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Abstract

In this paper, we explore the relationship between the topological characteristics of a
complex network and its robustness to sustained targeted attacks. Using synthesised
scale-free, small-world and random networks, we look at a number of network measures,
including assortativity, modularity, average path length, clustering coefficient, rich club
profiles and scale-free exponent (where applicable) of a network, and how each of these
influence the robustness of a network under targeted attacks. We use an established ro-
bustness coefficient to measure topological robustness, and consider sustained targeted
attacks by order of node degree. With respect to scale-free networks, we show that as-
sortativity, modularity and average path length have a positive correlation with network
robustness, whereas clustering coefficient has a negative correlation. We did not find any
correlation between scale-free exponent and robustness, or rich-club profiles and robust-
ness. The robustness of small-world networks on the other hand, show substantial pos-
itive correlations with assortativity, modularity, clustering coefficient and average path
length. In comparison, the robustness of Erdos-Renyi random networks did not have any
significant correlation with any of the network properties considered. A significant ob-
servation is that high clustering decreases topological robustness in scale-free networks,
yet it increases topological robustness in small-world networks. Our results highlight the
importance of topological characteristics in influencing network robustness, and illustrate
design strategies network designers can use to increase the robustness of scale-free and
small-world networks under sustained targeted attacks.

1 Introduction

The study of complex networks has been one of
the dominant trends in scientific research in the last
decade [1, 2, 3, 4, 5, 6, 7, 8]. Scientists from areas
as diverse as physics and computer science, math-
ematics and biology, chemistry and social science
have been interested in analysing complex networks
in their respective fields and find common features
between them. A number of topological metrics
have been proposed to understand the structure of
a complex network: these include modularity, as-
sortativity, information content, network diameter,
and clustering coefficient among others [1, 3, 4, 9].

Meanwhile, researchers have also been interested in
the functional features of networks, including their
functional motifs, the routing and sharing of infor-
mation over them, and how they respond to random
or targeted attacks.

It has been shown that the ability of a net-
work to maintain its integrity under node failures
or attacks depends heavily on its topological struc-
ture. For example, scale-free networks are more
resilient against random attacks, but more vulner-
able to targeted attacks, compared to Erdos-Renyi
random networks [10]. It can be immediately seen
that quantifying such resilience (robustness) of a
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network is vital in a number of disciplines. For
example, computer networks should be designed
in such a way that they should function properly
when some nodes (routers or hosts) fail, by tech-
nical faults or under attack. On the other hand, in
a network of terrorist cells, we might be interested
in the best strategy to attack the network so that it
is disabled and disintegrated as quickly as possible.
Therefore, measuring and comparing the robustness
of networks under various failure and attack scenar-
ios is of vital importance.

Since network robustness depends on its topol-
ogy, there must be quantifiable relationships be-
tween topological metrics and the robustness of a
network. In this paper, we discuss the relationship
of a particular type of robustness measure to a num-
ber of topological parameters. The robustness mea-
sure is chosen such that it is applicable to sustained
targeted attacks which follow a particular algorithm
or pattern. In particular, we consider the topolog-
ical features of a range of scale-free, small-world
and random networks, analysing how each feature
affects the robustness of each type of network.

The rest of the paper is arranged in the follow-
ing manner: We will first introduce the network
metrics that we will be using to quantify the topo-
logical features of a network. Then we will present
the robustness metric that we will be using to quan-
tify a network’s robustness under sustained targeted
attacks. In the following sections, we will present
our simulation results and analyse them. Finally, we
will present our conclusions.

2 Background

Scale-free networks: Scale-free networks are
those networks that display similar topological fea-
tures irrespective of scale [1, 5]. Such networks are
described by power law degree distributions, for-
mally specified as

pk = Ak−γU(k/kmax) (1)

U is a step function specifying a cut off at k =
kmax. The degree distribution of scale-free networks
can be specified by a number of parameters, includ-
ing maximum degree kmax, scale-free exponent γ,
proportion of out-lier nodes A, and average degree
k̄. However, it can be shown that there are only two

independent parameters and the others could be de-
rived from these.

Scale-free networks are impressively robust to
random node failure and random damage [3, 10].
To destroy or fragment such networks randomly,
one would have to remove almost all of its nodes
[3]. This perhaps explains, at least partly, why
scale-free architecture is commonly found in many
evolved networks in nature. This also means that
targeted attacks have to be designed specifically to
effectively destroy such networks, and non-trivial
topological analysis of the network is necessary to
identify the nodes to be targeted.

Indeed, most real-world networks are scale-free
networks, including technical, biological and social
networks [11, 12, 13, 14, 3, 15, 5]. It is possible in
some directed networks that the in-degree distribu-
tion is scale-free but the out-degree distribution is
not, or vice versa. For example, the in-degree dis-
tributions of some transcription networks are scale-
free, while the out-degree distributions are expo-
nential [2]. There are a number of growth models
which generate scale-free networks, and prominent
among them is the Barabasi-Albert model [1].

Small-world networks: The small-world net-
work model indicates that despite the large net-
work size, the average distance between two arbi-
trary nodes remain relatively low. The main char-
acteristics that are used to identify a small-world
network are the relatively low average path length
and the relatively high clustering coefficient[5]. In-
deed, many real-world networks such as the collab-
oration networks have been shown to possess the
small-world nature. Although various models have
been proposed to produce small-world networks,
the most widely used one is the Watts-Strogatz
model[16]. This is the model that we used to gener-
ate small-world networks in this work. Small-world
networks too have been demonstrated to be robust
against random node and link failures[17].

