=l

Jk and Jk =
k−1

∏
m=1
m�=l

Im.

Given tensor T , defined as in Eq. (1), a new sub-
tensor Tin=α can be created according to the equa-
tion with the following elements:

Til=α = {ti1i2...il−1il+1...in}I1−1,I2−1,...,α,...,IN−1
i1=0,i2=0,...,il=α,...,in=0 ∈

ℜI1,I2,...,1,...,IN .

(4)

The scalar product 〈A,B〉 of tensors A,B ∈
ℜI1,I2,...,IN is defined as

〈A,B〉=
I1−1

∑
i1=0

I2−1

∑
i2=0

. . .
IN−1

∑
iN=0

bi1,i2,...,inai1,i2,...,in . (5)

We say that if scalar product of tensors equals
0, then they are orthogonal.

The Frobenius norm of tensor T is given by

||T ||=
√

〈T,T 〉. (6)

Given tensor T , in order to find its HO-SVD,
in the form of the so called Tucker operator
CU (1), . . . ,U (N), such that C ∈ ℜI1,...,IN and U (k) ∈
ℜIk×Ik are orthogonal matrices, Algorithm 1.2 can
be used.

Algorithm 1: HO-SVD algorithm

Tensor C is called the core tensor and has the
following useful properties.

– Reconstruction:

T =C×1 U (1)×2 U (2)×3 . . .×N U (N), (7)

where U (i) are orthogonal matrices;

– Orthogonality:

〈Cil=α,Cil=β〉= 0 (8)

for all possible values of l, α and β, such that
α �= β;

– Order of sub-tensor norms:

||Cin=1|| ≤ ||Cin=2|| ≤ . . .≤ ||Cin=In || (9)

for all n.

Therefore, informally, one can say that larger
magnitudes of a core tensor are denoted by low val-
ues of indices. This property is the basis for the
development of compression algorithms based on
HO-SVD.

Formally
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Figure 2. Truncated HO-SVD decomposition of tensor T . Its approximation, tensor T̃ , can be
reconstructed from a truncated tucker operator C̃Ũ (1),Ũ (2),Ũ (3). The visualization is inspired by [13].
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Figure 2. Truncated HO-SVD decomposition of tensor T . Its approximation, tensor T̃ , can be
reconstructed from a truncated tucker operator C̃Ũ (1),Ũ (2),Ũ (3). The visualization is inspired by [13].
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DIMENSIONALITY REDUCTION OF . . .
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heuristic approach to choosing the proportion of
preserved spatial and temporal components in or-
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Algorithm 2: A procedure for estimating the
quality of HO-SVD compression for 3D anima-
tion. Similar procedure is performed for PCA.

The algorithm consist of the following steps:
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imation is estimated and subtracted from con-
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F−1
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Algorithm 2 presents stages of the procedure aimed at calculating the quality of
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Algorithm 2: A procedure for estimating the quality of HO-SVD compression
for 3D animation. Similar procedure is performed for PCA.

The algorithm consist of the following steps:

1. Rigid motion estimation:
The rigid motion of a mesh over the whole animation is estimated and sub-

T

J

K − 1

F − 1

vK−1

x

198

3D Mesh M

0

Frame

...

...

...

...

...

...
...

...
v0

vK−1

v0

...
...

y z

x y z

M0

M198

Fig. 3. Visualization of data tensor T . It is formed by stacking vertices of meshes,
corresponding to F animation frames, represented as K × J arrays.

2.2 Dimensionality reduction testing procedure

Algorithm 2 presents stages of the procedure aimed at calculating the quality of
mesh reconstruction.

Input: Data Tensor T , Compression rate CR, Quality metric d
Output: Quality of T ′

/* X is a normalised tensor */
/* R is a sequence of homography matrices */
X , R = Rigid Motion Estimation(T );
/* �C;U(1),U(2),U(3)� is the Tucker operator */

�C;U(1),U(2),U(3)� = HOSVD Decomposition(X);
/* V TF is a scalar of Vertex-to-Frame ratio */

V TF = Estimate VTF(�C;U(1),U(2),U(3)�, CR);
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faces G of mesh M is constant through the anima-
tion, mesh state in frame i, can be described by
the sum of changes applied to M in each frame:
Mi = ∑i

j=1(M j − M j−1) = ∑i
j=1 ∆M j . Assuming

that animation is represented in homogeneous co-
ordinates, the difference between two consecutive
frames ∆M j = D jRT

j , where R j is a rigid trans-
formation between frames, and D j corresponds to
deformation of mesh vertices. Therefore Mi =

∑ j D jRT
j , where R j is a rigid transformation be-

tween frames 0 and j.

