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Abstract
This paper attempts to replicate the results of evaluating several artificial agents using the

Algorithmic Intelligence Quotient test originally reported by Legg and Veness. Three experiments
were conducted: One using default settings, one in which the action space was varied and one
in which the observation space was varied. While the performance of freq, Q0, Qλ, and HLQλ

corresponded well with the original results, the resulting values differed, when using MC-AIXI.
Varying the observation space seems to have no qualitative impact on the results as reported, while
(contrary to the original results) varying the action space seems to have some impact. An analysis
of the impact of modifying parameters of MC-AIXI on its performance in the default settings
was carried out with the help of data mining techniques used to identifying highly performing
configurations. Overall, the Algorithmic Intelligence Quotient test seems to be reliable, however
as a general artificial intelligence evaluation method it has several limits. The test is dependent
on the chosen reference machine and also sensitive to changes to its settings. It brings out some
differences among agents, however, since they are limited in size, the test setting may not yet be
sufficiently complex. A demanding parameter sweep is needed to thoroughly evaluate configurable
agents that, together with the test format, further highlights computational requirements of an agent.
These and other issues are discussed in the paper along with proposals suggesting how to alleviate
them. An implementation of some of the proposals is also demonstrated.

Keywords: artificial general intelligence, evaluating intelligence of artificial systems, Universal
Intelligence definition, Algorithmic Intelligence Quotient test

1. Introduction

The recently established field of artificial general intelligence (AGI), also referred to as strong
artificial intelligence, focuses on understanding and developing artificial intelligence comparable to
that of a human, especially with respect to its universality, cf. Searle (1980); Goertzel (2014). This is
in agreement with the original question of artificial intelligence (AI): “What is intelligence?” noted
already by Turing (1950). As the field has evolved, this question has become increasingly ignored.
Recently though, it came back into focus in attempts to define and later also test and measure
intelligence made by Legg and Hutter (2007b); Hernández-Orallo and Dowe (2010); Insa-Cabrera
et al. (2011); Legg and Veness (2013). As a result of this work, a new research area has emerged,
focusing on universal evaluation of intelligence. Its overview is given by Hernández-Orallo (2017).

Through philosophical reflection and the knowledge of cognitive science, the notion of
intelligence can be grasped and framed onto other high-level concepts describing related abilities of
the mind. However, such an approach provides neither a well-specified definition of intelligence, nor
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a practical method by which to evaluate it. There are some methods of practical intelligence testing
in psychology that can be adopted by Psychometric AI to evaluate artificial systems (Bringsjord
and Schimanski, 2003). A lot of work has been done recently to try and achieve a well-specified
definition of intelligence using Algorithmic Information Theory. Most notably, it has resulted in
the Universal Intelligence definition (Legg and Hutter, 2007b). Finally, there are approaches that
combine the features of being both well specified and practical in terms of evaluation procedure:
the Anytime Intelligence test (Hernández-Orallo and Dowe, 2010), and the Algorithmic Intelligence
Quotient test (Legg and Veness, 2013). More details will follow in Section 2.

The Algorithmic Intelligence Quotient test (AIQ test) enables practical evaluation of intelligent
agents (Legg and Veness, 2013). The original paper focused on the way in which the test was derived
from the Universal Intelligence definition (Legg and Hutter, 2007b). Results achieved by several
agents were also presented. This paper will first focus on reproducing those results (in Section 3),
and then assess the AIQ test regarding its suitability as a general AI evaluation method in Section 4.
Based on the conducted experiments and overviewed literature, existing limits of the test will be
identified and possible methods to alleviate them will be proposed and discussed.

2. Defining and Measuring Artificial General Intelligence

Philosophical and cognitive presumptions of intelligence will be summarized in Section 2.1. The
ideas of Psychometric AI will be outlined in Section 2.2. The Universal Intelligence definition will
be introduced in Section 2.3, while the Pragmatic General Intelligence definition will be briefed
on in Section 2.4. The Anytime Intelligence test will be introduced in Section 2.5. Finally, the
Algorithmic Intelligence Quotient test will be detailed in Section 2.6.

2.1 Philosophical and Cognitive Presumptions of Intelligence

Philosophical reflections on the meaning of intelligence and thought can be traced back to at
least Descartes (1637), who points out its universality and its connection to language and rational
speech. Searle (1980) notices the relationship between intelligence, meaning, understanding and
intentionality. However, intelligence can be delimited even more widely, e.g. in relation to
consciousness, as discussed in Dennett (1991). As, for example, de Mey (1992) points out,
intelligence requires knowledge (a representation of the world in some kind of model) which is
formed as the system interacts with the world through perception and action. The connection
of intelligence to cognitive abilities in humans has been extensively modeled by cognitive
architectures, as overviewed e.g. by Sun (2007).

