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Abstract

The estimation of the generalization error of a trained classifier by means of a test set
is one of the oldest problems in pattern recognition and machine learning. Despite this
problem has been addressed for several decades, it seems that the last word has not been
written yet, because new proposals continue to appear in the literature. Our objective
is to survey and compare old and new techniques, in terms of quality of the estimation,
easiness of use, and rigorousness of the approach, so to understand if the new proposals
represent an effective improvement on old ones.

1 Introduction

The main objective of supervised learning
methods, like Neural Networks (NNs) [1] and Sup-
port Vector Machine (SVM) [2], consists in estimat-
ing an input-output relationship by exploiting a set
of patterns, named the training set. In general, the
probability distribution originating the data is un-
known and additional a priori information is sel-
dom available, therefore this relationship must be
inferred exclusively from the available data.

A classifier is considered to be reliable and ef-
fective if it does not simply memorize the training
samples, but if it can learn from them: in other
words, a “good” trained model must be able to cap-
ture the underlying phenomenon characterizing the
observed patterns and correctly predict the labels of
new and previously unobserved inputs, if originated
from the same distribution of the training set. This
capacity is defined as the generalization ability of a
classifier, while the misclassification rate on unseen
patterns is known as the generalization error rate.

Obviously, if we knew the probability distribu-
tion of the data, we could exactly compute the gen-
eralization error. However, in practice, statistical
estimates are computed, instead, which consist in
upper bounding the generalization error, in proba-

bility, according to some user–defined confidence.
This approach is not only of theoretical interest,
but of paramount importance in many application
fields, such as, for example, forensic statistics [3].

The use of statistical upper bounds for measur-
ing the generalization ability of a classifier has been
extensively addressed, in recent years, by the Ma-
chine Learning community [4, 5, 6, 7]. Two main
categories of methods exist to face this problem:
in-sample and out-of-sample techniques [8, 9]. In-
sample procedures, such as the Maximal Discrep-
ancy and the Rademacher Complexity [4, 10], com-
pute an estimation of the generalization error with-
out exploiting a separate test set: in fact, the train-
ing set is used for both building the model and es-
timating the misclassification rate. Though provid-
ing new results and insights on the problem of er-
ror estimation and on the classification algorithms
themselves, these methods aim at covering widely
general cases and then result to be often inappli-
cable in practice [11]. In this work, instead, we
focus on the more widespread out-of-sample meth-
ods [9, 12], where the generalization error is esti-
mated by exploiting a separate test set, whose sam-
ples are independent of the training data. Many
statistical results are available in the literature for
this purpose: the objective of this paper is to survey
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some old and new ones and compare their perfor-
mance under different conditions (e.g. by varying
the amount of test data), in order to draw on and
expand the analysis performed in [13].

Note that the test set approach can also be ex-
tended to resampling techniques [14], as shown in
the Appendix A of this paper in the case of the well-
known K-fold Cross Validation (KCV) [15], where
the procedure of splitting the original dataset into
a training and a test set is iterated several times.
As this and other resampling methods extract only
a limited amount of samples, to be used as a test
set, the identification of effective methods (i.e. tight
generalization error bounds) becomes quite impor-
tant in these cases as well.

1.1 The Generalization Error of a Classi-
fier

In this work we focus our attention on binary
classifiers, as the extension of the results to the
multi-class case is straightforward and it would un-
necessarily complicate our analysis. Let us con-
sider a test set of n i.i.d. patterns X = {(xi,yi)},
i = 1, ...,n, originated from the same unknown dis-
tribution P(x,y), which generated the training data,
where xi ∈ Rd and yi ∈ {±1}. Let ŷ = f (x) be a
classifier such that f : Rd → Y f ⊆R. We can define
the empirical error of f on the test set X as1:

L̂n( f ) =
1
n

n

∑
i=1

ℓ(ŷi,yi), (1)

where we introduced the loss function ℓ : Y f ×
{±1} → L ⊆ [0,1], which measures the discrep-
ancy between the true label and the response of the
classifier. In classification problems, where we are
often interested in simply counting the number of
misclassifications, a binary (e.g. hard) loss func-
tion, characterized by L = {0,1}, can be used:

ℓH(ŷ,y) =
{

1 if sign(ŷ) ̸= y
0 if sign(ŷ) = y

(2)

where

sign(y) =
{

1 if y > 0
−1 if y ≤ 0.

(3)

As an alternative to the hard loss, we can exploit
Lipschitz continuous soft loss functions when, in-

stead of predicting a label, we are interested in esti-
mating a posterior class probability (i.e. L = [0,1]).
Two possible examples are the logistic loss [17]

ℓlog(ŷ,y) =
e−αyŷ

1+ e−αyŷ , (4)

where α > 0 and the linear soft loss:

ℓS(ŷ,y) =




1 if ŷy <−1
1−ŷy

2 if −1 ≤ ŷy ≤ 1
0 if ŷy > 1

(5)

which is a piecewise linear approximation of the
former.

Given a fixed loss function and exploiting the
information on the test set (e.g. the empirical error
L̂n( f )), we are interested in finding a reliable esti-
mation of the generalization error:

L( f ) = E{ℓ(ŷ,y)}, (6)

which cannot be explicitly computed as the prob-
ability distribution of the data is unknown. As it
is well-known that L̂n( f ) usually underestimates
L( f ), a theoretically rigorous approach for estimat-
ing the generalization capability of f is to compute
an upper-bound of the error

L( f )≤ L̂( f )� L̂n( f )+∆( f ,X ,δ), (7)

which holds with a coverage probability

C (L( f ),n) = Pr{L( f )≤ L̂( f )}= (1−δ), (8)

and where δ is a user-defined confidence level. In
Eq. (7), the additional term ∆( f ,X ,δ) represents
the unluckiness factor of the bound, that is an esti-
mation of the difference between the empirical and
the generalization error, which depends on the par-
ticular classifier, the available test data, and the cho-
sen confidence level. Usually, ∆( f ,X ,δ) decreases
as the cardinality n of X increases, but can be quite
large for small datasets, so we are interested in very
tight estimations of this quantity.