The output of this step is sequence R =
(R1, . . . ,RF ) of transformation matrices between
frame 0 and all consecutive ones, as well as a new,
transformed data tensor X : ∀iX::i = T::iRT

i .

2.4 Higher Order Singular Value Decom-
position

For the purpose of a compression algorithm,
data tensor X containing normalised animation
frames is decomposed using HO-SVD. The result-
ing Tucker operator CU (1),U(2),U(3) is passed to
further steps of the algorithm.

2.5 Dimensionality reduction and recon-
struction

Vertices of a 3D mesh form K × J matrix M,
where J = 3. The number of memory units required
to store or transmit an animation of F frames, not
considering a set of faces G, may be expressed as

S = K ×F × J×ds,

where ds is the size of a single floating-point vari-
able, e.g. ds = 4 bytes. HO-SVD allows to reduce
the amount of memory required to store an anima-
tion, by decomposing data tensor T and storing only
the truncated Tucker operator C̃Ũ (1),Ũ (2),Ũ (3).
Theoretically there are three compression parame-
ters, corresponding to J dimensions of T . However,
since the reduction of mode-2 components heavily
impacts the quality of the reconstructed mesh, we
will only consider the reduction of K mode-1 and F
mode-3 components. The amount of data required
to store the Tucker operator CU (1),U(2),U(3) equals

S(hosvd) = (v×K + J2 + f ×F + v× J× f )×ds,

where v corresponds to the number of mode-1 and
f to mode-3 components kept. Therefore

CR(hosvd) =
S(hosvd)

S
=

v×K + J2 + f ×F + v× J× f
K ×F × J

.

(12)

For visualization of results, space savings (SS)
will be used in place of compression rate, defined
as

SS = (1−CR)100%, (13)

so SS = 99% denotes only 1% of data remaining
after compression.

In addition, we need to store a set of transfor-
mation matrices R, obtained during the first step of
the algorithm. Its size is S(R) = 12×F , and it will
be included in our results.

2.6 HO-SVD compression parameter esti-
mation

Application of HO-SVD for 3D mesh compres-
sion requires a strategy of choosing the proportion
of preserved components for each mode, resulting
in the required CR. Mode-1 components corre-
spond to spatial information (vertices) and mode-3
to temporal information (frames). If we denote the
number of preserved mode-1 components as v and
the number of mode-3 components as f , v

f is the
Vertices-To-Frames ratio (V T F).

We estimate V T F by searching for a pair
(vmin, fmin) that gives the lowest reconstruction error
among candidates obtained by using Algorithm 2.6.
We simplify this time-consuming task, thanks to our
observation that for a list of parameters obtained
from Algorithm 2.6, the distortion of reconstruc-
tion performed by truncating the Tucker operator
CU (1),U (2),U (3) can usually be approximated us-
ing an unimodal function. Therefore, a minimum
can be estimated with a simple iterative procedure
presented as Algorithm 2.6.
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The output of this step is sequence R =
(R1, . . . ,RF ) of transformation matrices between
frame 0 and all consecutive ones, as well as a new,
transformed data tensor X : ∀iX::i = T::iRT

i .

2.4 Higher Order Singular Value Decom-
position

For the purpose of a compression algorithm,
data tensor X containing normalised animation
frames is decomposed using HO-SVD. The result-
ing Tucker operator CU (1),U(2),U(3) is passed to
further steps of the algorithm.

2.5 Dimensionality reduction and recon-
struction

Vertices of a 3D mesh form K × J matrix M,
where J = 3. The number of memory units required
to store or transmit an animation of F frames, not
considering a set of faces G, may be expressed as

S = K ×F × J×ds,

where ds is the size of a single floating-point vari-
able, e.g. ds = 4 bytes. HO-SVD allows to reduce
the amount of memory required to store an anima-
tion, by decomposing data tensor T and storing only
the truncated Tucker operator C̃Ũ (1),Ũ (2),Ũ (3).
Theoretically there are three compression parame-
ters, corresponding to J dimensions of T . However,
since the reduction of mode-2 components heavily
impacts the quality of the reconstructed mesh, we
will only consider the reduction of K mode-1 and F
mode-3 components. The amount of data required
to store the Tucker operator CU (1),U(2),U(3) equals

S(hosvd) = (v×K + J2 + f ×F + v× J× f )×ds,

where v corresponds to the number of mode-1 and
f to mode-3 components kept. Therefore

CR(hosvd) =
S(hosvd)

S
=

v×K + J2 + f ×F + v× J× f
K ×F × J

.