Based on such framing of intelligence in high-level concepts related to other cognitive abilities,
the initial work in the area of AI evaluation can be said to have begun with the well-known Turing
test (Turing, 1950). Arguably, it explicitly tests some of the language capacities of the evaluated
entity, while implicitly it considers evaluation of other capacities which can be reported by language.
Similar, expanded tests of intelligence were later proposed e.g. by Harnad (1991), who focuses on
the full repertoire of human intelligent behavior, and Schweizer (2012), who accentuates the ability
of a species to evolve its intelligent behavior. These tests have many problems, however, their
evolution shows a shift from unspecified AI to agents interacting with environments (and possibly
even other agents), and a tendency to evaluate them against a growing and more explicit set of tasks.
This trend is also advocated by Hernandez-Orallo (2000), who gives the motivation to switch from
the Turing test to tests and definitions based on the Algorithmic Information Theory.
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2.2 Psychometric Artificial Intelligence

Psychometric AI (PAI) of Bringsjord and Schimanski (2003) approaches Turing’s (1950) question:
“What is intelligence?” from an angle that stresses the testing aspect.

Psychometrics is a field of psychology that deals with the systematic measurement of psycho-
logical properties (especially intelligence) in humans using various tests. According to Bringsjord
and Schimanski (2003) it gives an answer to the question of what intelligence is, and therefore all AI
research should be understood as PAI and should focus on “building information-processing entities
capable of at least solid performance on all established, validated tests of intelligence and mental
ability.” This results in an iterative approach in which the ability to solve an increasing number of
tests is integrated into the entity in question – which is useful from an engineering perspective.

However, as a testing approach, PAI is somewhat impractical, since it deals with ‘all established
and validated tests’, which is an open set. It also does not explicitly address the issue of defining
intelligence, leaving that to psychology. That may be considered a benefit by some, however,
questions can be raised as to whether psychological definitions of human intelligence implicitly
present in the tests can be directly applied to an artificial system. A more general approach supported
by multidisciplinary interaction may be needed. The limitations of PAI are also considered
by Besold, Hernández-Orallo, and Schmid (2015) who state several arguments questioning the
necessity and sufficiency conditions of directly using human intelligence tests to measure machine
intelligence. They also call for generalization and improvement of tests used by PAI.

2.3 Universal Intelligence Definition

In order to answer the question: “What is intelligence?” with a precise definition, Legg and Hutter
(2007a) studied a broad variety of definitions, theories, and tests of human, animal, and artificial
intelligence and arrived at the following (informal) result: “Intelligence measures an agent’s ability
to achieve goals in a wide range of environments.” Legg and Hutter (2007b) give its formalization
as shown by Equation 1.

Υ(π) :=
∑
µ∈E

2−K(µ)V π
µ (1)

where the Universal Intelligence Υ of agent π is given by its ability to achieve goals as defined by
a value function V π

µ := E (
∑∞

i=1 ri) ≤ 1 basically as maximizing the expected sum of all future
rewards (given a history of interactions) over a set E of environments µ weighted by algorithmic
probability that uses Kolmogorov complexity K. See details in Legg and Hutter (2007b).

Looking at the formal definition by Legg and Hutter (2007b) in Equation 1, the following
important building blocks can be noted:

• The definition considers the environment µ, agent π, and their iterated interaction through
actions ai of the agent, and its perceptions (observations) oi and rewards ri originating in
the environment. The environment is defined as a Turing computable conditional probability
measure µ of perceptions and rewards given current interaction history.

• With all computable environments considered, Kolmogorov complexity K(µ) is used as a
measure in place of Occam’s razor 2−K(µ). If a short program can be used to describe the
probability measure of an environment, than the environment has a low complexity, since
Kolmogorov complexity is based on the length of the shortest program describing a sequence
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of bits. Thus, complex environments are less influential on the agent’s overall performance
than simple ones.

• An agent’s ability to achieve goals is described by a value function V π
µ as maximizing the

expected future rewards given past interaction with the environment. Temporal preference is
present in the way rewards are distributed by the environment. That is, the environment itself
decides if a slow-learning but more accurate or fast-learning but inaccurate solution is better.

The Universal Intelligence definition of Legg and Hutter (2007b) can be seen as a generalization of
the earlier work of Hernandez-Orallo (2000) on C-tests from static to dynamic environments.

The definition of Legg and Hutter (2007b) orders the performance of agents, ranging from
unintelligent random behaviour to theoretically optimal AIXI. When considering all computable
environments, weighted by their complexity, only a truly general agent can attain high Universal In-
telligence. Founded on concepts of information theory, it is not culturally biased or anthropocentric.
As could be noted from previous paragraphs, this definition is not computable due to it considering
infinitely many environments, infinitely long agent – environment interaction, and uncomputable
Kolmogorov complexity. As a result, after dealing with those three limitations, any measure based
on this definition can only be approximate.

