
JAISCR, 2013, Vol. 3, No. 3, pp. 215

PARALLEL PBIL APPLIED TO POWER SYSTEM
CONTROLLER DESIGN

Komla Folly
Department of Electrical Engineering, University of Cape Town Private Bag,

Rondebosch 7701, South Africa

Abstract

Population-Based Incremental Learning (PBIL) algorithm is a combination of evolution-
ary optimization and competitive learning derived from artificial neural networks. PBIL
has recently received increasing attention in various engineering fields due to its effective-
ness, easy implementation and robustness. Despite these strengths, it was reported in the
last few years that PBIL suffers from issues of loss of diversity in the population. To deal
with this shortcoming, this paper uses parallel PBIL based on multi-population. In paral-
lel PBIL, two populations are used where both probability vectors (PVs) are initialized to
0.5. It is believed that by introducing two populations, the diversity in the population can
be increased and better results can be obtained. The approach is applied to power system
controller design. Simulations results show that the parallel PBIL approach performs bet-
ter than the standard PBIL and is as effective as another diversity increasing PBIL called
adaptive PBIL.

1 Introduction

Population-Based Incremental Learning is a rel-
atively new type of Evolutionary Algorithm (EA)
that combines aspects of Genetic Algorithms (GAs)
and simple competitive learning derived from Arti-
ficial Neural Networks (ANNs). It was first pro-
posed by Baluja [1] in response of the growing need
to have a simpler and yet robust Evolutionary Algo-
rithms which is easy to use by the larger community
of users who are not necessarily experts in EAs [2],
[3].

Like other EAs such as GAs [4]-[6], Differen-
tial Evolution (DE) [7], [8], and variants such as
Ant Colony optimization (ACO) [9], and Particle
Swarm Optimization (PSO) [10]-[11], PBIL works
with a population of individuals rather than a sin-
gle individual (e.g., point) [12]-[16]. Over succes-
sive generations, the population “evolves” toward
an optimal solution. However, compared with other
EAs, PBIL is simpler, robust and easy to imple-
ment. In addition, PBIL has fewer genetic operators
than most of the EAs [16], [17].

In PBIL, the crossover operator is abstracted
away and the role of the population is redefined
[1], [3]. PBIL works with a probability vector
(PV) instead of the whole population. The PV is
used to control the random bit strings generated by
PBIL and to create other individuals through learn-
ing. Learning in PBIL consists of using the cur-
rent probability vector (PV) to create N individuals.
The best individual is used to update the probability
vector, increasing the probability of producing solu-
tions similar to the current best individuals [3], [14].
It has been shown that PBIL outperforms standard
GAs approaches on a variety of optimization prob-
lems including commonly used benchmark prob-
lems [1], [3], [12]-[13].

In [14]-[17], standard PBIL with single popu-
lation and fixed learning rate was used to design
power system controllers known as power system
stabilizers (PSSs) for power systems. PBIL algo-
rithm has given promising results in these papers.

The main purpose of a PSS is to damp low fre-
quency oscillations arising from small and/or large

 – 223
DOI 10.2478/jaiscr-2014-0015

216 Folly K.

disturbances in the power system. Without this de-
vice, a small disturbance may lead the system to
instability and eventually collapse [14]-[18].

Recently, some authors have reported that PBIL
suffers from diversity loss making the algorithm to
converge to local optima [19]-[21]. The main rea-
son for this is because of the fixed learning rate used
in the standard PBIL. This fixed learning rate may
not be as effective in dynamic environment to main-
tain the required trade-off between exploration and
exploitation [22]-[24]. Also, the use of one prob-
ability vector (PV) to represent the whole popula-
tion may reduce the diversity in the population and
thereby degrade the global search ability of the al-
gorithm [25].

Maintaining the diversity in PBIL’s population
is directly linked to the learning rate [19]. In [22],
the authors investigated the effect of learning rate
on the performance of PBIL. It was shown that us-
ing adaptive learning rate where the learning rate
starts with a very small value and increases mono-
tonically with the generation provides better results
as compared to using a fixed learning rate. In [23], a
hyper-learning scheme is proposed for PBIL in dy-
namic environment where the learning rate is tem-
porarily raised whenever, the environment changes.
In [24], opposition-based computing is used to alter
the probability update rule with a more advanced
mutation rule. However, the authors introduce new
parameters which increase the complexity of the al-
gorithm. In [25], adaptive updating of the learn-
ing rate was used where the learning rate varies ac-
cording to the characteristics of specific search pro-
cess. Maintaining the diversity in PBIL’s popula-
tion was achieved through the use of multiple prob-
ability vectors where every individual uses differ-
ent probability vectors to generate its own children.
In [26], multi-population PBIL is used to solve dy-
namic optimization problems. The ideas of paral-
lel PBIL and dual PBIL are introduced. In paral-
lel PBIL, the population is divided into two parts.
Two probability vectors (PVs) are then used. One
of these PVs is initialized to 0.5 and the other PV
is randomly initialized. In Dual PBIL, the idea of
complementary or duality is introduced and the PVs
are initialized to complement each other

In this paper, the idea of parallel PBIL (PPBIL)
using multi-population where both PVs are initial-
ized to 0.5 is explored. The proposed approach is

applied to a power system controller design. The
effectiveness of the proposed algorithm is demon-
strated by comparing it to the Adaptive PBIL (AP-
BIL) introduced in [19], [22] and the standard PBIL
(SPBIL) with fixed learning rate [14]-[17]. Simu-
lation results show that the parallel PBIL (PPBIL)
based on two-population is as effective as the Adap-
tive PBIL (APBIL) and performs better than the
standard PBIL (SPBIL).

2 Overview of PBIL

PBIL is a technique that combines aspects of GAs
and simple competitive learning derived from Arti-
ficial Neural Networks [1], [3], [12]-[13]. PBIL be-
longs to the family of Estimation of Distribution Al-
gorithms (EDAs), which use the probability (or pro-
totype) vector (PV) to generate sample solutions.
There is no crossover operator in PBIL; instead a
single probability vector is updated using solution
with the highest fitness values [16]. Initially, the
values of the probability vector are set to 0.5 to
ensure that the probability of generating 0 or 1 is
equal. As the search progresses, these values are
moved away from 0.5, towards either 0.0 or 1.0.

Like in GA, mutation is also used in PBIL to
maintain diversity. In this paper, the mutation is
performed on the probability vector rather than on
the sample solutions. A forgetting factor is used to
relax the probability vector toward a neutral value
of 0.5 [12], [14]-[17].

A summary of the PBIL used in this paper is given
below [15]-[17]:

Step 1. Initialize element of the probability vector
(PV) to 0.5 to ensure uniformly-random bit strings.

Step 2. Generate a population of uniformly-random
bit strings and comparing it element-by-element
with the PV. Wherever an element of the PV is
greater than the corresponding random element, a
“1’ is generated, otherwise a ‘0’ is generated.

Step 3. Interpret each bit string as a solution to the
problem and evaluate its merit in order to identify
the ”Best”.

Step 4. Adjust PV by slightly increasing PV (i) to
favor the generation of bit strings which resemble
“Best”, if Best (i) = 1 and decrease PV(i) if Best(i)
= 0.

217Folly K.

disturbances in the power system. Without this de-
vice, a small disturbance may lead the system to
instability and eventually collapse [14]-[18].

Recently, some authors have reported that PBIL
suffers from diversity loss making the algorithm to
converge to local optima [19]-[21]. The main rea-
son for this is because of the fixed learning rate used
in the standard PBIL. This fixed learning rate may
not be as effective in dynamic environment to main-
tain the required trade-off between exploration and
exploitation [22]-[24]. Also, the use of one prob-
ability vector (PV) to represent the whole popula-
tion may reduce the diversity in the population and
thereby degrade the global search ability of the al-
gorithm [25].

Maintaining the diversity in PBIL’s population
is directly linked to the learning rate [19]. In [22],
the authors investigated the effect of learning rate
on the performance of PBIL. It was shown that us-
ing adaptive learning rate where the learning rate
starts with a very small value and increases mono-
tonically with the generation provides better results
as compared to using a fixed learning rate. In [23], a
hyper-learning scheme is proposed for PBIL in dy-
namic environment where the learning rate is tem-
porarily raised whenever, the environment changes.
In [24], opposition-based computing is used to alter
the probability update rule with a more advanced
mutation rule. However, the authors introduce new
parameters which increase the complexity of the al-
gorithm. In [25], adaptive updating of the learn-
ing rate was used where the learning rate varies ac-
cording to the characteristics of specific search pro-
cess. Maintaining the diversity in PBIL’s popula-
tion was achieved through the use of multiple prob-
ability vectors where every individual uses differ-
ent probability vectors to generate its own children.
In [26], multi-population PBIL is used to solve dy-
namic optimization problems. The ideas of paral-
lel PBIL and dual PBIL are introduced. In paral-
lel PBIL, the population is divided into two parts.
Two probability vectors (PVs) are then used. One
of these PVs is initialized to 0.5 and the other PV
is randomly initialized. In Dual PBIL, the idea of
complementary or duality is introduced and the PVs
are initialized to complement each other

In this paper, the idea of parallel PBIL (PPBIL)
using multi-population where both PVs are initial-
ized to 0.5 is explored. The proposed approach is

applied to a power system controller design. The
effectiveness of the proposed algorithm is demon-
strated by comparing it to the Adaptive PBIL (AP-
BIL) introduced in [19], [22] and the standard PBIL
(SPBIL) with fixed learning rate [14]-[17]. Simu-
lation results show that the parallel PBIL (PPBIL)
based on two-population is as effective as the Adap-
tive PBIL (APBIL) and performs better than the
standard PBIL (SPBIL).

2 Overview of PBIL

PBIL is a technique that combines aspects of GAs
and simple competitive learning derived from Arti-
ficial Neural Networks [1], [3], [12]-[13]. PBIL be-
longs to the family of Estimation of Distribution Al-
gorithms (EDAs), which use the probability (or pro-
totype) vector (PV) to generate sample solutions.
There is no crossover operator in PBIL; instead a
single probability vector is updated using solution
with the highest fitness values [16]. Initially, the
values of the probability vector are set to 0.5 to
ensure that the probability of generating 0 or 1 is
equal. As the search progresses, these values are
moved away from 0.5, towards either 0.0 or 1.0.

