
JAISCR, 2013, Vol. 3, No. 3, pp.   201Kilicaslan Y., Tuna G.

[15] M. Skubic, C. Bailey, and G. Chronis, A Sketch
Interface for Mobile Robots, in Proc. of the IEEE
International Conference on Systems, Man and Cy-
bernetics, 2003, pp. 918-924.

[16] G. J. M. Kruijff, H. Zender, P. Jensfelt, and H. I.
Christensen, Situated dialogue and spatial organi-
zation: What, where... and why, International Jour-
nal of Advanced Robotic Systems, vol. 4, no. 2,
2007, pp. 125-138.

[17] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth,
H. Gotoda, Y. Shirai, and H. Ueno, Adaptive vi-
sual gesture recognition for human-robot interac-
tion using a knowledge-based software platform,
Robotics and Autonomous Systems, vol. 55, no. 8,
2007, pp. 643-657.

[18] J. Modayil and B. Kuipers, Bootstrap learning for
object discovery, in Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems, 2004, pp. 742-747.

[19] J. R. Curran, S. Clark, and J. Bos, Linguistically
Motivated Large-Scale NLP with C&C and Boxer,
in Proc. of the ACL 2007 Demo and Poster Ses-
sions (Association for Computational Linguistics),
2007, pp. 33-36.

[20] T. Matsuzaki, Y. Miyao, and J. Tsujii, Effi-
cient HPSG parsing with supertagging and CFG-
filtering, in Proc. of IJCAI-07, 2007.

[21] R. Kaplan, S. Riezler, T. H. King, J. T. Maxwell III,
A. Vasserman, and R. Crouch, Speed and accuracy
in shallow and deep stochastic parsing, in Proc. of
HLT and the 4th Meeting of NAACL, 2004.

[22] S. Clark and J. R. Curran, Parsing the WSJ using
CCG and log-linear models, in Proc. of ACL-04,
2004, pp. 104-111.

[23] J. Hockenmaier, Data and Models for Statistical
Parsing with Combinatory Categorial Grammar,
Ph.D. thesis, University of Edinburg, 2003.

[24] H. Kamp and U. Reyle, From Discourse to
Logic; An Introduction to Model-theoretic Seman-
tics of Natural Language, Formal Logic and DRT,
Kluwer, Dordrecht, 1993.

[25] A. Tyler and V. Evans, The Semantics of English
Prepositions: Spatial Scenes, Embodied Meaning
and Cognition, Cambridge University Press, Cam-
bridge, 2003.

[26] C.-R. Huang, N. Calzolari, A. Gangemi, A. Lenci,
A. Oltramari, and L. Prevot (eds.), Ontology and
the Lexicon: A Natural Language Processing Per-
spective, Cambridge, 2010.

[27] Y. Kilicaslan and E. S. Guner, Filtering Ma-
chine Translation Results with Automatically Con-
structed Concept Lattices, in Proc. of 8th Interna-
tional Conference on Concept Lattices and Their
Applications (CLA 2011), 2011, pp. 59-73.

[28] P. Krajca, J. Outrata, and V. Vychodil, Parallel Re-
cursive Algorithm for FCA. In: Proc. CLA 2008,
2008, pp. 71-82.

[29] H. Takeda and N. Toyoaki, Some Theoretical Con-
siderations on Integration of Ontologies, Nara In-
stitute of Science and Technology, Japan, 1998.

[30] R. Jackendoff, Semantic Structures, The MIT
Press, 1990.

[31] ROS, http://www.ros.org

COMPUTATIONALLY INEXPENSIVE APPEARANCE
BASED TERRAIN LEARNING IN UNKNOWN

ENVIRONMENTS

Prabhakar Mishra1 and Anirudh Viswanathan2

1PES Centre for Intelligent Systems,PES Institute of Technology,BSK Stage - III, Bangalore
Karnataka, India

email: prabhakar.mishra@pes.edu

2Robotics Institute,Carnegie Mellon University,5000 Forbes Ave,Pittsburgh,
PA 15213, USA,

email:anirudh@cmu.edu

Abstract

This paper describes a computationally inexpensive approach to learning and identifica-
tion of maneuverable terrain to aid autonomous navigation. We adopt a monocular vision
based framework, using a single consumer grade camera as the primary sensor, and model
the terrain as a Mixture of Gaussians. Self-supervised learning is used to identify navi-
gable terrain in the perception space. Training data is obtained using pre-filtered pixels,
which correspond to near-range traversable terrain. The scheme allows for on-line, and
in-motion update of the terrain model. The pipeline architecture used in the proposed
algorithm is made amenable to real-time implementation by restricting computations to
bit-shifts and accumulate operations. Color based clustering using dominant terrain tex-
ture is then performed in perception sub-space. Model initialization and update follows
at the coarse scale of an octave image pyramid, and is back projected onto the original
fine scale. We present results of terrain learning, tested in heterogeneous environments,
including urban road, suburban parks, and indoors. Our scheme provides orders of mag-
nitude improvement in time complexity, when compared to existing approaches reported
in literature.

1 Introduction

This paper describes a Computer Vision algo-
rithm developed to identify navigable terrain, for
autonomous rover operation in unknown environ-
ments. Autonomous rovers deployed on remote
planetary surfaces, to function as surrogate explor-
ers need to be endowed with the ability of in-motion
mapping and localization. This capability is central
to the mission objectives which decides the system
configuration and payload. The utility of such in-
telligent systems lie in minimal query and decision
support from an Earth based mission operator.