In the next sections, we will analyze old and
new bounds, under different conditions (e.g., by
varying the number of patterns n and by using dif-
ferent loss functions ℓ(·, ·)), in order to identify the
approach which gives the tightest ∆( f ,X ,δ). We
will distinguish two different scenarios, related to

1In this work, we adopt the notation used in [4] and [16].
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classifier such that f : Rd → Y f ⊆R. We can define
the empirical error of f on the test set X as1:

L̂n( f ) =
1
n

n

∑
i=1
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1In this work, we adopt the notation used in [4] and [16].
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the previously mentioned loss functions. In Sec-
tion 2, we will focus the attention on the binary loss
function, which gives rise to an error distributed ac-
cording to a binomial distribution, while in Section
3 the use of continuous real-valued loss functions
will be analyzed. Finally, some experimental results
will be presented in Section 4, where the behavior
of the different bounds will be shown. To simplify
the notation, we will omit the explicit dependency
of both the empirical and the generalization error
from the classifier f because, in this framework, the
classifier is fixed after the training phase (i.e. L is
used, instead of L( f )).

1.2 Preliminary Definitions

In this section we define some important quanti-
ties, which will be exploited in the following for es-
timating the generalization error bounds: the vari-
ance σ2 and the sample variance s2 of the empirical
error.

Based on the definition of the empirical error of
Eq. (1), the variance σ2 is defined as:

σ2 = E{L̂2
n}−L2

= E{L̂2
n}−E{L̂n}2. (9)

Analogously, we can also introduce the sample vari-
ance, computed according to the available text set X
as:

s2 =
1
n

n

∑
i=1

[ℓ(ŷi,yi)− L̂n]
2

=
1
n

{[
n

∑
i=1

(ℓ(ŷi,yi))
2

]
−nL̂2

n

}
. (10)

In the following sections, we will further
deepen the analysis of these quantities, by exploit-
ing the peculiarities of the different loss functions
considered in the two scenarios.

2 Scenario 1 - Binary Loss Func-
tion

In the first scenario, we focus the attention on
random variables that can assume only two different
values, therefore the number of misclassifications is
distributed according to a binomial distribution.

By taking into account the quantities defined in

Section 1.2, it is worth noting that, in this scenario:

E{L̂2
n}= E{L̂n}= L. (11)

As a straightforward consequence, Eq. (9) can be
written as

σ2 = L(1−L). (12)

Analogously, by taking into account the sample
variance of Eq. (10), it is possible to note that

n

∑
i=1

(ℓ(ŷi,yi))
2 =

n

∑
i=1

(ℓ(ŷi,yi)) (13)

and, by consequence,

s2 = L̂n(1− L̂n). (14)

2.1 Normal Approximation

A simple formula for the estimation of the con-
fidence interval can be derived by the application of
the central limit theorem and, consequently, from
the approximation of the binomial by a normal dis-
tribution [19]. Under this hypothesis, the inequality,
which represents the upper-bound of the confidence
interval, can be written as:

L− L̂n√
σ2

n

≤ z1−δ, (15)

where n is the sample size, σ2 is the variance and
z1−δ denotes the (1− δ)-th percentile of the stan-
dard normal distribution.

As the variance is unknown, we can approxi-
mate σ2 by exploiting the definition of sample vari-
ance of the empirical error, according to Eq. (14).
Then, an explicit upper-bound for the generaliza-
tion error formulation can be obtained:

L ≤ L̂n + z1−δ

√
L̂n

(
1− L̂n

)
n

, (16)

or, equivalently:

∆( f ,X ,δ) = z1−δ

√
L̂n

(
1− L̂n

)
n

, (17)

according to Eq. (7).

Unfortunately, as the binomial distribution
could noticeably differ from the normal approxima-
tion, especially when the number of test patterns n
is small, and the sample variance could differ from
the true one, the bound is not rigorous and its cov-
erage probability could fall well below the user-
defined confidence level (1−δ).
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2.2 Wilson Score Approach

We can avoid approximating σ2 with s2 thank to
the Wilson score approach [20], which exploits Eq.
(12), resulting in the following inequality:

L− L̂n√
L(1−L)

n

≤ z1−δ. (18)

The explicit formulation for the generalization error
can be computed by solving the previous inequality
respect to L:

L ≤
L̂n +

1
2n z2

1−δ

1+ 1
n z2

1−δ
+

z1−δ

√
1

4n2 z2
1−δ +

L̂n(1−L̂n)
n

1+ 1
n z2

1−δ
,

(19)
and we can explicitly compute the unluckiness fac-
tor, obtaining:

∆( f ,X ,δ) =
(1−2L̂n)A+B

2(1+A)
, (20)

where A and B are constants such that

A =
1
n

z2
1−δ (21)

B =

√
1
n2 z2

1−δ +
4L̂n(1− L̂n)

n
. (22)

Note that, analogously to the Normal Approxima-
tion presented in Section 2.1, the value of the Wil-
son Score bound is not rigorous, due to the approxi-
mation of the binomial distribution with the normal
one.