Erdos-Renyi random networks: The Erdos-
Renyi random model[1] defines a random network
where N nodes are connected randomly by M pos-
sible links. When generating random networks
based on this model, we limited the total number
of links, to make sure that the resulting network
would have the predefined link to node ratio. Even
though such random networks were once used ex-
tensively to model distributed systems, researchers
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network is vital in a number of disciplines. For
example, computer networks should be designed
in such a way that they should function properly
when some nodes (routers or hosts) fail, by tech-
nical faults or under attack. On the other hand, in
a network of terrorist cells, we might be interested
in the best strategy to attack the network so that it
is disabled and disintegrated as quickly as possible.
Therefore, measuring and comparing the robustness
of networks under various failure and attack scenar-
ios is of vital importance.

Since network robustness depends on its topol-
ogy, there must be quantifiable relationships be-
tween topological metrics and the robustness of a
network. In this paper, we discuss the relationship
of a particular type of robustness measure to a num-
ber of topological parameters. The robustness mea-
sure is chosen such that it is applicable to sustained
targeted attacks which follow a particular algorithm
or pattern. In particular, we consider the topolog-
ical features of a range of scale-free, small-world
and random networks, analysing how each feature
affects the robustness of each type of network.

The rest of the paper is arranged in the follow-
ing manner: We will first introduce the network
metrics that we will be using to quantify the topo-
logical features of a network. Then we will present
the robustness metric that we will be using to quan-
tify a network’s robustness under sustained targeted
attacks. In the following sections, we will present
our simulation results and analyse them. Finally, we
will present our conclusions.

2 Background

Scale-free networks: Scale-free networks are
those networks that display similar topological fea-
tures irrespective of scale [1, 5]. Such networks are
described by power law degree distributions, for-
mally specified as

pk = Ak−γU(k/kmax) (1)

U is a step function specifying a cut off at k =
kmax. The degree distribution of scale-free networks
can be specified by a number of parameters, includ-
ing maximum degree kmax, scale-free exponent γ,
proportion of out-lier nodes A, and average degree
k̄. However, it can be shown that there are only two

independent parameters and the others could be de-
rived from these.

Scale-free networks are impressively robust to
random node failure and random damage [3, 10].
To destroy or fragment such networks randomly,
one would have to remove almost all of its nodes
[3]. This perhaps explains, at least partly, why
scale-free architecture is commonly found in many
evolved networks in nature. This also means that
targeted attacks have to be designed specifically to
effectively destroy such networks, and non-trivial
topological analysis of the network is necessary to
identify the nodes to be targeted.

Indeed, most real-world networks are scale-free
networks, including technical, biological and social
networks [11, 12, 13, 14, 3, 15, 5]. It is possible in
some directed networks that the in-degree distribu-
tion is scale-free but the out-degree distribution is
not, or vice versa. For example, the in-degree dis-
tributions of some transcription networks are scale-
free, while the out-degree distributions are expo-
nential [2]. There are a number of growth models
which generate scale-free networks, and prominent
among them is the Barabasi-Albert model [1].

Small-world networks: The small-world net-
work model indicates that despite the large net-
work size, the average distance between two arbi-
trary nodes remain relatively low. The main char-
acteristics that are used to identify a small-world
network are the relatively low average path length
and the relatively high clustering coefficient[5]. In-
deed, many real-world networks such as the collab-
oration networks have been shown to possess the
small-world nature. Although various models have
been proposed to produce small-world networks,
the most widely used one is the Watts-Strogatz
model[16]. This is the model that we used to gener-
ate small-world networks in this work. Small-world
networks too have been demonstrated to be robust
against random node and link failures[17].

Erdos-Renyi random networks: The Erdos-
Renyi random model[1] defines a random network
where N nodes are connected randomly by M pos-
sible links. When generating random networks
based on this model, we limited the total number
of links, to make sure that the resulting network
would have the predefined link to node ratio. Even
though such random networks were once used ex-
tensively to model distributed systems, researchers
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have since realised that most real world networks do
not display degree distributions similar to random
networks [1]. Yet, random networks are often used
as null models to compare against other networks
models, and we use them for the same purpose in
this work.

Now let us introduce the metrics we will use to
analyse the topology of a network.

Assortativity : Assortativity is the tendency
observed in networks where nodes mostly connect
with similar nodes. Typically, this similarity is in-
terpreted in terms of degrees of nodes. Assortativity
has been formally defined as a correlation function
of excess degree distributions and link distribution
of a network [18, 9]. The concepts of degree dis-
tribution pk and excess degree distribution qk for
undirected networks are well known [9]. Given
qk, one can introduce the quantity e j,k as the joint
probability distribution of the remaining degrees of
the two nodes at either end of a randomly chosen
link. Given these distributions, the assortativity of
an undirected network is defined as:

ρ =
1

σ2
q

[
∑
jk

jk
(
e j,k −q jqk

)]
(2)

where σq is the standard deviation of qk. Assor-
tativity distributions can be constructed by consid-
ering the local assortativity values of all nodes in a
network [19, 20].