For successful exploration of the environment,

the perception module should be able to distinguish
between regions of free-space, from those corre-
sponding to obstacles. Additionally, practical con-
cerns impact the choice of the sensor suite based on
size, power, and operability constraints ([21]). The
on-board scientific instrumentation, specific to the
mission, are allocated significant pay-load volume,
weight, and power resources. The perception sub-
system, in turn, is constrained for minimization of
operability, power budget, and on-board computa-
tional resources. This motivates our case to inves-
tigate methodologies for optimizing the perception
module. In this paper, we restrict the sensor suite
a single consumer grade camera, with a proximity
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sensor for near-range obstacle detection. We re-
strict our investigation to enhancing monocular vi-
sion based algorithms. Use of multiple sensors and
probabilistic multi-sensor data fusion though nec-
essary in applications of this complexity, is not in-
cluded in the scope of this work.

Terrain characterization, typical for navigation
applications, is associated with the relief profile,
rock abundance, and soil granularity [10]. In the
monocular framework, these engineering parame-
ters are associated with models in the perceptual
space, such as terrain hue and color. A limited
Earth based solution is to use a-prior terrain mod-
els, trained using examples of off-line data, an ap-
proach adopted by [8]. However, such classifiers
when restricted to a finite number of learned mod-
els, become error prone with illumination and ter-
rain surface variations over the mission lifetime.

An on-line terrain classification scheme in per-
ception space is proposed by [7]. This system is
similar to our perception architecture, and learns
color models of navigable terrain using self super-
vised learning. The significant difference between
the two, is at the training stage. The work by [7]
relies on using a laser scanner to identify navigable
regions in perception space. Our proposed scheme,
is restricted to monocular vision, and emphasizes
computationally inexpensive methods, that are or-
ders of magnitude faster than previous approaches.

image1.png

Figure 1. Typical terrain types in we expect to
identify regions of free-space for autonomous
rover navigation. Dynamic urban roads (a),

unstructured outdoor (b,c), and cluttered indoor
environments (d). (a) is from the standard

RAT-SLAM dataset, (b-c) are custom datasets, and
(d) is a test case from the IDOL dataset.

To overcome the limitations of algorithms pro-
posed in literature, and achieve implementation
amenable to real-time resource constraints, we pro-
pose schemes that adapt to in-motion learning of
terrain types. Figure 1 shows typical terrain in
different environments. Our approach relies on a
self-supervised learning algorithm, trained by pre-
filtering pixels in the perception space. The pre-
filtered pixels are assumed to correspond to regions
of free-space immediately in front of the rover. The
vision algorithm learns dominant colors, as a Mix-
ture of Gaussians. We propose sub-space cluster-
ing, implemented using bit-shifts, to learn color
models of maneuverable regions. Additionally, a
horizon detection scheme restricts the model update
related computation to the ground region. The com-
bined strategies of learning models in scale space,
with look-up tables to establish the pixel-wise map-
ping between scales, allows for real-time through-
put which is orders of magnitude faster as compared
to the technique given in [7].

2 Previous Work

Previous work in learning models to represent
terrain, are a part of the Defense Advanced Re-
search Projects Agency (DARPA) programs. Other
programs include a terrain classification module tar-
geted at driver assistance systems and autonomous
vehicles.

The reader is directed towards the survey pa-
per by [9] for early work in vision based mobile
robot navigation. The authors describe perception
schemes successful terrain learning schemes, appli-
cable in both structured and unstructured environ-
ments.

More recently, three DARPA programs, namely
the Grand Challenge (DGC - 2004), the Urban
Challenge (DUC - 2007), and Learning Applied
to Ground Vehicles (LAGR - 2004–2008) were in-
volved with autonomous mobile robot navigation
([13]).

The DGC involved autonomous driving across
132 miles of desert terrain, the results of which are
summarized by [5]. The winner of the DGC was
Stanford University’s team. The architecture de-
scribing Stanley, the team’s entry is described by
[20]. The vision module ([7]), enabled far-range

ologies for optimizing the perception module. In this
paper, we restrict the sensor suite a single consumer grade
camera, with a proximity sensor for near-range obstacle
detection. We restrict our investigation to enhancing
monocular vision based algorithms. Use of multiple
sensors and probabilistic multi-sensor data fusion though
necessary in applications of this complexity, is not in-
cluded in the scope of this work.

Terrain characterization, typical for navigation applica-
tions, is associated with the relief profile, rock abundance,
and soil granularity [10]. In the monocular framework,
these engineering parameters are associated with models
in the perceptual space, such as terrain hue and color. A
limited Earth based solution is to use a-prior terrain mod-
els, trained using examples of off-line data, an approach
adopted by [8]. However, such classifiers when restricted
to a finite number of learned models, become error prone
with illumination and terrain surface variations over the
mission lifetime.

An on-line terrain classification scheme in perception
space is proposed by [7]. This system is similar to
our perception architecture, and learns color models of
navigable terrain using self supervised learning. The
significant difference between the two, is at the training
stage. The work by [7] relies on using a laser scanner
to identify navigable regions in perception space. Our
proposed scheme, is restricted to monocular vision, and
emphasizes computationally inexpensive methods, that
are orders of magnitude faster than previous approaches.

To overcome the limitations of algorithms proposed in
literature, and achieve implementation amenable to real-
time resource constraints, we propose schemes that adapt
to in-motion learning of terrain types. Figure 1 shows
typical terrain in different environments. Our approach
relies on a self-supervised learning algorithm, trained by
pre-filtering pixels in the perception space. The pre-
filtered pixels are assumed to correspond to regions of
free-space immediately in front of the rover. The vision
algorithm learns dominant colors, as a Mixture of Gaus-
sians. We propose sub-space clustering, implemented
using bit-shifts, to learn color models of maneuverable
regions. Additionally, a horizon detection scheme re-
stricts the model update related computation to the ground
region. The combined strategies of learning models in
scale space, with look-up tables to establish the pixel-wise
mapping between scales, allows for real-time throughput

which is orders of magnitude faster as compared to the
technique given in [7].

