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Abstract

Ant colony optimization (stocktickerACO) is a meta-heuristic algorithm inspired by food
searching behavior of real ants. Recently stocktickerACO has been widely used in digi-
tal image processing. When artificial ants move in a discrete habitat like an image, they
deposit pheromone in their prior position. Simultaneously, vaporizing of pheromone in
each iteration step avoids from falling in the local minima trap. Iris recognition because
of its great dependability and non-invasion has various applications. simulation results
demonstrate stocktickerACO algorithm can effectively extract the iris texture. Also it is
not sensitive to nuisance factors. Moreover, stocktickerACO in this research preserves
details of the various synthetic and real images. Performance of ACO in iris segmen-
tation is compared with operation of traditional approaches such as canny, robert, and
sobel edge detections. Experimental results reveal high quality and quite promising of
stocktickerACO to segment images with irregular and complex structures.

1 Introduction

Biometric systems have been recently devel-
oped by both secluded entities and government
agencies. This is due to increase or replace con-
servative security schemes. Iris is commonly rec-
ognized as a reliable biometric measurement [1-3].
Iris in every person is unique and two individuals
don’t have the same iris. Furthermore, two individ-
ual’s irises are dissimilar because of their compli-
cated texture structure. In comparison with other
biometrics such as finger prints, voice, face, gait,
signature, and so on, iris has distinctive characteris-
tics. iris pattern recognition has a rather short his-
tory of usage compared with other biometric sys-
tems [4-6].

From anatomical point of view, the front sev-
enty percent of the iris encompasses more blood
vessels. Various kinds of nerves have been stretched
all over the iris. Therefore information easily in
a straight line can be transferred to the iris from
brain and other structures. Hence, changes in in-
ner body situations and the internal hormone levels
lead to iris rapid reaction. Therefore, visible varia-
tions in iris’s appearance are created. These visible
changes contain freckles, pigmentation, appearance
white rings surrounding the cornea or sclera, bro-
ken texture, and so on [7, 8]. Systematic variations
in the iris’s pattern reflect the internal situations of
body organs, one’s mood, emotions, and one’s per-
sonality, etc. Furthermore, iris is a robust unique
biometric with a very low False Accept Rate (FAR).
Applying iris properties, individuals can be easily
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distinguished; this opinion is verified by large-scale
authentication experimentations [4, 8].

Image segmentation is the procedure of divid-
ing an image into several homogenous subsections
based on characteristics such as image gray levels,
intensity gradient, tones, colors, or tissue contrast
[9, 10]. There are no universal solutions for image
segmentation. However, for specific classes of seg-
mentation problems many good solutions have been
developed [11, 12]. In some methods localizing
pupil has been developed with wavelet transform
(WT), and iris boundary extracted with a differen-
tial integral operator [13]. In another approach, bi-
nary morphology and local statistics have been ap-
plied in iris segmentation [11]. Geodesic Active
Contours (GACs) also has been developed in iris
image segmentation [4]. In other method Canny
edge detection has been developed by Hough trans-
form to iris recognition [14]. In this paper an effec-
tive and robust algorithm based on ant colony opti-
mization developed to iris segmentation.

The rest of this paper is organized as follows:
in section 2, the ACO algorithm is reviewed and
modified. section 3 highlights potential of proposed
method through experimental results. Finally Sec-
tion 4 summarizes conclusions of this paper.

2 Artificial ant colony in digital
habitat

Ant colony was introduced in 1991/92 by
Marco Dorigo as a computational model, which
is called ANT SYSTEM. Vitorino Ramos and Fil-
ipe Almeida developed idea of using artificial ant
colony algorithm to explore in a digital image [15].
ACO mimics the real ant’s manner to find the short-
est route between the nest and food source. Com-
munication of ants with each other is done by the
means of pheromone trails. Tracing more number
of ants on certain path becomes more attractive to
the others. Therefore other ants follow the path
and deposit their own pheromone on it. Establish-
ment of the shortest route is result of this auto cat-
alytic and collective performance. As shown in Fig-
ure 1, ants foraging is started from their nest in di-
verse directions simultaneously. Ants move in the
shorter path when they return to the nest. This path
consumes less time and more pheromone deposited

rather than the other paths. The shorter route with
high probability is followed by other ants. Simi-
larly other ants deposit their individual pheromones
on the detected route. Ants are soon fascinated to
this path and the best path from the nest to the food
source is established as shown in Figure 1. Further-
more some of the ants search in habitat to find new
food sources [15-17].