(12)

For visualization of results, space savings (SS)
will be used in place of compression rate, defined
as

SS = (1−CR)100%, (13)

so SS = 99% denotes only 1% of data remaining
after compression.

In addition, we need to store a set of transfor-
mation matrices R, obtained during the first step of
the algorithm. Its size is S(R) = 12×F , and it will
be included in our results.

2.6 HO-SVD compression parameter esti-
mation

Application of HO-SVD for 3D mesh compres-
sion requires a strategy of choosing the proportion
of preserved components for each mode, resulting
in the required CR. Mode-1 components corre-
spond to spatial information (vertices) and mode-3
to temporal information (frames). If we denote the
number of preserved mode-1 components as v and
the number of mode-3 components as f , v

f is the
Vertices-To-Frames ratio (V T F).

We estimate V T F by searching for a pair
(vmin, fmin) that gives the lowest reconstruction error
among candidates obtained by using Algorithm 2.6.
We simplify this time-consuming task, thanks to our
observation that for a list of parameters obtained
from Algorithm 2.6, the distortion of reconstruc-
tion performed by truncating the Tucker operator
CU (1),U (2),U (3) can usually be approximated us-
ing an unimodal function. Therefore, a minimum
can be estimated with a simple iterative procedure
presented as Algorithm 2.6.
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We estimate V TF by searching for a pair (vmin,fmin) that gives the low-
est reconstruction error among candidates obtained by using Algorithm 3. We
simplify this time-consuming task, thanks to our observation that for a list of pa-
rameters obtained from Algorithm 3, the distortion of reconstruction performed
by truncating the Tucker operator �C;U(1),U(2),U(3)� can usually be approxi-
mated using an unimodal function. Therefore, a minimum can be estimated with
a simple iterative procedure presented as Algorithm 4.

/* δ is a tolerance margin. */
Input: K, F , λ, δ
Output: a sequence of (v,f) pairs
P=all pairs (v,f) such that v ∈ {1, . . . ,K},f ∈ {1, . . . , F} and Ψ(v, f)− λ ≤ δ;
/* List is an empty sequence of pairs. */
if V > F then
for v ∈ P do
List = create sequence of pairs (v, f) such that |Ψ(v, f)− λ| is minimal
amongst all values of f ;

end
else
for f ∈ P do
List = create sequence of pairs (v, f) such that |Ψ(v, f)− λ| is minimal
amongst all values of v;

end
end
if V > F then
Sort(List) by v

else
Sort(List) by f

end
return List
Algorithm 3: A search for a sequence of (v,f) parameters, that allow to
obtain the truncated Tucker operator �C̃; Ũ(1), Ũ(2), Ũ(3)� with the desired
compression rate CR. K is the number of mesh vertices, F is the number of
animation frames, and λ denotes the desired CR. The relation between (v,f)
parameters and CR is described by Eq. (12) and will be denoted as Ψ .

2.7 Reconstruction quality estimation

Reconstruction errors were measured by using two standard metrics:

– Mean Squared Error: dMSE(v,v
′) = 1

n

∑n
i=1(v

′−v)2, where v is the original
data vector and v′ is its reconstruction.
– Hausdorff distance:

dH(A,B) = max{sup
x∈A

inf
y∈B

de(x, y), sup
y∈A

inf
x∈B

de(x, y)},

Function FindMinimum(List)
Input: List: a sequence of (v,f) pairs
Output: Index of the best element imin

/* s is a number of samples. */
indices = s indices of a uniformly sampled List;
/* Errors is an empty sequence. */
for i ∈ indices do
/* T is a data tensor */

/* �C;U(1),U(2),U(3)� is a tucker operator */
/* R is a sequence of homography matrices */

�C̃; Ũ(1), Ũ(2), Ũ(3)� =Truncate((�C;U(1),U(2),U(3)�)
T̃ = Reconstruct(�C̃; Ũ(1), Ũ(2), Ũ(3)�, V TF , CR, R);
Append (d(T , T̃ )) to Errors;

end
imin=ArgMin(Errors);
/* I is a limit for iterations. */
if recursion depth==I then
return imin

else
return FindMinimum (List[indices[imin − 1]:indices[imin + 1]])

end
Algorithm 4: Estimation of the best pair of parameters (v,f), that allows
reconstruction of T from �C̃; Ũ(1), Ũ(2), Ũ(3)� with a minimal error.

where A is the original, B – a reconstructed data set and de denotes the
euclidean distance.