Modularity: Network modularity is the extent
to which a network can be separated into indepen-
dent sub-networks. Formally[2], modularity quan-
tifies the fraction of links that are within the respec-
tive modules compared to all links in a network.
[2] introduces an algorithm which can partition a
network into k modules and measure the partitions
modularity Q. The measure uses the concept that
a good partition of a network should have a lot of
within-module links and a very small number of
between-module links. The modularity can be de-
fined as:

Q = ∑k
s=1

[
ls
L
−
(

ds

2L

)2
]
, (3)

where k is the number of modules, L is the num-
ber of links in the network, ls is the number of links

between nodes in module s, and ds is the sum of de-
grees of nodes in module s. To avoid getting a single
module in all cases, this measure imposes Q = 0 if
all nodes are in the same module or nodes are placed
randomly into modules.

Clustering coefficient: The clustering coeffi-
cient of a node characterizes the density of links
in the environment closest to a node. Formally,
the clustering coefficient C of a node is the ratio
between the total number of y links connecting its
neighbours and the total number of all possible links
between all these z nearest neighbours [3]:

C =
2y

z(z−1)
(4)

The clustering coefficient C for a network is the av-
erage C over all nodes.

Average Path Length: The average path length
lG of a network is defined as the average length of
shortest paths between all pairs of nodes in that net-
work. For many real world networks, this average
path length is much smaller than the size of the net-
work, that is l � N. Such networks are said to be
showing the small-world property [21, 22, 23].

lG =
1

n(n−1)∑i, j
d (vi,v j) (5)

Equation 5 gives the formal definition of the
average path length of a network. Here d(vi,v j) is
the shortest path between the nodes vi and v j, and n
is the size of the network.

Rich club connectivity: A rich-club is defined
in terms of degree-based rank r of nodes, and the
rich-club connectivity ϕ(r). The degree-based rank
denotes the rank of a given node when all nodes are
ordered in terms of their degrees, highest first. This
is then normalised by the total number of nodes.
The rich-club connectivity is defined as the ratio of
actual number of links over the maximum possible
number of links between nodes with rank less than
r. Thus, it is possible to calculate the rich-club con-
nectivity distribution of a network, ϕ(r) over r. Eq.
6 shows the formal definition of the rich-club coef-
ficient.
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ϕ(r) =
2E(r)

r(r−1)
(6)

Here, E(r) is the number of links between the
r nodes and r(r− 1)/2 is the maximum number of
links that these nodes could have shared.

2.1 Topological robustness and robustness
coefficient

The ability of a network to sustain or withstand
random failures or targeted attacks depends on its
topological structure. For example, scale-free net-
works have been shown to be more resilient against
random failures, but are more vulnerable to targeted
centrality based attacks, in comparison to Erdös-
Rényi random networks[24]. Thus, it is important
to observe the topological robustness of a network
to comprehend how its topological structure would
contribute to random node failures or targeted at-
tacks.

There exists a substantial body of work which
introduces and analyses structural robustness mea-
sures. Albert et al. [10] considered error and at-
tack tolerance of complex networks by comparing
the profiles of quantities such as the network diam-
eter and the size of the largest component. Follow-
ing their work, a multitude of metrics have been
proposed to measure the topological robustness of
networks as a single quantity. However, they typ-
ically calculate averaged effects of single node re-
movals, rather than effects of sequential removals,
or are too simplistic. For example, the network ef-
ficiency has been defined as the average of inverted
shortest path lengths [25], and used for quantify-
ing the robustness of a network. Node removals are
not explicitly considered in this measure. Similarly,
Dekker and Colbert [26] introduced two concepts
of connectivity for a graph which can be used to
model network robustness: the node connectivity
and link connectivity, which are the smallest num-
ber of nodes and links respectively, whose removal
results in a disconnected or single-node graph. In
this work, we used the robustness coefficient in-
troduced in Piraveenan et al. [27] as the robust-
ness measure as it has the advantage of providing
a single numeric value to quantify the topological
robustness of a network under sustained attack.

The robustness coefficient R is defined (in per-
centage) as [27]:

R =
200∑N

k=0 Sk −100S0

N2 (7)

In Eq. 7, Sk is the size of the largest compo-
nent after k nodes are removed. S0 denotes the ini-
tial largest component size. N is the network size.
According to the above equation, for a fully con-
nected network of any size, the robustness coeffi-
cient (R) would always be 100%. While we refer
the interested reader to consult [27] for its deriva-
tion, it suffices to say here that this is essentially
an Area Under Curve (AUC) measure, comparing
the area under the size of largest component curve
with that of a fully connected network of equivalent
size. Similar Area Under the Curve (AUC) mea-
sures are used in a number of disciplines. For exam-
ple, in signal detection theory, the area under a Re-
ceiver Operating Characteristic (ROC) curve [28]
denotes the probability that a classifier will rank
a randomly chosen positive instance higher than a
randomly chosen negative one, and in mechanics,
the area under curve of a velocity vs time plot of a
moving object denotes the distance that it has trav-
elled [29].