Discretion and parallel nature of ACO are
well appropriated in digital images, because ACO
searches smartly and utilizes good characteristics
such as positive feedback, robustness, and dis-
tributed computations [8, 15].

2.1 Pheromone weighting function

An individual ant can be stated by its position
r, and orientation θ as defined by Chialvo and Mil-
lonas in [16]. It is sufficient to specify a transition
probability from one cell and orientation (r,θ) to the
next cell (r*,θ*) a time step later. The response at
a given time is supposed to be autonomous of the
previous history of the individuals. Utilizing of a
pheromone weighting function, the response func-
tion can efficiently be translated into a transition
rule among the cells and the relative probabilities
of moving a pixel r with pheromone density σ(r)
can be represented as following [15]:

W(σ)=(1+
σ

1+δσ
)

β
(1)

Where β controls the degree of randomness by
following the gradient of pheromone and it is re-
lated to the pheromone density. For slight values of
β the pheromone concentration does not greatly af-
fect the choice; whereas high concentrations cause
ants to track the pheromone gradient with more
certainty. The notation 1/ f i describes each ant
can sense pheromone reduction somewhere at great
concentrations which means sensory capacity [15].

2.2 Ant positioning probability function

Chialvo and Millonas [16] added a weighting
factor ω (∆i) to equation (1). The weighting factor
ω (∆i) certifies ants have higher probability to walk
along the earlier direction. ∆i is associated with the
change in direction at each time step. Obviously, it
is the basic movement momentum. Affected by the
concentration of pheromone in all the eight neigh-
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distinguished; this opinion is verified by large-scale
authentication experimentations [4, 8].

Image segmentation is the procedure of divid-
ing an image into several homogenous subsections
based on characteristics such as image gray levels,
intensity gradient, tones, colors, or tissue contrast
[9, 10]. There are no universal solutions for image
segmentation. However, for specific classes of seg-
mentation problems many good solutions have been
developed [11, 12]. In some methods localizing
pupil has been developed with wavelet transform
(WT), and iris boundary extracted with a differen-
tial integral operator [13]. In another approach, bi-
nary morphology and local statistics have been ap-
plied in iris segmentation [11]. Geodesic Active
Contours (GACs) also has been developed in iris
image segmentation [4]. In other method Canny
edge detection has been developed by Hough trans-
form to iris recognition [14]. In this paper an effec-
tive and robust algorithm based on ant colony opti-
mization developed to iris segmentation.

The rest of this paper is organized as follows:
in section 2, the ACO algorithm is reviewed and
modified. section 3 highlights potential of proposed
method through experimental results. Finally Sec-
tion 4 summarizes conclusions of this paper.

2 Artificial ant colony in digital
habitat

Ant colony was introduced in 1991/92 by
Marco Dorigo as a computational model, which
is called ANT SYSTEM. Vitorino Ramos and Fil-
ipe Almeida developed idea of using artificial ant
colony algorithm to explore in a digital image [15].
ACO mimics the real ant’s manner to find the short-
est route between the nest and food source. Com-
munication of ants with each other is done by the
means of pheromone trails. Tracing more number
of ants on certain path becomes more attractive to
the others. Therefore other ants follow the path
and deposit their own pheromone on it. Establish-
ment of the shortest route is result of this auto cat-
alytic and collective performance. As shown in Fig-
ure 1, ants foraging is started from their nest in di-
verse directions simultaneously. Ants move in the
shorter path when they return to the nest. This path
consumes less time and more pheromone deposited

rather than the other paths. The shorter route with
high probability is followed by other ants. Simi-
larly other ants deposit their individual pheromones
on the detected route. Ants are soon fascinated to
this path and the best path from the nest to the food
source is established as shown in Figure 1. Further-
more some of the ants search in habitat to find new
food sources [15-17].

Discretion and parallel nature of ACO are
well appropriated in digital images, because ACO
searches smartly and utilizes good characteristics
such as positive feedback, robustness, and dis-
tributed computations [8, 15].