2 Previous Work

(a) (b)
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Figure 1: Typical terrain types in we expect to identify
regions of free-space for autonomous rover navigation.
Dynamic urban roads (a), unstructured outdoor (b,c), and
cluttered indoor environments (d). (a) is from the standard
RAT-SLAM dataset, (b-c) are custom datasets, and (d) is
a test case from the IDOL dataset.

Previous work in learning models to represent terrain,
are a part of the Defense Advanced Research Projects
Agency (DARPA) programs. Other programs include a
terrain classification module targeted at driver assistance
systems and autonomous vehicles.

The reader is directed towards the survey paper by [9]
for early work in vision based mobile robot navigation.
The authors describe perception schemes successful ter-
rain learning schemes, applicable in both structured and
unstructured environments.

More recently, three DARPA programs, namely the
Grand Challenge (DGC - 2004), the Urban Challenge
(DUC - 2007), and Learning Applied to Ground Vehicles
(LAGR - 2004–2008) were involved with autonomous
mobile robot navigation ([13]).

The DGC involved autonomous driving across 132
miles of desert terrain, the results of which are sum-
marized by [5]. The winner of the DGC was Stanford
University’s team. The architecture describing Stanley,
the team’s entry is described by [20]. The vision mod-
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sensor for near-range obstacle detection. We re-
strict our investigation to enhancing monocular vi-
sion based algorithms. Use of multiple sensors and
probabilistic multi-sensor data fusion though nec-
essary in applications of this complexity, is not in-
cluded in the scope of this work.

Terrain characterization, typical for navigation
applications, is associated with the relief profile,
rock abundance, and soil granularity [10]. In the
monocular framework, these engineering parame-
ters are associated with models in the perceptual
space, such as terrain hue and color. A limited
Earth based solution is to use a-prior terrain mod-
els, trained using examples of off-line data, an ap-
proach adopted by [8]. However, such classifiers
when restricted to a finite number of learned mod-
els, become error prone with illumination and ter-
rain surface variations over the mission lifetime.

An on-line terrain classification scheme in per-
ception space is proposed by [7]. This system is
similar to our perception architecture, and learns
color models of navigable terrain using self super-
vised learning. The significant difference between
the two, is at the training stage. The work by [7]
relies on using a laser scanner to identify navigable
regions in perception space. Our proposed scheme,
is restricted to monocular vision, and emphasizes
computationally inexpensive methods, that are or-
ders of magnitude faster than previous approaches.
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posed in literature, and achieve implementation
amenable to real-time resource constraints, we pro-
pose schemes that adapt to in-motion learning of
terrain types. Figure 1 shows typical terrain in
different environments. Our approach relies on a
self-supervised learning algorithm, trained by pre-
filtering pixels in the perception space. The pre-
filtered pixels are assumed to correspond to regions
of free-space immediately in front of the rover. The
vision algorithm learns dominant colors, as a Mix-
ture of Gaussians. We propose sub-space cluster-
ing, implemented using bit-shifts, to learn color
models of maneuverable regions. Additionally, a
horizon detection scheme restricts the model update
related computation to the ground region. The com-
bined strategies of learning models in scale space,
with look-up tables to establish the pixel-wise map-
ping between scales, allows for real-time through-
put which is orders of magnitude faster as compared
to the technique given in [7].

2 Previous Work

Previous work in learning models to represent
terrain, are a part of the Defense Advanced Re-
search Projects Agency (DARPA) programs. Other
programs include a terrain classification module tar-
geted at driver assistance systems and autonomous
vehicles.

The reader is directed towards the survey pa-
per by [9] for early work in vision based mobile
robot navigation. The authors describe perception
schemes successful terrain learning schemes, appli-
cable in both structured and unstructured environ-
ments.

More recently, three DARPA programs, namely
the Grand Challenge (DGC - 2004), the Urban
Challenge (DUC - 2007), and Learning Applied
to Ground Vehicles (LAGR - 2004–2008) were in-
volved with autonomous mobile robot navigation
([13]).

The DGC involved autonomous driving across
132 miles of desert terrain, the results of which are
summarized by [5]. The winner of the DGC was
Stanford University’s team. The architecture de-
scribing Stanley, the team’s entry is described by
[20]. The vision module ([7]), enabled far-range
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terrain classification using probabilistic data-fusion
across a laser range finder, and monocular vision.
Training data is delineated by the laser scanner,
to identify traversable terrain in front of the robot.
Subsequently, pixels corresponding to the training
region are used to model terrain. The solution al-
lows the vehicle to identify far-range navigable ter-
rain, while driving at high speed.

The DUC involved autonomous navigation in
urban environments. The teams had to complete a
circuit spanning 96 km, while obeying traffic rules,
avoiding other competitors, and moving traffic (Ed-
itorial, J. Field Robotics[2]). Additionally, vehicles
had to accurately localize the curb, relative to the
road, to avoid rollover. The typical solution used by
teams included stereo-vision, GPS based localiza-
tion, and laser scanners to successfully maneuverer
the urban environment. Carnegie Mellon Universi-
tys Boss, won the DUC, and the robot architecture
is described by ([22]). The perception system em-
ploys a sensor layer, and a fusion layer. An object
hypothesis set is used in dynamic obstacle detec-
tion and tracking, and is updated using the sensor
layer. The fusion layer implements global classifi-
cation and object management, for successful navi-
gation on urban roads.

LAGR ([12], [13]), led teams into terrain learn-
ing in outdoor, unstructured environments. The
LAGR platform was equipped with stereo-vision,
proximity-sensors, inertial measurement unit, and
infrared rangefinders. The nature of forested terrain
and dense foliage led to the development of tech-
niques for in-motion terrain learning ([23]). The
technique employs three stages : feature learning,
feature training, and terrain prediction. Feature
learning is performed by identification of points
which correspond to the ground plane, using LI-
DAR data. The training stage uses a visual classifier
to label obstacles, and regions of free-space. This
is followed by the predictive stage, which allows
for high speed terrain recognition. [11] employs
labels from the stereo-camera, which are used to
train a deep hierarchical network, and predict real-
time traversibility. [3] describe methods to short-
range and long-range terrain classification. The
long-range terrain classification is image-based and
learns geometry-based terrain appearance.

