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Abstract

In this paper, the fixed final time adaptive optimal regulation of discrete-time linear
systems with unknown system dynamics is addressed. First, by transforming the linear
systems into the input/output form, the adaptive optimal control design depends only on
the measured outputs and past inputs instead of state measurements. Next, due to the
time-varying nature of finite-horizon, a novel online adaptive estimator is proposed by
utilizing an online approximator to relax the requirement on the system dynamics. An
additional error term corresponding to the terminal constraint is defined and minimized
overtime. No policy/value iteration is performed by the novel parameter update law which
is updated once a sampling interval. The proposed control design yields an online and
forward-in-time solution which enjoys great practical advantages. Stability of the system
is demonstrated by Lyapunov analysis while simulation results verify the effectiveness of
the propose approach.

1 Introduction

Optimal regulation of linear systems with
quadratic cost function (LQR) has been addressed
in the literature by solving the Riccati equation (RE)
in a backward in time manner from the terminal
weighting matrix SN with known system dynam-
ics [1][2]. To solve the LQR for infinite-horizon
case, the algebraic Riccati equation (ARE) is uti-
lized wherein the control gain becomes a constant.
In contrast, for the finite-horizon case, the solution
to the RE becomes inherently time-varying and the
control gain matrix is also varies with time. In the
presence of uncertainties in system dynamics, the
solution to the RE cannot be found.

Therefore in the recent years, adaptive or neural
network (NN)-based scheme to obtain the optimal
control has been developed and intensively studied
for both linear and nonlinear systems in the case

of infinite-horizon [3][4][6][7]. However, fixed fi-
nal time optimal adaptive control still remains unre-
solved even for the linear systems when the system
dynamics are not known beforehand.

In the past literature, the author in [8] intro-
duced the finite-horizon optimal control problem by
solving the so-called generalized Hamilton-Jacobi-
Bellman (GHJB) equation. The terminal constaint
is incorporated in the control design and the opti-
mal solution is obtained by iteratively solving the
GHJB equation backward-in-time from the termi-
nal time t f via Galerkin method. Later in [9], the
authors proposed a NN-based approach to solve the
fixed-final time optimal control problem for gen-
eral affine nonlinear continuous-time systems. The
NN, with time-varying weights and state-dependent
activations are ultilized to solve the time-varying
HJB equation through backward integration from a
known terminal NN weights.
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Most recently in [10], the authors considered
the discrete-time control-constrained finite-horizon
optimal regulation problem by using the standard
direct heuristic dynamic programming (DHDP)-
based offiline training scheme. In constrast with [9],
the time-dependency nature of finite-horizon is han-
dled by using a NN with constant weights and time-
varying activation functions. The terminal constri-
ant is guranteed to be satisfied by introducing an
augmented vector incorporating the terminal value
of the co-state λ(N).

The aforementioned literature [8][9][10] pro-
vided good insights into solving the finite-horizon
optimal control problem. However, the solutions
developed are either backward-in-time or through
iteration-based offline training. Moreover, the al-
gorithm proposed in [8][9][10] requires the knowl-
edge of the system dynamics to update the NN
weights which is a major issue.

To relax the requirement on the system dynam-
ics and achieve optimality, approximate dynamic
programming (ADP) technique [11][12][13] is de-
veloped to solve the optimal control problem by us-
ing policy iteration (PI) or value iteration (VI) in a
forward-in-time manner. Most PI or VI requires at
least partial dynamics of the system [12][13]. In ad-
dition, it has been further shown later in [14] that the
iteration-based scheme requires significant number
of iterations within a sampling interval to guaran-
tee the parameter convergence. Inadequate num-
ber of iterations may lead to the instability of the
system. In contrast, the authors in [7] developed a
novel time-based algorithm to solve the Hamilton-
Jacobi-Bellman (HJB) equation for optimal con-
trol of a class of general nonlinear affine discrete-
time systems without using value and policy itera-
tions. However, the work in [7] mainly addressed
the infinite-horizon problem.

On the other hand, the Q-learning methodology
[4][15] for discrete-time LQR is used to directly ap-
proximate the optimal control gain and such that
the full system dynamics are not required. How-
ever, both PI/VI-based algorithm and Q-learning re-
quire the true system states for the feedback con-
trol loop which is another bottleneck. Later in
[17][18][19], the authors transformed the system
into input-output form such that only the measured
data are utilized to find the control input. However,
optimality was not considered in [17] and [18], and

PI/VI is utilized in [19] without convergence proof.

The effort in [17][18][19] have provided a way
to relax the requirement on the system states with-
out designing an observer. However, in contrast
to the optimal control gain derived based on stan-
dard Q-learning technique [4], the control gain un-
der input-output form cannot be directly obtained
from the kernel matrix. In other words, the Kalman
gain cannot be expressed directly as the parameter
estimation error. In addition, the feedback signal
becomes a function of input-output history instead
of the system states complicating the closed-loop
stability for the time-based ADP scheme when an
online-learning algorithm is implemented. In [19],
an iterative scheme is developed while in here a
time-based ADP technique is derived.

Motivated by the deficiencies mentioned above,
in this paper, the ADP techique via reinforcement
learning (RL) is used to solve the finite-horizon
optimal regulation problem for a linear discrete-
time systems with unknown system dynamics in
a forward-in-time and online fashion without per-
forming PI or VI. The system is tranformed into an
input/output form such that the control policy can
be obtained by using only measured input/output
data [19]. The Bellman equation is investigated
with an online approximator such that the require-
ment on the system dynamics is relaxed. An addi-
tional error term corresponding to the terminal state
constraint is defined and minimized overtime so that
the terminal constriant can be properly satisfied as
the system evolves. Lyapunov stability is utilized to
demonstrate the stability of our proposed algorithm.

The main contributions of this paper include the
development of the finite-horizon adaptive optimal
regulation of unknown linear discrete-time systems
by using past inputs and outputs. An online adap-
tive estimator is introduced to effectively learn the
optimal control gain, while the terminal state con-
straint is incorporated in the novel parameter up-
date law to satisfy the terminal constraint. Conver-
gence proof of the system stability becomes more
involved under input-output form with the time-
based ADP scheme whereas the boundedness of the
regulation and parameter estimation errors is still
demonstrated by using Lyapunov analysis. The pro-
posed controller design scheme yields an online and
forward-in-time algorithm with no offline training
phase. The controller does not perform PI or VI
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while the cost function and optimal control input
are updated once a sampling interval consistent with
the standard adaptive control.

In the next section, the optimal regulation prob-
lem is formulated based on input/output form such
that the system states are not required for the con-
troller design.

2 Problem Formulation

In this paper, consider the following discrete-
time linear system given by

xk+1 = Axk +Buk
yk =Cxk

(1)

where xk ∈ ℜn, uk ∈ ℜ, yk ∈ ℜp are system states,
control inputs and system outputs, respectively. The
system matrices A ∈ ℜn×n, B ∈ ℜn and C ∈ ℜp×n

are assumed to be unknown.

Before proceeding, we make the following stan-
dard assumption.

Assumption 1: The system (A,B) is controllable
and (A,C) is observable.