Although culturally unbiased, the Universal Intelligence of an agent is, through the use of
Occam’s razor 2−K(µ), dominated by a fairly small set of short programs describing simple
environments. Program length is assessed by the Kolmogorov complexity function K relative to a
reference Turing machine U . The choice of the reference machine (i.e. the programming language)
determines which classes of environments (or problems) can be described by short programs.
Therefore, Universal Intelligence can be made biased towards a certain class of environments
by the choice of a suitable reference machine. Legg and Hutter (2007b) consider this to be an
issue especially for simple agents, however Hibbard (2009) showed that under specific conspirative
conditions it can cause serious issues even for the optimal agent AIXI. According to Hibbard,
this bias can be arbitrarily reduced by specifying the minimal length of environment programs
considered by the definition. Hernández-Orallo (2015, 2017) proposed an alternative solutional
approach based on the idea that it is in fact the complexity of the solution that determines the
difficulty of the problem (environment). He therefore suggests changing the way overall score
is aggregated so that it incorporates this idea of environment difficulty, defined as Levin’s Kt
complexity of the simplest solution for the problem.

2.4 Pragmatic General Intelligence Definition

A critique of Universal Intelligence Definition stressing its applicability on real agents in real
environments was given by Goertzel (2010). The critique is based on the following three aspects:

• There are implicit goals, and goals set by the agent. Also, rewards do not necessarily come
from the environment, and not all intelligent behavior is goal and reward oriented. To mitigate
this issue, Goertzel’s definition of Pragmatic General Intelligence explicitly considers goals.

• Agents are usually adapted to particular environments to some degree, therefore a somewhat
biased generality can be of interest (especially for comparison with humans). Thus, Goertzel’s
definition allows for other environment probability distributions than Universal distribution.
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• Real-world agents have to operate with limited resources, therefore efficiency of intelligence
is of practical importance. Consequently, Goertzel introduces the Efficient Pragmatic General
Intelligence definition which explicitly considers consumption of computational resources.

Related to the definitions above is also the initial attempt of Goertzel (2010) to formally specify
what general versus specific means in terms of intelligence. He calls it the Intellectual Breadth of
an agent and proposes to use a fuzzy set of contexts, i.e. environments, goals, and time intervals,
relative to which the agent is intelligent. This resulting fuzzy set can be normalized to a probability
distribution and some measure, e.g. entropy, can then be used to assess it.

2.5 Anytime Intelligence Test

The Anytime Intelligence Test (AIT) is an intelligence test proposal for present and future artificial
and biological agents of any intelligence level working at any time scale introduced by Hernández-
Orallo and Dowe (2010). The test can be stopped at any time, producing results whose accuracy
improves with the duration of the evaluation. The test is based on the Universal Intelligence
definition by Legg and Hutter (2007b), modified so that it is computable, and then combined with
the earlier work of Hernandez-Orallo (2000) on C-tests, and that of Dowe and Hájek (1998) on an
induction enhanced Turing test.

Hernández-Orallo and Dowe (2010) deal with the three dimensions of uncomputability of the
Universal Intelligence definition in the following ways:

• A sample of environments is used instead of all environments, raising the question of their
discriminative power. Unlike in the original definition, Hernández-Orallo and Dowe propose
that only reward-sensitive environments be included, thus excluding environments that might
ignore an agent’s behaviour entirely. Therefore, the test uses only the environments in which
an agent’s behaviour can always have an impact on its rewards.

• A limited number of agent – environment interactions is used instead of infinitely many. This,
however, raises a question of how to suitably combine rewards into a single score. Hernández-
Orallo and Dowe propose averaging rewards by the number of interactions. Also, they suggest
using balanced environments with rewards ranging from −1 to +1 which would cause a
randomly behaving agent to score (on average) zero.

• A bounded and computable version of Kolmogorov complexity originating in Levin’s Kt
is used as a distribution function for the environments. The function is called Ktmax and
enforces a time limit on the environment for the computation of its interaction with an agent.

Moreover, Hernández-Orallo and Dowe (2010) addressed two other aspects they consider
important in an intelligence test: adaptiveness of the testing process, and the relationship between
time and intelligence. Physical time is incorporated into the test by setting a time limit for agent –
environment interaction, as well as by integrating the time limit into the computation of the overall
score. The testing process of the Anytime Intelligence Test is adaptive in the sense that the
agent is tested on environments of progressively increasing or decreasing complexity, as well as
with a progressively increasing or decreasing time limit, in order to effectively match an agent’s
intelligence level as well as time scale. The reference machine used by the test is explicitly stated
as its parameter and it can range from a very restricted state automata to universal Turing-complete
machines.
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Insa-Cabrera et al. (2011) introduced a prototype implementation of a simplified version of
the AIT by Hernández-Orallo and Dowe (2010) using an (also simplified) version of the Unbiased
Universal Environment class by Hernández-Orallo (2010) as a reference machine and conducted an
experiment with it comparing humans to a Q-learning based artificial agent. This was possible due
to the idea of having different subject-specific interfaces in front of the same test. Interfaces change
the representation of rewards, actions, and observations based on the type of subject.