2.3 Clopper-Pearson Bound

We can avoid the normal approximation, by ex-
ploiting the exact Clopper-Pearson approach [21].
This is obtained by expressing the probability that
p = nL̂n (or less) misclassifications are obtained,
when classifying n samples, for which the gener-
alization error equals L, as [22]:

Bin(n, p,L) = Pr

(
n

∑
i=1

ŷi ≤ p

)
=

=
p

∑
j=0

(
n
j

)
L j(1−L)n− j. (23)

In order to derive the bound for the generaliza-
tion error in the form of Eq. (7), we can consider
the inverse of the binomial tail, i.e.:

L̂ = Bin(n, p,δ) (24)

where

Bin(n, p,δ)≡ max
L̂

{
L̂ : Bin(n, p, L̂)≥ δ

}
, (25)

which can be solved numerically. By exploiting the
previous relation, we can formulate the Clopper-
Pearson bound for the generalization error as

L ≤ Bin(n,nL̂n,δ), (26)

which rigorously holds with probability (1−δ). Al-
ternatively, the unluckiness factor can be simply de-
rived from Eq. (26):

∆( f ,X ,δ) = Bin(n,nL̂n,δ)− L̂n. (27)

3 Scenario 2 - Bounded Real-
Valued Loss Function

In this section, we focus our attention on the
analysis of random variables, which can assume
any value within the interval2 [0,1]. The bounds
presented here can be exploited when the soft loss
functions ℓS(·, ·) of Eq. (5) or ℓlog(·, ·) of Eq. (4)
are used for measuring the generalization error of
a classifier. It is worth observing that the bounds
presented in this section can also be exploited when
a binary loss function is used, at least in principle.
However, the Clopper-Pearson is obviously supe-
rior in this case, because it takes in account the
additional information given by modelling the er-
rors using a binomial distribution. The current sce-
nario, instead, asks for nonparametric methods be-
cause the distribution of the errors is continuous and
bounded but unknown.

Let us consider again the quantities introduced
in Section 1.2. Eq. (11) can be reformulated as:

E{L̂2
n} ≤ E{L̂n}= L. (28)

Then, Eq. (9) becomes

σ2 ≤ L(1−L). (29)
2Obviously, a generalization of these results to any bounded interval [a,b] is trivially obtained by a simple rescaling argument.



233Anguita D., Ghelardoni L., Ghio A. and Ridella S.

2.2 Wilson Score Approach

We can avoid approximating σ2 with s2 thank to
the Wilson score approach [20], which exploits Eq.
(12), resulting in the following inequality:

L− L̂n√
L(1−L)

n

≤ z1−δ. (18)

The explicit formulation for the generalization error
can be computed by solving the previous inequality
respect to L:

L ≤
L̂n +

1
2n z2

1−δ

1+ 1
n z2

1−δ
+

z1−δ

√
1

4n2 z2
1−δ +

L̂n(1−L̂n)
n

1+ 1
n z2

1−δ
,

(19)
and we can explicitly compute the unluckiness fac-
tor, obtaining:

∆( f ,X ,δ) =
(1−2L̂n)A+B

2(1+A)
, (20)

where A and B are constants such that

A =
1
n

z2
1−δ (21)

B =

√
1
n2 z2

1−δ +
4L̂n(1− L̂n)

n
. (22)

Note that, analogously to the Normal Approxima-
tion presented in Section 2.1, the value of the Wil-
son Score bound is not rigorous, due to the approxi-
mation of the binomial distribution with the normal
one.

2.3 Clopper-Pearson Bound

We can avoid the normal approximation, by ex-
ploiting the exact Clopper-Pearson approach [21].
This is obtained by expressing the probability that
p = nL̂n (or less) misclassifications are obtained,
when classifying n samples, for which the gener-
alization error equals L, as [22]:

Bin(n, p,L) = Pr

(
n

∑
i=1
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Analogously, it is possible to note that

n

∑
i=1

(ℓ(ŷi,yi))
2 ≤

n

∑
i=1

(ℓ(ŷi,yi)) (30)

so to reformulate Eq. (10) as

s2 ≤ L̂n(1− L̂n). (31)

3.1 Chebyshev Bound

The Chebyshev inequality represents the gener-
alization of the Wilson Score approach to the case
of continuous bounded loss functions [23]:

(L− L̂n)
2 ≤ σ2

nδ
(32)

but, differently from Eq. (19), this bound is rigor-
ous, i.e. it holds with a coverage probability at least
equal to (1−δ).

By applying Eq. (29) we get:

(L− L̂n)
2 ≤ L(1−L)

nδ
. (33)

Then, we can solve Eq. (33) with respect to L and
obtain a rigorous and explicit upper bound for the
generalization error. In particular, the unluckiness
factor assumes the same formulation as in Eq. (20)
(as expected, because the Chebyshev bound is a
generalization of the Wilson Score interval to the
case of continuous bounded soft loss functions) but,
in this case, A and B are constants such that

A =
1
δn

(34)

B =

√
A(A−4L̂2

n +4L̂n). (35)

3.2 Guttman Bound

A less–known bound was found by Guttman
[24], which uses the actual sample variance in ad-
dition to the true variance value and, in general, is
tighter than Eq. (32). With probability (1−δ):

(L− L̂n)
2 ≤ s2

n−1
+

1√
δ

σ2

√
2

n(n−1)
. (36)

By applying the upper-bound of Eq. (31) and
solving with respect to L, we can obtain the ex-
plicit Guttman bound for the generalization error,

which obviously still holds with a coverage proba-
bility equal to (1− δ). The unluckiness factor can
be written in the same form as Eq. (20), where the
two constants assume the following values:

A =
1√
δ

√
2

n(n−1)
(37)

B =
√

A
(

4L̂n −4L̂2
n +

4s2

n−1 +A
)
+ 4s2

n−1 . (38)

3.3 Bernstein Bound

A useful bound for estimating the generaliza-
tion ability of a classifier, when a real-valued indi-
cator is used for the error, is the Bernstein bound
[25]. The estimated error can be expressed as:

L ≤ L̂n +σ

√
2log

( 1
δ
)

n
+

log
(1

δ
)

3n
. (39)

As, once again, σ is usually unavailable in prac-
tice, we can exploit the upper-bound of Eq. (31) and
write:

L ≤ L̂n +
√

L(1−L)

√
2log

( 1
δ
)

n
+

log
(1

δ
)

3n
, (40)

whose solution can be found through a numerical
procedure.