It should be noted that for the fixed final time,
the cost/value function becomes time-varying [1]
and denoted as V (xk,N− k), which is a function of
both system states and time-to-go. The objective of
the control design is to determine a feedback con-
trol policy that minimizes the cost function in the
following form [16]:

V (xk,N− k) = yT
NPNyN +

N−1

∑
i=k

r(yk,uk,k) (2)

where r(yk,uk,k) = yT
k Pyk + uT

k Ruk is the cost-to-
go, with P = PT ≥ 0 ∈ ℜp×p and R > 0 ∈ ℜ being
the weighting matrices for the outputs and inputs,
and assumed to be positive semi-definite and posi-
tive definite, respectively, and PN is a positive def-
inite matrix conisidered to be the terminal penalty
for the outputs at the final stage. Note that for finite-
horizon case, the control inputs uk are essentially
time-varying, i.e., uk = µ(xk,k) and hence the cost-
to-go becomes time-varying.

The optimal cost, based on Bellman’s principle
of optimality, is given as

V ∗(xk,N− k)
= min

uk
(r(yk,uk,k)+V ∗(xk+1,N− k−1)) (3)

and the optimal control policy is given by

u∗k =
argmin

uk

(r(yk,uk,k)+V ∗(xk+1,N− k−1)) (4)

For LQR problem, the cost or value function
can be represented in quadratic form in terms of the
system states as

V (xk,N− k) = xT
k Skxk (5)

whereSkis the solution sequence to the Riccati equa-
tion

Sk = AT[Sk+1 −Sk+1B(BTSk+1B+R)−1

×BTSk+1]A+Q
(6)

It is important to note that existence of unique
positive RE solution, Sk, is guaranteed if the
pair (A,B,

√
Q) is stabilizable and observable [1].

Therefore, by using the stationarity condition
[1],the optimal control policy can be finally re-
vealed to be

u∗k =−(BTSk+1B+R)−1BTSk+1A · xk (7)

From (7), it can be seen that the optimal control
can be obtained only when the system state vector
xk is measurable. In practical situation, however,
the availability of the entire state vector is normally
not possible. Next, the system is transformed into
an input/output form [19] so that only the observed
input/ouput data can be used to find the optimal
control policy.

Consider the current time step k and the time in-
terval [k−M,k], where M is the number of history
information and should be selected as M ≥ ν, with
ν being the observability index. Then the system
dynamics at time step k can be represented, by re-
peated substitution of the system dynamics, as [19]:

xk = AMxk−M +Coūk−1,k−M
ȳk−1,k−M = Obxk−M +TMūk−1,k−M

(8)

where ȳk−1,k−M =




yk−1
yk−2

...
yk−M+1
yk−M



∈ ℜpM,
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ūk−1,k−M =




uk−1
uk−2

...
uk−M+1
uk−M



∈ ℜM are the measured

input/output data, Co = [B AB · · · AM−1B]

is the controllability matrix,

Ob = [(CAM−1)T (CAM−2)T · · · (CA)T CT]T

is the observability matrix, and

TM =




0 CB CAB · · · CAM−2B
0 0 CB · · · CAM−3B
...

...
. . . . . .

...
0 0 · · · 0 CB
0 0 0 · · · 0




is the Toeplitz matrix of the system Markov param-
eters.

The Bellman equation can be represented in
terms of the value function as

V ∗(xk,N− k) = r(yk,uk,k)+ V ∗(xk+1,N− k−1)
(9)

Next, define the vector in terms of input/output pair
as

zk−1,k−M =

[
ūk−1,k−M
ȳk−1,k−M

]
(10)

Then, the value function can be further written
in terms of zk−1,k−M as

V (xk,N− k) = xT
k Skxk

= zT
k−1,k−M

[
LT

u
LT

y

]
Sk[ Lu Ly ]zk−1,k−M

= zT
k−1,k−M

[
LT

u SkLu LT
u SkLy

LT
y SkLu LT

y SkLy

]
zk−1,k−M

≡ zT
k−1,k−MGk−1zk−1,k−M

(11)

whereLy = L0,Lu = Co − L0TM ,L0 = AMO+
b , O+

b =
(OT

b Ob)
−1OT

b is the left inverse of the observability
matrix, and

Gk−1 =

[
LT

u SkLu LT
u SkLy

LT
y SkLu LT

y SkLy

]
∈ ℜ(m+p)M×(m+p)M.

It can be seen from (11) that the value function
is in the quadratic form of zk−1,k−M , i.e., the history
information of the system inputs and outputs. Ac-
cording to the Bellman equation (9), we have

zT
k−1,k−MGk−1zk−1,k−M

= r(yk,uk,k)+ zT
k,k−M+1Gkzk,k−M+1

(12)

Partition zT
k,k−M+1Gkzk,k−M+1 yields

zT
k,k−M+1Gkzk,k−M+1

=

[
ūk,k−M+1
ȳk,k−M+1

]T

Gk

[
ūk,k−M+1
ȳk,k−M+1

]

≡




uk
ūk−1,k−M
ȳk,k−M+1




T

GIO,k




uk
ūk−1,k−M
ȳk,k−M+1




(13)

where GIO,k =




g1
k g2

k g3
k

(g2
k)

T ∗ ∗
(g3

k)
T ∗ ∗


.

Therefore, by taking the partial derivative with
respect to uk, we have

Ruk +g1
kuk +g1

k ūk−1,k−M +g3
k ȳk,k−M+1 = 0 (14)

The optimal control policy can thus be obtained by
[19]

u∗k =−(R+g1
k)

−1(g2
kūk−1,k−M +g3

k ȳk,k−M+1) (15)

From equation (15), it is clear that the optimal con-
trol policy can be obtained by using only the infor-
mation of the kernal matrix GIO,k and history infor-
mation of the system inputs and outputs, thus the
system dynamics A, B, C and true system state vec-
tor xk is not required.

The main challenge is to estimate the kernel ma-
trix parameters in order to obtain the control policy.
While the estimation of the kernerl matrix param-
eters is presented in [19] by using the VI or PI, in
this paper, they are obtained in a standard adaptive
control manner due to wekanesses experienced by
the VI or PI scheme.

3 Optimal Regulation Design

In this section, the fixed final time optimal regu-
lation scheme is proposed for the discrete-time lin-
ear system with unknown system dynamics. First,
an action-dependent function [4][15] is defined and
estimated adaptively by using reinforcement learn-
ing, which in turn is utilized to design the controller.
Next, an additional error term corresponding to the
terminal constraint is defined and minimized such
that the terminal constraint is properly satisfied. Fi-
nally, the stability of the closed-loop system is ver-
ified based on the Lyapunov stability theory.
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ūk−1,k−M
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3.1 Model-free Tuning with Online Adap-
tive Estimator

Based on Section 2, the optimal control policy
can be obtained by using (15), where system dy-
namics are not required and only input/output data
are needed. For discrete-time LQR problem, define
an action-dependent function Q(yk,uk,N−k) is de-
fined as:

Q∗(yk,uk,N− k) =

=




uk
ūk−1,k−M
ȳk,k−M+1




T

G∗
IO,k




uk
ūk−1,k−M
ȳk,k−M+1


 (16)

Therefore, the objective is now to approximate
the optimal Q∗(yk,uk,N − k), or equivalently, the
kernal matrix G∗

IO,k, which provides the optimal
control gain, in an online manner.

Remark 1: In the standard LQR setting when the
system states are available, the action-dependent
function is referred to as the Q-function and the sys-
tem dynamics are relaxed by directly utilizing the
optimal Kalman gain provided by the Q-function
[4][6][11].