Since these metrics may not correspond well with human perception of qual-
ity for 3D objects, an additional, perceptual metric called Mesh Structural Dis-
tortion Measure (MSDM) described in [?] was applied. This metric compares
two shapes based on differences of curvature statistics (mean, variance, covari-
ance) over their corresponding local windows. A global measure between the
two meshes is then defined by the Minkowski sum of the distances over local
windows. Since the metric compares static meshes, the final result for dynamic
sequence is averaged between animation frames.

2.8 Comparison of HO-SVD and PCA application for 3D animation
compression

In order to verify the performance of HO-SVD, we compared it with a simple
method of 3D animation dimensionality reduction. Following the idea from [?]
we performed experiments using PCA.
Principal Component Analysis [?] may be defined as follows.
Let X = [x1,x2 . . . ,xL] be a data matrix, where xi ∈ Rp are data vec-

tors with zero empirical mean. The associated covariance matrix is given by
E = XXT . By performing eigenvalue decomposition of E = ODOT such that

Romaszewski M., Gawron P., Opozda S.

faces G of mesh M is constant through the anima-
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the sum of changes applied to M in each frame:
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where J = 3. The number of memory units required
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considering a set of faces G, may be expressed as

S = K ×F × J×ds,

where ds is the size of a single floating-point vari-
able, e.g. ds = 4 bytes. HO-SVD allows to reduce
the amount of memory required to store an anima-
tion, by decomposing data tensor T and storing only
the truncated Tucker operator C̃Ũ (1),Ũ (2),Ũ (3).
Theoretically there are three compression parame-
ters, corresponding to J dimensions of T . However,
since the reduction of mode-2 components heavily
impacts the quality of the reconstructed mesh, we
will only consider the reduction of K mode-1 and F
mode-3 components. The amount of data required
to store the Tucker operator CU (1),U(2),U(3) equals

S(hosvd) = (v×K + J2 + f ×F + v× J× f )×ds,

where v corresponds to the number of mode-1 and
f to mode-3 components kept. Therefore

CR(hosvd) =
S(hosvd)

S
=

v×K + J2 + f ×F + v× J× f
K ×F × J

.

(12)

For visualization of results, space savings (SS)
will be used in place of compression rate, defined
as

SS = (1−CR)100%, (13)

so SS = 99% denotes only 1% of data remaining
after compression.

In addition, we need to store a set of transfor-
mation matrices R, obtained during the first step of
the algorithm. Its size is S(R) = 12×F , and it will
be included in our results.

2.6 HO-SVD compression parameter esti-
mation

Application of HO-SVD for 3D mesh compres-
sion requires a strategy of choosing the proportion
of preserved components for each mode, resulting
in the required CR. Mode-1 components corre-
spond to spatial information (vertices) and mode-3
to temporal information (frames). If we denote the
number of preserved mode-1 components as v and
the number of mode-3 components as f , v

f is the
Vertices-To-Frames ratio (V T F).

We estimate V T F by searching for a pair
(vmin, fmin) that gives the lowest reconstruction error
among candidates obtained by using Algorithm 2.6.
We simplify this time-consuming task, thanks to our
observation that for a list of parameters obtained
from Algorithm 2.6, the distortion of reconstruc-
tion performed by truncating the Tucker operator
CU (1),U (2),U (3) can usually be approximated us-
ing an unimodal function. Therefore, a minimum
can be estimated with a simple iterative procedure
presented as Algorithm 2.6.
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sion requires a strategy of choosing the proportion
of preserved components for each mode, resulting
in the required CR. Mode-1 components corre-
spond to spatial information (vertices) and mode-3
to temporal information (frames). If we denote the
number of preserved mode-1 components as v and
the number of mode-3 components as f , v

f is the
Vertices-To-Frames ratio (V T F).

We estimate V T F by searching for a pair
(vmin, fmin) that gives the lowest reconstruction error
among candidates obtained by using Algorithm 2.6.
We simplify this time-consuming task, thanks to our
observation that for a list of parameters obtained
from Algorithm 2.6, the distortion of reconstruc-
tion performed by truncating the Tucker operator
CU (1),U (2),U (3) can usually be approximated us-
ing an unimodal function. Therefore, a minimum
can be estimated with a simple iterative procedure
presented as Algorithm 2.6.
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2.7 Reconstruction quality estimation

Reconstruction errors were measured by using
two standard metrics:

– Mean Squared Error: MSE(v,v′) = 1
n ∑n

i=1(v′ −
v)2, where v is the original data vector and v′ is
its reconstruction.