3.4 Maurer-Pontil Bound

Because of the application of the upper-bound
of Eq. (31) in Eq. (39), the estimation of the gen-
eralization error through the Bernstein approach re-
quires a numerical procedure for computing the un-
luckiness factor ∆( f ,X ,δ). Recently, a new bound
has been proposed, which overcomes this problem
by exploiting the sample variance instead of the true
one [26, 27]:

L ≤ L̂n + s

√
2log

( 2
δ
)

n
+

7log
(2

δ
)

3(n−1)
. (41)

This last inequality can be considered an empirical
formulation of the Bernstein bound, which is still
rigorous but explicit and, therefore, easy to com-
pute.
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(as expected, because the Chebyshev bound is a
generalization of the Wilson Score interval to the
case of continuous bounded soft loss functions) but,
in this case, A and B are constants such that

A =
1
δn

(34)

B =

√
A(A−4L̂2

n +4L̂n). (35)

3.2 Guttman Bound

A less–known bound was found by Guttman
[24], which uses the actual sample variance in ad-
dition to the true variance value and, in general, is
tighter than Eq. (32). With probability (1−δ):

(L− L̂n)
2 ≤ s2

n−1
+

1√
δ

σ2

√
2

n(n−1)
. (36)

By applying the upper-bound of Eq. (31) and
solving with respect to L, we can obtain the ex-
plicit Guttman bound for the generalization error,

which obviously still holds with a coverage proba-
bility equal to (1− δ). The unluckiness factor can
be written in the same form as Eq. (20), where the
two constants assume the following values:

A =
1√
δ

√
2

n(n−1)
(37)

B =
√

A
(

4L̂n −4L̂2
n +

4s2

n−1 +A
)
+ 4s2

n−1 . (38)

3.3 Bernstein Bound

A useful bound for estimating the generaliza-
tion ability of a classifier, when a real-valued indi-
cator is used for the error, is the Bernstein bound
[25]. The estimated error can be expressed as:

L ≤ L̂n +σ

√
2log

( 1
δ
)

n
+

log
(1

δ
)

3n
. (39)

As, once again, σ is usually unavailable in prac-
tice, we can exploit the upper-bound of Eq. (31) and
write:

L ≤ L̂n +
√

L(1−L)

√
2log

(1
δ
)

n
+

log
(1

δ
)

3n
, (40)

whose solution can be found through a numerical
procedure.

3.4 Maurer-Pontil Bound

Because of the application of the upper-bound
of Eq. (31) in Eq. (39), the estimation of the gen-
eralization error through the Bernstein approach re-
quires a numerical procedure for computing the un-
luckiness factor ∆( f ,X ,δ). Recently, a new bound
has been proposed, which overcomes this problem
by exploiting the sample variance instead of the true
one [26, 27]:

L ≤ L̂n + s

√
2log

(2
δ
)

n
+

7log
(2

δ
)

3(n−1)
. (41)

This last inequality can be considered an empirical
formulation of the Bernstein bound, which is still
rigorous but explicit and, therefore, easy to com-
pute.
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3.5 Chernoff Bound

If we want to avoid the numerical procedure
for computing the upper-bound of the generaliza-
tion error L, as an alternative to the Maurer-Pontil
bound, the estimation through the Chernoff ap-
proach can be used instead [28]. In this case, only
the information concerning the empirical error rate
is exploited and the unluckiness factor can be ex-
pressed as:

∆( f ,X ,δ) =

√
2L̂n log

( 1
δ
)

n
+

2log
(1

δ
)

n
. (42)

As the Maurer-Pontil bound, the Chernoff bound is
rigorous, holding with probability (1−δ).

3.6 Hoeffding Bound

One of the oldest bounds that can be used for
estimating the generalization ability of a classifier
is the Hoeffding bound [29], which is still object
of investigation [30, 31] and is not widespread, be-
cause its formulation is not easy to deal with. The
bound is

Pr
{

L ≥ L̂n +∆
}
≤[(

1−L
1−L+∆

)1−L+∆( L
L−∆

)L−∆
]n

,(43)

where the dependency of ∆ from the classifier, the
data and the confidence value has been omitted for
the sake of simplicity. If we consider the worst–
case scenario, L = L̂n+∆, we can avoid L to appear
in the right term of the inequality and rewrite Eq.
(43) as:

Pr
{

L ≥ L̂n +∆
}
≤

[(
1− L̂n −∆

1− L̂n

)1−L̂n ( L̂n +∆
L̂n

)L̂n
]n

. (44)

By setting the right side of Eq. (44) equal to δ, it is
possible to find a bound in the form of Eq. (7), char-
acterized by C (L,n) = (1−δ), as we did in the pre-
vious cases. Unfortunately, this last equality does
not have a closed–form solution and must be solved
numerically. Furthermore, note that a solution can

be found only when L̂n ∈ (0,1). The case L̂n = 0
can be computed3 as the limit L̂n → 0 to obtain:

Pr
{

L− L̂n ≥ ∆
}
≤ (1−∆)n. (45)

By setting δ= (1−∆)n, we obtain the explicit value
of the unluckiness factor for the Hoeffding bound
when no patterns are misclassified by f in the test
set:

L ≤ ∆( f ,X ,δ) = 1− n
√

δ. (46)

Note that, in the current and past literature, Eq.
(44) is seldom used, while a more elegant, but much
looser, formulation [29] is usually cited:

Pr
{

L ≥ L̂n +∆
}

≤ e−2n∆2
(47)

By setting δ = e−2n∆2
, we obtain the following ex-

plicit formulation:

L ≤ L̂n +

√
log

(1
δ
)

2n
, (48)

which is characterized by a coverage probability
equal to (1−δ) and represents the most widely ap-
plied Hoeffding’s result.

4 Experimental Results

In this section, we are interested in comparing
the tightness of the bounds, which we previously
presented and which are summarized in Table 1.
Our target is to provide useful insights on the test
error estimation in both presented scenarios, by es-
timating the generalization error L( f ) according to
Eq. (7).