Let us note that the robustness coefficient is not
constant to a network, but depends on the type of
attack. In order to measure the robustness coeffi-
cient under different types of attacks, the nodes that
are removed are selected based on their centrality
values. For example, in a betweenness based at-
tack, the node that would be removed in each iter-
ation would be the node with the highest between-
ness centrality value, at that particular instance of
the network. Likewise, the other centrality based
attacks would select the node with the highest value
of the respective centrality measure. In the case of a
random attack, a randomly selected node would be
removed in each iteration.

3 Simulation results

We used groups of 100 synthesised scale-free,
small-world and Erdos-Renyi random networks in
our simulation experiments. The scale-free net-
works were synthesized using a variant of the Pref-
erential Attachment (PA) method, widely used as a
model to synthesize scale-free networks [1]. Each
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ϕ(r) =
2E(r)

r(r−1)
(6)

Here, E(r) is the number of links between the
r nodes and r(r− 1)/2 is the maximum number of
links that these nodes could have shared.

2.1 Topological robustness and robustness
coefficient

The ability of a network to sustain or withstand
random failures or targeted attacks depends on its
topological structure. For example, scale-free net-
works have been shown to be more resilient against
random failures, but are more vulnerable to targeted
centrality based attacks, in comparison to Erdös-
Rényi random networks[24]. Thus, it is important
to observe the topological robustness of a network
to comprehend how its topological structure would
contribute to random node failures or targeted at-
tacks.

There exists a substantial body of work which
introduces and analyses structural robustness mea-
sures. Albert et al. [10] considered error and at-
tack tolerance of complex networks by comparing
the profiles of quantities such as the network diam-
eter and the size of the largest component. Follow-
ing their work, a multitude of metrics have been
proposed to measure the topological robustness of
networks as a single quantity. However, they typ-
ically calculate averaged effects of single node re-
movals, rather than effects of sequential removals,
or are too simplistic. For example, the network ef-
ficiency has been defined as the average of inverted
shortest path lengths [25], and used for quantify-
ing the robustness of a network. Node removals are
not explicitly considered in this measure. Similarly,
Dekker and Colbert [26] introduced two concepts
of connectivity for a graph which can be used to
model network robustness: the node connectivity
and link connectivity, which are the smallest num-
ber of nodes and links respectively, whose removal
results in a disconnected or single-node graph. In
this work, we used the robustness coefficient in-
troduced in Piraveenan et al. [27] as the robust-
ness measure as it has the advantage of providing
a single numeric value to quantify the topological
robustness of a network under sustained attack.

The robustness coefficient R is defined (in per-
centage) as [27]:

R =
200∑N

k=0 Sk −100S0

N2 (7)

In Eq. 7, Sk is the size of the largest compo-
nent after k nodes are removed. S0 denotes the ini-
tial largest component size. N is the network size.
According to the above equation, for a fully con-
nected network of any size, the robustness coeffi-
cient (R) would always be 100%. While we refer
the interested reader to consult [27] for its deriva-
tion, it suffices to say here that this is essentially
an Area Under Curve (AUC) measure, comparing
the area under the size of largest component curve
with that of a fully connected network of equivalent
size. Similar Area Under the Curve (AUC) mea-
sures are used in a number of disciplines. For exam-
ple, in signal detection theory, the area under a Re-
ceiver Operating Characteristic (ROC) curve [28]
denotes the probability that a classifier will rank
a randomly chosen positive instance higher than a
randomly chosen negative one, and in mechanics,
the area under curve of a velocity vs time plot of a
moving object denotes the distance that it has trav-
elled [29].

Let us note that the robustness coefficient is not
constant to a network, but depends on the type of
attack. In order to measure the robustness coeffi-
cient under different types of attacks, the nodes that
are removed are selected based on their centrality
values. For example, in a betweenness based at-
tack, the node that would be removed in each iter-
ation would be the node with the highest between-
ness centrality value, at that particular instance of
the network. Likewise, the other centrality based
attacks would select the node with the highest value
of the respective centrality measure. In the case of a
random attack, a randomly selected node would be
removed in each iteration.

3 Simulation results

We used groups of 100 synthesised scale-free,
small-world and Erdos-Renyi random networks in
our simulation experiments. The scale-free net-
works were synthesized using a variant of the Pref-
erential Attachment (PA) method, widely used as a
model to synthesize scale-free networks [1]. Each
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network consisted of 1000 nodes. The network
size was chosen arbitrarily, while considering the
computing time that would be necessary to com-
pute the properties of a much larger network. We
chose four different link-to-node ratio (LNR) val-
ues, namely LNR = 2,3,4 and 5. These would cor-
respond to average degree values of k̄ = 4,6,8 and
10. We had twenty-five networks with each LNR
value in each group, and these networks were dif-
ferent from each other in topological characteristics
such as scale-free exponent, modularity, clustering
coefficient, assortativity, rich-club profiles, and av-
erage path length.

In order to generate small-world networks, we
followed the Watts-Strogatz [16] model. Accord-
ing to this model, initially a ring network with 1000
nodes was generated. Then for each node, K num-
ber of neighbours were connected on either side
of the ring. This results in a ring-lattice structure.
Afterwards, based on a probability p, one end of
each link is disconnected and connected to a ran-
dom node in the ring. By varying p, we can vary
a network between a ring-lattice structure and a
random network. Values around p = 0.5 generate
small-world networks, though the values of p were
varied from 0.2 to 0.8 to achieve considerable vari-
ation in the topological parameters. Erdos-Renyi
random networks of equivalent sizes and link-to-
node ratios were generated, by randomly selecting
and linking pairs of nodes, to compare their robust-
ness and other network attributes.