This prototype implementation of Anytime Intelligence Test by Insa-Cabrera et al. (2011) uses
simple state-space based environments of varying size which the agent can navigate through via its
actions. Rewards and penalties are generated by two processes (agents in the original terminology)
which navigate the environment using a fixed pattern of actions in a loop and a random starting point,
ensuring the environments are balanced and reward sensitive. The length of an LZ compressed
string of actions used to generate rewards and penalties is used as a complexity estimate of the
environment, making the estimate feasible, however also rather distant from Ktmax of the AIT
proposal or Kolmogorov complexity of the Universal Intelligence. An agent is allowed a limited
number of interactions based on the number of states of the environment. However, the time scale
of the agent is not considered by the prototype, missing one of the key aspects of the AIT proposal.
Also, the environments are not generated by a Turing-complete process, and are wholly observable
by the agent, therefore only a subset of the environments considered by the Universal Intelligence
definition can be used by the prototype implementation of AIT.

2.6 Algorithmic Intelligence Quotient Test

The Algorithmic Intelligence Quotient, proposed by Legg and Veness (2013) and shown in
Equation 2, is a computable approximation of Universal Intelligence that can be be tested practically.
It is defined as:

Υ̂(π) :=
1

N

N∑
i=1

V̂ π
pi (2)

where the AIQ Υ̂ of agent π is given by its ability to achieve goals as defined by an empirical value
function V̂ π

pi as a total reward from a single trial of an environment program pi averaged over N
sampled programs. See details in Legg and Veness (2013).

Looking at Equation 2 (Legg and Veness, 2013), the following ways of dealing with the three
dimensions of the uncomputability of the Universal Intelligence definition can be noted:

• The test considers a finite sample ofN environment programs pi, agent π and their interaction.
The same environment can be described by several programs and the same program can be
included in the sample many times in order to account for its higher weight.

• With N environment programs considered, a simple average is taken. However, the notion
of Occam’s razor is kept in the way environment programs are sampled since Solomonoff’s
Universal Distribution is used: MU (x) :=

∑
p:U(p)=x∗ 2−l(p). Therefore, a shorter program

has a higher probability of being selected, but all programs describing an environment are
considered, not only the shortest (as is the case with Kolmogorov complexity). This switch of
distribution is closer to the original definition than the solution of Insa-Cabrera et al. (2011).

• An empirical value function V̂ π
pi is used since only a limited number of iterations are tried.

The rewards given by the environment program are no longer bound by 1 as is the case with
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the definition, nor are they in any way discounted to specify the temporal preference. That is,
the total reward returned from a single trial of agent – environment interaction is used.

An environment program is, unlike the environments used by Insa-Cabrera et al. (2011), a
Turing-complete program that computes the current reward and observation from the interaction
sequence. As is the case with the Universal Intelligence definition, results of the AIQ test depend on
the choice of a reference machine, since it influences which classes of environments are more likely
to be sampled. In an attempt to minimize this dependency, the test uses a rather simple BF reference
machine by Müller (1993) that has been extended so that it can also write a random symbol, thus
allowing for indeterminism. Adopting the call for balanced environments by Hernández-Orallo
and Dowe (2010), computed rewards are normalized to the interval [−100,+100] fixing minimal
and maximal AIQ while ensuring a randomly behaving agent will score 0. Action and observation
symbols as well as internal states of environments are moduloed integers. The machine uses a one-
way read-only input tape for an agent’s current action with a history of 24 previous actions, a two-
way read-and-write work tape of 100,000 cells in each direction, and a one-way write-only output
tape for a reward and a configurable number of observations. Due to this design, environments that
are not fully observable are likely. The BF language uses 10 instructions:

• +- increment/decrement respectively the symbol on the working tape,

• ,. read from an input tape and write to the current cell of the work tape/write the current cell
of the work tape to the output tape respectively, and move the respective input or output tape
pointer to the right,

• <> move the work tape pointer to the left or right,

• [] start a loop if the current work cell is non-zero/end the loop respectively,

• % write a random symbol to the current work cell,

• # end program.

To account for non-halting and long-running programs, the computation of each iteration is limited
to 1,000 steps. This is further encouraged by halting the program if it tries to write more than the
set number of reward and observation symbols. Aside from excluding long-running programs, the
proportion of non-interactive programs (described as ‘passive’ in the authors’ terminology) is also
considerably reduced by mandatory read and write instructions and by omitting programs that return
constant rewards (Legg and Veness, 2013, 2011). Because of that, the call of Hernández-Orallo and
Dowe (2010) for excluding non-discriminative environments is partially satisfied.

Legg and Veness (2013, 2011) use several techniques to reduce the variance and to speed up the
AIQ estimation process. One of them is adaptive stratified sampling, which classifies environment
programs into 20 mutually exclusive strata. 10 of these are based on the presence of simple patterns
in returned rewards, and the other 10 are classified by program length. An agent is tested on
programs that are chosen in order to maximally minimize the variance of the agent’s AIQ estimate
in a given stratum, resulting in sampling more programs from strata on which the agent has more
varied results.