4.1 Scenario 1 - Results

As a first step, we analyze the three generaliza-
tion error bounds fixing the confidence level and
the empirical misclassification rate, while varying
the number of patterns in the test set. For this
purpose, let us suppose to set δ = 5% and let us
vary the cardinality of the test set X in the range
n ∈ [10,200], in accordance with the experiments
performed elsewhere in the literature (e.g. see [19]).
Large datasets are not taken in account for two main
reasons:

3The value of the bound for L̂n → 1 can be analogously obtained but it is obviously not interesting as it corresponds to a classifier
that exhibits a 100% error on the test set.
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As the Maurer-Pontil bound, the Chernoff bound is
rigorous, holding with probability (1−δ).

3.6 Hoeffding Bound

One of the oldest bounds that can be used for
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is the Hoeffding bound [29], which is still object
of investigation [30, 31] and is not widespread, be-
cause its formulation is not easy to deal with. The
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possible to find a bound in the form of Eq. (7), char-
acterized by C (L,n) = (1−δ), as we did in the pre-
vious cases. Unfortunately, this last equality does
not have a closed–form solution and must be solved
numerically. Furthermore, note that a solution can

be found only when L̂n ∈ (0,1). The case L̂n = 0
can be computed3 as the limit L̂n → 0 to obtain:

Pr
{

L− L̂n ≥ ∆
}
≤ (1−∆)n. (45)

By setting δ= (1−∆)n, we obtain the explicit value
of the unluckiness factor for the Hoeffding bound
when no patterns are misclassified by f in the test
set:

L ≤ ∆( f ,X ,δ) = 1− n
√

δ. (46)

Note that, in the current and past literature, Eq.
(44) is seldom used, while a more elegant, but much
looser, formulation [29] is usually cited:

Pr
{
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}

≤ e−2n∆2
(47)

By setting δ = e−2n∆2
, we obtain the following ex-

plicit formulation:

L ≤ L̂n +

√
log

(1
δ
)

2n
, (48)

which is characterized by a coverage probability
equal to (1−δ) and represents the most widely ap-
plied Hoeffding’s result.

4 Experimental Results

In this section, we are interested in comparing
the tightness of the bounds, which we previously
presented and which are summarized in Table 1.
Our target is to provide useful insights on the test
error estimation in both presented scenarios, by es-
timating the generalization error L( f ) according to
Eq. (7).

4.1 Scenario 1 - Results

As a first step, we analyze the three generaliza-
tion error bounds fixing the confidence level and
the empirical misclassification rate, while varying
the number of patterns in the test set. For this
purpose, let us suppose to set δ = 5% and let us
vary the cardinality of the test set X in the range
n ∈ [10,200], in accordance with the experiments
performed elsewhere in the literature (e.g. see [19]).
Large datasets are not taken in account for two main
reasons:

3The value of the bound for L̂n → 1 can be analogously obtained but it is obviously not interesting as it corresponds to a classifier
that exhibits a 100% error on the test set.
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Table 1. Bounds introduced in Sections 2 and 3: the last column indicates the short name, that will be used
for the experimental results.

Scenario 1
Bound Eq. Short name

Normal approximation (16) NOR
Wilson score approach (20), (22), (22) WIL
Clopper-Pearson bound (26) CP

Scenario 2
Bound Eq. Short name

Chebyshev bound (20), (34), (35) CHE
Guttman bound (20), (37), (38) GUT
Bernstein bound (40) BER

Maurer-Pontil bound (41) MAU
Chernoff bound (42) CRF

Tighter Hoeffding bound (44), (45) T HOE
Conventional Hoeffding bound (48) HOE

– as n increases, the bounds tend to be character-
ized by a similar performance;

– as we noted in the introduction, these bounds can
also be exploited when applying the KCV proce-
dure (see also Appendix A), where only small
subsets of the dataset are available for testing
purposes (e.g. 10% of the original dataset [12]).

Figs. 1 and 2 show the estimations L̂ (see Eq.
(7)) for the three bounds in the case of L̂n = 25%
and L̂n = 0%, respectively. We note that:

– WIL and CP give similar L̂ values, even if it is
worth observing that WIL is not rigorous and,
then, there is no guarantee about the coverage
probability of the bound;

– NOR always outperforms WIL and CP, but, be-
sides being non-rigorous, its error estimation is
useless when L̂n is small, as predicted by theory
and as clearly shown in Fig. 2 (where L̂ = 0%
∀n using NOR).

Now we fix n = 10 and n = 200 (the extreme
values we used for the previous experiments) and
we plot the trend of L̂ by varying L̂n in the range of
interest for classification problems [0%,50%]. We
observe that:

– when n is small (Fig. 3), CP results to be some-
times looser than the non-rigorous approaches
NOR and WIL;

– as n increases (Fig. 4), the three bounds tend to
predict similar values of L, as expected by the-
ory (i.e. the binomial distribution can be safely
approximated by a normal distribution).

As CP is sometimes loose, it is interesting to
compute the true coverage probability for the three
bounds [19], so to verify if the looseness is justified
by rigorousness requirements. Different trends of
C (L,n) are shown:

– Figs. 5 and 6 present the coverage probability,
when n is set, respectively, to 10 and 200 and L
is varied in the range [0%,50%]. CP is the only
guaranteed bound, as expected, while both WIL
and NOR, despite giving tighter estimates for
L, are characterized by a coverage probability
which sometimes falls below the nominal confi-
dence (1−δ = 95%), even when n is increased;

– Figs. 7 and 8 present the coverage probability,
when L is respectively set4 to 1% and 25% and
n is varied in the range [10,200]. As in the previ-
ous experiments, CP represents the only guaran-
teed bound, even if WIL results to be a valuable
alternative, albeit non–rigorous, when either the

4The case L = 0% is avoided because it is easy to verify that, for NOR, WIL and CP, C (0%,n) = 100%, ∀n.
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true L is small or the nominal confidence bound-
ary can be violated in practice.

Figure 1. Scenario 1 - Trend of L̂ (L̂n = 25%).

Figure 2. Scenario 1 - Trend of L̂ (L̂n = 0%).