All of the above solutions, emphasize use of
multiple sensors, and multi sensor data-fusion tech-

niques. Consequently, are not directly applicable to
our monocular vision framework.

2.1 Contributions

The key-contributions of this work lie in:

– Monocular vision based terrain learning.

– Speedup of upto 60x in pixel labeling, process-
ing real-time HD video.

– Computationally inexpensive terrain model and
update.

– Pipeline based perception architecture - sequen-
tial individual stages and pixel level paralleliza-
tion.

– Computations restricted to integer-only-
arithmetic, and bit-shift based clustering.

3 Algorithm Description

The monocular vision perception scheme is a
pipeline based design. The individual stages in the
pipeline are amenable to parallelization, for opera-
tions at the pixel level, as shown in Figure 2. The 5
major parts of the pipeline are as follows:

A Formation of octave pyramid.

B Pre-filtering near-range pixels, which corre-
spond to navigable terrain.

C Color based K-Means pixel clustering, at the
coarse scale version of the image.

D Horizon detection – removal of sky region.

E Scoring pixels in perception space, by learned
models.

We describe each stage of the pipeline individ-
ually.

3.1 Formation of octave pyramid

An image pyramid as shown in figure 3, is
formed for each frame f , in the incoming video
feed. Such a pyramid representation, denoted by gk,
at level k is helpful, since the search space for color
based clustering is smaller at the coarser level of the
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Figure 2. An overview of the algorithm – with individual stages and their corresponding outputs. The
processing pipeline is sequential and each stage enables parallel processing at the pixel level.

pyramid. Decimation is performed for each image,
to reduce the resolution. We formulate the down-
sampling scheme as described by [18]. The original
image, f , is convolved with a low-pass filter, h (to
avoid aliasing), evaluated at every rth sample. Pixel
coordinates are denoted by the ordered-pain (i, j).
The decimation process is implemented using (1).

g(i, j) = ∑
k,l

f (k, l)h(i− rk, j− rl) (1)

Where the smoothing kernel h(k, l) is the bino-
mial filter, introduced by [6]. We use the binomial
kernel as in 2.

h =
1

16
[1|4|6|4|1] (2)
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Figure 3. A short section of DNA: two nucleotide
aggregates

The convolution operation can be implemented
using bit-shifts and addition operations, and is com-
putationally inexpensive. This is illustrated in fig-

ure 4. In our specific implementation, we choose 5
levels for the pyramid. At the coarse scale, the im-
age is 1

32 times the original size. Color based clus-
tering is now performed on the coarse scale of the
octave pyramid.

3.2 Pre-filtering near-range pixels

This section is based on our previous work in
[15]. Our perception scheme assumes the following
properties of the environment:

– Obstacles are different in color, from the domi-
nant terrain shade.

– The immediate vicinity, of 50cm, in front of the
rover is navigable.

The justification for the premise in our argument,
lies in the fact that we operate a proximity sensor,
for near-range obstacle detection. The proximity
sensor module is functionally independent of the
perception module, and triggers the control mech-
anism to execute a turn-in-place maneuver, till a
clear field of view is obtained. The discussion of
near-field obstacle avoidance control schemes is be-
yond the scope of this paper.

A computationally inexpensive pre-filter is used
to identify pixels at the coarse level, which corre-
spond to navigable terrain. The details of our previ-
ous approach [15] is summarized below.

The pre-filter stage is implemented using Re-
gion of Interest (ROI) based processing. The ROI
operator is a rectangular window X, of dimension

Figure 2: An overview of the algorithm – with individual stages and their corresponding outputs. The processing
pipeline is sequential and each stage enables parallel processing at the pixel level.

ule ([7]), enabled far-range terrain classification using
probabilistic data-fusion across a laser range finder, and
monocular vision. Training data is delineated by the
laser scanner, to identify traversable terrain in front of the
robot. Subsequently, pixels corresponding to the training
region are used to model terrain. The solution allows
the vehicle to identify far-range navigable terrain, while
driving at high speed.

The DUC involved autonomous navigation in urban
environments. The teams had to complete a circuit
spanning 96 km, while obeying traffic rules, avoiding
other competitors, and moving traffic (Editorial, J. Field
Robotics[2]). Additionally, vehicles had to accurately
localize the curb, relative to the road, to avoid rollover.
The typical solution used by teams included stereo-vision,
GPS based localization, and laser scanners to successfully
maneuverer the urban environment. Carnegie Mellon
Universitys Boss, won the DUC, and the robot archi-
tecture is described by ([22]). The perception system
employs a sensor layer, and a fusion layer. An object
hypothesis set is used in dynamic obstacle detection and
tracking, and is updated using the sensor layer. The
fusion layer implements global classification and object
management, for successful navigation on urban roads.

LAGR ([12], [13]), led teams into terrain learning in
outdoor, unstructured environments. The LAGR platform
was equipped with stereo-vision, proximity-sensors, in-

ertial measurement unit, and infrared rangefinders. The
nature of forested terrain and dense foliage led to the
development of techniques for in-motion terrain learning
([23]). The technique employs three stages : feature
learning, feature training, and terrain prediction. Feature
learning is performed by identification of points which
correspond to the ground plane, using LIDAR data. The
training stage uses a visual classifier to label obstacles,
and regions of free-space. This is followed by the
predictive stage, which allows for high speed terrain
recognition. [11] employs labels from the stereo-camera,
which are used to train a deep hierarchical network, and
predict real-time traversibility. [3] describe methods to
short-range and long-range terrain classification. The
long-range terrain classification is image-based and learns
geometry-based terrain appearance.