2.1 Pheromone weighting function

An individual ant can be stated by its position
r, and orientation θ as defined by Chialvo and Mil-
lonas in [16]. It is sufficient to specify a transition
probability from one cell and orientation (r,θ) to the
next cell (r*,θ*) a time step later. The response at
a given time is supposed to be autonomous of the
previous history of the individuals. Utilizing of a
pheromone weighting function, the response func-
tion can efficiently be translated into a transition
rule among the cells and the relative probabilities
of moving a pixel r with pheromone density σ(r)
can be represented as following [15]:

W(σ)=(1+
σ

1+δσ
)

β
(1)

Where β controls the degree of randomness by
following the gradient of pheromone and it is re-
lated to the pheromone density. For slight values of
β the pheromone concentration does not greatly af-
fect the choice; whereas high concentrations cause
ants to track the pheromone gradient with more
certainty. The notation 1/ f i describes each ant
can sense pheromone reduction somewhere at great
concentrations which means sensory capacity [15].

2.2 Ant positioning probability function

Chialvo and Millonas [16] added a weighting
factor ω (∆i) to equation (1). The weighting factor
ω (∆i) certifies ants have higher probability to walk
along the earlier direction. ∆i is associated with the
change in direction at each time step. Obviously, it
is the basic movement momentum. Affected by the
concentration of pheromone in all the eight neigh-
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Figure 1. Ants food searching mechanism; (a) searching in several routes (b) establishing optimal route.

boring pixels, each agent can step in one pixel at
each time step. When an ant in the lattice goes from
left to right, it has the weighing factor ω (∆i) as de-
picted in Figure 2.

Figure 2. Probability of change in direction for an
ant goes from left (time=t-1) to right (time =t)

direction.

Normalized transition probability on the lattice to
go from pixel k to pixel i at time t is given by [16]:

Pik=
W (σi)ω(∆i)

∑ j/k W (σ j)ω(∆ j)
(2)

The notation j/k specifies the summation of all
pixels j in the local neighborhood of k. Many ants
(percentage of total image pixels) are located on
the digital habitat. They are in disorganized situa-
tions at start time t = 0. The probability Pik controls
movements of ants among neighborhood cells.

2.3 Deposition and vaporize of pheromone

Pheromone deposition method in [16] is controlled
by one static parameter, Ramos added a novel dy-
namic parameter which is not constant and related
to a correlation around local neighborhoods. The

new pheromone deposition T with two static and
dynamic parameters is defined as [18]:

T=η + p∆h (3)

Where each individual leaves a constant amount
η of pheromone at the pixel and it is a static param-
eter situated at every time step t. This pheromone
decays at each iteration with rate V. p is a con-
stant weighting coefficient and ∆h is a dynamic pa-
rameter to measure similarity degrees between two
different lattice windows, including three following
terms [18]:

△h=

{
a

|m1−m2|
Max |m1−m2|

+b

��σ2
1−σ2

2

��
(
Max

�� ��σ2
1−σ2

2

��)+c
S

Smax

}
.(a+b+c)−1

(4)

Where h denotes the habitat and the 1st term is
responsible for finding differences on overall grey
level intensity values. The 2nd term measures dif-
ferences on windows grey level homogeneity val-
ues through variance computations. The 3rd term is
computed through differences in two grey level his-
tograms representative of two local neighborhoods
and a+b+c=1. m1 is the intensity mean in one lat-
tice window and σ1 signifies the variance for the
same window. S demonstrates the difference of
all grey level intensities between two intensity his-
togram of preceding windows [18].

2.4 Image segmentation by artificial ant
colony

With the assumption that ants in the system
know the “food” in their memory, ACO begins
the processing of image segmentation. Therefore
they can recognize the pixels which are alike to the
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Fig  : Ants food searching mechanism; (a) searching in several routes (b) establishing optimal route. 
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“food” in the image. The pheromone is deposited
in pixels which can affect the motion of the agents.
Applying transition rules, the ants change their lo-
cation in the image at every iteration step. Seg-
mentation results are extracted trough analyzing the
pheromone distribution in the image. Details of im-
plementation are described as following:

2.4.1 Defining food

Food in ACO is defined as a reference object
which can be memorized by the ants. For simplic-
ity an r-radius neighborhood Nr(o) of a pixel ‘o’ in
the image is selected. The specified food for ACO
in the i-th ant’s memory at time t = 0 can be initial-
ized by means of [19]:

Fi,t=0 = Nr(o) (5)

Nr(o) = {e ∈ I|∥e−o∥< r}. (6)

I denotes the pixels in the image which should
be segmented. Food in the ants’ memory, when they
find a new food source will be refreshed according
to the instructions introduced in the succeeding sec-
tion.