Figure 3. Scenario 1 - Trend of L̂ (n = 10).

Figure 4. Scenario 1 - Trend of L̂ (n = 200).

Figure 5. Scenario 1 - Coverage probability
varying L (n = 10).

Figure 6. Scenario 1 - Coverage probability
varying L (n = 200).
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true L is small or the nominal confidence bound-
ary can be violated in practice.

Figure 1. Scenario 1 - Trend of L̂ (L̂n = 25%).

Figure 2. Scenario 1 - Trend of L̂ (L̂n = 0%).

Figure 3. Scenario 1 - Trend of L̂ (n = 10).

Figure 4. Scenario 1 - Trend of L̂ (n = 200).

Figure 5. Scenario 1 - Coverage probability
varying L (n = 10).

Figure 6. Scenario 1 - Coverage probability
varying L (n = 200).
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Figure 7. Scenario 1 - Coverage probability
varying n (L = 1%).

Figure 8. Scenario 1 - Coverage probability
varying n (L = 25%).

4.2 Scenario 2 - Results

We analyze now the second scenario, presented
in Section 3, where a real-valued bounded loss
function (e.g., ℓS(·, ·) or ℓlog(·, ·)) is used. Our
objective is to verify the tightness of the bounds,
computed using the seven possible choices: GUT,
CHE, HOE, T HOE, BER, MAU and CRF, which
are all rigorous approaches. In the computation of
GUT and MAU, we have to fix the sample vari-
ance s2. For this purpose, as a real-valued continu-
ous loss function is used, we can exploit Eq. (31)
and set the sample variance to the worst case value
s2 = L̂n(1− L̂n).

We plot the trend of the bounds by varying, al-
ternatively, n and L̂n. In particular:

– Fig. 9 shows the predicted generalization error
values when we fix L̂n = 25% and we let n vary
in the range of interest. T HOE allows to find
the tightest estimation, but it requires a numer-

ical procedure for finding the value of L̂. As a
valuable alternative, the conventional Hoeffding
bound (HOE) is explicit, is trivially computable
and, in these cases, guarantees an acceptable
performance;

– Fig. 10 presents the trend of L̂ by varying
n ∈ [10,200] and fixing L̂n = 0%: as shown in
Section 3.6, the explicit formulation of Eq. (46)
must be used for T HOE, which still guarantees
the optimal performance and, in this case, does
not need any numerical procedure;

– Figs. 11 and 12 present the values of L̂ when n is
respectively set to 10 and 200 and L̂n is varied in
the range [0%,50%]. As in the previous experi-
ments, T HOE provides the tightest estimations
for every value of n and L̂n. If the user wants to
avoid a numerical procedure for finding L̂ when
L̂n > 0%, CRF (especially when n is large and
L̂n is small) and HOE can be effectively used, in-
stead. BER could be a valuable alternative, but
it requires a numerical procedure as well.

Figure 9. Scenario 2 - Trend of L̂ (L̂n = 25%).

Figure 10. Scenario 2 - Trend of L̂ (L̂n = 0%).

20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

n

Co
ve

ra
ge

 p
ro

ba
bi

li
ty

L = 1%

 

 

NOR
WIL
CP

20 40 60 80 100 120 140 160 180 20091

92

93

94

95

96

97

98

99

100

n

Co
ve

ra
ge

 p
ro

ba
bi

li
ty

L = 25%

 

 

NOR
WIL
CP

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

n

L̂
[%

]

L̂n = 0%

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF

20 40 60 80 100 120 140 160 180 200
20

40

60

80

100

120

140

160

n

L̂
[%

]

L̂n = 25%

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF



238 Anguita D., Ghelardoni L., Ghio A. and Ridella S.

Figure 11. Scenario 2 - Trend of L̂ (n = 10).

Figure 12. Scenario 2 - Trend of L̂ (n = 200).

Figure 13. Scenario 2 - Experimental C (L,n)
varying L (n = 10).

Figure 14. Scenario 2 - Experimental C (L,n)
varying L (n = 200).

Figure 15. Scenario 2 - Experimental C (L,n)
varying n (L = 1%).

Figure 16. Scenario 2 - Experimental C (L,n)
varying n (L = 25%).
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computing C (L,n), where the following procedure

5 10 15 20 25 30 35 40 45 5090

92

94

96

98

100

102

L[%]

Co
ve
ra
ge
 p
ro
ba

bi
li

ty
 (

Mo
nt

e 
Ca

rl
o)

n=10

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF

5 10 15 20 25 30 35 40 45 5090

92

94

96

98

100

102

L[%]

Co
ve

ra
ge

 p
ro

ba
bi

li
ty

 (
Mo

nt
e 

Ca
rl

o)

n=200

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF

20 40 60 80 100 120 140 160 180 20090

92

94

96

98

100

102

n

Co
ve

ra
ge

 p
ro

ba
bi

li
ty

 (
Mo

nt
e 

Ca
rl

o)

L = 1%

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF

20 40 60 80 100 120 140 160 180 20090

92

94

96

98

100

102

n

Co
ve
ra
ge
 p
ro
ba
bi
li
ty
 (

Mo
nt

e 
Ca

rl
o)

L = 25%

 

 

HOE
T_HOE
CHE
BER
MAU
GUT
CRF

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

160

180

200

L̂n [%]

L̂
[%

]

n = 10

 

 

HOE
T_HOE
CHE
MAU
BER
GUT
CRF

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

L̂n [%]

L̂
[%

]

n = 200

 

 

HOE
T_HOE
CHE
MAU
BER
GUT
CRF



239Anguita D., Ghelardoni L., Ghio A. and Ridella S.

Figure 11. Scenario 2 - Trend of L̂ (n = 10).

Figure 12. Scenario 2 - Trend of L̂ (n = 200).

Figure 13. Scenario 2 - Experimental C (L,n)
varying L (n = 10).

Figure 14. Scenario 2 - Experimental C (L,n)
varying L (n = 200).