An open source prototype implementation of the AIQ test is available from Legg and Veness
(2011). In the test, the size of the environment programs sample used by the adaptive stratified
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estimator can be configured, impacting the precision of AIQ score estimates. The number of agent –
environment interactions influences an agent’s learning time for the trial and if set sufficiently high
enables its score to converge. Moreover, sizes of observation and action space can be configured,
affecting the interaction space complexity. Also, the number of returned observation symbols can
be set, further increasing the complexity of the interaction space as well as possibly prolonging the
environment computation by increasing the write limit (Legg and Veness, 2013, 2011).

The test can be performed on agents supplied internally or externally via a custom wrapper.
The following agents are provided with the test: random, freq, Qλ by Watkins (1989) subsuming
Q0, HLQλ by Hutter and Legg (2007), and a wrapper for a Monte Carlo AIXI approximation
(MC-AIXI) by Veness et al. (2011). The agent random performs random actions. The agent freq
has a parameter ε for an ε greedy action selection, otherwise it chooses the action with the highest
average reward. The agent Qλ has several parameters: initial Q, eligibility trace discounting rate
λ, learning rate α, ε, and a discounting rate γ. The agent HLQλ has the following parameters:
selection mode to enable (0) or disable ε greedy selection, initial Q, λ, ε, and γ. MC-AIXI itself
has many parameters, however the wrapper only allows for the configuration of: number of Monte
Carlo simulations (affecting prediction power), context tree depth (affecting the size of an agent’s
model), search horizon (impacting the expectation look-ahead), and exploration (effectively being
ε) (Legg and Veness, 2013, 2011). In the experiments performed by Legg and Veness, however,
a further parameter exploration decay was used, as clarified by personal inquiry. This allowed for
the optional enabling of an exponential decay of ε. The MC-AIXI wrapper was extended to enable
configuration of exploration decay.

3. Reproducing the Results of AIQ Test

In order to assess the AIQ Test, an experiment will be conducted in Section 3.1 in accordance with
the default settings reported by Legg and Veness (2013). Further settings mentioned by the paper
will also be recreated: varying the size of the action space available for agents in Section 3.2, as
well as varying the size of the observation space supplied to agents in Section 3.3.

3.1 The Default AIQ Test

The default AIQ Test uses a BF reference machine with 5 symbol action and observation space, and
returns 1 reward symbol and 1 observation each iteration (BF 5). The original results were provided
by Legg and Veness (2013) as a plot of the best values achieved by each agent. More details
were given by Legg and Veness (2011) including the exact values achieved by tested agents, the
configurations of the agents, and samples of 200,000 environment programs used in the experiment.

3.1.1 HYPOTHESES

Given the availability of the original results, and the way they were presented, the following
hypotheses were formulated:

• Weak interpretation – The ordering of agents according to their maximal AIQ is the same as
that given by Legg and Veness (2013).

• Strong interpretation – The maximum AIQ scores of the agents are not significantly different
from that given by Legg and Veness (2011).
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Table 1: Statistics of sampled environment programs for reference machines used in all experiments
including the original samples (BF 5LV) of Legg and Veness (2013).

Measure BF 2 BF 5 BF 5LV BF 10 BF 20 BF 52 BF 53 BF 54

Mean 20.62 21.07 21.18 20.90 20.77 21.02 21.01 20.89
Standard Error 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Minimum 3 3 3 3 3 3 3 3
First Quartile 7 8 8 7 7 8 8 8
Median 13 14 14 14 13 14 14 14
Third Quartile 25 26 26 26 25 26 26 26
Maximum 476 362 355 424 523 369 479 399
Standard Deviation 22.50 22.25 22.51 22.28 22.20 22.18 22.07 21.78
Kurtosis 21.08 17.01 17.01 17.53 19.52 18.03 20.00 18.93
Skewness 3.47 3.23 3.24 3.29 3.37 3.30 3.37 3.31

3.1.2 SETTINGS

For the experiment, 200,000 new environment programs were generated using the sampler provided
by Legg and Veness (2013). The new sample file includes 161,205 unique programs, similar to the
161,069 unique programs in the original sample file. 6,554 unique programs are shared by both
samples. The resulting program statistics is given in Table 1 according to program length.

In the sample there are many simple programs like [+.>]-,,# which writes the incremented
previous action symbol as a reward if it was non zero. Some programs ignore agent’s actions like
,%.#which just writes a random reward. The same environment is described by ,,%.+,%#which
does some more meaningless operations. There are also more complex programs like:

+[[[+>]<<.,<%->]%,>-<],+[+>.,.%]+>.%%....<+#

With longer programs however, some of the complexity can be lost, as the execution ends if more
than a reward and a set number of observations is written – i.e. in the example above, the program
actually ends with third executed dot (when using BF 5 reference machine).

Since each agent has several parameters, it would be optimal to do a full sweep through the
configuration space of each agent for all tested episode lengths. This did not prove feasible since the
configuration space of agents is large and a single test run is computationally demanding. Therefore,
the same settings were used as Legg and Veness (2011) reported for freq, Q0, Qλ, and HLQλ. For
freq two additional configurations (#1 and #5) were devised so as to have the same number of tested
configurations for each agent. A full list of configurations of these agents is given in Table 7.