2.4.2 Food source finding

After the reference food definition, ants are re-
sponsible to find pixels with analogous properties.
Ants are able to compare between the pixels and the
specific reference food. For an ant located in the
pixel c with the r-radius and neighborhood Nr(c),
the comparison between two different lattice win-
dows is controlled by following [18]:

µk(o,c) = µφ(o,c).µξ(o,c) (7)

µφ(o,c) =
min(mo,mc)

max(mo,mc)
(8)

Where mc and mo are meaning of each gray
level intensities with Nr(c) and Nr(o) neighborhood
windows; and total texture similarityµξ(o,c) is pro-
posed as follows:

µξ(o,c) = k1 p1
j + k2 p2

j + k3 p3
j + k4 p4

j + k5 p5
j (9)

Where k1+k2+k3+k4+k5=1 and pdir
j is similar-

ity function between two 3×3 lattice window sub-
images as follow:

p1
j =

1
1+ | f ( j)− f (0)|γ1

. (10)

The 1st term p j
1 is set according to the similar-

ity of gray level between the j-th neighbor cell f( j)
and the center cell f(0). Obviously, it reflects the
similarity among neighboring pixels. Similarity be-
tween the gray level of the pixels means they belong
to the same class.

p2
j =

1
1+ |m( j)−m(0)|γ2

. (11)

Where 2nd term p j
2 is set according to the sim-

ilarity of the gray level means between the 3×3
neighborhood of j-th cell m( j) and the 3×3 neigh-
borhood of center cell m(0).

p3
j =

1
1+ |D( j)−D(0)|γ3

. (12)

The 3rd term p j
3is given by the local texture

similarity between the sub-images. Sub-image is
the 3×3 neighborhood of j-th cell. D(j) is extended
from the j-th cell, sub-image variance, and D(0)
from the center sub-image variance.

p4
j =

1
1+ |Dm( j)−Dm(0)|γ4

. (13)

The 4th term p j
4is given by the local texture

similarity between the sub-images. Dm(j) is ex-
tended from the j-th cell sub-image, and Dm(0) from
the center sub-image. Dm is variance of 3×3 neigh-
borhood when means of all 3×3 neighborhoods in
the image are replaced in center cells of sub-images.

p5
j =

1
1+ |d(S( j),S(0))|γ5

. (14)

The 5th term p j
5like p j

3 and p j
4 is given by

the local texture similarity between the sub-images.
The d(S(j),S(0)) is distance between the histogram
of two sub-images; sub-image of center cell and one
of 8 neighborhood sub-images. γis an experimen-
tally selected balancing parameter.
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“food” in the image. The pheromone is deposited
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The 4th term p j
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borhood when means of all 3×3 neighborhoods in
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Figure 3. (a) Original image, (b) Performance of ACO after 100 iterations, (c) initial position of ants at
digital habitat in first iteration, (d) Position of ants at after 300 iterations when β increased to 35 and

vaporization is one.
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The pixel c is defined as stimulating the ants
searching for a food source when µk(o,c)goes be-
yond a well-defined threshold. The food in the
ants’ memory at time t=τ will be refreshed as fol-
low when an ant i consider c as a fresh food source
[18]:

Fi,t=τ =aNr(c) + bFi,t=τ−1 (15)

Where a and b are constants.

2.4.3 Pheromone updating

As discussed in section 2.4.3 an ant will con-
sider an object as a food source when the value of
µk(o,c) exceeds from a threshold during the forag-
ing procedure. Each ant has its own threshold f i
between 0.4 and 0.9. Therefore the pheromone de-
position T at pixel c can be defined as [19]:

T (c) =

{
η i f−→ µk(o,c)< λ

η+ pλ i f−→ µk(o,c)≥ λ
(16)

Where η is a constant amount of pheromone; p
is a constant.