Figure 15. Scenario 2 - Experimental C (L,n)
varying n (L = 1%).

Figure 16. Scenario 2 - Experimental C (L,n)
varying n (L = 25%).

Our last tests address the estimation of the cov-
erage probability of the bounds mentioned before.
For this purpose, we use a Monte Carlo method for
computing C (L,n), where the following procedure
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is repeated τ times for every (L,n) pair:

– we create a set of n error values, sampled from
a normal distribution with mean equal to L and
variance equal to L(1− L), which is the worst
case of Eq. (29);

– we compute the estimation of the generalization
error L̂ (see Eq. (7)) using GUT, CHE, HOE,
T HOE, BER, MAU and CRF;

– we check if L ≤ L̂.

In our experiments, we set τ = 1000. The ob-
tained results are shown in Figs. 13, 14, 15 and 16:

– Figs. 13 and 14 present the coverage probability,
obtained with the described Monte Carlo proce-
dure, when L is varied and n is set to 10 and
200, respectively. As we can see, all the values
of C (L,n) are above the nominal confidence, as
expected by theory. The bound characterized by
a coverage probability closer to 95% is T HOE,
which also provides the tightest estimate of L
(see, for example, Fig. 12);

– Figs. 15 and 16 show the values of C (L,n) when
n is varied and L is set to 0% and 25%, respec-
tively. For these plots, we can draw the same
conclusions as in the cases of Figs. 13 and 14.

4.3 Using Scenario 2 Bounds in Scenario 1
- Results

In the previous sections, two scenarios have
been separately analyzed: as a first issue, the case
of hard loss binary functions has been taken into ac-
count; subsequently, we focused on continuous soft
loss functions. However, as remarked in Section 3,
the bounds designed for soft loss functions can be
exploited in the case of binary random variables as
well.

Thus, we consider a binary hard loss function
for evaluating the generalization error and take into
account the best performing rigorous approaches,
according to the results of Sections 4.1 and 4.2 (CP
and T HOE). Moreover, we also contemplate WIL,
as it represents a valuable alternative when a rig-
orous bound is not needed. We compare the three
trends by alternatively varying n and L̂n:

Figure 17. CP vs. T HOE - Trend of L̂ (L̂n = 0%).

Figure 18. CP vs. T HOE - Trend of L̂
(L̂n = 25%).

Figure 19. CP vs. T HOE - Trend of L̂ (n = 10).

Figure 20. CP vs. T HOE - Trend of L̂ (n = 200).

– Figs. 17 and 18 show the CP, WIL and T HOE
bounds, when the empirical error is equal to
0% and 25%, respectively, and n is varied. It
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identically when L̂n = 0%; on the contrary, CP
becomes tighter than T HOE as L̂n increases,
since the Clopper-Pearson approach takes into
account the actual binomial distribution of the
error. The performance of the WIL approach are
comparable to CP: as also highlighted in Sec-
tion 4.1, WIL sometimes outperforms CP, but its
coverage probability could fall below the nomi-
nal value (1−δ), at least when n is small;

– The results obtained by varying L̂n and by fix-
ing n to 10 and 200, respectively, are shown
in Figs. 19 and 20. As in the previous anal-
ysis, CP results to be the tightest rigorous ap-
proach, though, as n increases, the gap between
CP and T HOE decreases. WIL, as in the pre-
vious cases, represents a non-rigorous, but tight,
alternative.

5 Conclusions

In this survey, we presented several approaches
to estimate the generalization error of a classifier,
when a test set is available. In particular, we took
into account two scenarios, according to the usual
approaches to classification problems: in the first
one, we considered a loss function which can as-
sume only two binary values; in the second one, we
supposed to use a real-valued function, bounded in
the interval [0,1]. In order to compare the different
alternatives, we performed different tests by vary-
ing the number of patterns and the empirical error;
the actual coverage probability for the bounds was
also computed.

Concerning the first scenario, we can observe
that:

– if we need a guaranteed and rigorous bound, the
Clopper-Pearson approach is the only theoreti-
cally justified method for estimating the general-
ization error L. Unfortunately, as clearly shown
by Figs. 7 and 8, Clopper-Pearson can be con-
servative, as the coverage probability is larger
than the nominal confidence value, causing the
looseness of L̂;

– the Normal Approximation approach, besides
being non-rigorous, is not effective in giving
good generalization estimates in practice;

– the Wilson Score bound represents a good com-
promise for error estimation. However it must
be used only when a rigorous approach is not
strictly required, as its coverage probability falls,
even if rarely, below the nominal confidence.

By analyzing the bounds we presented for the
second scenario, we can sketch the following con-
clusions:

– all the bounds we analyzed in this framework are
rigorous;

– generally speaking, the Hoeffding approach of
Eq. (44) guarantees the tightest estimate, but
no closed-form expression can be found for this
bound and a numerical procedure for finding the
value of the generalization error must be imple-
mented. If a ‘paper and pencil’ approach is de-
sired, the Guttman and the conventional Hoeffd-
ing bounds of Section 3.2 and Eq. (48), respec-
tively, represent valuable alternatives. The Bern-
stein bound is characterized by an appealing per-
formance, but it requires a numerical procedure
for estimating the generalization error as well.

As the bounds for soft losses can be exploited
for binary losses as well, we compared the Clopper-
Pearson inequality (i.e. the only rigorous bound
analyzed for Scenario 1), with the best performing
method of Section 3 (i.e. the tighter Hoeffding for-
mulation of Eq. (44)). The Wilson Score approach
of Section 2.2 has also been included in this anal-
ysis, as it could be exploited, when a rigorous ap-
proach is not required by the application. The re-
sults clearly confirm what expected by theory: in
general, the Clopper-Pearson bound is noticeably
tighter than the Hoeffding one because the former
method takes into account the actual binomial dis-
tribution of the error. Moreover, if rigorousness is
not an issue, the Wilson Score bound is sometimes
even tighter than Clopper-Pearson. Then, if not re-
quired by a specific problem, using the bounds for
the Scenario 2 in the framework of Scenario 1 is not
recommended.