All of the above solutions, emphasize use of multiple
sensors, and multi sensor data-fusion techniques. Con-
sequently, are not directly applicable to our monocular
vision framework.

2.1 Contributions
The key-contributions of this work lie in:

– Monocular vision based terrain learning.

– Speedup of upto 60x in pixel labeling, processing real-
time HD video.

3

Figure 3: Formation of the octave image pyramid. The
figure shows the decimation process restricted to three
levels.

– Computationally inexpensive terrain model and update.

– Pipeline based perception architecture - sequential in-
dividual stages and pixel level parallelization.

– Computations restricted to integer-only-arithmetic, and
bit-shift based clustering.

3 Algorithm Description
The monocular vision perception scheme is a pipeline
based design. The individual stages in the pipeline are
amenable to parallelization, for operations at the pixel
level, as shown in Figure 2. The 5 major parts of the
pipeline are as follows:

A. Formation of octave pyramid.

B. Pre-filtering near-range pixels, which correspond to
navigable terrain.

C. Color based K-Means pixel clustering, at the coarse
scale version of the image.

D. Horizon detection – removal of sky region.

E. Scoring pixels in perception space, by learned models.

We describe each stage of the pipeline individually.

3.1 Formation of octave pyramid
An image pyramid as shown in figure 3, is formed for
each frame f , in the incoming video feed. Such a pyramid
representation, denoted by gk, at level k is helpful, since
the search space for color based clustering is smaller at the
coarser level of the pyramid. Decimation is performed for
each image, to reduce the resolution. We formulate the
downsampling scheme as described by [18]. The original
image, f , is convolved with a low-pass filter, h (to avoid
aliasing), evaluated at every rth sample. Pixel coordinates
are denoted by the ordered-pain (i, j). The decimation
process is implemented using (1).

g(i, j) = ∑
k,l

f (k, l)h(i− rk, j− rl) (1)

Where the smoothing kernel h(k, l) is the binomial
filter, introduced by [6]. We use the binomial kernel as
in 2.

h =
1

16
[1|4|6|4|1] (2)

The convolution operation can be implemented using
bit-shifts and addition operations, and is computationally
inexpensive. This is illustrated in figure 4. In our specific
implementation, we choose 5 levels for the pyramid. At
the coarse scale, the image is 1

32 times the original size.
Color based clustering is now performed on the coarse
scale of the octave pyramid.

3.2 Pre-filtering near-range pixels
This section is based on our previous work in [15]. Our
perception scheme assumes the following properties of
the environment:

• Obstacles are different in color, from the dominant
terrain shade.

• The immediate vicinity, of 50cm, in front of the rover
is navigable.

The justification for the premise in our argument, lies
in the fact that we operate a proximity sensor, for near-
range obstacle detection. The proximity sensor module
is functionally independent of the perception module,
and triggers the control mechanism to execute a turn-
in-place maneuver, till a clear field of view is obtained.

4
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Figure 2. An overview of the algorithm – with individual stages and their corresponding outputs. The
processing pipeline is sequential and each stage enables parallel processing at the pixel level.
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tering is now performed on the coarse scale of the
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3.2 Pre-filtering near-range pixels

This section is based on our previous work in
[15]. Our perception scheme assumes the following
properties of the environment:

– Obstacles are different in color, from the domi-
nant terrain shade.

– The immediate vicinity, of 50cm, in front of the
rover is navigable.

The justification for the premise in our argument,
lies in the fact that we operate a proximity sensor,
for near-range obstacle detection. The proximity
sensor module is functionally independent of the
perception module, and triggers the control mech-
anism to execute a turn-in-place maneuver, till a
clear field of view is obtained. The discussion of
near-field obstacle avoidance control schemes is be-
yond the scope of this paper.

A computationally inexpensive pre-filter is used
to identify pixels at the coarse level, which corre-
spond to navigable terrain. The details of our previ-
ous approach [15] is summarized below.

The pre-filter stage is implemented using Re-
gion of Interest (ROI) based processing. The ROI
operator is a rectangular window X, of dimension

COMPUTATIONALLY INEXPENSIVE . . .

image4.png

Figure 4. Bit-shifted perception sub-space. The original and bit-shifted versions of the image are shown in
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The ith pixel in color space, is represented by
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image5.png
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standard deviation of ROI mean.
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given by (3):
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To reduce the computational complexity, the
ROI is a window of size size 64 x 128 pixels. Con-
sequently the above equation reduces to an accumu-
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For the window size as above, we require a 11
bit right-shift for division as in (5).
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The computation of pixel mean, is used in the
cluster initialization stage, as described next.
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3.3 Clustering in Perception Space
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Figure 6. Original image (a). Training clusters
(K=3) in (b-d).

The pre-filter stage, allows for cluster initializa-
tion using the dominant terrain color. Subsequently,
we operate on a perception sub-space, T ⊂ X . In-
dividual pixels, t(u,v) ∈ T correspond to bit-shifted
versions of x(u,v). We define a scalar shift opera-
tor b to obtain t(u,v)← x(u,v)� b, which is a bit-
shifted version of x. Consequent the mapping on T
is defined by X b−→ T . This pre-processing before
clustering, reduces the search space from 224 for
the standard 24 bit representation of color images,
to 2(24−3b) unique combinations of colors. In our
implementation, we set b to 4. This choice led to
substantial improvement in computation through-
put, while maintaining sufficient resolution in color
space, with distinguishing features.

K-means clustering (Duda and Hart[1]) is per-
formed on the m training examples. Specifically,
the training data set is
{t(1), t(2), . . . , t(m)} ∈ T .

The cluster initialization is performed for each
of the K cluster centroids {µ1,µ2, . . . ,µK ∈ R3}. µ1
is set to the mean µX , and each of the rest µk are
randomly initialized.