When attacking the networks, we used a de-
gree based attack. In other words, we removed the
node with the highest degree form the network, in
each iteration. When there are multiple nodes with
the highest degree, a randomly selected node out
of those is removed. In doing so, we assume that
the degrees of all nodes are known prior to the at-
tack. the choice of node degree as a node property
to guide the attack is justified because this is easy to
obtain or calculate and has been previously used to
guide targeted attacks (e.g. in [24]). All the robust-
ness results obtained are dependent on the type of
attack used. If a different type of attack was used,
that would have quantitatively affected the resulting
robustness values.

We measured the robustness of each of these
networks using the robustness metric described
above. The topological robustness is measured as

a percentage and illustrates the network’s ability to
withstand sustained targeted node removal. We re-
moved the nodes in the order of node degree.

assor.png

Figure 1. Scale-free network robustness against
network assortativity. Four different link-to-node

ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are
considered.

Mod.png

Figure 2. Scale-free network robustness against
network modularity. Four different link-to-node

ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are
considered.

We now analyse how the network robustness of
the scale-free networks depend on each of the topo-
logical characteristics mentioned above. Our results
are illustrated in figures 1-6. In Fig. 1, we plot the
network robustness against network assortativity.
The figure shows that robustness tends to increase

 20

 30

 40

 50

 60

 70

 80

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

Ro
bu
st
ne
ss

Assortativity

LNR = 2
LNR = 3
LNR = 4
LNR = 5

 20

 30

 40

 50

 60

 70

 80

 0.25  0.3  0.35  0.4  0.45  0.5  0.55

Ro
bu
st
ne
ss

Modularity

LNR = 2
LNR = 3
LNR = 4
LNR = 5



94 D. Kasthurirathna, G. Thedchanamoorthy

with assortativity. This could be explained by the
fact that, high assortativity means similar nodes (in
terms of degrees) are connected together, including
the hubs. Therefore, compared to a non-assortative
scale-free network, the hubs in assortative scale-
free networks have ‘back-ups’, hence making it
harder for the network to be broken apart by tar-
geted attacks. Fig. 2 shows robustness against net-
work modularity. We find that modularity again has
positive correlation with network robustness. Fig.
3 shows robustness against clustering coefficient. It
can be seen that from Fig. 3 that these quantities are
negatively correlated, with higher clustering coeffi-
cient resulting in low robustness. While this may
seem counter-intuitive, it could be explained by the
fact that the more clustering a network has, the less
proportion of the links will be between distant parts
of the network (this also explains the negative cor-
relation usually observed between clustering coeffi-
cient and average path length), and as such, the net-
work could be broken apart into components eas-
ily. While these components themselves will be
quite robust to further attacks, the early disintegra-
tion means the robustness coefficient will be small
for scale-free networks with high clustering.

CC.png

Figure 3. Scale-free network robustness against
network clustering coefficient. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are

considered.
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Figure 4. Scale-free network robustness against
network average path length. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are

considered.

exp.png
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with assortativity. This could be explained by the
fact that, high assortativity means similar nodes (in
terms of degrees) are connected together, including
the hubs. Therefore, compared to a non-assortative
scale-free network, the hubs in assortative scale-
free networks have ‘back-ups’, hence making it
harder for the network to be broken apart by tar-
geted attacks. Fig. 2 shows robustness against net-
work modularity. We find that modularity again has
positive correlation with network robustness. Fig.
3 shows robustness against clustering coefficient. It
can be seen that from Fig. 3 that these quantities are
negatively correlated, with higher clustering coeffi-
cient resulting in low robustness. While this may
seem counter-intuitive, it could be explained by the
fact that the more clustering a network has, the less
proportion of the links will be between distant parts
of the network (this also explains the negative cor-
relation usually observed between clustering coeffi-
cient and average path length), and as such, the net-
work could be broken apart into components eas-
ily. While these components themselves will be
quite robust to further attacks, the early disintegra-
tion means the robustness coefficient will be small
for scale-free networks with high clustering.
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Figure 6. Scale-free network robustness against network rich-club coefficients. Four different link-to-node
ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are considered.

vulnerable to targeted attacks compared to random
networks [10], let us point out that the scale-free
exponent is not a measure of the scale-freeness of a
network. Therefore, the networks with high scale-
free exponents are not necessarily more scale-free
than those with lower scale-free exponents. Indeed,
we found that in the networks we simulated, there
was a correlation between the squared error of fit-
ting a scale-free exponent to a network, and the ex-
ponent itself, which means that the higher the scale-
free exponent, the less the scale-free characteristic
of a network (though the error in all cases was small
enough to justify the network being identified as
scale-free).

We also considered the rich-club profiles of
each of the scale-free networks we generated. Since
the rich-club profile is not a single quantity, we con-
sidered the rich-club coefficient of the network at
four percentile values, namely 5%, 10%, 15%, and
20% (for example, a 5% rich-club coefficient meant
that the sub-network consisting of the top 5% nodes
(in terms of degrees) was considered to calculate the
rich club.). However, as Fig. 6 shows, the rich-club
phenomena does not seem to affect the robustness
of networks. It may be the case that smaller rich-

clubs have an effect on network robustness, and a
more detailed study exploring the whole rich-club
profile of each network is necessary to determine
the exact effect of rich-clubs on network robustness.
Such a study is beyond the scope of this exploratory
paper. Table 1 summarises the results mentioned
above by showing the quantitative Pearson correla-
tion coefficients between each topological property
and the robustness coefficient, for the hundred net-
works that we studied. In most cases, we consid-
ered values greater than 0.5, to be significant corre-
lations.