3 Experimental results

To show the effectiveness of improved ACO,
experiments were done on various synthetic and
real images. They were filtered by the Canny,
Robert, Sobel edge detections, and ACO. Conven-
tional edge detections are implemented by MAT-
LAB toolbox. Figure 3 depicts the performance of
ACO technique. Number of agents (ants) in digital
habitat are 10% of total pixels and popular param-
eters are δ=0.02, β = 3.5, v=0.015, p=1.2, λ = 0.4,
and f i =0.07. Figure 3(a) is the original image. per-
formance of ACO is portrayed at Figure 3(b). Ini-
tial position of particle swarm at digital habitat is
displayed at Figure 3(c). Convergence of agents in
digital habitat after 300 iterations for β = 35 and
v=1 is represented at Figure 3(d).

Pheromone fields in each iteration step improve
when similarity between two lattice windows is
larger than the defined threshold. Pheromone den-
sity intensification depends on the degrees of sim-
ilarity between two lattice windows. Pheromone

field perspective through swarm food searching is
portrayed at Figure 4(a)-(c) for different iterations.
Pheromone fields are refreshed in each iteration by
these experimental values δ=0.02, β= 3.5, v=0.015,
p=1.2, λ = 0.4, f i =0.07 while number of ants is
10% of the all pixels in the image.

ACO meta-heuristic solves optimization prob-
lem in each iteration step by updating and vaporiz-
ing of pheromone density. In Figure 5(b)-(d) ACO
segmentation development are described after 5, 10
and 50 iteration steps sequentially. Performance of
ACO when number of ants is decreased to %1 of
total pixels and number of iterations increased to
20, 50, 100, and 300 are shown in Figure 5 (e)-
(h) respectively. These experiments were done by
δ=0.02, β = 3.5, v=0.015, p=1.2, λ = 0.4, f i =0.07.

To compare performance of ACO with tradi-
tional edge detections Figure 6(a) shows a synthetic
image [20]. Performance of ACO, ACO with log-
arithmic transform, Canny, Robert, and Sobel edge
detections respectively are shown in Figure 6(b)-(f).
obviously the traditional edge detections lost edges
however ACO compensate them. Number of ants
are 10% of the all pixels of image.

To scrutinize ACO performance, real iris image
has utilized in the experimentations. The output re-
sults have comprised with conventional edge detec-
tions in Figures 7(d)-(f). Figure 7 shows the results
with 100 iteration steps and parameters have been
adjusted to β=3.5, v=.015, p=1.2, , η=0.07; while
number of ants are 10% of the all pixels. Small
values of β and large values of v lead to high prob-
ability of searching new paths. Hence to deposit
further pheromone in digital habitat number of it-
erations should be increased. Experiment results
proved suitable performance of ACO, however it
consumes more time than other edge detections as
shown in Table 1.

4 Conclusion

In this paper an artificial Ant Colony Opti-
mization algorithm was offered to image process-
ing. This approach is inspired by the mechanism
of food-searching in the real ant colony. ACO ca-
pability to preserve details of the images was in-
vestigated in this study on both synthetic and real
images. Simulation results by ACO and traditional
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Fi,t=τ =aNr(c) + bFi,t=τ−1 (15)
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ing procedure. Each ant has its own threshold f i
between 0.4 and 0.9. Therefore the pheromone de-
position T at pixel c can be defined as [19]:

T (c) =

{
η i f−→ µk(o,c)< λ

η+ pλ i f−→ µk(o,c)≥ λ
(16)

Where η is a constant amount of pheromone; p
is a constant.

3 Experimental results

To show the effectiveness of improved ACO,
experiments were done on various synthetic and
real images. They were filtered by the Canny,
Robert, Sobel edge detections, and ACO. Conven-
tional edge detections are implemented by MAT-
LAB toolbox. Figure 3 depicts the performance of
ACO technique. Number of agents (ants) in digital
habitat are 10% of total pixels and popular param-
eters are δ=0.02, β = 3.5, v=0.015, p=1.2, λ = 0.4,
and f i =0.07. Figure 3(a) is the original image. per-
formance of ACO is portrayed at Figure 3(b). Ini-
tial position of particle swarm at digital habitat is
displayed at Figure 3(c). Convergence of agents in
digital habitat after 300 iterations for β = 35 and
v=1 is represented at Figure 3(d).