Like in GA, mutation is also used in PBIL to
maintain diversity. In this paper, the mutation is
performed on the probability vector rather than on
the sample solutions. A forgetting factor is used to
relax the probability vector toward a neutral value
of 0.5 [12], [14]-[17].

A summary of the PBIL used in this paper is given
below [15]-[17]:

Step 1. Initialize element of the probability vector
(PV) to 0.5 to ensure uniformly-random bit strings.

Step 2. Generate a population of uniformly-random
bit strings and comparing it element-by-element
with the PV. Wherever an element of the PV is
greater than the corresponding random element, a
“1’ is generated, otherwise a ‘0’ is generated.

Step 3. Interpret each bit string as a solution to the
problem and evaluate its merit in order to identify
the ”Best”.

Step 4. Adjust PV by slightly increasing PV (i) to
favor the generation of bit strings which resemble
“Best”, if Best (i) = 1 and decrease PV(i) if Best(i)
= 0.

PARALLEL PBIL APPLIED TO . . .

Step 5. Apply the mutation and generate a new pop-
ulation reflecting the modified distribution. Stop if
satisfactory solution is found. Otherwise, go to step
2.

The update rule of the probability vector is given as
follows:

(1)

where 0<LR?1 is the learning rate that determines
the distance the probability vector is pushed for
each iteration, PV is the probability vector, g is the
number of iterations or generations, i denotes each
locus (i = 1, 2. . . , l), and l is the binary encoding
length, B is the best solution.

Note that the mutation used for the PBIL adopted in
this paper is slightly different from the one initially
used in [1], [3]. The main idea in this paper is to re-
lax the PV towards the neutral 0.5. The pseudocode
for PBIL is shown in Fig. 1.

image1.png

Figure 1. Pseudocode for standard PBIL

It should be mentioned that the probability vec-
tor guides the search, which produces the next sam-
ple point from which learning takes place. The
learning rate determines the speed at which the
probability vector is shifted to resemble the best
(fittest) solution vector. If the learning rate is fixed
during the run (as it is the case with standard PBIL),

it cannot provide the flexibility needed to achieve
a trade-off between exploration and exploitation.
Therefore, there is a possibility of premature con-
vergence. Diversity in the population can be lost if
the degree of exploitation is too high compared to
the degree of exploration.

For the algorithm to perform optimally, it is crucial
that diversity is not lost early in the run and that bal-
ance between exploration and exploitation is main-
tained as long as possible. Two methods that can be
used to increase diversity will be discussed in the
next section.

3 Overview of Diversity Increasing
PBILs

3.1 Parallel PBIL

For the Parallel PBIL (PPBIL), two popula-
tions are used with two probability vectors (PV1
and PV2). Each probability vector is initialized
to 0.5 and sampled to generate solutions indepen-
dently from each other. The PVs are updated inde-
pendently according to the best solution generated
by each population. Initially, each probability vec-
tor has equal sample solutions. That is, the total
population is divided by 2 and one half is assigned
to each PV. As the run progresses, the probability
vector (PV) that performs better is allowed to in-
crease its share of samples. The sample sizes of the
probability vectors are slightly adapted within the
range [popmin popmax] = [0.4*pop 0.6*pop] accord-
ing to their relative performances. The probability
that outperforms the other is increased by a constant
value ∆ = LR*pop, where LR is the learning rate.
For the PPBIL used in this paper, the learning rate
was selected to be 0.1 for both probability vectors.
Fig. 2 shows the pseudocode of PPBIL.

3.2 PBIL with Adaptive Learning Rate

The learning rate in the standard PBIL is usu-
ally fixed to a specific value. This means that the
user has to spend a lot of time and try several values
of the learning rate before deciding on the “best”
value to use. If the value of the learning rate is
too high, the algorithm will learn towards the best
too quickly. This may lead to premature conver-
gence and a lost of the diversity earlier in the run.
In this case, the algorithm could converge to local

diversity in the population and thereby degrading
the global search ability of the algorithm [25].

Maintaining the diversity in PBIL’s population is
directly linked to the learning rate. In [22], the
authors investigated the effect of learning rate on
the performance of PBIL. It was shown that using
adaptive learning rate where the learning rate starts
with a very small value and increases
monotonically with the generation provides better
results as compared to using a fixed learning rate.
In [24], opposition-based computing is used to alter
the probability update rule with a more advanced
mutation rule. However, the authors introduce new
parameters which increase the complexity of the
algorithm. In [25], adaptive updating of the learning
rate was used where the learning rate varies
according to the characteristics of specific search
process. Maintaining the diversity in PBIL’s
population was achieved through the use of
multiple probability vectors where every individual
uses different probability vectors to generate its
own children. In [26], multi-population PBIL is
used to solve dynamic optimization problems. The
ideas of parallel PBIL and dual PBIL are
introduced. In parallel PBIL, the population is
divided into two parts. Two probability vectors
(PVs) are then used. One of these PVs is initialized
to 0.5 and the other PV is randomly initialized. In
Dual PBIL, the idea of complementary or duality is
introduced and the PVs are initialized to
complement each other

In this paper, the idea of parallel PBIL (PPBIL)
using multi-population where both PVs are
initialized to 0.5 is explored. The proposed
approach is applied to a power system controller
design. The effectiveness of the proposed algorithm
is demonstrated by comparing it to the Adaptive
PBIL (APBIL) introduced in [22] and the standard
PBIL (SPBIL) with fixed learning rate. Simulation
results show that the parallel PBIL based on multi-
population is as effective as APBIL and performs
better than the standard PBIL.

2 Overview of PBIL
PBIL is a technique that combines aspects of

GA and simple competitive learning derived from
Artificial Neural Networks [13], [14]. PBIL belongs
to the family of Estimation of Distribution
Algorithms (EDAs), which use the probability (or
prototype) vector (PV) to generate sample
solutions. There is no crossover operator in PBIL;
instead a single probability vector is updated using
solution with the highest fitness values [16].
Initially, the values of the probability vector are set
to 0.5 to ensure that the probability of generating 0
or 1 is equal. As the search progresses, these values
are moved away from 0.5, towards either 0.0 or 1.0.

Like in GA, mutation is also used in PBIL to
maintain diversity. In this paper, the mutation is
performed on the probability vector rather than on
the sample solutions. A forgetting factor is used to

relax the probability vector toward a neutral value
of 0.5 [15], [20]-[23].

 A summary of the PBIL used in this paper is
given below [20]-[23]:

Step 1. Initialize element of the probability vector
(PV) to 0.5 to ensure uniformly-random bit
strings.

Step2. Generate a population of uniformly-random
bit strings and comparing it element-by-
element with the PV. Wherever an element
of the PV is greater than the corresponding
random element, a “1' is generated,
otherwise a ‘0’ is generated.

Step 3. Interpret each bit string as a solution to the
problem and evaluate its merit in order to
identify the "Best".

Step 4. Adjust PV by slightly increasing PV (i) to
favor the generation of bit strings which
resemble “Best”, if Best (i) = 1 and
decrease PV(i) if Best(i) = 0.

Step 5. Apply the mutation and generate a new
population reflecting the modified
distribution. Stop if satisfactory solution is
found. Otherwise, go to step 2.

The update rule of the probability vector is
given as follows:

)(*)()1()1(gBLRgPVLRgPV iii 

 (1)

where 0≤LR≤1 is the learning rate that determines
the distance the probability vector is pushed for
each iteration, PV is the probability vector, g is the
number of iterations or generations, i denotes each
locus (i = 1, 2…, l), and l is the binary encoding
length, B is the best solution.

The mutation used for the PBIL adopted in this
paper is slightly different from the one initially used
in [13], [14]. The main idea is to relax the PV
towards the neutral 0.5. The pseudocode for PBIL
is shown in Fig. 1.

It should be mentioned that the probability
vector guides the search, which produces the next
sample point from which learning takes place. The
learning rate determines the speed at which the
probability vector is shifted to resemble the best
(fittest) solution vector. If the learning rate is fixed
during the run (as it is the case with standard
PBIL), it cannot provide the flexibility needed to
achieve a trade-off between exploration and
exploitation. Therefore, there is a possibility of
premature convergence. Diversity in the population
can be lost if the degree of exploitation is too high
compared to the degree of exploration. For the
algorithm to perform optimally, it is crucial that
diversity is not lost early in the run and that balance
between exploration and exploitation is maintained.
In the next section, two methods that can be used to

increase diversity will be discussed in the next
section.

Figure 1: Pseudocode for standard PBIL

3 Overview of Diversity
Increasing PBILs

3.1 Parallel PBIL

For the Parallel PBIL (PPBIL), two populations are
used with two probability vectors (PV1 and PV2).
Each probability vector is initialized to 0.5 and
sampled to generate solutions independently from
each other. The PVs are updated independently
according to the best solution generated by each.
Initially, each probability vector has equal sample
solutions. That is, the total population is divided by
2 and one half assigned to each PV. As the run
progresses, the probability vector (PV) that
performs better is allowed to increase its share of
samples. The sample sizes of the probability vectors
are slightly adapted within the range [popmin
popmax] = [0.4*pop 0.6*pop] according to their
relative performances. The probability that
outperforms the other is increased by a constant
value  = LR*pop, where LR is the learning rate.
For the PPBIL used in this paper, the learning rate
was selected to be 0.1 for both probability vectors.
Fig. 2 shows the pseudocode of PPBIL.

3.2 PBIL with Adaptive Learning
Rate

The learning rate in the standard PBIL is usually
fixed to a specific value. This means that the user
has to spend a lot of time and try several values of
the learning rate before deciding on the “best” value
to use. If the learning rate value is too high, the
algorithm will learn towards the best too quickly.
This may lead to premature convergence and the
lost of the diversity earlier in the run. The algorithm

could converge to local optima. If on the other
hand, the learning rate is too small, the algorithm
may be slow to converge and will require more
time to find the optimal solution. This may be
computationally costly and a waste of resources. It
is therefore crucial that the learning rate provides a
trade-off between exploration and exploitation.