As a final remark, we can safely claim that the
methods appeared in the literature more than fifty
years ago are still the best ones. The only caveat is
that, due to the widespread use of computing tools
since those days, the elegance of the closed–form
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identically when L̂n = 0%; on the contrary, CP
becomes tighter than T HOE as L̂n increases,
since the Clopper-Pearson approach takes into
account the actual binomial distribution of the
error. The performance of the WIL approach are
comparable to CP: as also highlighted in Sec-
tion 4.1, WIL sometimes outperforms CP, but its
coverage probability could fall below the nomi-
nal value (1−δ), at least when n is small;

– The results obtained by varying L̂n and by fix-
ing n to 10 and 200, respectively, are shown
in Figs. 19 and 20. As in the previous anal-
ysis, CP results to be the tightest rigorous ap-
proach, though, as n increases, the gap between
CP and T HOE decreases. WIL, as in the pre-
vious cases, represents a non-rigorous, but tight,
alternative.

5 Conclusions

In this survey, we presented several approaches
to estimate the generalization error of a classifier,
when a test set is available. In particular, we took
into account two scenarios, according to the usual
approaches to classification problems: in the first
one, we considered a loss function which can as-
sume only two binary values; in the second one, we
supposed to use a real-valued function, bounded in
the interval [0,1]. In order to compare the different
alternatives, we performed different tests by vary-
ing the number of patterns and the empirical error;
the actual coverage probability for the bounds was
also computed.

Concerning the first scenario, we can observe
that:

– if we need a guaranteed and rigorous bound, the
Clopper-Pearson approach is the only theoreti-
cally justified method for estimating the general-
ization error L. Unfortunately, as clearly shown
by Figs. 7 and 8, Clopper-Pearson can be con-
servative, as the coverage probability is larger
than the nominal confidence value, causing the
looseness of L̂;

– the Normal Approximation approach, besides
being non-rigorous, is not effective in giving
good generalization estimates in practice;

– the Wilson Score bound represents a good com-
promise for error estimation. However it must
be used only when a rigorous approach is not
strictly required, as its coverage probability falls,
even if rarely, below the nominal confidence.

By analyzing the bounds we presented for the
second scenario, we can sketch the following con-
clusions:

– all the bounds we analyzed in this framework are
rigorous;

– generally speaking, the Hoeffding approach of
Eq. (44) guarantees the tightest estimate, but
no closed-form expression can be found for this
bound and a numerical procedure for finding the
value of the generalization error must be imple-
mented. If a ‘paper and pencil’ approach is de-
sired, the Guttman and the conventional Hoeffd-
ing bounds of Section 3.2 and Eq. (48), respec-
tively, represent valuable alternatives. The Bern-
stein bound is characterized by an appealing per-
formance, but it requires a numerical procedure
for estimating the generalization error as well.

As the bounds for soft losses can be exploited
for binary losses as well, we compared the Clopper-
Pearson inequality (i.e. the only rigorous bound
analyzed for Scenario 1), with the best performing
method of Section 3 (i.e. the tighter Hoeffding for-
mulation of Eq. (44)). The Wilson Score approach
of Section 2.2 has also been included in this anal-
ysis, as it could be exploited, when a rigorous ap-
proach is not required by the application. The re-
sults clearly confirm what expected by theory: in
general, the Clopper-Pearson bound is noticeably
tighter than the Hoeffding one because the former
method takes into account the actual binomial dis-
tribution of the error. Moreover, if rigorousness is
not an issue, the Wilson Score bound is sometimes
even tighter than Clopper-Pearson. Then, if not re-
quired by a specific problem, using the bounds for
the Scenario 2 in the framework of Scenario 1 is not
recommended.

As a final remark, we can safely claim that the
methods appeared in the literature more than fifty
years ago are still the best ones. The only caveat is
that, due to the widespread use of computing tools
since those days, the elegance of the closed–form
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formulations should be finally abandoned, in favor
to their implicit, but tighter, counterparts, which
needs a numerical solution.

A Extension to the case of K-Fold
Cross Validation (KCV)

Let us suppose that the set of n d-dimensional
data X must be used for both training the classifier
and estimating the generalization error (e.g. when
n is small, a subset of data cannot be allocated only
for testing purposes). As an alternative to the con-
ventional test set approaches, previously considered
in this work, resampling techniques can be used in-
stead. In particular, in this Appendix, we focus our
attention on the well-known K-Fold Cross Valida-
tion (KCV) approach [14, 15] and we show how the
results presented in the previous sections, targeted
to the test set method, can be easily extended to this
resampling case.

The KCV consists in dividing the available set
X in k parts, each one consisting of n/k samples:
(k− 1) parts are used, in turn, as a training set and
the remaining one is used as a test set. The error
performed by the trained model on the test set can
be reliably used for estimating L( f ), the true gener-
alization error, because it has not been exploited for
training the model.

We can define the empirical error on the j-th
test set as:

L̂n/k( f j) =
k
n

n/k

∑
i=1

ℓ(ŷi,yi) (49)

where f j is the classifier trained on the remaining
k−1

k n samples, and ℓ(·, ·) is a (either hard or soft)
loss function. Then, an unspecific test set bound
can be applied to estimate the generalization error,
according to Eq. (7):

L( f )≤ L̂n/k( f j)+∆( f j,X test
j ,δ), (50)

where the unluckiness factor depends on the classi-
fier found using the j-th training set, on the confi-
dence level δ, and on the j-th test set X test

j .

If we randomly pick up one of the trained model
f j to classify a new point, it is possible to show [32]
that the performance of the model will be bounded

by

L( f )≤ 1
k

k

∑
j=1

{
L̂n/k( f j)+∆( f j,X test

j ,δ)
}
, (51)

which holds with a coverage probability greater
than or, at least, equal to (1−δ). Therefore, all the
analysis performed in this survey can be applied to
this case as well.
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