For MC-AIXI, however, there was only a single configuration given by Legg and Veness (2011)
with 100 Monte Carlo simulations, context tree depth of 32, and a search horizon of 3. With
nothing else specified, this resulted in a default ε value of 0.05 being set by the wrapper. This,
however, was not the configuration used by Legg and Veness in their experiments, as clarified by a
personal inquiry. They varied the ε values, and also used an additional exploration decay parameter,
however they could no longer provide exact values, only point out certain regions. Based on this
information and inspired by an agent-scaling experiment of Legg and Veness (2013), a parameter
sweep for MC-AIXI was attempted by testing all combinations of the following values:
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• number of Monte Carlo simulations: 50, and 100,

• context tree depth: 8, 16, and 32,

• search horizon: 1, 2, 3, 4, and 5,

• exploration: 0.8, 0.85, 0.9, and 0.95,

• exploration decay: 0.3, 0.6, 0.9, 0.95, 0.99, and 0.995.

This way, high exploration values with both slower and faster decay rates were tested. Also,
configurations with low exploration values 0.05, 0.1, 0.15, and 0.2 were tried with no decay.

To estimate the AIQ score of an agent, 10,000 environment programs are used for a reasonably
small 0.95 confidence interval. As MC-AIXI is rather demanding and many configurations were
tested, 1,000 programs were used leading to somewhat larger 0.95 confidence intervals. Each
configuration was then evaluated after 1,000, 3,000, 10,000, 30,000, and 100,000 interactions with
the environment (referred to as Episode Length). No whole test runs were discounted, however
some agents have parameters influencing their internal discounting as explained in Section 2.6.

3.1.3 RESULTS

Figure 1 shows the best achieved AIQ score estimates with a margin of error corresponding to a
0.95 confidence interval for each agent after the tested number of interactions. To allow for direct
comparison with the original results of Legg and Veness (2013), those are also included in the figure.
A graphical summary of all MC-AIXI results is shown in Figure 2.

Detailed results of tested agents are included in Appendix A. Table 7 gives the full listing of
the AIQ score estimates with a margin of error corresponding to a 0.95 confidence interval for each
agent configuration after the tested number of interactions. Table 8 lists descriptive statistics of
MC-AIXI results computed from all tested configurations.

3.1.4 DATA ANALYSIS

As can be seen in Figure 1, the AIQ estimates of freq, Q0, Qλ, and HLQλ correspond well with
the results of Legg and Veness (2013). The estimates are within confidence levels in some cases,
slightly lower in others, however the ordering of agents remains the same. See Table 2 for a detailed
comparison of the differences. Two-sample t statistics (also listed in the table) were computed
to determine the significance of the differences. In cases typed in italics, the test rejects that the
difference is zero, and the difference is therefore significant.

As for the results of MC-AIXI, the situation is more complicated. The best achieved results
are substantially better than reported for lower episode lengths (esp. for 1,000 interactions), but
considerably worse for higher episode lengths (esp. for 100,000 interactions) – note Figure 1, and
Tables 8 and 2. Generally, MC-AIXI overtakes Qλ and catches up with HLQλ at higher episode
lengths, but never overtakes it as Legg and Veness (2011) reported. While these findings are rather
surprising, it should be noted again that, contrary to the analysis of the other agents’ results, this one
is not based on comparison of the same configurations, since the exact configurations of MC-AIXI
Legg and Veness used are not known.

Table 3 shows the time needed to test an agent for a given episode length. Only general trends
can be compared, since freq, Q0, Qλ, and HLQλ were tested on a quad-core machine (i5-4590
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Figure 1: Best achieved estimated AIQ scores of agents as a function of episode length on BF 5
reference machine. To the left are the new results, while the originals of Legg and Veness
(2013) are shown to the right.
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Table 2: Comparison of the best achieved results from Table 7 to the results of Legg and Veness
(2013, 2011) – significant differences in italics, extremes in bold (BF 5 Reference
Machine).

Agent Differences of AIQ Scores with Confidence Intervals for Episode Length
1,000 3,000 10,000 30,000 100,000
Δ | t | Δ | t | Δ | t | Δ | t | Δ | t |

freq − 0.1 ± 0.6 0.3 0.2 ± 0.6 0.6 − 0.3 ± 0.6 1.0 − 0.4 ± 0.7 1.2 − 1.0 ± 0.7 3.0
Q 0 0.0 ± 0.6 0.0 − 0.2 ± 0.6 0.7 − 1.2 ± 0.6 4.0 − 1.1 ± 0.7 3.3 − 1.1 ± 0.7 3.3
Qλ − 0.3 ± 0.6 1.0 0.0 ± 0.6 0.0 − 0.9 ± 0.7 2.6 − 1.4 ± 0.7 4.1 − 1.0 ± 0.7 3.0
HLQλ − 0.5 ± 0.6 1.6 − 0.3 ± 0.7 0.9 − 0.9 ± 0.6 2.8 − 1.4 ± 0.7 4.1 − 1.1 ± 0.7 3.2
MC-AIXI 3.5 ± 1.8 3.7 2.5 ± 1.6 3.1 − 0.1 ± 1.9 0.1 − 1.6 ± 1.7 1.8 − 4.3 ± 1.8 4.7

Table 3: Time required to test AIQ of agents for a given episode length on BF 5 reference machine
(MC-AIXI not comparable to other agents due to different hardware).