Before proceeding, the following standard as-
sumption is introduced.

Assumption 2 (Linear in the Unknown Param-
eters): The slowly time varying kernel matrix,
Q∗(yk,uk,N− k), can be expressed as the linear in
the unknown parameters (LIP).

By adaptive control theory [22], Q∗(yk,uk,N−
k) can be represented in the vector form as

Q∗(yk,uk,N− k)
= zT

k,k−M+1G∗
IO,kzk,k−M+1 = gT

IO,kz̄k,k−M+1
(17)

where
zk,k−M+1 = [ūT

k,k−M+1, ȳT
k,k−M+1]

T ∈ ℜ(m+p)M=l ,

z̄k,k−M+1 = [z2
k1,k−M+1, · · · ,

zk1,k−M+1zkl,k−M+1,z2
k2,k−M+1, · · · ,

zkl−1,k−M+1zkl,k−M+1,z2
kl,k−M+1]

T

is the Kronecker product quadratic polynomial ba-
sis vector and gIO,k = vec(GIO,k) with vec(•) a vec-
tor function that acts on a l × l matrix and gives
a (l +1)× l

/
2 = L column vector. The output of

vec(GIO,k) is constructed by stacking the columns
of the squared matrix into a one-column vector with
the off-diagonal elements summed as GIO,k

mn +GIO,k
nm .

Based on Assumption 2, define gIO,k as

gIO,k = θTϕ(N− k) (18)

where θ ∈ ℜL is target parameter vector and ϕ(N−
k) ∈ ℜL×L is the time-varying basis function ma-
trix reflecting the time-dependency nature of finite-
horizon. From [1], the standard Bellman equation
is given in terms of Q∗(yk,uk,N− k) as

Q∗(yk+1,uk+1,N− k−1)−Q∗(yk,uk,N− k)
+ r(yk,uk,k) = 0

(19)

However, equation (19) does not hold any
longer when the approximated value of ĝIO,k is
used. To approximate the time-varying matrix
GIO,k, or alternatively gIO,k, define

ĝIO,k = θ̂T
k ϕ(N− k) (20)

where θ̂k is the estimated value of target param-
eter vectorθ. Therefore, the approximation of
Q∗(yk,uk,N− k) can be written as
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not have the time-varying term ϕ(N− k), since the
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the desired value of gk is considered to be slowly
time-varying. Hence the basis function should be
a function of time and can take the form of product
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timated Bellman equation can be written as
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where ek+1 is the estimation error in the Bellman
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k,k−M+1]

T ∈ ℜ(m+p)M=l ,

z̄k,k−M+1 = [z2
k1,k−M+1, · · · ,

zk1,k−M+1zkl,k−M+1,z2
k2,k−M+1, · · · ,

zkl−1,k−M+1zkl,k−M+1,z2
kl,k−M+1]

T

is the Kronecker product quadratic polynomial ba-
sis vector and gIO,k = vec(GIO,k) with vec(•) a vec-
tor function that acts on a l × l matrix and gives
a (l +1)× l

/
2 = L column vector. The output of

vec(GIO,k) is constructed by stacking the columns
of the squared matrix into a one-column vector with
the off-diagonal elements summed as GIO,k

mn +GIO,k
nm .

Based on Assumption 2, define gIO,k as

gIO,k = θTϕ(N− k) (18)

where θ ∈ ℜL is target parameter vector and ϕ(N−
k) ∈ ℜL×L is the time-varying basis function ma-
trix reflecting the time-dependency nature of finite-
horizon. From [1], the standard Bellman equation
is given in terms of Q∗(yk,uk,N− k) as

Q∗(yk+1,uk+1,N− k−1)−Q∗(yk,uk,N− k)
+ r(yk,uk,k) = 0

(19)

However, equation (19) does not hold any
longer when the approximated value of ĝIO,k is
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we have similar to [7] as

ek = r(yk−1,uk−1,k−1)+ θ̂T
k Φ̄k − θ̂T

k Φ̄k−1

= r(yk−1,uk−1,k−1)+ θ̂T
k ∆Φ̄k−1

(23)

where ∆Φ̄k−1 = Φ̄k − Φ̄k−1.

The dynamics of the Bellman estimation error
can be rewritten by using history information simi-
lar to the nonlinear case [7] as

ek+1 = r(yk,uk,k)+ θ̂T
k+1∆Φ̄k (24)

For the fixed final time case, the terminal constraint
of the cost function should also be taken in account.
Define the approximated value function at the ter-
minal stage as

Q̂k(yN) = θ̂T
k ϕ(0)z̄N (25)

In (25), it is important to note that the time-
dependent basis function ϕ(N− k) is taken as ϕ(0)
since from the definition of ϕ, the time index is
taken in the reverse order. Next, define the termi-
nal constraint error vector as

ek,N = ĝIO,k,N −gIO,N = θ̂T
k ϕ(0)−gIO,N (26)

withgIO,N being bounded by ∥gIO,N∥ ≤ gM.

Remark 3: In fixed final time problems, the error
term ek,N, which indicates the difference between
the approximated and true value for the terminal
constraint, or “target” (in our case, gIO,N), is crit-
ical for the controller design. The terminal con-
straint is satisfied by minimizing ek,N along the sys-
tem evolution. Another error term ek, which can
be regarded as temporal difference error (TDE),
is always needed for tuning the parameter for
both finite-horizon and infinite-horizon case. For
infinite-horizon case, see [6] and [7].

The objective of the finite-horizon optimal con-
trol design is to achieve optimality as well as satis-
fying the terminal constraint. Hence define the total
error vector as

ek,total = ek +∥ek,N∥ (27)

Next, to reflect the influence of the terminal
constraint, the update law for tuning θ̂k can be se-
lected as

θ̂k+1 = θ̂k −α∆Φ̄k−1ek −α
ϕ(0)eT

k,N

1+∥ϕ(0)∥2 (28)

where 0 < α < 1 is a design parameter. It also can
be seen from (28) that the update law is essentially
a gradient descent update [6]. The second and the
last terms in the update law essentially use the Bell-
man and terminal constraint errors in order to tune
the parameters.

Figure 1. Flowchart of proposed algorithm

Define the parameter estimation error for θ̂k
as θ̃k = θ − θ̂k. Recall from the standard Bell-
man equation (19) without approximation, we have
the true utility vector as r(yk−1,uk−1,k − 1) =
−θT∆Φ̄k−1, which yields the Beman equation error
as

ek = r(yk−1,uk−1,k−1)+ θ̂T
k ∆Φ̄k−1

=−θT∆Φ̄k−1 + θ̂T
k ∆Φ̄k−1

=−θ̃T
k ∆Φ̄k−1

(29)

Moreover, note that ek,N = ĝIO,k+1,N −gIO,N =
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Define the parameter estimation error for θ̂k
as θ̃k = θ − θ̂k. Recall from the standard Bell-
man equation (19) without approximation, we have
the true utility vector as r(yk−1,uk−1,k − 1) =
−θT∆Φ̄k−1, which yields the Beman equation error
as

ek = r(yk−1,uk−1,k−1)+ θ̂T
k ∆Φ̄k−1

=−θT∆Φ̄k−1 + θ̂T
k ∆Φ̄k−1

=−θ̃T
k ∆Φ̄k−1

(29)

Moreover, note that ek,N = ĝIO,k+1,N −gIO,N =

θ̂T
k ϕ(0) − θTϕ(0) = −θ̃T

k ϕ(0), and similarly
ek+1,N = −θ̃T

k+1ϕ(0), then the error dynamics for
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θ̃k can be finally revealed to be

θ̃k+1 = θ̃k −α∆Φ̄k−1∆Φ̄T
k−1θ̃k −α

ϕ(0)ϕT(0)

1+∥ϕ(0)∥2 θ̃k

(30)
Remark 5: It is observed from the definition
(17) that Q∗(yk,uk,N − k) becomes zero when
∥z̄k,k−M+1∥ = 0. Hence, when the system outputs,
which are the inputs to the online approximator,
have converged to zero, the approximator is no
longer updated. It can be seen as a persistency of
excitation (PE) requirement [7] for the inputs to the
online approximator wherein the system states must
be persistently exiting long enough for the estimator
to learn Q∗(yk,uk,N−k). The PE condition require-
ment can be satisfied by adding exploration noise
[21] to the augmented system state vector. In this
paper, exploration noise is added to satisfy the PE
condition.