Now let us turn out attention to small-world net-
works. Our results are summarised in Table 2. Fur-
thermore, the figures 7, 8 and 9 represent the vari-
ation of clustering coefficient, average path length
and modularity against the robustness of small-
world networks. These figures and table depict
a positive correlation between the robustness co-
efficient and all topological properties considered.
What is mainly interesting here is that here the clus-
tering coefficient too, is positively correlated with
network robustness (compare Fig. 7 with Fig. 3).
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Figure 6: Scale-free network robustness against network rich-club coefficients. Four different link-to-node
ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are considered.
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Figure 7. Small-world network robustness against
network clustering coefficient. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are

considered. Contrast with Fig. 3.
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Figure 8. Small-world network robustness against
network average path length. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are

considered.
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Figure 9. Small-world network robustness against
network modularity. Four different link-to-node

ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are
considered.
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Figure 10. Random network robustness against
network clustering coefficient. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are

considered.

Finally, we considered Erdos- renyi random
networks. In comparison, the robustness of ran-
dom networks do not show any significant corre-
lation with the network properties considered. The
figure 10 shows, for example, the variation of clus-
tering coefficient with the network robustness. Ac-
cording to the figure, there is no significant corre-
lation between the two parameters. Table 3 sum-
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network average path length. Four different
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Figure 9. Small-world network robustness against
network modularity. Four different link-to-node

ratios (LNR = 2,LNR = 3,LNR = 4,LNR = 5) are
considered.
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network clustering coefficient. Four different

link-to-node ratios
(LNR = 2,LNR = 3,LNR = 4,LNR = 5) are
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Finally, we considered Erdos- renyi random
networks. In comparison, the robustness of ran-
dom networks do not show any significant corre-
lation with the network properties considered. The
figure 10 shows, for example, the variation of clus-
tering coefficient with the network robustness. Ac-
cording to the figure, there is no significant corre-
lation between the two parameters. Table 3 sum-

ON THE INFLUENCE OF TOPOLOGICAL CHARACTERISTICS . . .

marises our results for the correlation coefficients
between the network properties considered and ro-
bustness coefficient. Since the network is randomly
linked, none of the topological properties we con-
sidered showed significant variation among various
networks, and perhaps for this reason, the correla-
tions between these properties and robustness were
also mostly negligible.

Table 1. Pearson correlation coefficients between
the different network properties considered and the
robustness coefficient values. Scale-free networks
with four different link-to-node ratios (LNR) were

considered.

LNR = 2 3 4 5
Assortativity 0.86 0.95 0.90 0.92

Modularity 0.70 0.70 0.58 0.70
Clustering Coefficient -0.59 -0.80 -0.76 -0.75
Average Path Length 0.76 0.90 0.84 0.83

Scale-free Exponent (γ) 0.71 0.28 -0.55 -0.70
Rich Club Coefficient

5% 0.32 -0.18 0.35 0.18
10% 0.40 -0.11 0.27 -0.25
15% -0.39 -0.31 -0.14 0.07
20% -0.43 -0.24 0.04 0.11

Table 2. Pearson correlation coefficients between
the different network properties considered and the

robustness coefficient values. Small-world
networks with four different link-to-node ratios

(LNR) were considered.

LNR=2 3 4 5
Assortativity 0.42 0.34 0.31 0.43

Modulatiry 0.78 0.93 0.95 0.95
Clustering Coefficient 0.82 0.94 0.92 0.92
Average Path Length 0.63 0.85 0.75 0.77
Rich Club Coefficient

5% 0.83 0.93 0.93 0.93
10% 0.82 0.87 0.89 0.92
15% 0.81 0.82 0.84 0.77
20% 0.65 0.78 0.63 0.60

Table 3. Pearson correlation coefficients between
the different network properties considered and the
robustness coefficient values. Erdos-Renyi random

networks with four different link-to-node ratios
(LNR) were considered.

LNR=2 3 4 5
Assortativity 0.05 0.07 0.04 0.20

Modularity 0.05 -0.01 0.22 0.20
Clustering Coefficient 0.11 -0.09 0.05 0.22
Average Path Length -0.21 0.05 0.14 0.12
Rich Club Coefficient

5% -0.22 0.13 0.17 0.13
10% -0.11 -0.05 -0.01 0.23
15% 0.09 -0.18 0.36 -0.02
20% 0.04 0.24 0.04 -0.02

4 Discussion

Let us now discuss a few implications and limi-
tations of our results with respect to the three types
of networks that we analysed. Let us first con-
sider scale-free networks. According to the above
results, assortativity and the robustness coefficient
show a clear positive correlation in scale-free net-
works. Assortativity is a measure of the similarity
of the nodes that are connected, in terms of the node
degree [30]. Hence, this result implies that when
there are more connections among similar nodes,
we can expect to see a higher topological robust-
ness in that particular network. However, let us note
that most scale-free networks we considered have
positive assortativity. Those networks which were
disassortative were only marginally so. Therefore,
it is difficult to say whether the absolute value of
assortativity has a positive correlation with network
robustness.