To develop the adaptive learning algorithm, we
assume that at the start of the run, diversity will be
needed for the algorithm to be able to explore
thoroughly the search space. Therefore, at the start,
a very small value of learning rate (LR 0) is
selected.

This means that at the beginning of the run, the
emphasis is placed on the exploration rather than
exploitation. As the run progresses and good
individuals start to emerge, the emphasis is shifted
gradually from exploration to exploitation. The
learning rate is allowed to increase slowly and
linearly according to the change in generation as
given in the following equation:

maxLR(i) LR* G(i) / G (2)

 where

 LR(i) is the learning rate at the ith generation

LR is the final learning rate

G(i) is the ith generation

Gmax is the maximum generation allowed

Figure 2: Pseudocode of PPBIL

Begin
g:= 0;
//initialize probability vector
for i:=1 to l, do PVi

0 = 0.5;
endfor;
while not termination condition do
generate sample S(g) from (PV(g) , pop.)
Evaluate samples S(g)
Select best solution B(g)
// update probability vector PV(g) toward best
solution according to (1)
//mutate PV(g)
Generate a set of new samples using the new
probability vector
g=g+1
end while // e.g., g>Gmax

Begin
g:= 0;
//initialize probability vector
for i:=1 to l, do PVi1

0 = PVi2
0 = 0.5;

endfor;
// initialize the sizes of the probability vectors
such that: pop1= pop 2= pop/2
while not termination condition do
generate sample S1(g) from (PV1(g) , pop1.)
generate sample S2(g) from (PV2(g) , pop2.)
Evaluate samples (S1(g), S2(g))
Select best solutions B1(g)and B2(g)
// update probability vectors PV1(g) and PV2(g)
toward bests solution B1(g)and B2(g) according
to (1)
If f(B1(g))> f(B2(g))
then pop1= min [(pop1 + ) popmax]
If f(B1(g))< f(B2(g))
then pop1= max [(pop1 -) popmin]
pop2= pop-pop1
//mutate PV1(g) and PV2(g)
g=g+1
end while // e.g., g>Gmax

218 Folly K.

optima. If on the other hand, the learning rate is too
small, the algorithm may be slow to converge and
will require more time to find the optimal solution.
This may be computationally costly and a waste of
resources. It is therefore crucial that the learning
rate provides a trade-off between exploration and
exploitation.

To develop the adaptive learning algorithm, we
assume that at the start of the run, diversity will be
needed for the algorithm to be able to explore thor-
oughly the search space. Therefore, at the start, a
very small value of learning rate (LR≈ 0) is selected
[19], [22].

This means that at the beginning of the run, the
emphasis is placed on the exploration rather than
exploitation. As the run progresses and good in-
dividuals start to emerge, the emphasis is shifted
gradually from exploration to exploitation. The
learning rate is allowed to increase slowly and lin-
early according to the change in generation as given
in the following equation:

LR(i) = LR∗G(i)/Gmax (2)

where

LR(i) is the learning rate at the ith generation

LR is the final learning rate

G(i) is the ith generation

Gmax is the maximum generation allowed

image2.png

Figure 2. Pseudocode of PPBIL

The pseudocode for APBIL is similar to that of
standard PBIL except that the learning rate is now
varying according to Eq. 2.

4 System Model and Operating
Conditions

The power system considered in this paper is
the two-area four-machine power system as shown
in Fig. 3 [18], [27]. The system consists of two sim-
ilar areas connected by a tie-line. Each area consists
of two coupled conventional generator units, each
generator is rated 900 MVA and 20 kV. The genera-
tors are modeled as round-rotor generators and rep-
resented by the detailed six order differential equa-
tions. The machines are equipped with simple ex-
citer systems [14]. The dynamics of the system are
described by a set of nonlinear differential equa-
tions. However, for the purpose of controller de-
sign, these equations are linearized around the nom-
inal operating conditions as given below[15], [16]:

image3.png

Figure 3. Power system model

(3)

where

x are the state variables, y the system output and u
the control input. Ao, Bo, Co, Do are constant matri-
ces of appropriate dimensions.

Three operating conditions were considered during
the design of the controller. These are listed in Ta-
ble 1. It is known that the system exhibits two local
modes one in area 1 and the other in area 2 and one
inter-area mode. However, for the purpose of this
study only the inter-area modes will be considered
since they are the most difficult to control.

increase diversity will be discussed in the next
section.

Figure 1: Pseudocode for standard PBIL

3 Overview of Diversity
Increasing PBILs

3.1 Parallel PBIL

For the Parallel PBIL (PPBIL), two populations are
used with two probability vectors (PV1 and PV2).
Each probability vector is initialized to 0.5 and
sampled to generate solutions independently from
each other. The PVs are updated independently
according to the best solution generated by each.
Initially, each probability vector has equal sample
solutions. That is, the total population is divided by
2 and one half assigned to each PV. As the run
progresses, the probability vector (PV) that
performs better is allowed to increase its share of
samples. The sample sizes of the probability vectors
are slightly adapted within the range [popmin
popmax] = [0.4*pop 0.6*pop] according to their
relative performances. The probability that
outperforms the other is increased by a constant
value  = LR*pop, where LR is the learning rate.
For the PPBIL used in this paper, the learning rate
was selected to be 0.1 for both probability vectors.
Fig. 2 shows the pseudocode of PPBIL.

3.2 PBIL with Adaptive Learning
Rate

The learning rate in the standard PBIL is usually
fixed to a specific value. This means that the user
has to spend a lot of time and try several values of
the learning rate before deciding on the “best” value
to use. If the learning rate value is too high, the
algorithm will learn towards the best too quickly.
This may lead to premature convergence and the
lost of the diversity earlier in the run. The algorithm

could converge to local optima. If on the other
hand, the learning rate is too small, the algorithm
may be slow to converge and will require more
time to find the optimal solution. This may be
computationally costly and a waste of resources. It
is therefore crucial that the learning rate provides a
trade-off between exploration and exploitation.

To develop the adaptive learning algorithm, we
assume that at the start of the run, diversity will be
needed for the algorithm to be able to explore
thoroughly the search space. Therefore, at the start,
a very small value of learning rate (LR 0) is
selected.

This means that at the beginning of the run, the
emphasis is placed on the exploration rather than
exploitation. As the run progresses and good
individuals start to emerge, the emphasis is shifted
gradually from exploration to exploitation. The
learning rate is allowed to increase slowly and
linearly according to the change in generation as
given in the following equation:

maxLR(i) LR* G(i) / G (2)

 where

 LR(i) is the learning rate at the ith generation

LR is the final learning rate

G(i) is the ith generation

Gmax is the maximum generation allowed

Figure 2: Pseudocode of PPBIL

Begin
g:= 0;
//initialize probability vector
for i:=1 to l, do PVi

0 = 0.5;
endfor;
while not termination condition do
generate sample S(g) from (PV(g) , pop.)
Evaluate samples S(g)
Select best solution B(g)
// update probability vector PV(g) toward best
solution according to (1)
//mutate PV(g)
Generate a set of new samples using the new
probability vector
g=g+1
end while // e.g., g>Gmax

Begin
g:= 0;
//initialize probability vector
for i:=1 to l, do PVi1

0 = PVi2
0 = 0.5;

endfor;
// initialize the sizes of the probability vectors
such that: pop1= pop 2= pop/2
while not termination condition do
generate sample S1(g) from (PV1(g) , pop1.)
generate sample S2(g) from (PV2(g) , pop2.)
Evaluate samples (S1(g), S2(g))
Select best solutions B1(g)and B2(g)
// update probability vectors PV1(g) and PV2(g)
toward bests solution B1(g)and B2(g) according
to (1)
If f(B1(g))> f(B2(g))
then pop1= min [(pop1 + ) popmax]
If f(B1(g))< f(B2(g))
then pop1= max [(pop1 -) popmin]
pop2= pop-pop1
//mutate PV1(g) and PV2(g)
g=g+1
end while // e.g., g>Gmax

The pseudocode for APBIL is similar to that of
standard PBIL except that the learning rate is now
varying according to (2).

4 System Model and Operating
Conditions
The power system considered in this paper is the
two-area four-machine power system as shown in
Fig. 3 [30]. Each machine is represented by the
detailed six order differential equations. The
machines are equipped with simple exciter systems
[16]. The dynamics of the system are described by a
set of nonlinear differential equations. The system
consists of two similar areas connected by a tie-
line. Each area consists of two coupled
conventional generator units, each generator is
rated 900 MVA and 20 kV. The generators are
modeled as round-rotor generators and represented
by the detailed six order differential equations. The
dynamics of the system are described by a set of
nonlinear differential equations. However, for the
purpose of controller design these equations are
linearized around the nominal operating conditions.

The linearized equation of the system is given
by [15], [16]

uDxCy
uBxAx

oo

oo




 (3)

where

x are the state variables, y the system output and
u the control input. Ao, Bo, Co, Do are constant
matrices of appropriate dimensions.

Three operating conditions are considered
during the design of the controller. These are listed
in Table 1. The system exhibits two local modes
one in area 1 and the other in area 2 and one inter-
area mode. However, for the purpose of this study
only the inter-area modes will be considered since
they are the most difficult to control.

Case 1 is the light load condition, where about
200 MW of real power is transferred from area 1 to
area 2. The system is stable for this case as can be
seen by the negative value of the real part of the
eigenvalue. Case 2 is the nominal condition, under
this operating condition, there is a transfer of 400
MW power from area 1 to area 2. The system is
unstable for this case, since the real part of the
eigenvalue is positive. Case three is the heavy load
condition where about 500 MW of power is
transferred from area 1 to area 2.

Matlab Power System Toolbox (PST) was used for
all the simulations.

5 Objective Function and
Controller Design

5.1 Objective Function
As can be seen in Table I, except for the light load
condition, the system is unstable for the nominal
and heavy operating conditions. This instability can

TABLE I. OPERATING CONDITIONS

cases Active
Power Flow

(MW)

Eigenvalues

1 200 -0.35j3.92

2 400 0.0096j3.84

3 500 0.148j3.09

Figure 3: Power system model

be explained by the positive values of the real part
of the eigenvalues. These oscillations should be
damped for the system to perform adequately.