Next, the estimation of the optimal feedback
control input and the entire scheme is introduced.

3.2 Estimation of the Optimal Feedback
Control and Algorithm

The optimal control can be obtained by mini-
mizing the value function [1]. Recall from (15), the
optimal control input can be obtained as

ûk =−(R+ ĝ1
k)

−1(ĝ2
k ūk−1,k−M + ĝ3

k ȳk,k−M+1) (31)

From (31), the optimal control gain can be cal-
culated based on the information of ĜIO,k matrix,
which is obtained by estimating Q∗(yk,uk,N− k).
This relaxes the requirement of the system dynam-
ics while the update law (28) relaxes the value and
policy iterations. Here Q∗(yk,uk,N− k) and con-
trol policy are updated once a sampling interval. To
complete this subsection, the flowchart of the pro-
posed algorithm is shown in Fig. 1.

3.3 Stability Analysis

In this subsection, it will be shown that both
the estimation error θ̃kand the closed-loop system
are uniformly ultimately bounded (UUB). Due to
the nature of time-dependency, the system becomes
essentially non-autonomous in contrast with [10].
First, the boundedness of estimation error θ̃k will

be shown in Theorem 1. Before proceeding, the fol-
lowing definition is needed.

Definition [20]: An equilibrium point xe is said to
be uniformly ultimately bounded (UUB) if there ex-
ists a compact set S ⊂ ℜn so that for all x0 ∈ S there
exists a bound µ > 0, and a number N(µ,x0) such
that ∥xk∥< µ for all k ≥ N.

Theorem 1: Let the initial conditions for ĝIO,0 be
bounded in a set. Let u0(k) be and initial admissible
control policy for the linear system (1). Let the up-
date law for tuning θ̂k be given by (28). Then, there
exists a positive constant α satisfying 0 < α < 1
such that the system is UUB. Furthermore, when
N → ∞, the parameter estimation error θ̃k will con-
verge to zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the
closed-loop system. Before establishing the the-
orem on system stability, the following lemma is
needed which will aid the stabiltiy proof of the over-
all closed-loop system shown in Theorem 2.

Lemma (Bounds on the closed-loop dynamics
with optimal control signal): Consider the linear
discrete-time system defined in (1), then there ex-
ists an optimal control policy u∗k for (1) such that
the closed-loop system dynamics Axk +Bu∗k can be
written as

∥Axk +Bu∗k∥
2 ≤ ρ∥xk∥2 (32)

where 0 < ρ < 1
2 is a constant.

Theorem 2 (Boundedness of the Closed-loop Sys-
tem): Let u0(k) be an initial admissible control pol-
icy for the system such that (32) holds with someρ.
Let the parameter vector of the online approximator
be tuned and estimation control policy be provided
by (28) and (31), respectively. Then, with posi-

tive constant α satisfying 0 < α <
√

1
2 , there exists

some ε > 0 depending on the initial value Bx,0 and
Bθ̃,0 and the terminal stage N, such that for a fixed
final time instant N, we have ∥xk∥ ≤ ε(xk,N) and��θ̃k

��≤ ε(θ̃k,N). Furhtermore, by geometric theory,
when N → ∞, ε(xk,N) and ε(θ̃k,N) will converge to
zero, i.e., the system is asymptotically stable.

Proof: See Appendix.
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Remark 5: It is observed from the definition
(17) that Q∗(yk,uk,N − k) becomes zero when
∥z̄k,k−M+1∥ = 0. Hence, when the system outputs,
which are the inputs to the online approximator,
have converged to zero, the approximator is no
longer updated. It can be seen as a persistency of
excitation (PE) requirement [7] for the inputs to the
online approximator wherein the system states must
be persistently exiting long enough for the estimator
to learn Q∗(yk,uk,N−k). The PE condition require-
ment can be satisfied by adding exploration noise
[21] to the augmented system state vector. In this
paper, exploration noise is added to satisfy the PE
condition.

Next, the estimation of the optimal feedback
control input and the entire scheme is introduced.

3.2 Estimation of the Optimal Feedback
Control and Algorithm

The optimal control can be obtained by mini-
mizing the value function [1]. Recall from (15), the
optimal control input can be obtained as

ûk =−(R+ ĝ1
k)

−1(ĝ2
k ūk−1,k−M + ĝ3

k ȳk,k−M+1) (31)

From (31), the optimal control gain can be cal-
culated based on the information of ĜIO,k matrix,
which is obtained by estimating Q∗(yk,uk,N− k).
This relaxes the requirement of the system dynam-
ics while the update law (28) relaxes the value and
policy iterations. Here Q∗(yk,uk,N− k) and con-
trol policy are updated once a sampling interval. To
complete this subsection, the flowchart of the pro-
posed algorithm is shown in Fig. 1.

3.3 Stability Analysis

In this subsection, it will be shown that both
the estimation error θ̃kand the closed-loop system
are uniformly ultimately bounded (UUB). Due to
the nature of time-dependency, the system becomes
essentially non-autonomous in contrast with [10].
First, the boundedness of estimation error θ̃k will

be shown in Theorem 1. Before proceeding, the fol-
lowing definition is needed.

Definition [20]: An equilibrium point xe is said to
be uniformly ultimately bounded (UUB) if there ex-
ists a compact set S ⊂ ℜn so that for all x0 ∈ S there
exists a bound µ > 0, and a number N(µ,x0) such
that ∥xk∥< µ for all k ≥ N.

Theorem 1: Let the initial conditions for ĝIO,0 be
bounded in a set. Let u0(k) be and initial admissible
control policy for the linear system (1). Let the up-
date law for tuning θ̂k be given by (28). Then, there
exists a positive constant α satisfying 0 < α < 1
such that the system is UUB. Furthermore, when
N → ∞, the parameter estimation error θ̃k will con-
verge to zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the
closed-loop system. Before establishing the the-
orem on system stability, the following lemma is
needed which will aid the stabiltiy proof of the over-
all closed-loop system shown in Theorem 2.

Lemma (Bounds on the closed-loop dynamics
with optimal control signal): Consider the linear
discrete-time system defined in (1), then there ex-
ists an optimal control policy u∗k for (1) such that
the closed-loop system dynamics Axk +Bu∗k can be
written as

∥Axk +Bu∗k∥
2 ≤ ρ∥xk∥2 (32)

where 0 < ρ < 1
2 is a constant.