The next point to note is that modularity seems
to substantially influence network robustness in
scale-free networks. This is welcome from a net-
work designer’s point of view, since modular net-
works could be designed, which would also in-
crease the robustness of a network. Many evolved
and synthesized networks in social and engineered
systems are modular[2]. Furthermore, in some sys-
tems such as software networks, there is a need to
design the network as a modular network [27],[31].
The ‘functional robustness’ of engineered systems
also increases, it has been shown, when the net-
works are modular [32]. Therefore it is signifi-
cant that modular networks have high topological
robustness as well.

As mentioned above, clustering coefficient
tends to have a negative correlation with average
path length, when an ensemble of scale-free net-
works is considered [33]. Networks with relatively
small average path length and high clustering cor-
relation are called small-world networks [1, 34].
Our results show that the smaller the clustering co-
efficient is, and the larger the average path length
is, the higher the robustness. This must mean
that scale-free networks which also show the small-
world property are relatively not robust to sus-
tained targeted attacks. Just like scale-free networks
which are not robust to targeted attacks compared to
random networks [10, 25], many natural networks
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which are scale-free and small-world also achieve
their ‘small-worldness’ at the cost of robustness to
sustained targeted attacks.

It is already known that scale-free networks are
more resilient to random node failures, compared
to random networks. That is, preferential mixing
is likely to increase network robustness. Preferen-
tial mixing indicates that the nodes that have higher
degrees have a higher probability of attracting new
links. Examples of such networks include scien-
tific collaboration networks and social networks.
Such networks generally demonstrate scale-free de-
gree distributions [1]. Note that random mixing
does not necessarily imply the topology itself is
random (such as an Erdos-Renyi network). In-
deed, many scale-free networks, both synthesized
and real world, can show near random mixing pat-
terns [18, 19, 20, 9].

With that background in mind, we may eval-
uate the correlation results between the scale-free
exponent γ and the robustness coefficient. When
the link-to-node ratio increases, there’s a deviation
of the scale-free exponent from its commonly ob-
served window of 2 to 3 [1]. Moreover, the corre-
lation between the scale-free exponent and robust-
ness coefficient transforms from positive to nega-
tive, as the link-to-node ratio increases. This may
suggest that the scale-free nature of a network could
have an effect on the topological robustness of a
network. However, we failed to observe a strong
correlation between the scale-free exponent and the
robustness coefficient. This could be partly due to
the fact that we used a degree based attack to dis-
integrate the network, instead of emulating random
node failures.

Finally, we found that in our analysis there
was no correlation between rich-club tendencies
and network robustness. However, we need fur-
ther analysis to come to definitive conclusions here,
since the rich-club phenomena cannot be measured
by a single number, and is measured through a pro-
file. Networks may show rich club phenomena at
various percentile cut-offs, and we did not find that
much variation among networks on the cut-offs we
chose (5%, 10%, 15%, 20%). Therefore, further
analysis may be necessary to establish the influence
of rich-club phenomena on network robustness to
targeted attacks.

In comparison, according to Table 2 the ro-
bustness coefficient of small-world networks show
high correlation with all network parameters we
considered, such as the clustering coefficient, av-
erage path length, modularity and rich-club pro-
file. A small-world network is identified as a net-
work, which has relatively high clustering coeffi-
cient and relatively low average path length. Also,
let us note that the Watts-Strogatz algorithm that
we used produces ‘pure’ small-world networks, that
do not necessarily have scale-free characters. Thus,
these results affirm that the increase in average path
length, which decreases the small-world behaviour,
tends to increase the robustness of a network. On
the other hand, when the clustering behaviour in-
creases, that too affects the robustness in a posi-
tive manner. Even though average path length and
clustering coefficient have opposing effects on the
small-world nature of a network, they both seem
to have a positive influence on robustness. There-
fore, it is possible to ‘balance’ the robustness of a
network without losing the overall small-world na-
ture, if we are prepared to trade off one of the small-
world features (such as high clustering coefficient),
for the other. Moreover, the fact that modularity
and the robustness seem to show high correlation
is desirable since modularity is a preferred design
attribute in most designed networks, as mentioned
before. Therefore, by increasing the modularity in
a small-world netowrk, we can expect to preserve,
if not increase its robustness. It is important to note
that the correlations themselves increase when the
link to node ratio increases, that is when the net-
work gets more dense. It is also interesting to note
that unlike in the case of scale-free networks, the
rich club phenomena has a strong positive correla-
tion to network robustness.

The correlation of robustness of Erdos-Renyi
random networks and the network properties con-
sidered is considerably low. This may be due to the
fact that the robustness coefficient values of the ran-
dom networks considered did not have any consid-
erable variation, due to the connections being ran-
dom. Hence, we could argue that the scale-free and
small-world network models introduce more pre-
dictability and flexibility in designing a network for
its robustness, compared to random networks. This
could be indeed one of the reasons why both small-
world and scale-free networks are very prevalent
[1, 2, 3, 5] in nature.
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which are scale-free and small-world also achieve
their ‘small-worldness’ at the cost of robustness to
sustained targeted attacks.