Agent Runtime for Episode Length
# 1,000 3,000 10,000 30,000 100,000

freq 1 00:01:00 00:02:49 00:09:25 00:28:59 01:39:46
Q 0 1 00:01:56 00:06:00 00:19:26 00:57:52 03:16:26
Qλ 1 00:01:57 00:05:50 00:19:43 00:58:26 03:18:32
HLQλ 1 00:05:31 00:17:22 00:57:52 02:46:15 09:53:26
MC-AIXI 1 00:16:15 00:33:12 01:25:12 03:50:27 12:06:38

CPU @ 3.30GHz) with 10,000 samples while for MC-AIXI a 16-core node (2× Xeon E5-2650v2
CPU @ 2.60GHz) was used as well as 1,000 samples. While runtimes of freq, Q0, Qλ, and
HLQλ are approximately linearly dependent on the tested episode length, runtimes of MC-AIXI
are noticeably more efficient for shorter episodes (an increase from 1,000 to 3,000 interactions only
doubles the runtime) and even for longer episodes maintain a better than linear dependency. This is
likely because AIXI builds all consistent models of an environment and then discards those proven
inconsistent by further interactions.

3.1.5 SUMMARY OF THE EXPLORATIVE ANALYSIS OF MC-AIXI RESULTS

An analysis was conducted using both statistical and data mining methods to determine the extent
to which the results of MC-AIXI are influenced by its parameters and their values. While the full
analysis can be found in Appendix B, a summary is presented here.

The following general properties of the parameters of MC-AIXI in regards to its resulting AIQ
were noted by the statistical analysis:

• The overall performance of configurations using exponentially decaying exploration (D) is
substantially better than that of those using constant exploration.

12
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• Increasing the number of Monte Carlo simulations (MC) from 50 to 100 causes only a slight
improvement of the results.

• There are also rather limited differences if the context tree depth (CTD) is increased from 8
to 16 and to 32.

• Configurations with a search horizon (AH) of 1 perform generally rather poorly. When its
value is increased to 2 or 3, the results improve considerably, however, further increasing
the parameter value has a somewhat negative effect (although this effect diminishes with
increasing episode length).

• For configurations not featuring exploration decay, increasing the exploration (E) value
impedes the performance sizably.

• Configurations with high exploration decay (ED) values perform poorly at first, but as the
episode length increases, their performance reaches that of the others, and the spread of their
results gets much lower than with lower exploration decay.

The data-mining analysis confirmed that the parameters search horizon and decay (a derived
parameter denoting whether the exponential decay of exploration is used or not) are the main
predictors of the resulting AIQ. However, the parameters’ influence is more complex, resulting
in the following configurations being identified as especially high performing:

• D = true, MC = 100, CTD = 8, and AH > 1 at EL = 100000;

• D = true, CTD = 8, and AH = 3;

• D = true, MC = 100, CTD = 32, AH > 3, E = 0.8, and ED = 0.3;

• D = true, MC = 100, CTD = 8, AH > 1 ≤ 3, and ED ≤ 0.6.

The following configurations were identified as rather poorly performing:

• D = true, CTD > 8, and AH = 1 at EL > 1000;

• D = false, CTD = 8, and AH = 1, at EL = 100000;

• D = true, CTD = 8, AH = 1, and ED ≤ 0.6;

• D = true, MC = 50, AH = 1, E ≥ 0.85, and ED = 0.9.

3.1.6 DISCUSSION

Before hypotheses from Section 3.1.1 can be evaluated, a discussion of the experiment is needed.
Since the exact parameters of MC-AIXI used by Legg and Veness are not known, a more cautious
approach should be taken when evaluating the hypotheses. Instead of considering the results as a
whole, the results of MC-AIXI will be assessed separately. Based on the data analysis above, and
with the mentioned considerations in mind, some hypotheses from Section 3.1.1 were rejected:

• The ordering of agents according to their maximal AIQ is the same (not considering MC-
AIXI) as that given by Legg and Veness (2013). However, when MC-AIXI is considered, the
ordering differs.
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• The maximal AIQ scores of agents are in some cases significantly different from that given
by Legg and Veness (2011), however, the differences are rather small for other agents than
MC-AIXI. In case of MC-AIXI, there are more pronounced statistically significant differences.