Theorem 2 (Boundedness of the Closed-loop Sys-
tem): Let u0(k) be an initial admissible control pol-
icy for the system such that (32) holds with someρ.
Let the parameter vector of the online approximator
be tuned and estimation control policy be provided
by (28) and (31), respectively. Then, with posi-

tive constant α satisfying 0 < α <
√

1
2 , there exists

some ε > 0 depending on the initial value Bx,0 and
Bθ̃,0 and the terminal stage N, such that for a fixed
final time instant N, we have ∥xk∥ ≤ ε(xk,N) and��θ̃k

��≤ ε(θ̃k,N). Furhtermore, by geometric theory,
when N → ∞, ε(xk,N) and ε(θ̃k,N) will converge to
zero, i.e., the system is asymptotically stable.

Proof: See Appendix.
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θ̃k can be finally revealed to be
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Remark 5: It is observed from the definition
(17) that Q∗(yk,uk,N − k) becomes zero when
∥z̄k,k−M+1∥ = 0. Hence, when the system outputs,
which are the inputs to the online approximator,
have converged to zero, the approximator is no
longer updated. It can be seen as a persistency of
excitation (PE) requirement [7] for the inputs to the
online approximator wherein the system states must
be persistently exiting long enough for the estimator
to learn Q∗(yk,uk,N−k). The PE condition require-
ment can be satisfied by adding exploration noise
[21] to the augmented system state vector. In this
paper, exploration noise is added to satisfy the PE
condition.

Next, the estimation of the optimal feedback
control input and the entire scheme is introduced.

3.2 Estimation of the Optimal Feedback
Control and Algorithm

The optimal control can be obtained by mini-
mizing the value function [1]. Recall from (15), the
optimal control input can be obtained as

ûk =−(R+ ĝ1
k)

−1(ĝ2
k ūk−1,k−M + ĝ3

k ȳk,k−M+1) (31)

From (31), the optimal control gain can be cal-
culated based on the information of ĜIO,k matrix,
which is obtained by estimating Q∗(yk,uk,N− k).
This relaxes the requirement of the system dynam-
ics while the update law (28) relaxes the value and
policy iterations. Here Q∗(yk,uk,N− k) and con-
trol policy are updated once a sampling interval. To
complete this subsection, the flowchart of the pro-
posed algorithm is shown in Fig. 1.

3.3 Stability Analysis

In this subsection, it will be shown that both
the estimation error θ̃kand the closed-loop system
are uniformly ultimately bounded (UUB). Due to
the nature of time-dependency, the system becomes
essentially non-autonomous in contrast with [10].
First, the boundedness of estimation error θ̃k will

be shown in Theorem 1. Before proceeding, the fol-
lowing definition is needed.

Definition [20]: An equilibrium point xe is said to
be uniformly ultimately bounded (UUB) if there ex-
ists a compact set S ⊂ ℜn so that for all x0 ∈ S there
exists a bound µ > 0, and a number N(µ,x0) such
that ∥xk∥< µ for all k ≥ N.

Theorem 1: Let the initial conditions for ĝIO,0 be
bounded in a set. Let u0(k) be and initial admissible
control policy for the linear system (1). Let the up-
date law for tuning θ̂k be given by (28). Then, there
exists a positive constant α satisfying 0 < α < 1
such that the system is UUB. Furthermore, when
N → ∞, the parameter estimation error θ̃k will con-
verge to zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the
closed-loop system. Before establishing the the-
orem on system stability, the following lemma is
needed which will aid the stabiltiy proof of the over-
all closed-loop system shown in Theorem 2.

Lemma (Bounds on the closed-loop dynamics
with optimal control signal): Consider the linear
discrete-time system defined in (1), then there ex-
ists an optimal control policy u∗k for (1) such that
the closed-loop system dynamics Axk +Bu∗k can be
written as

∥Axk +Bu∗k∥
2 ≤ ρ∥xk∥2 (32)

where 0 < ρ < 1
2 is a constant.

Theorem 2 (Boundedness of the Closed-loop Sys-
tem): Let u0(k) be an initial admissible control pol-
icy for the system such that (32) holds with someρ.
Let the parameter vector of the online approximator
be tuned and estimation control policy be provided
by (28) and (31), respectively. Then, with posi-

tive constant α satisfying 0 < α <
√

1
2 , there exists

some ε > 0 depending on the initial value Bx,0 and
Bθ̃,0 and the terminal stage N, such that for a fixed
final time instant N, we have ∥xk∥ ≤ ε(xk,N) and��θ̃k

��≤ ε(θ̃k,N). Furhtermore, by geometric theory,
when N → ∞, ε(xk,N) and ε(θ̃k,N) will converge to
zero, i.e., the system is asymptotically stable.

Proof: See Appendix.
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θ̃k can be finally revealed to be
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k−1θ̃k −α
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Remark 5: It is observed from the definition
(17) that Q∗(yk,uk,N − k) becomes zero when
∥z̄k,k−M+1∥ = 0. Hence, when the system outputs,
which are the inputs to the online approximator,
have converged to zero, the approximator is no
longer updated. It can be seen as a persistency of
excitation (PE) requirement [7] for the inputs to the
online approximator wherein the system states must
be persistently exiting long enough for the estimator
to learn Q∗(yk,uk,N−k). The PE condition require-
ment can be satisfied by adding exploration noise
[21] to the augmented system state vector. In this
paper, exploration noise is added to satisfy the PE
condition.

Next, the estimation of the optimal feedback
control input and the entire scheme is introduced.

3.2 Estimation of the Optimal Feedback
Control and Algorithm

The optimal control can be obtained by mini-
mizing the value function [1]. Recall from (15), the
optimal control input can be obtained as

ûk =−(R+ ĝ1
k)

−1(ĝ2
k ūk−1,k−M + ĝ3

k ȳk,k−M+1) (31)

From (31), the optimal control gain can be cal-
culated based on the information of ĜIO,k matrix,
which is obtained by estimating Q∗(yk,uk,N− k).
This relaxes the requirement of the system dynam-
ics while the update law (28) relaxes the value and
policy iterations. Here Q∗(yk,uk,N− k) and con-
trol policy are updated once a sampling interval. To
complete this subsection, the flowchart of the pro-
posed algorithm is shown in Fig. 1.

3.3 Stability Analysis

In this subsection, it will be shown that both
the estimation error θ̃kand the closed-loop system
are uniformly ultimately bounded (UUB). Due to
the nature of time-dependency, the system becomes
essentially non-autonomous in contrast with [10].
First, the boundedness of estimation error θ̃k will

be shown in Theorem 1. Before proceeding, the fol-
lowing definition is needed.

Definition [20]: An equilibrium point xe is said to
be uniformly ultimately bounded (UUB) if there ex-
ists a compact set S ⊂ ℜn so that for all x0 ∈ S there
exists a bound µ > 0, and a number N(µ,x0) such
that ∥xk∥< µ for all k ≥ N.

Theorem 1: Let the initial conditions for ĝIO,0 be
bounded in a set. Let u0(k) be and initial admissible
control policy for the linear system (1). Let the up-
date law for tuning θ̂k be given by (28). Then, there
exists a positive constant α satisfying 0 < α < 1
such that the system is UUB. Furthermore, when
N → ∞, the parameter estimation error θ̃k will con-
verge to zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the
closed-loop system. Before establishing the the-
orem on system stability, the following lemma is
needed which will aid the stabiltiy proof of the over-
all closed-loop system shown in Theorem 2.