The cluster assignment step, for the ith training
example is indexed by (6).

C(i) ← k that minimizes ‖t(i)−µk‖ (6)

Subsequently, the move centroid step is performed
using (7).

µk ←
1

|Ck| ∑
i∈Ck

t(i) (7)

The cost function which is minimized is given by
(8).

J(c(1), . . . ,c(m),µ1, . . . ,µK) =
1
m

m

∑
i=1

‖x(i)−µc(i)‖

(8)

At this stage of the pipeline, we have K-color
clusters, which become training models representa-
tive of navigable terrain, as shown in figure 6. We
use this data, and a past history of the color clusters,
to update the terrain model.

3.4 Horizon detection
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Figure 7. Horizon detection, performed on the
original images (a),(c). Filtered results after

horizon removal shown in (b),(d).

For the window size as above, we require a 11 bit right-
shift for division as in (5).

Shift: µX = µX � p ∗ q (5)

The computation of pixel mean, is used in the cluster
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At this stage of the pipeline, we have K-color clusters,
which become training models representative of naviga-
ble terrain, as shown in figure 6. We use this data, and

a past history of the color clusters, to update the terrain
model.

3.4 Horizon detection

To update the model, we score individual pixels in the
visual field, based on computation of a distance metric
from each cluster center. To reduce the number of
computations, pixels which comprise of the sky region,
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Figure 6: Original image (a). Training clusters (K=3) in
(b-d).

6

(a) (b)

(c) (d)

Figure 7: Horizon detection, performed on the original
images (a),(c). Filtered results after horizon removal
shown in (b),(d).

are removed using a horizon detection scheme. Horizon
detection, is performed at the coarse scale by thresholding
pixel intensity values. The variance of the dominant color
model, which corresponds to the ROI, is computed using
(9).

σ2
X = ∑

(u,v)∈X
(zu,v −mX )2P(zu,v) (9)

We apply a thresholding scheme for pixels falling
within two standard deviations of the mean in the active
window, denoted by ghorizon.

ghorizon(u,v) =

{
1, if zu,v ∈ (−2σ2

SX
,2σ2

SX
).

0, otherwise.
(10)

The horizon in this case is defined as the row of pixels
in ghorizon which have the largest occurrence of zeros,
or minimal sum. Formally, the horizon H, for an n x
m image is defined as a collection of pixels at row uh:
{h(uh,1),h(uh,2), . . . ,h(uh,m)} ∈ H.

uh is obtained using (11).

uh ← ui that minimizes
m

∑
ui,v=1

ghorizon(ui,v) (11)

This scheme is limited to instances where a clear
horizon is defined in color space, it fails when the rover

is turning. In such scenarios, uh gets assigned to null,
and the horizon detection stage is skipped in the overall
pipeline.

ghorizon is updated according to (12).

ghorizon(u,v) =

{
1, if u < uh.

0, otherwise.
(12)

Figure 7 shows images, after the horizon removal has
been performed. We now have our training data ready, to
update the Mixture of Gaussians.

Individual pixels in the visual field are scored based on
the Mahalanobis distance from the learned models. At
this stage, we have K color clusters, characterized by their
mean µ, covariance ∑, and number of pixels in the cluster,
or cluster mass, ω. In addition to the K training models,
we have N learned models, which incorporate the past
history of dominant terrain color, with N > K.

Initially, all the N learned models are null. Model
update occurs, if there is an overlap between the kth

training model, and nth learned model, according to (13)
(where subscripts T denotes one of the K training models,
and L denotes a learned model N). These equations are
reproduced from research by [7], with modification to
reduce computation cost.

(µL −µT )T (ΣL +ΣT )−1(µL −µT )T ≤ 1 (13)

We restrict the covariance matrix to be diagonal, and save
computation time associated with full covariance matrix
inversion.

When the condition in 13 is satisfied, the learned model
is updated. The update equations are as in (14)–(16):

µL ← µLωL +µT ωT

ωL +ωT
(14)

ΣL ← ΣLωL +ΣT ωT

ωL +ωT
(15)

ωL ← ωL +ωT (16)

3.5 Scoring pixels in perception space

If the current training mode does not match any of the
learned models, as per (13), then the model update is

7



207Mishra P., Viswanathan A.

3.3 Clustering in Perception Space
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The cluster initialization is performed for each
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is set to the mean µX , and each of the rest µk are
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example is indexed by (6).

C(i) ← k that minimizes ‖t(i)−µk‖ (6)

Subsequently, the move centroid step is performed
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At this stage of the pipeline, we have K-color
clusters, which become training models representa-
tive of navigable terrain, as shown in figure 6. We
use this data, and a past history of the color clusters,
to update the terrain model.
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To update the model, we score individual pixels
in the visual field, based on computation of a dis-
tance metric from each cluster center. To reduce the
number of computations, pixels which comprise of
the sky region, are removed using a horizon detec-
tion scheme. Horizon detection, is performed at the
coarse scale by thresholding pixel intensity values.
The variance of the dominant color model, which
corresponds to the ROI, is computed using (9).

σ2
X = ∑

(u,v)∈X
(zu,v −mX)

2P(zu,v) (9)

We apply a thresholding scheme for pixels
falling within two standard deviations of the mean
in the active window, denoted by ghorizon.

ghorizon(u,v) =

{
1, if zu,v ∈ (−2σ2

SX
,2σ2

SX
).

0, otherwise.
(10)

The horizon in this case is defined as the row of pix-
els in ghorizon which have the largest occurrence of
zeros, or minimal sum. Formally, the horizon H, for
an n x m image is defined as a collection of pixels
at row uh: {h(uh,1),h(uh,2), . . . ,h(uh,m)} ∈ H.

uh is obtained using (11).

uh ← ui that minimizes
m

∑
ui,v=1

ghorizon(ui,v) (11)

This scheme is limited to instances where a
clear horizon is defined in color space, it fails when
the rover is turning. In such scenarios, uh gets as-
signed to null, and the horizon detection stage is
skipped in the overall pipeline.

ghorizon is updated according to (12).

ghorizon(u,v) =

{
1, if u < uh.