Pheromone fields in each iteration step improve
when similarity between two lattice windows is
larger than the defined threshold. Pheromone den-
sity intensification depends on the degrees of sim-
ilarity between two lattice windows. Pheromone

field perspective through swarm food searching is
portrayed at Figure 4(a)-(c) for different iterations.
Pheromone fields are refreshed in each iteration by
these experimental values δ=0.02, β= 3.5, v=0.015,
p=1.2, λ = 0.4, f i =0.07 while number of ants is
10% of the all pixels in the image.

ACO meta-heuristic solves optimization prob-
lem in each iteration step by updating and vaporiz-
ing of pheromone density. In Figure 5(b)-(d) ACO
segmentation development are described after 5, 10
and 50 iteration steps sequentially. Performance of
ACO when number of ants is decreased to %1 of
total pixels and number of iterations increased to
20, 50, 100, and 300 are shown in Figure 5 (e)-
(h) respectively. These experiments were done by
δ=0.02, β = 3.5, v=0.015, p=1.2, λ = 0.4, f i =0.07.

To compare performance of ACO with tradi-
tional edge detections Figure 6(a) shows a synthetic
image [20]. Performance of ACO, ACO with log-
arithmic transform, Canny, Robert, and Sobel edge
detections respectively are shown in Figure 6(b)-(f).
obviously the traditional edge detections lost edges
however ACO compensate them. Number of ants
are 10% of the all pixels of image.

To scrutinize ACO performance, real iris image
has utilized in the experimentations. The output re-
sults have comprised with conventional edge detec-
tions in Figures 7(d)-(f). Figure 7 shows the results
with 100 iteration steps and parameters have been
adjusted to β=3.5, v=.015, p=1.2, , η=0.07; while
number of ants are 10% of the all pixels. Small
values of β and large values of v lead to high prob-
ability of searching new paths. Hence to deposit
further pheromone in digital habitat number of it-
erations should be increased. Experiment results
proved suitable performance of ACO, however it
consumes more time than other edge detections as
shown in Table 1.

4 Conclusion

In this paper an artificial Ant Colony Opti-
mization algorithm was offered to image process-
ing. This approach is inspired by the mechanism
of food-searching in the real ant colony. ACO ca-
pability to preserve details of the images was in-
vestigated in this study on both synthetic and real
images. Simulation results by ACO and traditional
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Figure 4. Growing of pheromone fields after (a) 20, (b) 50, (c) 100 iterations.

Figure 5. performance of ACO; (a) Original image, (b)-(d) Segmented image after 20, 50, 100 iterations
(number of ants is 10% of total pixels); (e)-(h) performance of ACO after 20, 50, 100 and 300 iteration

steps (number of ants is %1 of total pixels).

Figure 6. (a)Original image; performance of (b) ACO, (c) ACO with logarithmic transform, (d)Canny,
(c)Robert, (f)Sobel edge detections.W8789
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Figure 7. (a) Original iris image; performance of (b) Sobel, (c) Canny, (d) Robert edge detections, (e)
ACO and (f) ACO with logarithmic transform.

Table 1. Passed time (in Seconds) by ACO and traditional edge detections.

Object image Canny Robert Sobel ACO
Synthetic image 0.283 0.862 0.080 124.72
Lena 0.084 0.051 0.048 70.04
Iris 0.266 0.084 0.078 66.05
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Figure 7. (a) Original iris image; performance of (b) Sobel, (c) Canny, (d) Robert edge detections, (e)
ACO and (f) ACO with logarithmic transform.

Table 1. Passed time (in Seconds) by ACO and traditional edge detections.

Object image Canny Robert Sobel ACO
Synthetic image 0.283 0.862 0.080 124.72
Lena 0.084 0.051 0.048 70.04
Iris 0.266 0.084 0.078 66.05
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edge detections showed ACO has superior perfor-
mance. Furthermore, robustness of ACO against
noise was demonstrated on the real iris image. Ex-
perimental results revealed efficient performance of
ACO in comparison with conventional edge detec-
tions however elapsed time by artificial ants is more
than these edge detections.
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