– Hausdorff distance:

H(A,B) = max{sup
x∈A

inf
y∈B

e(x,y),sup
y∈A

inf
x∈B

e(x,y)},

where A is the original, B – a reconstructed data
set and e denotes the euclidean distance.

Since these metrics may not correspond well
with human perception of quality for 3D objects,
an additional, perceptual metric called Mesh Struc-
tural Distortion Measure (MSDM) described in [8]
was applied. This metric compares two shapes
based on differences of curvature statistics (mean,
variance, covariance) over their corresponding lo-
cal windows. A global measure between the two
meshes is then defined by the Minkowski sum of
the distances over local windows. Since the metric
compares static meshes, the final result for dynamic
sequence is averaged between animation frames.

2.8 Comparison of HO-SVD and PCA ap-
plication for 3D animation compres-
sion

In order to verify the performance of HO-SVD,
we compared it with a simple method of 3D anima-
tion dimensionality reduction. Following the idea
from [6] we performed experiments using PCA.

Principal Component Analysis [20] may be de-
fined as follows.

Let X = [x1,x2 . . . ,xL] be a data matrix, where
xi ∈ ℜp are data vectors with zero empirical mean.
The associated covariance matrix is given by E =
XXT . By performing eigenvalue decomposition of
E = ODOT such that eigenvalues λi, i = 1, .., p of
D are ordered in a descending order λ1 ≥ λ2 ≥
. . . ≥ λp > 0, one obtains the sequence of princi-
pal components [o1,o2, . . . ,op] which are columns
of O. One can form a feature vector y of dimension
p′ ≤ p by calculating y = [o1,o2, . . . ,op′ ]

T x.

In order to apply PCA, tensor T = ti, j,k ∈
ℜF×J×K must be unfolded according to Eq. (3).

Therefore mode-1 unfolding is performed so the
data is flattened row by row to form matrix XT ∈
ℜF×JK .

Compression is performed by storing only a
limited number of principal components of E.
When reconstructing matrix X , the dimension of the
desired feature vector p′ equals the number of prin-
cipal components y = [o1,o2, . . . ,op′ ]

T x used for its
calculation and is the only parameter. The ratio of
reduction depends on number f ′ of the key-frames
left. The compression rate for an animation of a 3D
mesh using PCA can be expressed as

CR(pca) =
(V × J+F)× f ′ ×ds

S

3 Results

Presentation of results is performed by using a
set of well-known 3D animations, summarised in
Table 1. Chicken and Gallop are artificial sequences
of moving animal models. Collapse uses the same
model as Gallop but the applied deformation is an
elastic, non-rigid transformation. Samba, Jumping,
Bouncing are motion capture animations of moving
and dancing humans.

The impact of proportion of mode-1 and mode-
3 components (V T F) on reconstruction quality is
presented in Fig. 4. Panel (a) shows how the re-
construction error drops sharply as the number of
components grows. Panel (b) presents V T F ratio as
the rate of data reduction grows.

Observable deformations for artificial animated
meshes (Chicken, Gallop) are almost unnoticeable
for SS ∼ 90% and only minor distortion is present
for SS ∼ 95%. For motion capture sequences
(Samba, Jumping, Bouncing), major deformations
are present for SS ∼ 95%, and only minor ones for
SS ∼ 85%, with unnoticeable distortions for SS ∼
70%. Reconstruction errors are higher for the Col-
lapse mesh, as its animation is hard to describe us-
ing rigid transformations. Major deformations are
observable for SS ∼ 90%, minor ones are present
up to SS ∼ 70%, and no noticeable distortions for
SS ∼ 50% were present. Frames from reconstructed
animations are presented in Fig. 5 (Chicken), Fig. 6
(Collapse) and 7 (Samba).

A comparison of the reconstruction error occur-
ring when using HO-SVD and PCA is presented
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3 Results

Presentation of results is performed by using a
set of well-known 3D animations, summarised in
Table 1. Chicken and Gallop are artificial sequences
of moving animal models. Collapse uses the same
model as Gallop but the applied deformation is an
elastic, non-rigid transformation. Samba, Jumping,
Bouncing are motion capture animations of moving
and dancing humans.