0, otherwise.
(12)

Figure 7 shows images, after the horizon re-
moval has been performed. We now have our train-
ing data ready, to update the Mixture of Gaussians.

Individual pixels in the visual field are scored
based on the Mahalanobis distance from the learned
models. At this stage, we have K color clusters,
characterized by their mean µ, covariance ∑, and
number of pixels in the cluster, or cluster mass, ω.
In addition to the K training models, we have N

learned models, which incorporate the past history
of dominant terrain color, with N > K.

Initially, all the N learned models are null.
Model update occurs, if there is an overlap between
the kth training model, and nth learned model, ac-
cording to (13) (where subscripts T denotes one
of the K training models, and L denotes a learned
model N). These equations are reproduced from re-
search by [7], with modification to reduce compu-
tation cost.

(µL −µT )
T (ΣL +ΣT )

−1(µL −µT )
T ≤ 1 (13)

We restrict the covariance matrix to be diagonal,
and save computation time associated with full co-
variance matrix inversion.

When the condition in 13 is satisfied, the
learned model is updated. The update equations are
as in (14)–(16):

µL ← µLωL +µT ωT

ωL +ωT
(14)

ΣL ← ΣLωL +ΣT ωT

ωL +ωT
(15)

ωL ← ωL +ωT (16)

3.5 Scoring pixels in perception space

If the current training mode does not match any
of the learned models, as per (13), then the model
update is performed using (17).

µL ← µT

∑
L
← ∑

T

ωL ← ωT




that minimizes ωn. (17)

This summarizes the scoring mechanism and
learning scheme, to incorporate a history of terrain
color in the perception scheme. Figure 8 shows
learning dominant color models, in an indoor en-
vironment.
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Figure 8. Learning terrain models in the indoor
environment. Original images (a),(c),(e), dominant
terrain colors overlaid with model mass are shown

in (b),(d), and (e). Model update occurs by
replacing the cluster with lowest mass, with new
training data. Images look best, when viewed in

color.

4 Experiments

We validate the proposed scheme on several
standard databases, across indoor and outdoor en-
vironments.

Figure 9 is representative of typical test scenar-
ios. Additionally, we also compare the proposed
approach to labeling training data by [7], using the
Microsoft R© KinectTMSensor, as our range finder.
A brief description of the datasets and experimen-
tal setup follows. Figure 10 shows our experimental
rover platform on which we implemented our vision
system.

4.1 Description of Datasets

We chose to validate terrain learning on hetero-
geneous illumination conditions, varying obstacle
field configurations, and diverse environment dy-
namism. The standard data bases include monoc-
ular urban road sequences, from the RAT-SLAM
field experiments as described by [4]. The dataset,

comprises of several miles of urban road, and in-
cludes moving vehicles and pedestrians during dif-
ferent times of the day.
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Figure 10. The ‘Freelancer,’ a custom built robotic
platform, equipped with a camera and proximity
sensors, is used for field testing our perception

scheme.

The New College Dataset, is a collection at Ox-
ford, for vision and mobile robot research. The
dataset comprises of images captured from an om-
nidirectional camera, a laser ranger, and stereo im-
agery, over the college’s grounds and neighboring
parks. We validate our algorithm using the vi-
sion data, captured by the Ladybug platform. The
dataset is described in [17].

For validation in the indoor environment, we
run tests on the standard IDOL2(Image Database
for rObot Localization) database. A formal descrip-
tion is available by [14]. The dataset incorporates
several trials under varying illumination conditions:
cloudy, sunny, and at night. Additionally, the the
data is scattered with instances of moving people.

The above datasets span structured outdoor and
indoor environments. Additional experiments, in
unstructured environments were also conducted.
The dataset, populated at The Cubbon Park, in Ban-
galore, offered several navigable terrain profiles.
We demonstrate the efficacy of the method, on a
walkway, in a bamboo forest, and on dirt and grass
terrain at the park. We describe the outcome of the
experiments, based on absolute pixel misclassifica-
tion error in the following section.
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KinectTMSensor, as our range finder. A brief description
of the datasets and experimental setup follows. Figure
10 shows our experimental rover platform on which we
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4.1 Description of Datasets

We chose to validate terrain learning on heterogeneous
illumination conditions, varying obstacle field configura-
tions, and diverse environment dynamism. The standard
data bases include monocular urban road sequences, from
the RAT-SLAM field experiments as described by [4].
The dataset, comprises of several miles of urban road, and
includes moving vehicles and pedestrians during different
times of the day.

The New College Dataset, is a collection at Oxford, for
vision and mobile robot research. The dataset comprises
of images captured from an omnidirectional camera,
a laser ranger, and stereo imagery, over the college’s
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rithm using the vision data, captured by the Ladybug
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nidirectional camera, a laser ranger, and stereo im-
agery, over the college’s grounds and neighboring
parks. We validate our algorithm using the vi-
sion data, captured by the Ladybug platform. The
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For validation in the indoor environment, we
run tests on the standard IDOL2(Image Database
for rObot Localization) database. A formal descrip-
tion is available by [14]. The dataset incorporates
several trials under varying illumination conditions:
cloudy, sunny, and at night. Additionally, the the
data is scattered with instances of moving people.
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4.2 Training Stage Validation

In this section we describe comparing our
method, with the standard implementation using a
laser range finder, by [7]. The pixels, chosen as
training samples are delineated navigable, by pars-
ing through range finder data. The Kinect sen-
sor, captures three dimensional scene depth, upto
10 meters from the current position of the sen-
sor. The point cloud , is a collection of samples,
{d1,d2, . . . ,dm} ∈ D, where di ∈ R3. di denotes the
Cartesian coordinates of a point in space, with ref-
erence to camera coordinates at the origin.