Lemma (Bounds on the closed-loop dynamics
with optimal control signal): Consider the linear
discrete-time system defined in (1), then there ex-
ists an optimal control policy u∗k for (1) such that
the closed-loop system dynamics Axk +Bu∗k can be
written as

∥Axk +Bu∗k∥
2 ≤ ρ∥xk∥2 (32)

where 0 < ρ < 1
2 is a constant.

Theorem 2 (Boundedness of the Closed-loop Sys-
tem): Let u0(k) be an initial admissible control pol-
icy for the system such that (32) holds with someρ.
Let the parameter vector of the online approximator
be tuned and estimation control policy be provided
by (28) and (31), respectively. Then, with posi-

tive constant α satisfying 0 < α <
√

1
2 , there exists

some ε > 0 depending on the initial value Bx,0 and
Bθ̃,0 and the terminal stage N, such that for a fixed
final time instant N, we have ∥xk∥ ≤ ε(xk,N) and��θ̃k

��≤ ε(θ̃k,N). Furhtermore, by geometric theory,
when N → ∞, ε(xk,N) and ε(θ̃k,N) will converge to
zero, i.e., the system is asymptotically stable.

Proof: See Appendix.
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Remark 5: It is observed from the definition
(17) that Q∗(yk,uk,N − k) becomes zero when
∥z̄k,k−M+1∥ = 0. Hence, when the system outputs,
which are the inputs to the online approximator,
have converged to zero, the approximator is no
longer updated. It can be seen as a persistency of
excitation (PE) requirement [7] for the inputs to the
online approximator wherein the system states must
be persistently exiting long enough for the estimator
to learn Q∗(yk,uk,N−k). The PE condition require-
ment can be satisfied by adding exploration noise
[21] to the augmented system state vector. In this
paper, exploration noise is added to satisfy the PE
condition.

Next, the estimation of the optimal feedback
control input and the entire scheme is introduced.

3.2 Estimation of the Optimal Feedback
Control and Algorithm

The optimal control can be obtained by mini-
mizing the value function [1]. Recall from (15), the
optimal control input can be obtained as

ûk =−(R+ ĝ1
k)

−1(ĝ2
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k ȳk,k−M+1) (31)

From (31), the optimal control gain can be cal-
culated based on the information of ĜIO,k matrix,
which is obtained by estimating Q∗(yk,uk,N− k).
This relaxes the requirement of the system dynam-
ics while the update law (28) relaxes the value and
policy iterations. Here Q∗(yk,uk,N− k) and con-
trol policy are updated once a sampling interval. To
complete this subsection, the flowchart of the pro-
posed algorithm is shown in Fig. 1.

3.3 Stability Analysis

In this subsection, it will be shown that both
the estimation error θ̃kand the closed-loop system
are uniformly ultimately bounded (UUB). Due to
the nature of time-dependency, the system becomes
essentially non-autonomous in contrast with [10].
First, the boundedness of estimation error θ̃k will

be shown in Theorem 1. Before proceeding, the fol-
lowing definition is needed.

Definition [20]: An equilibrium point xe is said to
be uniformly ultimately bounded (UUB) if there ex-
ists a compact set S ⊂ ℜn so that for all x0 ∈ S there
exists a bound µ > 0, and a number N(µ,x0) such
that ∥xk∥< µ for all k ≥ N.

Theorem 1: Let the initial conditions for ĝIO,0 be
bounded in a set. Let u0(k) be and initial admissible
control policy for the linear system (1). Let the up-
date law for tuning θ̂k be given by (28). Then, there
exists a positive constant α satisfying 0 < α < 1
such that the system is UUB. Furthermore, when
N → ∞, the parameter estimation error θ̃k will con-
verge to zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the
closed-loop system. Before establishing the the-
orem on system stability, the following lemma is
needed which will aid the stabiltiy proof of the over-
all closed-loop system shown in Theorem 2.

Lemma (Bounds on the closed-loop dynamics
with optimal control signal): Consider the linear
discrete-time system defined in (1), then there ex-
ists an optimal control policy u∗k for (1) such that
the closed-loop system dynamics Axk +Bu∗k can be
written as

∥Axk +Bu∗k∥
2 ≤ ρ∥xk∥2 (32)

where 0 < ρ < 1
2 is a constant.

Theorem 2 (Boundedness of the Closed-loop Sys-
tem): Let u0(k) be an initial admissible control pol-
icy for the system such that (32) holds with someρ.
Let the parameter vector of the online approximator
be tuned and estimation control policy be provided
by (28) and (31), respectively. Then, with posi-

tive constant α satisfying 0 < α <
√

1
2 , there exists

some ε > 0 depending on the initial value Bx,0 and
Bθ̃,0 and the terminal stage N, such that for a fixed
final time instant N, we have ∥xk∥ ≤ ε(xk,N) and��θ̃k

��≤ ε(θ̃k,N). Furhtermore, by geometric theory,
when N → ∞, ε(xk,N) and ε(θ̃k,N) will converge to
zero, i.e., the system is asymptotically stable.

Proof: See Appendix.
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we have similar to [7] as

ek = r(yk−1,uk−1,k−1)+ θ̂T
k Φ̄k − θ̂T

k Φ̄k−1

= r(yk−1,uk−1,k−1)+ θ̂T
k ∆Φ̄k−1

(23)

where ∆Φ̄k−1 = Φ̄k − Φ̄k−1.

The dynamics of the Bellman estimation error
can be rewritten by using history information simi-
lar to the nonlinear case [7] as

ek+1 = r(yk,uk,k)+ θ̂T
k+1∆Φ̄k (24)

For the fixed final time case, the terminal constraint
of the cost function should also be taken in account.
Define the approximated value function at the ter-
minal stage as

Q̂k(yN) = θ̂T
k ϕ(0)z̄N (25)

In (25), it is important to note that the time-
dependent basis function ϕ(N− k) is taken as ϕ(0)
since from the definition of ϕ, the time index is
taken in the reverse order. Next, define the termi-
nal constraint error vector as

ek,N = ĝIO,k,N −gIO,N = θ̂T
k ϕ(0)−gIO,N (26)

withgIO,N being bounded by ∥gIO,N∥ ≤ gM.

Remark 3: In fixed final time problems, the error
term ek,N, which indicates the difference between
the approximated and true value for the terminal
constraint, or “target” (in our case, gIO,N), is crit-
ical for the controller design. The terminal con-
straint is satisfied by minimizing ek,N along the sys-
tem evolution. Another error term ek, which can
be regarded as temporal difference error (TDE),
is always needed for tuning the parameter for
both finite-horizon and infinite-horizon case. For
infinite-horizon case, see [6] and [7].

The objective of the finite-horizon optimal con-
trol design is to achieve optimality as well as satis-
fying the terminal constraint. Hence define the total
error vector as

ek,total = ek +∥ek,N∥ (27)

Next, to reflect the influence of the terminal
constraint, the update law for tuning θ̂k can be se-
lected as

θ̂k+1 = θ̂k −α∆Φ̄k−1ek −α
ϕ(0)eT

k,N

1+∥ϕ(0)∥2 (28)

where 0 < α < 1 is a design parameter. It also can
be seen from (28) that the update law is essentially
a gradient descent update [6]. The second and the
last terms in the update law essentially use the Bell-
man and terminal constraint errors in order to tune
the parameters.