The purpose of the design is to optimize the
parameters of the generator excitation controls (i.e.,
PSS) simultaneously and in a coordinated and
decentralized manner such that adequate damping is
provided to the system for the operating conditions
considered in this paper, while keeping the structure
of the PSS as simple as possible. The structure of
the widely used conventional PSS was adopted here
[30]. The objective function used is given in (4)

))max(min(ijJ  (4)

i = 1, 2, …, n eigenvalues
j = 1, 2, …, m operating conditions

where
22
ijij

ij
ij









 is the damping

ratio of the ith closed – loop eigenvalue of the

The pseudocode for APBIL is similar to that of
standard PBIL except that the learning rate is now
varying according to (2).

4 System Model and Operating
Conditions
The power system considered in this paper is the
two-area four-machine power system as shown in
Fig. 3 [30]. Each machine is represented by the
detailed six order differential equations. The
machines are equipped with simple exciter systems
[16]. The dynamics of the system are described by a
set of nonlinear differential equations. The system
consists of two similar areas connected by a tie-
line. Each area consists of two coupled
conventional generator units, each generator is
rated 900 MVA and 20 kV. The generators are
modeled as round-rotor generators and represented
by the detailed six order differential equations. The
dynamics of the system are described by a set of
nonlinear differential equations. However, for the
purpose of controller design these equations are
linearized around the nominal operating conditions.

The linearized equation of the system is given
by [15], [16]

uDxCy
uBxAx

oo

oo




 (3)

where

x are the state variables, y the system output and
u the control input. Ao, Bo, Co, Do are constant
matrices of appropriate dimensions.

Three operating conditions are considered
during the design of the controller. These are listed
in Table 1. The system exhibits two local modes
one in area 1 and the other in area 2 and one inter-
area mode. However, for the purpose of this study
only the inter-area modes will be considered since
they are the most difficult to control.

Case 1 is the light load condition, where about
200 MW of real power is transferred from area 1 to
area 2. The system is stable for this case as can be
seen by the negative value of the real part of the
eigenvalue. Case 2 is the nominal condition, under
this operating condition, there is a transfer of 400
MW power from area 1 to area 2. The system is
unstable for this case, since the real part of the
eigenvalue is positive. Case three is the heavy load
condition where about 500 MW of power is
transferred from area 1 to area 2.

Matlab Power System Toolbox (PST) was used for
all the simulations.

5 Objective Function and
Controller Design

5.1 Objective Function
As can be seen in Table I, except for the light load
condition, the system is unstable for the nominal
and heavy operating conditions. This instability can

TABLE I. OPERATING CONDITIONS

cases Active
Power Flow

(MW)

Eigenvalues

1 200 -0.35j3.92

2 400 0.0096j3.84

3 500 0.148j3.09

Figure 3: Power system model

be explained by the positive values of the real part
of the eigenvalues. These oscillations should be
damped for the system to perform adequately.

The purpose of the design is to optimize the
parameters of the generator excitation controls (i.e.,
PSS) simultaneously and in a coordinated and
decentralized manner such that adequate damping is
provided to the system for the operating conditions
considered in this paper, while keeping the structure
of the PSS as simple as possible. The structure of
the widely used conventional PSS was adopted here
[30]. The objective function used is given in (4)

))max(min(ijJ  (4)

i = 1, 2, …, n eigenvalues
j = 1, 2, …, m operating conditions

where
22
ijij

ij
ij









 is the damping

ratio of the ith closed – loop eigenvalue of the

219Folly K.

optima. If on the other hand, the learning rate is too
small, the algorithm may be slow to converge and
will require more time to find the optimal solution.
This may be computationally costly and a waste of
resources. It is therefore crucial that the learning
rate provides a trade-off between exploration and
exploitation.

To develop the adaptive learning algorithm, we
assume that at the start of the run, diversity will be
needed for the algorithm to be able to explore thor-
oughly the search space. Therefore, at the start, a
very small value of learning rate (LR≈ 0) is selected
[19], [22].

This means that at the beginning of the run, the
emphasis is placed on the exploration rather than
exploitation. As the run progresses and good in-
dividuals start to emerge, the emphasis is shifted
gradually from exploration to exploitation. The
learning rate is allowed to increase slowly and lin-
early according to the change in generation as given
in the following equation:

LR(i) = LR∗G(i)/Gmax (2)

where

LR(i) is the learning rate at the ith generation

LR is the final learning rate

G(i) is the ith generation

Gmax is the maximum generation allowed

image2.png

Figure 2. Pseudocode of PPBIL

The pseudocode for APBIL is similar to that of
standard PBIL except that the learning rate is now
varying according to Eq. 2.

4 System Model and Operating
Conditions

The power system considered in this paper is
the two-area four-machine power system as shown
in Fig. 3 [18], [27]. The system consists of two sim-
ilar areas connected by a tie-line. Each area consists
of two coupled conventional generator units, each
generator is rated 900 MVA and 20 kV. The genera-
tors are modeled as round-rotor generators and rep-
resented by the detailed six order differential equa-
tions. The machines are equipped with simple ex-
citer systems [14]. The dynamics of the system are
described by a set of nonlinear differential equa-
tions. However, for the purpose of controller de-
sign, these equations are linearized around the nom-
inal operating conditions as given below[15], [16]:

image3.png

Figure 3. Power system model

(3)

where

x are the state variables, y the system output and u
the control input. Ao, Bo, Co, Do are constant matri-
ces of appropriate dimensions.

Three operating conditions were considered during
the design of the controller. These are listed in Ta-
ble 1. It is known that the system exhibits two local
modes one in area 1 and the other in area 2 and one
inter-area mode. However, for the purpose of this
study only the inter-area modes will be considered
since they are the most difficult to control.

PARALLEL PBIL APPLIED TO . . .

Three cases are listed in Table 1. Case 1 is the light
load condition, where about 200 MW of real power
is transferred from area 1 to area 2. The system
is stable for this case as can be seen by the negative
value of the real part of the eigenvalue. Case 2 is the
nominal condition, under this operating condition,
there is a transfer of 400 MW power from area 1 to
area 2. The system is unstable for this case, since
the real part of the eigenvalue is positive. Case three
is the heavy load condition where about 500 MW of
power is transferred from area 1 to area 2.

Matlab Power System Toolbox (PST) was used for
all the simulations [27].

Table 1. Operating Conditions

cases Active
Power
Flow
(MW)

Eigenvalues

1 200 -0.35±j3.92
2 400 0.0096±j3.84
3 500 0.148±j3.09

5 Objective Function and Con-
troller Design

5.1 Objective Function

As can be seen in Table 1, except for the light load
condition, the system is unstable for the nominal
and heavy operating conditions. This instability can
be explained by the positive values of the real part
of the eigenvalues. These oscillations should be
damped for the system to perform adequately. The
purpose of the controller design is to optimize the
parameters of the power system stabilizers (iPSSs)
simultaneously and in a coordinated and decentral-
ized manner such that adequate damping is pro-
vided to the system for all the operating conditions
considered in this paper, while keeping the structure
of the PSS as simple as possible.

The objective function used is given in Eq. (4).

J = max(min(ζi j)) (4)

i = 1, 2, . . . , n eigenvalues

j = 1, 2, . . . , m operating conditions

where ζi j =
−σi j√
σ2

i j+ω2
i j

is the damping ratio of the

ith closed – loop eigenvalue of the jth operating con-
dition. σi j is the real part of the eigenvalue and ωi j

is the frequency.

5.2 Controller Design

The structure of the widely used conventional
PSS [18], [27] was adopted here. The structure of
the controller to be designed is as shown in Eq. (5).
It is required to simultaneously optimize the param-
eters of the controller such that adequate damping is
provided for a wide range of operating conditions.
In total, 10 parameters are to be optimized (i.e., 5
parameters for each area). The washout parameter
Tw is not critical and has not been optimized but was
selected to be 10 s.

K(s) = Kp

(
sTw

1+ sTw

)(
1+ sT1

1+ sT2

)(
1+ sT3

1+ sT4

)
(5)

In Eq. (5), T1to T4 represent the time constants
that need to be optimized to obtain adequate damp-
ing.

The parameter’s configuration that was used in
SPBIL is as follows:

Population: 10

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

The parameter’s configuration that was used in
APBIL is as follows:

Population: 10

Generation: 400

Initial Learning rate: 0.0005

Final Learning rate: 0.2

Forgetting factor: 0.005

The parameter’s configuration that was used in
PPBIL is as follows:

Population: 10

Initial population for PV1: 5

Initial population for PV2: 5

Maximum population: 6

Minimum population: 4

220 Folly K.

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

For all the controllers, the parameter domain is as
follows:

0?Kp?30

0? T1,T3?1

0.010? T2, T4 ? 0.3

6 Simulation Results

6.1 Fitness Values and Convergence Rate

In order to investigate the effectiveness of the
PBIL algorithms, various aspects of the algorithms
are compared such as best fitness values, mean fit-
ness values and worst fitness values and the capa-
bility of the algorithm in maintaining the diversity
in the population. For each algorithm, several in-
dependent runs were performed and the curves pro-
viding the best fitness values are selected and shown
in Figs. 4-6.

Table 2. Best, MEAN and Worst Fitness Values

Fitness SPBIL APBIL PPBIL
Best 0.484 0.514 0.502
Mean 0.434 0.383 0.434
Worst 0.166 0.090 0.124

Figs. 4-6 show the convergence rate of SPBIL,
APBIL and PPBIL, respectively. It can be seen that
APBIL and PPBIL converge to higher fitness val-
ues of 0.514 and 0.502, respectively, compared to
0.484 for SPBIL. However, APBIL converged to a
slightly higher value of 0.5140 compare to 0.502 for
PPBIL. From the simulation results, it can be seen
that APBIL has more diversity in the population at
the middle of the run between generation 100 and
200 than PPBIL and SPBIL. This can be attributed
to the small value of learning rate, at these genera-
tions. Small learning rate increases the exploration
of the algorithm and thereby introduces more diver-
sity in the population at these generations. Unlike
SPBIL which diversity is much more concentrated
at the beginning of the run (i.e., between genera-
tion 1 and generation 150) , the diversity in PPBIL
is somehow spread across all generations. For ex-
ample, between generations 300 to 400, SPBIL and

APBIL have converged (i.e., almost no diversity).
On the other, PPBIL still has some diversity. There-
fore, it can still explore the search space although at
a limited pace.