To obtain training samples, the authors [7],
model the height difference uncertainties between
samples as a temporal Markov chain. The details of
the implementation, that uses a laser scanner, and 6
degree of freedom pose estimator ( [19]).
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We simplify the procedure, by thresholding the
point cloud, to restrict data to near-range naviga-
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computed using (18). The choice of the exponen-
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tigation into learning from raw-sensor depth ([16]),
where the parameters a and b are learned at system
initialization.
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Point cloud filtering is performed to obtain pixel
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space decomposition. The decomposition is per-
formed according to 19.
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Subsequently, we compare pairwise location corre-
spondence using XD and pre-filtered pixel locations,
X in the ROI. Figure 11 shows the precision-recall
curve, at dth. Our experimental results suggest that
at the worst case, the position difference between
pixels in X and XD is limited to 30.

Table 1. Average computation time at different
pipeline stages. The averages, standard deviation,
and max time is calculated per frame update. The
results are compiled for the Cubbon Park dataset,
for a 5 level octave pyramid, bit-shift b = 3, N = 5,

and k = 3.
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Pixel Clustering 0.006710 0.036943 0.009510
(Model Update)
Horizon Detection 0.000326 0.002104 0.009565

5 Results

Our experimental results are summarized in fig-
ure 9. Statistics like worst case pixel misclassifi-
cation, is found in our previous work ([15]). The
change in frame throughput, using the octave pyra-
mid, bit-shifted perception space, and a combina-
tion of both is shown in the graphs below.

The performance curves (figures 12, 13 and 14),
show increased throughput by forming the octave
pyramid.The time for individual operations in the
pipeline is included in table 1. The saving in com-
putation time, is less pronounced when using only
the bit-shifted perception subspace. A combination
of the two schemes, allows a reduction of 0.8 sec-
onds, at b = 1.
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The performance curves (figures 12, 13 and 14),
show increased throughput by forming the octave
pyramid.The time for individual operations in the
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putation time, is less pronounced when using only
the bit-shifted perception subspace. A combination
of the two schemes, allows a reduction of 0.8 sec-
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Figure 12. Exponential reduction in processing
time, is seen at coarse levels of the octave pyramid.
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Figure 13. The gain in throughput increases till b
= 3, and saturates beyond that value. Choosing b >
5 produces resultant images of poor visual quality.

6 Conclusion

In this paper, we have described a computation-
ally inexpensive algorithm to identify navigable ter-
rain, using a color based clustering approach. Ad-
ditionally, our primary sensing modality, is a sin-
gle consumer grade web-camera. The proposed
monocular vision scheme, is shown to be as effec-
tive in delineating training samples, as multi-sensor
data fusion from a laser ranger. Table 2 shows the
mean error rate of the classifier, based on the exper-
iments we conducted.

The scheme is completely implemented using
an integer data-path; employs bit-shifts and accu-
mulate operations. Our perception method, has ex-
ponentially faster per frame throughput, compared

to the original approach. The computation time is
reduced by orders of magnitude, by learning dom-
inant terrain color in bit-shifted perception sub-
space, at the coarse level of an octave pyramid.
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Figure 14. On combining the two schemes, it is
evident from the figure, that operating at the coarse

level allows for significant reduction in
computation overhead. Additionally, a boost (of

0.87 seconds) is obtained by bit-shifting the
perception subspace, using b > 2. An overall boost

in performance of upto 60x is achieved.

Limitations of the monocular vision framework,
lies in misclassifying objects which are similar to
the dominant terrain color. Such corner cases vi-
olate our assumption of heterogeneous free-space
and obstacle color. Specific examples are evident
in the case of gray cars misclassified as traversable,
on the urban road tests. We acknowledge this lim-
itation in our perception scheme, which makes a
strong case for multi-sensor data fusion. The fu-
sion module would operate on a higher hierarchi-
cal layer, taking into account the terrain learnt using
a single camera, and there are gains to be realized
here.

We tested monocular vision based terrain learn-
ing in diverse terrain types. Validation spanning
variations in obstacle field configuration, illumina-
tion conditions, and environment structure, shows
the feasibility of our approach.
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Table 2. Mean error rate of the self-supervised learning algorithm on different datasets.

Dataset Description Unmodified Image Pyramid Image Pyramid
(Outdoor/ (Structured/ (Static/ Algorithm (scaled 1/32x and Bit-shifts
Indoor) Unstructured) Dynamic) Original) (b = 3)

Standard Test Datasets
New College Dataset Outdoor Structured Static 5.88 % 6.87% 7.24%
(Oxford Mobile Robotics)

St. Lucia Loop Outdoor Structured Dynamic 12.13 % 12.55% 12.67%
(Rat-SLAM Dataset)

IDOL2 Dataset Indoor Structured Dynamic 5.5 % 7.32% 7.76%

Custom Test Datasets
Apartment Complex Outdoor Structured Static 11.97% 12.45% 13.66%

Urban Road Outdoor Structured Dynamic 15.34 % 16.12% 16.83%

University Campus Outdoor Structured Dynamic 10.67% 11.31% 12.98%

Cubbon Park Dataset Outdoor Unstructured Dynamic 15.56 % 17.88% 18.45%
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examples are evident in the case of gray cars misclassified
as traversable, on the urban road tests. We acknowledge
this limitation in our perception scheme, which makes a
strong case for multi-sensor data fusion. The fusion mod-
ule would operate on a higher hierarchical layer, taking
into account the terrain learnt using a single camera, and
there are gains to be realized here.

We tested monocular vision based terrain learning in
diverse terrain types. Validation spanning variations
in obstacle field configuration, illumination conditions,
and environment structure, shows the feasibility of our
approach.
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