The impact of proportion of mode-1 and mode-
3 components (V T F) on reconstruction quality is
presented in Fig. 4. Panel (a) shows how the re-
construction error drops sharply as the number of
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Observable deformations for artificial animated
meshes (Chicken, Gallop) are almost unnoticeable
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A comparison of the reconstruction error occur-
ring when using HO-SVD and PCA is presented
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Table 1. An overview of animations used for visualization of results.

a Chicken animation was published by Jed Lengyel (http://jedwork.com/jed)

b Gallop and Collapse animations, described in [21], were obtained from the website of Doug L. James and
Christopher D. Twigg (http://graphics.cs.cmu.edu/projects/sma).

c Motion capture sequences were obtained from the website of Daniel Vlasic
(http://people.csail.mit.edu/drdaniel/meshanimation).

Name Referenced as Vertices Frames Description
Chicken Crossinga Chicken 3030 400 animation
Horse Gallopb Gallop 8431 48 animation
Horse Collapse Collapse 8431 48 animation
Sambac Samba 9971 174 motion capture sequence
Jumping Jumping 10002 149 motion capture sequence
Bouncing Bouncing 10002 174 motion capture sequence
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Figure 4. An impact of HO-SVD parameter selection on MSE reconstruction for the Chicken animation.
Panel (a) presents the reconstruction error as a function of the number of mode-1 (v) and mode-3 ( f )

components. Note that the distortion drops sharply with only a few first components. Panel (b) presents
Vertices-to-Frame ratio as a function of SS
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Figure 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%, (c):
SS=97.8%, (d): SS=98.8%.

Figure 6. Visualization of a reconstructed model for Collapse. (a): original, (b): SS=69.9%, (c):
SS=84.9%, (d): SS=97.9%.

Figure 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%, (c): SS=94.9%,
(b): SS=97.9%.
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Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 6. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.

(a) (b) (c) (d)

Fig. 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.

The reconstruction error can be measured by using objective metrics, which
allows reliable control over compression parameters. Parameters related to the

Romaszewski M., Gawron P., Opozda S.

in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.
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[8] Lavoué, G., Drelie Gelasca, E., Dupont, F.,
Baskurt, A., Ebrahimi, T.: Perceptually driven 3D
distance metrics with application to watermarking.
In: SPIE Applications of Digital Image Processing
XXIX. (August 2006)

[9] Karni, Z., Gotsman, C.: Compression of soft-body
animation sequences. Computers & Graphics 28(1)
(2004) 25–34
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in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.
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Figure 5. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%, (c):
SS=97.8%, (d): SS=98.8%.

Figure 6. Visualization of a reconstructed model for Collapse. (a): original, (b): SS=69.9%, (c):
SS=84.9%, (d): SS=97.9%.

Figure 7. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%, (c): SS=94.9%,
(b): SS=97.9%.
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Figure 8. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction errors for artificial
animations. Distortion is presented in the logarithmic scale as a function of SS. Lower values of distortion

indicate higher reconstruction quality.
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Figure 9. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction errors for artificial
animations. Distortion is presented in the logarithmic scale as a function of SS. Lower values of distortion

indicate higher reconstruction quality.
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Figure 8. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction errors for artificial
animations. Distortion is presented in the logarithmic scale as a function of SS. Lower values of distortion

indicate higher reconstruction quality.
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Figure 9. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction errors for artificial
animations. Distortion is presented in the logarithmic scale as a function of SS. Lower values of distortion

indicate higher reconstruction quality.
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in Fig. 8 for Chicken, Gallop, Collapse and Fig. 9
for Samba, Jumping, Bouncing. HO-SVD reduc-
tion gives better result for a majority of anima-
tions. Its advantage is visible especially for motion-
capture sequences. Results for Collapse show that
both methods have problems with describing non-
rigid transformations, and their results are similar
for high values of compression ratio with HO-SVD
introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows
to achieve good reconstruction quality when ap-
plied to reduction of dimensionality of 3D anima-
tions, and usually outperforms the application of
PCA. For most of the animated models and motion-
capture sequences, SS ∼ 90% produces a recon-
struction very similar to the original.

The reconstruction error can be measured by us-
ing objective metrics, which allows reliable control
over compression parameters. Parameters related
to the proportion of preserved components in each
mode, after performing data decomposition, can be
estimated using a simple heuristic approach.
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