Table 3. Number of Function Evaluations To Find
The Best Solutions

SPBIL 3810
PPBIL 10610
APBIL 15950

Table 2 shows the comparison between the best,
mean and worst, fitness values. It can be seen that
on average SPBIL and PPBIL have practically the
same fitness. The mean for PPBIL and SPBIL (ap-
proximately 0.434) is higher than that of APBIL
(0.383). The main reason for this is that APBIL
has much more spread, with the worst fitness value
at 0.09 compared to 0.124 for PPBIL and 0.166 for
SPBIL.

In terms of the distance between the best and the
worst fitness values, APBIL has the highest distance
(0.424), followed by PPBIL (0.378) and then SP-
BIL (0.318). This suggests that both APBIL and
PPBIL have more diversity in their populations than
SPBIL.

Table 3 shows the number of functions evaluations
for each algorithm before the best fitness was found.
It can be seen that SPBIL has the lowest function
evaluations, APBIL has the highest function eval-
uations, and PPBIL is somehow in the middle. In
terms of the speed in finding the best fitness value,
SPBIL is better and APBIL is the worst. However,
the best value found by SPBIL is lower than the best
value found by APBIL and PPBIL. This suggests
that although SPBIL converges faster, it converges
to local optima, which may not be appropriate.

image4.png

Figure 4. SPBIL convergence rate

finding the best fitness value, SPBIL is better and
APBIL is the worst. However, the best value found
by SPBIL is lower than the best value found by
APBIL and PPBIL. This suggest that although
SPBIL converges faster, it converges to local
optima, which may not be appropriate.

TABLE II. BEST, MEAN AND WORST
FITNESS VALUES

Fitness SPBIL APBIL PPBIL

Best 0.484 0.514 0.502

Mean 0.434 0.383 0.434

Worst 0.166 0.090 0.124

.

TABLE III. NUMBER OF FUNCTION
EVALUATIONS TO FIND THE BEST SOLUTIONS

SPBIL 3810

PPBIL 10610

APBIL 15950

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

B
e

s
t
F

itn
e

s
s

Fig. 4: SPBIL convergence rate

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
es

t F
itn

es
s

Fig. 5: APBIL convergence rate

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
e

s
t F

itn
e

s
s

Fig. 6: PPBIL convergence rate

6.2 Eigenvalue Analysis
Table 4 shows the eigenvalues and damping
ratios in brackets of the closed-loop systems
with the three controllers. Although the system
has both local and inter-area modes, only the
inter-area modes are considered because they
are the most critical. It can be seen that PPBIL
and APBIL give better performances (i.e.,
better damping ratios) than SPBIL. However,
PPBIL provides slightly better damping than
APBIL.

TABLE IV. EIGENVALUES AND DAMPING RATIOS

Case
SPBIL

 ()

APBIL

 ()

PPBIL

 ()

1 -1.13 ± j2.04
(0. 48)

-1.54 ± j2.57
(0.51)

-1.53 ± j2.53
(0.52)

2 -0.778 ± j1.78
(0.44)

-1.26 ± j2.11
(0. 51)

-1.26 ± j2.08
(0. 52)

3 -0.582 ± j1.25
(0.42)

-1.15 ± j1.52
(0.61)

-1.14 ± j1.54
(0.60)

:eigenvalue, : damping ratio

Conclusion
Parallel PBIL based on multi-population that
uses two probability vectors has been shown to
increase the diversity in the population. This is
important to prevent premature convergence
that is inherent to the standard PBIL. The
effectiveness of the proposed approach is
assessed by comparing it to the Adaptive PBIL
(APBIL) and the standard PBIL (SPBIL). It is
shown that both the PPBIL and APBIL give
better performances in terms of improving the
damping of the system. They are able to
maintain the diversity in the poppulation
longer than the standard PBIL. In addition,

jth operating condition. ij is the real part of
the eigenvalue and ij is the frequency.

5.2 Controller Design
The structure of the controller to be designed is as
shown in (5). We are required to simultaneously
optimize the parameters of the controller such that
adequate damping is provided for a wide range of
operating conditions. In total, 10 parameters are to
be optimized (i.e., 5 parameters for each area). The
washout parameter Tw is not critical and has not
been optimized but was chosen to be 10 s.

31

2 4

11()
1 1 1

w
p

w

sT sTsTK s K
sT sT sT

   
         

 (5)

 In (5), T1 to T4 represent the time constants that
need to be optimized to obtain adequate damping.

The parameter’s configuration that was used in
SPBIL is as follows:

Population: 10

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

The parameter’s configuration that was used in
APBIL is as follows:

Population: 10

Generation: 400

Initial Learning rate: 0.0005

Final Learning rate: 0.2

Forgetting factor: 0.005

The parameter’s configuration that was used in
PPBIL is as follows:

Population: 10

Initial population for PV1: 5

Initial population for PV2: 5

Maximum population: 6

Minimum population: 4

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

For all the controllers, the parameter domain is
as follows:

0≤Kp≤30

0≤ T1,T3≤1

0.010≤ T2, T4 ≤ 0.3

6 Simulation Results

6.1 Fitness Values and
Convergence Rate

In order to investigate the effectiveness of the
PBIL algorithms, various aspects of the algorithms
are compared such as best fitness values, mean
fitness values and worst fitness values and the
capability of the algorithm in maintaining the
diversity in the population. For each algorithm,
several independent runs were performed and the
curves providing the best fitness values are selected
and shown in Figs. 4-6.

Figs. 4-6 show the convergence rate of SPBIL,
APBIL and PPBIL, respectively. It can be seen that
APBIL and PPBIL converge to higher fitness
values (0.514 and 0.502, respectively) compared to
SPBIL (0.484). However, APBIL converged to a
slightly higher value of 0.5140 compared to 0.502
for PPBIL. From the simulation results, it can be
seen that APBIL has more diversity in the
population at the middle of the run between
generation 100 and 200 than PPBIL and SPBIL.
This can be attributed to the small value of learning
rate, at these generations. Small learning rate
increases the exploration of the algorithm at these
generations and thereby introduces more diversity
in the population. Unlike SPBIL which diversity is
much more concentrated at the beginning of the run
between generation 1 and generation 150, the
diversity in PPBIL is somehow spread across all
generations. At generations 300 to 400 for example,
the SPBIL and APBIL have converged (i.e, almost
no diversity). On the other, PPBIL still has some
diversity. So it can still explore the search space
although at a limited pace.

Table 2 shows the comparison between the best,
mean and worst, fitness values. It can be seen that
on average SPBIL and PPBIL have practically the
same fitness. The mean for PPBIL and SPBIL
(approximately 0.434) is higher than that of APBIL
(0.383). The main reason for this is that APBIL has
much more spread, with the worst fitness value at
0.09 compared to 0.124 for PPBIL and 0.166 for
SPBIL.

In terms of the distance between the best and the
worst fitness values, APBIL has the highest
distance (0.424), followed by PPBIL (0.378) and
then SPBIL (0.318). This suggests that both APBIL
and PPBIL have more diversity in their populations
than SPBIL.

Table 3 shows the number of functions
evaluations for each algorithm before the best
fitness was found. It can be seen that that SPBIL
has the lowest function evaluations and APBIL has
the highest function evaluations, and PPBIL is
somehow in the middle. In terms of the speed in

jth operating condition. ij is the real part of
the eigenvalue and ij is the frequency.

5.2 Controller Design
The structure of the controller to be designed is as
shown in (5). We are required to simultaneously
optimize the parameters of the controller such that
adequate damping is provided for a wide range of
operating conditions. In total, 10 parameters are to
be optimized (i.e., 5 parameters for each area). The
washout parameter Tw is not critical and has not
been optimized but was chosen to be 10 s.

31

2 4

11()
1 1 1

w
p

w

sT sTsTK s K
sT sT sT

   
         

 (5)

 In (5), T1 to T4 represent the time constants that
need to be optimized to obtain adequate damping.

The parameter’s configuration that was used in
SPBIL is as follows:

Population: 10

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

The parameter’s configuration that was used in
APBIL is as follows:

Population: 10

Generation: 400

Initial Learning rate: 0.0005

Final Learning rate: 0.2

Forgetting factor: 0.005

The parameter’s configuration that was used in
PPBIL is as follows:

Population: 10

Initial population for PV1: 5

Initial population for PV2: 5

Maximum population: 6

Minimum population: 4

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

For all the controllers, the parameter domain is
as follows:

0≤Kp≤30

0≤ T1,T3≤1

0.010≤ T2, T4 ≤ 0.3

6 Simulation Results

6.1 Fitness Values and
Convergence Rate

In order to investigate the effectiveness of the
PBIL algorithms, various aspects of the algorithms
are compared such as best fitness values, mean
fitness values and worst fitness values and the
capability of the algorithm in maintaining the
diversity in the population. For each algorithm,
several independent runs were performed and the
curves providing the best fitness values are selected
and shown in Figs. 4-6.

Figs. 4-6 show the convergence rate of SPBIL,
APBIL and PPBIL, respectively. It can be seen that
APBIL and PPBIL converge to higher fitness
values (0.514 and 0.502, respectively) compared to
SPBIL (0.484). However, APBIL converged to a
slightly higher value of 0.5140 compared to 0.502
for PPBIL. From the simulation results, it can be
seen that APBIL has more diversity in the
population at the middle of the run between
generation 100 and 200 than PPBIL and SPBIL.
This can be attributed to the small value of learning
rate, at these generations. Small learning rate
increases the exploration of the algorithm at these
generations and thereby introduces more diversity
in the population. Unlike SPBIL which diversity is
much more concentrated at the beginning of the run
between generation 1 and generation 150, the
diversity in PPBIL is somehow spread across all
generations. At generations 300 to 400 for example,
the SPBIL and APBIL have converged (i.e, almost
no diversity). On the other, PPBIL still has some
diversity. So it can still explore the search space
although at a limited pace.