Figure 1. Flowchart of proposed algorithm

Define the parameter estimation error for θ̂k
as θ̃k = θ − θ̂k. Recall from the standard Bell-
man equation (19) without approximation, we have
the true utility vector as r(yk−1,uk−1,k − 1) =
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tem evolution. Another error term ek, which can
be regarded as temporal difference error (TDE),
is always needed for tuning the parameter for
both finite-horizon and infinite-horizon case. For
infinite-horizon case, see [6] and [7].

The objective of the finite-horizon optimal con-
trol design is to achieve optimality as well as satis-
fying the terminal constraint. Hence define the total
error vector as

ek,total = ek +∥ek,N∥ (27)

Next, to reflect the influence of the terminal
constraint, the update law for tuning θ̂k can be se-
lected as
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ϕ(0)eT

k,N
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where 0 < α < 1 is a design parameter. It also can
be seen from (28) that the update law is essentially
a gradient descent update [6]. The second and the
last terms in the update law essentially use the Bell-
man and terminal constraint errors in order to tune
the parameters.
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4 Simulation Results

In this section, the proposed algorithm for
finite-horizon optimal regulation problem is tested
by an example which does not require the knowl-
edge of the system dynamics and the system states.
Consider the following system

xk+1 =

[
1.1 −0.3
1 0

]
xk +

[
1
0

]
uk

yk = [ 1 0 ]xk

(33)

It can be easily verify that the system is both
controllable and observable, and the observability
index is 2. Hence, we choose M = 2, and the in-

put/output pair becomes zk−1,k−2 =

[
ūk−1,k−2
ȳk−1,k−2

]
∈

ℜ4, where ūk−1,k−2 =

[
uk−1
uk−2

]
∈ ℜ2,ȳk−1,k−2 =

[
yk−1
yk−2

]
∈ ℜ2, and therefore z̄k−1,k−2 ∈ ℜ10.

The terminal constraint is given as GIO,N. Ac-
cording to (11),

G∗
IO,N =




5.00 −0.00 5.50 −1.50
−0.00 0.00 −0.00 0.00
5.50 −0.00 11.05 −1.65
−1.50 0.00 −1.65 0.45




(34)

The weighting matrices in the cost function (2)
are selected to be P= I, where I denotes the identity
matrix. R is selected to be 1 and 5 repectively for
comparison purpose. The terminal constraint ma-
trix is selected to be SN = 5I. The designing param-
eter is selected to be α = 0.001.

The time-varying basis function matrix ϕ(N−
k) is chosen as a polynomial of time-to-go with sat-
uration. Note that for finite time period, ϕ(N−k) is
always bounded. Saturation for ϕ(N− k) is to en-
sure the magnitude of ϕ(N− k) is within a reason-
able range such that the parameter are computable.
The initial value for the system states and the ad-
missible control gain is chosen as x0 = [−1 1]T and
K0 = [0.6, − 0.6]. The initial values for θ̂k are set
to be zeros.

The simulation results are shown as below.

Figure 2. System response with (a): R = 1;(b):
R = 5

First, the response of the system and the control
input with our proposed finite-horizon optimal con-
trol design scheme are examined in Fig. 2 and 3. It
can be seen that both the system states and the con-
trol input finally converge close to zero, which ver-
ifies the feasibility of our proposed design scheme.

Next, to show the feasibility of the proposed op-
timal regulation design, the Bellman equation error
with the control weighting matrix R = 1 is plotted
in Fig. 4. From the figure, it clearly shows that the
Bellman error eventually converges close to zero.
Since Bellman equation (9) only holds when the
optimal solution is applied, the convergence of the
Bellman equation error verifies that the optimality
is indeed achieved.
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Figure 3. Control inputs with (a): R = 1;(b): R = 5

Figure 4. Bellman equation error with R = 1

Figure 5. Terminal constraint error with different
termnial weighting matrices

Finally, the convergence to the terminal con-
straint with the proposed finite-horizon optimal
control scheme is investigated. To show the effect
of terminal constraint, the terminal constraint error
with SN = 5I and SN = 10I are plotted in Fig. 5
with the weighting matrices selected to be P= I and
R = 1. It can be seen from the figure that ther ter-
minal constraint errors both converge close to zero
very quickly, while the larger SN gives a larger ini-
tial error. This illustrates the fact that the terminal
constraint is also satisfied with our proposed con-
troller design. In fact, for the case of SN = 5I, after
5 seconds of learning, the estimated terminal con-
straint matrix ĜIO,N is found to be

ĜIO,N =




5.00 0.00 5.50 −1.50
0.00 0.00 −0.00 0.00
5.50 −0.00 11.05 −1.65
−1.50 0.00 −1.65 0.45




which exactly converge to the true terminal con-
straint matrix G∗

IO,N in (34).

5 Conclusions

In this paper, the finite-horizon optimal control
of linear discrete-time system with unknown sys-
tem dynamics is addressed by using the ADP tech-
nique and through the estimation of a kernel matrix.
The input/output form relaxed the need for the true
system states whereas the kernel matrix is not same
as the standard Q-function. An online adaptive ap-
proximator is proposed to learn the kernal matrix
GIO,k, which in turn provides the optimal control
gain and thus relaxes the system dynamics though
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the Kalman gain cannot be expressed directly as a
function of parameter estimation error. Past history
of inputs, and current output and its history are uti-
lized to construct the kernel matrix which in turn is
used to obtain the control gain matrix provided the
update law is carefully selected.

An additional error corresponding to the ter-
minal constraint, besides the Bellman error term,
ensures that the terminal constraint is satisfied in
the update law. Past history in the novel update
law helps in overcoming the policy and/or value
iterations. Lyapunov stability appears to be in-
volved than the state feedback case though it was
demonstrated. The proposed optimal control de-
sign scheme yields an online and forward-in-time
scheme which offers many practical benefits.

Appendix

Proof of Theorem 1: Consider the Lyapunov candi-
date function as

L(θ̃k) = θ̃T
k θ̃k (A.1)

The first difference of L(θ̃k) is given by

∆L(θ̃k) = θ̃T
k+1θ̃k+1 − θ̃T

k θ̃k

=

(
θ̃k −α∆Φ̄k−1ek −α ϕ(0)eT

k,N

1+∥ϕ(0)∥2

)T

×
(

θ̃k −α∆Φ̄k−1ek −α ϕ(0)eT
k,N

1+∥ϕ(0)∥2

)T

− θ̃T
k θ̃k

(A.3)

Recall from (30) and applying Cauchy-Swartz in-
equality, we have

∆L(θ̃k)≤
−2αθ̃T

k ∆Φ̄k−1∆Φ̄T
k−1θ̃k−2α θ̃T

k ϕ(0)ϕT(0)θ̃k

1+∥ϕ(0)∥2

+2α2θ̃T
k ∆Φ̄k−1∆Φ̄T

k−1∆Φ̄k−1∆Φ̄T
k−1θ̃k

+2α2 θ̃T
k ϕ(0)ϕT(0)ϕ(0)ϕT(0)θ̃k

1+∥ϕ(0)∥2

≤−2α(1−α)θ̃T
k ∆Φ̄k−1∆Φ̄T

k−1θ̃k

−2α(1−α) θ̃T
k ϕ(0)ϕT(0)θ̃k

1+∥ϕ(0)∥2

≤−2α
(

1−α
��∆Φ̄k−1

��2
)��∆Φ̄k−1

��2��θ̃k
��2

−2α(1−α) ∥ϕ(0)∥2

1+∥ϕ(0)∥2

��θ̃k
��2 ≤

−2α
(

1−α
��∆Φ̄k−1

��2
)��θ̃k

��2��∆Φ̄k−1
��2 (A.4)

Therefore, ∆L(θ̃k) is negative definite while L(θ̃k)
is positive definite. By standard Lyapunov stability

theory [23], the parameter estimation error θ̃k will
converge to zero as k → ∞.