It is already known that scale-free networks are
more resilient to random node failures, compared
to random networks. That is, preferential mixing
is likely to increase network robustness. Preferen-
tial mixing indicates that the nodes that have higher
degrees have a higher probability of attracting new
links. Examples of such networks include scien-
tific collaboration networks and social networks.
Such networks generally demonstrate scale-free de-
gree distributions [1]. Note that random mixing
does not necessarily imply the topology itself is
random (such as an Erdos-Renyi network). In-
deed, many scale-free networks, both synthesized
and real world, can show near random mixing pat-
terns [18, 19, 20, 9].

With that background in mind, we may eval-
uate the correlation results between the scale-free
exponent γ and the robustness coefficient. When
the link-to-node ratio increases, there’s a deviation
of the scale-free exponent from its commonly ob-
served window of 2 to 3 [1]. Moreover, the corre-
lation between the scale-free exponent and robust-
ness coefficient transforms from positive to nega-
tive, as the link-to-node ratio increases. This may
suggest that the scale-free nature of a network could
have an effect on the topological robustness of a
network. However, we failed to observe a strong
correlation between the scale-free exponent and the
robustness coefficient. This could be partly due to
the fact that we used a degree based attack to dis-
integrate the network, instead of emulating random
node failures.

Finally, we found that in our analysis there
was no correlation between rich-club tendencies
and network robustness. However, we need fur-
ther analysis to come to definitive conclusions here,
since the rich-club phenomena cannot be measured
by a single number, and is measured through a pro-
file. Networks may show rich club phenomena at
various percentile cut-offs, and we did not find that
much variation among networks on the cut-offs we
chose (5%, 10%, 15%, 20%). Therefore, further
analysis may be necessary to establish the influence
of rich-club phenomena on network robustness to
targeted attacks.

In comparison, according to Table 2 the ro-
bustness coefficient of small-world networks show
high correlation with all network parameters we
considered, such as the clustering coefficient, av-
erage path length, modularity and rich-club pro-
file. A small-world network is identified as a net-
work, which has relatively high clustering coeffi-
cient and relatively low average path length. Also,
let us note that the Watts-Strogatz algorithm that
we used produces ‘pure’ small-world networks, that
do not necessarily have scale-free characters. Thus,
these results affirm that the increase in average path
length, which decreases the small-world behaviour,
tends to increase the robustness of a network. On
the other hand, when the clustering behaviour in-
creases, that too affects the robustness in a posi-
tive manner. Even though average path length and
clustering coefficient have opposing effects on the
small-world nature of a network, they both seem
to have a positive influence on robustness. There-
fore, it is possible to ‘balance’ the robustness of a
network without losing the overall small-world na-
ture, if we are prepared to trade off one of the small-
world features (such as high clustering coefficient),
for the other. Moreover, the fact that modularity
and the robustness seem to show high correlation
is desirable since modularity is a preferred design
attribute in most designed networks, as mentioned
before. Therefore, by increasing the modularity in
a small-world netowrk, we can expect to preserve,
if not increase its robustness. It is important to note
that the correlations themselves increase when the
link to node ratio increases, that is when the net-
work gets more dense. It is also interesting to note
that unlike in the case of scale-free networks, the
rich club phenomena has a strong positive correla-
tion to network robustness.

The correlation of robustness of Erdos-Renyi
random networks and the network properties con-
sidered is considerably low. This may be due to the
fact that the robustness coefficient values of the ran-
dom networks considered did not have any consid-
erable variation, due to the connections being ran-
dom. Hence, we could argue that the scale-free and
small-world network models introduce more pre-
dictability and flexibility in designing a network for
its robustness, compared to random networks. This
could be indeed one of the reasons why both small-
world and scale-free networks are very prevalent
[1, 2, 3, 5] in nature.
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5 Summary

In this paper, we analysed the relationship of
network robustness (under sustained targeted at-
tacks) with a number of topological features in
scale-free, small-world and random networks. Us-
ing synthesised networks, we considered topologi-
cal characteristics including assortativity, modular-
ity, clustering coefficient, average path length, rich-
club profile, and scale-free exponent. We used a
particular robustness measure designed to analyse
resilience under sustained targeted attacks to mea-
sure robustness. We designed our attacks based on
the order of node degrees. We discussed the impli-
cations and limitations of our results.

In the case of scale-free networks, we observed
substantial positive correlation between network ro-
bustness and assortativity, modularity, and average
path length in scale-free networks. Also, we ob-
served that the clustering coefficient has a negative
correlation with the robustness of scale-free net-
works. We did not find that rich-club coefficients
or scale-free exponents affect the robustness of a
scale-free network in a significant manner. Among
scale-free networks, therefore, we observed that the
co-existence of small-world features (low average
path length and high clustering) hinder topological
robustness.

With regard to small-world networks, however,
robustness coefficient showed high correlation with
clustering coefficient, average path length, modu-
larity, assortativity and rich-club profile. However,
the correlation strength with assortativity was rel-
atively weaker compared to the rest of the param-
eters. We observed therefore, that high clustering
increases robustness in smallworld networks yet de-
creases robustness in scale-free networks. In com-
parison, the robustness coefficient Erdos-Renyi ran-
dom networks did not show any significant correla-
tion with any of the network parameters used. We
discussed the implications of our results for net-
work design and synthesis.
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