Table 2 shows the comparison between the best,
mean and worst, fitness values. It can be seen that
on average SPBIL and PPBIL have practically the
same fitness. The mean for PPBIL and SPBIL
(approximately 0.434) is higher than that of APBIL
(0.383). The main reason for this is that APBIL has
much more spread, with the worst fitness value at
0.09 compared to 0.124 for PPBIL and 0.166 for
SPBIL.

In terms of the distance between the best and the
worst fitness values, APBIL has the highest
distance (0.424), followed by PPBIL (0.378) and
then SPBIL (0.318). This suggests that both APBIL
and PPBIL have more diversity in their populations
than SPBIL.

Table 3 shows the number of functions
evaluations for each algorithm before the best
fitness was found. It can be seen that that SPBIL
has the lowest function evaluations and APBIL has
the highest function evaluations, and PPBIL is
somehow in the middle. In terms of the speed in

221Folly K.

Generation: 400

Learning rate: 0.1

Forgetting factor: 0.005

For all the controllers, the parameter domain is as
follows:

0?Kp?30

0? T1,T3?1

0.010? T2, T4 ? 0.3

6 Simulation Results

6.1 Fitness Values and Convergence Rate

In order to investigate the effectiveness of the
PBIL algorithms, various aspects of the algorithms
are compared such as best fitness values, mean fit-
ness values and worst fitness values and the capa-
bility of the algorithm in maintaining the diversity
in the population. For each algorithm, several in-
dependent runs were performed and the curves pro-
viding the best fitness values are selected and shown
in Figs. 4-6.

Table 2. Best, MEAN and Worst Fitness Values

Fitness SPBIL APBIL PPBIL
Best 0.484 0.514 0.502
Mean 0.434 0.383 0.434
Worst 0.166 0.090 0.124

Figs. 4-6 show the convergence rate of SPBIL,
APBIL and PPBIL, respectively. It can be seen that
APBIL and PPBIL converge to higher fitness val-
ues of 0.514 and 0.502, respectively, compared to
0.484 for SPBIL. However, APBIL converged to a
slightly higher value of 0.5140 compare to 0.502 for
PPBIL. From the simulation results, it can be seen
that APBIL has more diversity in the population at
the middle of the run between generation 100 and
200 than PPBIL and SPBIL. This can be attributed
to the small value of learning rate, at these genera-
tions. Small learning rate increases the exploration
of the algorithm and thereby introduces more diver-
sity in the population at these generations. Unlike
SPBIL which diversity is much more concentrated
at the beginning of the run (i.e., between genera-
tion 1 and generation 150) , the diversity in PPBIL
is somehow spread across all generations. For ex-
ample, between generations 300 to 400, SPBIL and

APBIL have converged (i.e., almost no diversity).
On the other, PPBIL still has some diversity. There-
fore, it can still explore the search space although at
a limited pace.

Table 3. Number of Function Evaluations To Find
The Best Solutions

SPBIL 3810
PPBIL 10610
APBIL 15950

Table 2 shows the comparison between the best,
mean and worst, fitness values. It can be seen that
on average SPBIL and PPBIL have practically the
same fitness. The mean for PPBIL and SPBIL (ap-
proximately 0.434) is higher than that of APBIL
(0.383). The main reason for this is that APBIL
has much more spread, with the worst fitness value
at 0.09 compared to 0.124 for PPBIL and 0.166 for
SPBIL.

In terms of the distance between the best and the
worst fitness values, APBIL has the highest distance
(0.424), followed by PPBIL (0.378) and then SP-
BIL (0.318). This suggests that both APBIL and
PPBIL have more diversity in their populations than
SPBIL.

Table 3 shows the number of functions evaluations
for each algorithm before the best fitness was found.
It can be seen that SPBIL has the lowest function
evaluations, APBIL has the highest function eval-
uations, and PPBIL is somehow in the middle. In
terms of the speed in finding the best fitness value,
SPBIL is better and APBIL is the worst. However,
the best value found by SPBIL is lower than the best
value found by APBIL and PPBIL. This suggests
that although SPBIL converges faster, it converges
to local optima, which may not be appropriate.

image4.png

Figure 4. SPBIL convergence rate

PARALLEL PBIL APPLIED TO . . .

image5.png

Figure 5. APBIL convergence rate

image6.png

Figure 6. PPBIL convergence rate

6.2 Eigenvalue Analysis

Table 4 shows the eigenvalues and damping ratios
in brackets of the closed-loop systems with the three
controllers. Although the system has both local and
inter-area modes, only the inter-area modes are con-
sidered because they are the most critical. It can
be seen that PPBIL and APBIL give better perfor-
mances (i.e., better damping ratios) than SPBIL.
However, PPBIL provides slightly better damping
than APBIL.

Table 4. Eigenvalues and Damping ratios

Case SPBIL
λ (ζ)

APBIL
λ (ζ)

PPBIL
λ (ζ)

1 -1.13 ±
j2.04

-1.54 ±
j2.57

-1.53 ±
j2.53

2 -0.778 ±
j1.78

-1.26 ±
j2.11

-1.26 ±
j2.08

3 -0.582 ±
j1.25

-1.15 ±
j1.52

-1.14 ±
j1.54

λ:eigenvalue, ζ: damping ratio

7 Conclusion

Parallel PBIL based on multi-population that
uses two probability vectors has been shown to in-
crease the diversity in the population. This is impor-
tant to prevent premature convergence that is inher-
ent to the standard PBIL. The effectiveness of the
proposed approach is assessed by comparing it to
the Adaptive PBIL (APBIL) and the standard PBIL
(SPBIL). It is shown that both the PPBIL and AP-
BIL give better performances in terms of improving
the damping of the system. They are able to main-
tain the diversity in the poppulation longer than the
standard PBIL. In addition, they are able to main-
taining the tradeoff between exploitation and explo-
ration, with PPBIL slightly better in maintaining the
diversity longer than APBIL.

8 Appendix

image6.png

Figure 7. tabela

finding the best fitness value, SPBIL is better and
APBIL is the worst. However, the best value found
by SPBIL is lower than the best value found by
APBIL and PPBIL. This suggest that although
SPBIL converges faster, it converges to local
optima, which may not be appropriate.

TABLE II. BEST, MEAN AND WORST
FITNESS VALUES

Fitness SPBIL APBIL PPBIL

Best 0.484 0.514 0.502

Mean 0.434 0.383 0.434

Worst 0.166 0.090 0.124

.

TABLE III. NUMBER OF FUNCTION
EVALUATIONS TO FIND THE BEST SOLUTIONS

SPBIL 3810

PPBIL 10610

APBIL 15950

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

B
e

s
t
F

itn
e

s
s

Fig. 4: SPBIL convergence rate

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
es

t F
itn

es
s

Fig. 5: APBIL convergence rate

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
e

s
t F

itn
e

s
s

Fig. 6: PPBIL convergence rate

6.2 Eigenvalue Analysis
Table 4 shows the eigenvalues and damping
ratios in brackets of the closed-loop systems
with the three controllers. Although the system
has both local and inter-area modes, only the
inter-area modes are considered because they
are the most critical. It can be seen that PPBIL
and APBIL give better performances (i.e.,
better damping ratios) than SPBIL. However,
PPBIL provides slightly better damping than
APBIL.

TABLE IV. EIGENVALUES AND DAMPING RATIOS

Case
SPBIL

 ()

APBIL

 ()

PPBIL

 ()

1 -1.13 ± j2.04
(0. 48)

-1.54 ± j2.57
(0.51)

-1.53 ± j2.53
(0.52)

2 -0.778 ± j1.78
(0.44)

-1.26 ± j2.11
(0. 51)

-1.26 ± j2.08
(0. 52)

3 -0.582 ± j1.25
(0.42)

-1.15 ± j1.52
(0.61)

-1.14 ± j1.54
(0.60)

:eigenvalue, : damping ratio

Conclusion
Parallel PBIL based on multi-population that
uses two probability vectors has been shown to
increase the diversity in the population. This is
important to prevent premature convergence
that is inherent to the standard PBIL. The
effectiveness of the proposed approach is
assessed by comparing it to the Adaptive PBIL
(APBIL) and the standard PBIL (SPBIL). It is
shown that both the PPBIL and APBIL give
better performances in terms of improving the
damping of the system. They are able to
maintain the diversity in the poppulation
longer than the standard PBIL. In addition,

finding the best fitness value, SPBIL is better and
APBIL is the worst. However, the best value found
by SPBIL is lower than the best value found by
APBIL and PPBIL. This suggest that although
SPBIL converges faster, it converges to local
optima, which may not be appropriate.

TABLE II. BEST, MEAN AND WORST
FITNESS VALUES

Fitness SPBIL APBIL PPBIL

Best 0.484 0.514 0.502

Mean 0.434 0.383 0.434

Worst 0.166 0.090 0.124

.

TABLE III. NUMBER OF FUNCTION
EVALUATIONS TO FIND THE BEST SOLUTIONS

SPBIL 3810

PPBIL 10610

APBIL 15950

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

B
e

s
t
F

itn
e

s
s

Fig. 4: SPBIL convergence rate

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
es

t F
itn

es
s

Fig. 5: APBIL convergence rate

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
e

s
t F

itn
e

s
s

Fig. 6: PPBIL convergence rate

6.2 Eigenvalue Analysis
Table 4 shows the eigenvalues and damping
ratios in brackets of the closed-loop systems
with the three controllers. Although the system
has both local and inter-area modes, only the
inter-area modes are considered because they
are the most critical. It can be seen that PPBIL
and APBIL give better performances (i.e.,
better damping ratios) than SPBIL. However,
PPBIL provides slightly better damping than
APBIL.