Proof of Theorem 2: Consider the Lyapunov candi-
date function as

L = L(θ̃k)+
1
Π L(xk) (A.5)

where L(θ̃k) is defined in Theorem 1 and L(xk) =

xT
k xk, with Π =

2B2
ML2

f ϕ2
maxαL1

ϕ2
min

. Next, we consider
each term in (A.5) individually.

The first difference of L(θ̃k) is given by Theorem 1
as

∆L(θ̃k) = L(θ̃k+1)−L(θ̃k)

≤−2α
(

1−α
��∆Φ̄k−1

��2
)��θ̃k

��2��∆Φ̄k−1
��2

(A.6)

Next, considering the term L(xk) and using Cauchy-
Schwartz inequality, the first difference of L(xk) is
given as

∆L(xk) = L(xk+1)−L(xk)
= xT

k+1xk+1 − xT
k xk

= ∥Axk +Buk −Bũk∥2 −∥xk∥2

≤ 2∥Axk +Buk∥2 +2∥Bũk∥2 −∥xk∥2

(A.7)

where ũk = u∗k − ûk is the difference between the
optimal control input and the approximated con-
trol signal given by (31). Note that ∥ũk∥ =����K̃k

[
ūk−1,k−M
ȳk,k−M+1

]����, where K̃k is the optimal control

gain error and found to be

K̃k = [(R+ ĝ1
k)

−1ĝ2
k − (R+g1

k)
−1g2

k ,
(R+ ĝ1

k)
−1ĝ3

k − (R+g1
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−1g3
k ]

.

Note that

(R+ ĝ1
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−1ĝ2

k − (R+g1
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Notice that

(R+ ĝ1
k)

−1 = 1
R − ĝ1

k
R2(1+â) , where â =

ĝ1
k

R .

Similarly,

(R+g1
k)

−1 = 1
R − 1

R2(1+a)g
1
k with a =

g1
k
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Notice that

(R+ ĝ1
k)

−1 = 1
R − ĝ1

k
R2(1+â) , where â =

ĝ1
k

R .

Similarly,

(R+g1
k)

−1 = 1
R − 1

R2(1+a)g
1
k with a =

g1
k

R .
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Then we have
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(1+â)g1

k−(1+a)ĝ1
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Therefore, (A.8) becomes
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2
k − (R+g1

k)
−1g̃2

k

Similarly,

(R+ ĝ1
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Therefore, K̃k is a linear function of (g̃1
k , g̃

2
k , g̃

3
k). In

other words, K̃k = f (θ̃k) and can be represented as��K̃k
��= ∥ f (gIO,k)− f (ĝIO,k)∥

≤ L f ∥g̃IO,k∥= L f
��θ̃kϕ(N− k)

��≤ L f ϕmax
��θ̃k

��
(A.9)

where L f is the Lipschitz constant.

Next, applying the Lemma and using (A.9) yields

Combining (A.6) and (A.10), the first
difference∆Lis given by

∆L ≤−2α
(

1−α
��∆Φ̄k−1

��2
)��θ̃k

��2��∆Φ̄k−1
��2

−1−2ρ
Π ∥xk∥2 +

2B2
ML2

f ϕ2
max

Π

��θ̃k
��2

����
[

ūk−1,k−M
ȳk,k−M+1

]����
2

(A.11)

Next, we will find the connection between
��θ̃k

��2��∆Φ̄k−1
��2 and

��θ̃k
��2

����
[

ūk−1,k−M
ȳk,k−M+1

]����
2

.

Assume that ϕkz̄k satisfies Bi-Lipschitz condition,
where ϕk = ϕ(N− k) for simplicity. Then we have

1
L1

∥ϕkz̄k −ϕk−1z̄k−1∥2 ≤ ∥ϕkz̄k −ϕk−1z̄k−1∥2

where L1 is the Lipschitz constant.

Then, (A.11) can be derived as
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��∆Φ̄k−1

��2
)��θ̃k

��2��∆Φ̄k−1
��2

−1−2ρ
Π ∥xk∥2 +

2B2
ML2

f ϕ2
max

Π

��θ̃k
��2

����
[
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where j is number of columns of ϕk.

By the property of norm operator, we further have

∥ϕkz̄k −ϕk−1z̄k−1∥2 =

∥ϕkz̄k∥2 +∥ϕk−1z̄k−1∥2 −2(ϕkz̄k)
T(ϕk−1z̄k−1)

Note that ϕkz̄k ̸= ϕk−1z̄k−1 due to the PE condition.
Then there exists 0 < δi < 1 for i = 0,2, · · · , j such
that
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T(ϕk−1z̄k−1) = δ0

(
∥ϕkz̄k∥2 +∥ϕk−1z̄k−1∥2

)

2(ϕk−1z̄k−1)
T(ϕk−2z̄k−2) = δ1

(
∥ϕkz̄k∥2 +∥ϕk−1z̄k−1∥2

)

...
2(ϕk− j z̄k− j)

T(ϕk− j−1z̄k− j−1) =

δ j

(��ϕk− j z̄k− j
��2

+
��ϕk− j−1z̄k− j−1

��2
)

∥ϕkz̄k∥2 +∥ϕk−1z̄k−1∥2 +∥ϕk−1z̄k−1∥2

+∥ϕk−2z̄k−2∥2 + · · ·+
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Next, considering the term )( kL x  and using 
Cauchy-Schwartz inequality, the first 
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where kkk uuu ˆ~    is the difference between 
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where fL  is the Lipschitz constant. 

Next, applying the Lemma and using (A.9) 
yields 
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Combining (A.6) and (A.10), the first 
difference L is given by 
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Next, we will find the connection between 
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Assume that kk zφ  satisfies Bi-Lipschitz 
condition, where )N( kk  φφ  for simplicity. 
Then we have 
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where j  is number of columns of kφ . 

By the property of norm operator, we further 
have 
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Therefore, the total difference of the Lyapunov 
function can be represented by 
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By geometric sequence theory [25], within 
finite time, the system states kx  and parameter 
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By geometric sequence theory [25], within finite
time, the system states xk and parameter estima-
tion error θ̃k will be UUB with ultimate bounds de-
pending on the initial conditions Bx,0 and Bθ̃,0 with

∥x0∥2 ≤Bx,0 and
��θ̃0

��2 ≤Bθ̃,0 and the terminal time
NTs, i.e.,
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where ∆Φ2
b denotes the bound of history system in-

formation.

Furthermore, when time goes to infinity, i.e., N →
∞, the system states xk and parameter estimation er-
ror θ̃k will converge to zero asymptotically.
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