TABLE IV. EIGENVALUES AND DAMPING RATIOS

Case
SPBIL

 ()

APBIL

 ()

PPBIL

 ()

1 -1.13 ± j2.04
(0. 48)

-1.54 ± j2.57
(0.51)

-1.53 ± j2.53
(0.52)

2 -0.778 ± j1.78
(0.44)

-1.26 ± j2.11
(0. 51)

-1.26 ± j2.08
(0. 52)

3 -0.582 ± j1.25
(0.42)

-1.15 ± j1.52
(0.61)

-1.14 ± j1.54
(0.60)

:eigenvalue, : damping ratio

Conclusion
Parallel PBIL based on multi-population that
uses two probability vectors has been shown to
increase the diversity in the population. This is
important to prevent premature convergence
that is inherent to the standard PBIL. The
effectiveness of the proposed approach is
assessed by comparing it to the Adaptive PBIL
(APBIL) and the standard PBIL (SPBIL). It is
shown that both the PPBIL and APBIL give
better performances in terms of improving the
damping of the system. They are able to
maintain the diversity in the poppulation
longer than the standard PBIL. In addition,

finding the best fitness value, SPBIL is better and
APBIL is the worst. However, the best value found
by SPBIL is lower than the best value found by
APBIL and PPBIL. This suggest that although
SPBIL converges faster, it converges to local
optima, which may not be appropriate.

TABLE II. BEST, MEAN AND WORST
FITNESS VALUES

Fitness SPBIL APBIL PPBIL

Best 0.484 0.514 0.502

Mean 0.434 0.383 0.434

Worst 0.166 0.090 0.124

.

TABLE III. NUMBER OF FUNCTION
EVALUATIONS TO FIND THE BEST SOLUTIONS

SPBIL 3810

PPBIL 10610

APBIL 15950

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

B
e

s
t
F

itn
e

s
s

Fig. 4: SPBIL convergence rate

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
es

t F
itn

es
s

Fig. 5: APBIL convergence rate

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

B
e

s
t F

itn
e

s
s

Fig. 6: PPBIL convergence rate

6.2 Eigenvalue Analysis
Table 4 shows the eigenvalues and damping
ratios in brackets of the closed-loop systems
with the three controllers. Although the system
has both local and inter-area modes, only the
inter-area modes are considered because they
are the most critical. It can be seen that PPBIL
and APBIL give better performances (i.e.,
better damping ratios) than SPBIL. However,
PPBIL provides slightly better damping than
APBIL.

TABLE IV. EIGENVALUES AND DAMPING RATIOS

Case
SPBIL

 ()

APBIL

 ()

PPBIL

 ()

1 -1.13 ± j2.04
(0. 48)

-1.54 ± j2.57
(0.51)

-1.53 ± j2.53
(0.52)

2 -0.778 ± j1.78
(0.44)

-1.26 ± j2.11
(0. 51)

-1.26 ± j2.08
(0. 52)

3 -0.582 ± j1.25
(0.42)

-1.15 ± j1.52
(0.61)

-1.14 ± j1.54
(0.60)

:eigenvalue, : damping ratio

Conclusion
Parallel PBIL based on multi-population that
uses two probability vectors has been shown to
increase the diversity in the population. This is
important to prevent premature convergence
that is inherent to the standard PBIL. The
effectiveness of the proposed approach is
assessed by comparing it to the Adaptive PBIL
(APBIL) and the standard PBIL (SPBIL). It is
shown that both the PPBIL and APBIL give
better performances in terms of improving the
damping of the system. They are able to
maintain the diversity in the poppulation
longer than the standard PBIL. In addition,

they are able to maintaining the tradeoff
between exploitation and exploration, with
PPBIL slightly better in maintaining the
diversity longer than APBIL.

Appendix

TABLE A. CONTROLLER PARAMETERS

 Kp T1 T2 T3 T4

SPBIL

Gen
1&2 29.99 0.993 0.010 0.056 0.300

Gen
3&4 29.63 0.128 0.035 0.127 0.162

APBIL

Gen
1&2 29.97 0.946 0.300 0.063 0.010

Gen
3&4 29.88 0.439 0.010 0.053 0.300

PPBIL

Gen
1&2

29.89 0.061 0.010 0.999 0.300

Gen
3&4 29.54 0.360 0.277 0.071 0.025

Acknowledgement

This work is based on the research supported in part
by the National Research Foundation of South
Africa, UID 83977 and UID 85503

References
[1] S. Baluja, Population-based incremental
learning: a method for integrating genetic search
based function optimization and competitive
learning, CMU-CS-94-163, Carnegie Mellon
University, 1994.
[2] F. G. Lobo, and D.E. Golberg, The parameter-
less genetic algorithm in practice, International
Journal of Information Sciences 2004; 167:217-32.
[3] S. Baluja, and R. Caruana, Removing the
Genetics from the Standard Genetic Algorithm,
Tech. Rep. CMU-CS-95-141), Carnegie Mellon
University, 1995.
[4] J. H. Holland, Adaptation in nature and
artificial systems. The University of Michigan
Press, 1975.
[5] L. Davis, Handbook of genetic algorithms,
International Thomson Computer Press, 1996.
[6] D. E. Goldberg, Genetic algorithms in search,
optimization & machine learning. Addison-Wesley,
1989.
[7] K. Price, R.M. Storn, and J.A. Lampinen,
Differential evolution: A practical approach to
global optimization, Springer, ISBN 978-3-540-
20950-8, 2005.

[8] T. Mulumba, and K. A. Folly, “Power system
stabilizer design: comparative analysis between
differential evolution and population- based
incremental learning”, In: 20th Southern African
Universities’ Power Engineering Conference
(SAUPEC), 2011.
[9] M. Dorigo, and G Di Caro, (1999), The Ant
Colony Optimization: a new teta-Heuristic, In:
Evolutionary Computation (CEC) 1999.
[10] J. F. Kennedy, R. C. Eberhart R.C., & Y. Shi,
Swarm Intelligence. Morgan Kaufmann, 2001.
[11] T. K. Das, and G.K. Venayagamoorthy
"Design of Power System Stabilizers using Small
Population Based PSO," IEEE PES General
Meeting 2006.
[12] J. R. Greene, “Population-Based Incremental
Learning as a Simple,Versatile Tool for
Engineering Optimization,”In Proceedings of the
First International Conf. on EC and Applications,
1996, pp.258-269
[13] F. Southey, F. Karray, “Approching
Evolutionary Robotics through Population-Based
Incremental Learning,” in: IEEE International
Conference on Systems, Man and Cybernetics, Vol.
2, 1999, pp. 710-715.
[14] Gosling,T., Jin, N., Tsang, “Population-Based
Incremental Learning Versus Genetic Algorithms:
Iterated Prisoners Dilemma”, Tech. Rep. CSM-40,
University of Essex, England, 2004.
[15] K.A. Folly, “Design of Power System
Stabilizer: A Comparison Between Genetic
Algorithms (GAs) and Population-Based
Incremental Learning (PBIL),”. In Proc. of the
IEEE PES 2006 General Meeting, 2006
[16] K.A. Folly, “Robust Controller Design Based
on a Combination of Genetic Algorithms (GAs) and
Competitive Learning,” In: International Joint
Conference on Neural Networks, 2007, pp. 3045-
3050.
[17] P. Mitra, C. Yan, L. Grant, G.K.
Venayagamoorthy, and K. Folly, “ Comparative
Study of Population-Based Techniques for Power
System Stabilizer Design,”, in Proc. of Intelligent
System Applications to Power Systems, 2009.
[18] K.A. Folly, “Performance Evaluation of Power
System Stabilizers based on Population-Based
Incremental Learning (PBIL),” Elec. Power and
Energy System., 33 (2011) 1279-1287.
[19] P. Kundur, Power System Stability and
Control. McGraw – Hill, Inc. 1994.
[20] C. Conzalez, J.A. Lozano and P. Larranaga, “
The convergence behavior of the PBIL Algorithm:
A preliminary approach,” in: Proc. of Artificial
Neural Nets and Genetic Algorithms, 2001.
[21] R. Rastegar, A. Hariri, M. Mazoochi, “The
Population-Based Incremental Learning Algorithm
Converges to Local Optima,” Neurocomputing, 69,
2006, pp. 1772-1775.
[22] KA Folly, G.K. Venayagamoorthy, “Effect of
Learning Rate on the Performance of the
Population-Based Incremental Learning
Algorithm,” in: Proc. of the International Joint
Conf. on Neural Network (IJCNN), 2009.

PARALLEL PBIL APPLIED TO . . .

image5.png

Figure 5. APBIL convergence rate

image6.png

Figure 6. PPBIL convergence rate

6.2 Eigenvalue Analysis

Table 4 shows the eigenvalues and damping ratios
in brackets of the closed-loop systems with the three
controllers. Although the system has both local and
inter-area modes, only the inter-area modes are con-
sidered because they are the most critical. It can
be seen that PPBIL and APBIL give better perfor-
mances (i.e., better damping ratios) than SPBIL.
However, PPBIL provides slightly better damping
than APBIL.

Table 4. Eigenvalues and Damping ratios

Case SPBIL
λ (ζ)

APBIL
λ (ζ)

PPBIL
λ (ζ)

1 -1.13 ±
j2.04

-1.54 ±
j2.57

-1.53 ±
j2.53

2 -0.778 ±
j1.78

-1.26 ±
j2.11

-1.26 ±
j2.08

3 -0.582 ±
j1.25

-1.15 ±
j1.52

-1.14 ±
j1.54

λ:eigenvalue, ζ: damping ratio

7 Conclusion

Parallel PBIL based on multi-population that
uses two probability vectors has been shown to in-
crease the diversity in the population. This is impor-
tant to prevent premature convergence that is inher-
ent to the standard PBIL. The effectiveness of the
proposed approach is assessed by comparing it to
the Adaptive PBIL (APBIL) and the standard PBIL
(SPBIL). It is shown that both the PPBIL and AP-
BIL give better performances in terms of improving
the damping of the system. They are able to main-
tain the diversity in the poppulation longer than the
standard PBIL. In addition, they are able to main-
taining the tradeoff between exploitation and explo-
ration, with PPBIL slightly better in maintaining the
diversity longer than APBIL.

8 Appendix

image6.png

Figure 7. tabela

222 Folly K.

9 Acknowledgement

This work is based on the research supported in
part by the National Research Foundation of South
Africa, UID 83977 and UID 85503

References
[1] S. Baluja, Population-based incremental learn-

ing: a method for integrating genetic search based
function optimization and competitive learning,
CMU-CS-94-163, Carnegie Mellon University,
1994.

[2] F. G. Lobo, and D.E. Golberg, The parameter-less
genetic algorithm in practice, International Jour-
nal of Information Sciences 2004; 167, pp.217-
32.

[3] S. Baluja, and R. Caruana, Removing the Genet-
ics from the Standard Genetic Algorithm, Tech.
Rep. CMU-CS-95-141), Carnegie Mellon Univer-
sity, 1995.

[4] J. H. Holland, Adaptation in nature and artificial
systems. The University of Michigan Press, 1975.

[5] L. Davis, Handbook of genetic algorithms, Inter-
national Thomson Computer Press, 1996.

[6] D. E. Goldberg, Genetic algorithms in search, op-
timization & machine learning. Addison-Wesley,
1989.

[7] K. Price, R.M. Storn, and J.A. Lampinen, Differ-
ential evolution: A practical approach to global
optimization, Springer, ISBN 978-3-540-20950-
8, 2005.

[8] T. Mulumba, and K. A. Folly, Power system stabi-
lizer design: comparative analysis between differ-
ential evolution and population- based incremen-
tal learning”, In: 20th Southern African Universi-
ties’ Power Engineering Conference (SAUPEC),
2011.

[9] M. Dorigo, and G Di Caro, The Ant Colony Op-
timization: a new teta-Heuristic, In: Evolutionary
Computation (CEC), 1999.

[10] J. F. Kennedy, R. C. Eberhart R.C., & Y. Shi,
Swarm Intelligence. Morgan Kaufmann, 2001.

[11] T. K. Das, and G.K. Venayagamoorthy ”Design of
Power System Stabilizers using Small Population
Based PSO,” IEEE PES General Meeting 2006.

[12] J. R. Greene, Population-Based Incremental
Learning as a Simple,Versatile Tool for Engineer-
ing Optimization, In: Proceedings of the First In-
ternational Conf. on EC and Applications, 1996,
pp.258-269

[13] F. Southey, F. Karray, Approching Evolutionary
Robotics through Population-Based Incremental
Learning, In: IEEE International Conference on
Systems, Man and Cybernetics, Vol. 2, 1999, pp.
710-715.

[14] KA Folly, Performance Evaluation of power sys-
tem stabilizers based on Population-Based Incre-
mental Learning (PBIL) Algorithm, International
Journal of Power and Energy Systems, Vol. 33,
Issue 7, 2011, pp. 1279-1287.

[15] K.A. Folly, Design of Power System Stabi-
lizer: A Comparison Between Genetic Algo-
rithms (GAs) and Population-Based Incremental
Learning (PBIL), In: Proc. of the IEEE PES ,Gen-
eral Meeting, 2006

[16] K.A. Folly, Robust Controller Design Based on
a Combination of Genetic Algorithms (GAs) and
Competitive Learning, In: International Joint
Conference on Neural Networks, 2007, pp. 3045-
3050.

[17] P. Mitra, C. Yan, L. Grant, G.K. Venayag-
amoorthy, and K. Folly, Comparative Study of
Population-Based Techniques for Power System
Stabilizer Design, in Proc. of Intelligent System
Applications to Power Systems, 2009.

[18] P. Kundur, Power System Stability and Control.
McGraw – Hill, Inc. 1994.

[19] KA Folly, An Improved Population-Based Incre-
mental Learning Algorithm, International Journal
of Swarm Intelligence Research (IJSIR), Vol.4,
No.1, 2013, pp. 35-61.

[20] C. Conzalez, J.A. Lozano and P. Larranaga, The
convergence behavior of the PBIL Algorithm: A
preliminary approach, In: Proc. of Artificial Neu-
ral Nets and Genetic Algorithms, 2001.

[21] R. Rastegar, A. Hariri, M. Mazoochi, The
Population-Based Incremental Learning Algo-
rithm Converges to Local Optima, Neurocomput-
ing, 69, 2006, pp. 1772-1775.

[22] KA Folly, G.K. Venayagamoorthy, Effect of
Learning Rate on the Performance of the
Population-Based Incremental Learning Algo-
rithm, In: Proc. of the International Joint Conf.
on Neural Network (IJCNN), 2009.

[23] S. Yang and H. Richter, Hyper-Learning for
Population-Based Incremental Learning in Dy-
namic Environment, In: IEEE Congress on Evo-
lutionary Computation, 2009.

[24] M. Ventresca, H. R. Tizhoosh, A diversity Main-
taining Population Based Incremental Learning
Algorithm, Information Sciences, 178, 2008, pp.
4038-4056

223Folly K.

9 Acknowledgement

This work is based on the research supported in
part by the National Research Foundation of South
Africa, UID 83977 and UID 85503

References
[1] S. Baluja, Population-based incremental learn-

ing: a method for integrating genetic search based
function optimization and competitive learning,
CMU-CS-94-163, Carnegie Mellon University,
1994.

[2] F. G. Lobo, and D.E. Golberg, The parameter-less
genetic algorithm in practice, International Jour-
nal of Information Sciences 2004; 167, pp.217-
32.

[3] S. Baluja, and R. Caruana, Removing the Genet-
ics from the Standard Genetic Algorithm, Tech.
Rep. CMU-CS-95-141), Carnegie Mellon Univer-
sity, 1995.

[4] J. H. Holland, Adaptation in nature and artificial
systems. The University of Michigan Press, 1975.

[5] L. Davis, Handbook of genetic algorithms, Inter-
national Thomson Computer Press, 1996.

[6] D. E. Goldberg, Genetic algorithms in search, op-
timization & machine learning. Addison-Wesley,
1989.

[7] K. Price, R.M. Storn, and J.A. Lampinen, Differ-
ential evolution: A practical approach to global
optimization, Springer, ISBN 978-3-540-20950-
8, 2005.

[8] T. Mulumba, and K. A. Folly, Power system stabi-
lizer design: comparative analysis between differ-
ential evolution and population- based incremen-
tal learning”, In: 20th Southern African Universi-
ties’ Power Engineering Conference (SAUPEC),
2011.

[9] M. Dorigo, and G Di Caro, The Ant Colony Op-
timization: a new teta-Heuristic, In: Evolutionary
Computation (CEC), 1999.

[10] J. F. Kennedy, R. C. Eberhart R.C., & Y. Shi,
Swarm Intelligence. Morgan Kaufmann, 2001.

[11] T. K. Das, and G.K. Venayagamoorthy ”Design of
Power System Stabilizers using Small Population
Based PSO,” IEEE PES General Meeting 2006.

[12] J. R. Greene, Population-Based Incremental
Learning as a Simple,Versatile Tool for Engineer-
ing Optimization, In: Proceedings of the First In-
ternational Conf. on EC and Applications, 1996,
pp.258-269

[13] F. Southey, F. Karray, Approching Evolutionary
Robotics through Population-Based Incremental
Learning, In: IEEE International Conference on
Systems, Man and Cybernetics, Vol. 2, 1999, pp.
710-715.

[14] KA Folly, Performance Evaluation of power sys-
tem stabilizers based on Population-Based Incre-
mental Learning (PBIL) Algorithm, International
Journal of Power and Energy Systems, Vol. 33,
Issue 7, 2011, pp. 1279-1287.

[15] K.A. Folly, Design of Power System Stabi-
lizer: A Comparison Between Genetic Algo-
rithms (GAs) and Population-Based Incremental
Learning (PBIL), In: Proc. of the IEEE PES ,Gen-
eral Meeting, 2006

[16] K.A. Folly, Robust Controller Design Based on
a Combination of Genetic Algorithms (GAs) and
Competitive Learning, In: International Joint
Conference on Neural Networks, 2007, pp. 3045-
3050.

[17] P. Mitra, C. Yan, L. Grant, G.K. Venayag-
amoorthy, and K. Folly, Comparative Study of
Population-Based Techniques for Power System
Stabilizer Design, in Proc. of Intelligent System
Applications to Power Systems, 2009.

[18] P. Kundur, Power System Stability and Control.
McGraw – Hill, Inc. 1994.

[19] KA Folly, An Improved Population-Based Incre-
mental Learning Algorithm, International Journal
of Swarm Intelligence Research (IJSIR), Vol.4,
No.1, 2013, pp. 35-61.

[20] C. Conzalez, J.A. Lozano and P. Larranaga, The
convergence behavior of the PBIL Algorithm: A
preliminary approach, In: Proc. of Artificial Neu-
ral Nets and Genetic Algorithms, 2001.

[21] R. Rastegar, A. Hariri, M. Mazoochi, The
Population-Based Incremental Learning Algo-
rithm Converges to Local Optima, Neurocomput-
ing, 69, 2006, pp. 1772-1775.

[22] KA Folly, G.K. Venayagamoorthy, Effect of
Learning Rate on the Performance of the
Population-Based Incremental Learning Algo-
rithm, In: Proc. of the International Joint Conf.
on Neural Network (IJCNN), 2009.

[23] S. Yang and H. Richter, Hyper-Learning for
Population-Based Incremental Learning in Dy-
namic Environment, In: IEEE Congress on Evo-
lutionary Computation, 2009.

[24] M. Ventresca, H. R. Tizhoosh, A diversity Main-
taining Population Based Incremental Learning
Algorithm, Information Sciences, 178, 2008, pp.
4038-4056

PARALLEL PBIL APPLIED TO . . .

[25] S. Y. Yang, S.L. Ho, G.Z. Ni, J.M. Machado and
K.F. Wong, A new Implementation of Population-
Based Incremental Learning Method for Opti-
mizations in Electromagnetics, IEEE Trans. On
Magnetics 43 (4), 2007, pp. 1601-1604.

[26] S. Yang and X. Yao, Experimental Study on

Population-Based Incremental Learning Algo-
rithms for Dynamic Optimization Problems, Soft
Computing, 9(11), 2005, pp. 815-834

[27] G. Rogers, Power system oscillations, Kluwer
academic Publishers, 2000.