Keeping in mind the considerations regarding MC-AIXI, the differences in its score may well have
been caused by the different parameters used in the experiment, and therefore can not form the
basis of any overall conclusion. Overall, the replication experiment results correspond well with the
findings of Legg and Veness. Therefore, the AIQ test can be said to be reliable, in the sense that in
cases when the agent configurations and the test parameters are known the results of testing can be
replicated accurately.

As can be seen from Table 7 and the analysis of MC-AIXI performance in Section 3.1.5, an
agent’s parameter values have a great impact on its AIQ, one capable of eliminating the difference
between even the best and the worst agent. For HLQλ the impact diminishes somewhat at higher
episode lengths. The freq agent is not greatly affected by alterations to parameter values. Since
the tested configurations have rather similar parameters, the differences between the worst and
the best can be even greater. Moreover, among the tested configurations, none proved optimal
for all episode lengths. These observations stress the need for a thorough parameter search when
testing configurable agents. Also, this raises a question of how to evaluate agents with such a vast
performance variance.

Comparing the results of agents one to another, there seems to be a rather limited difference.
Q0, Qλ, and HLQλ achieve similar top AIQ scores ranging from 53 to 55. This may not be too
surprising, since the agents are all types of Q-learning. The freq agent, however, which is of a
different and much simpler kind, scores roughly 10–15% lower than the Q-learning agents, with
a top score of 48. Also, MC-AIXI performs only about 10% better than the Q-learning agents,
achieving a top AIQ score of 59.6 (if the results reported by Legg and Veness (2011) are considered).
Also, considering the theoretical maximal AIQ of 100 and a minimum of 0 (i. e. demonstrating
random behavior), the top results of the agents tested land close to the middle of the range. While it
is possible that the actual differences between agents are as minimal as the tests suggests (in which
case the test would be valid), it is also possible that the agents actually feature more pronounced
differences that the test (at least on the default setting) is too simple to bring out.

As noted during data analysis, test runtimes for MC-AIXI, unlike other agents, increased better
than linearly with increasing episode length as shown in Figure 3. Similarly, the change in AIQ
score convergence rate with increasing episode length differs among tested agents. It is a question
of whether these might capture some useful aspect of intelligence, likely something to do with
gaining expertise, which should be taken into account when evaluating the agents.

3.2 Varying the Action Space

An experiment manipulating the size of the action space was conducted by Legg and Veness (2013)
using 2, 10, and 20 symbol tapes (BF 2, BF 10, and BF 20) with 1 symbol for an observation and 1
for a reward. The results were reported as “qualitatively the same” as when using BF 5, and simply
taking longer to run when the number of symbols was increased. No further details provided.

3.2.1 HYPOTHESES

Since a more well-formulated hypothesis is needed than just “results are qualitatively the same”, the
following specifications were devised:
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Figure 3: Average time per thousand interactions of #1 configurations of agents as a function
of episode length on BF 5 reference machine (values of MC-AIXI are not directly
comparable with other agents since different hardware was used).

• Weak interpretation – The ordering of agents according to their maximal and mean AIQ is
the same among the reference machine groups.

• Strong interpretation – Group means of AIQ according to a reference machine are not
significantly different.

Since AIQ is a mean over tested environment programs, looking closer at its standard deviation
(SD) might provide further insight into the possible differences in the spread of agent performance
among tested environment programs when the action space is manipulated. A supporting hypothesis
for the strong interpretation can be specified as follows: Group means of SD of AIQ according to a
reference machine are not significantly different.

After 100,000 interactions the scores should be reasonably converged, making this a decisive
episode length for testing the hypotheses. However, the speed of this convergence may also
be affected by the manipulation of the action space. A supporting hypothesis for the strong
interpretation can be stated as follows: There is not a significant interaction between the episode
length and the size of the action space among the group means of AIQ as well as SD of AIQ.

3.2.2 SETTINGS

For BF 2, BF 10, and BF 20, 200,000 new environment programs were generated using the sampler
by Legg and Veness (2013). The number of unique programs produced were 157,295, 160,609, and
160,619, for the BF 2, BF 10 and BF 20, respectively. Statistics according to program length are
given in Table 1. Overall, the sample characteristics were fairly similar to those of the default case,
with some differences in maximum length.
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Figure 4: Interaction plots showing the impact of varying the action space on the means of estimated
AIQ scores (top) and on the means of SD of estimated AIQ scores (bottom) of different
episode lengths (to the left), and of tested agents at EL of 100,000 iterations (to the right).
For MC-AIXI only configurations #1 – #5 are used for the mean of BF 5.

Since no agent configuration for this experiment was provided by Legg and Veness (2013, 2011),
the same settings were used as in Section 3.1. However, due to the computational requirements, only
five configurations of MC-AIXI (#1 to #5) were used. All other test settings remained the same.

3.2.3 RESULTS

The best achieved AIQ score estimates with a margin of error corresponding to a 0.95 confidence
interval for each agent after the tested number of interactions are given in Appendix A, in Figure 9.
Results of all tested agent configurations are shown in Appendix A, in Tables 9, 10, and 11.

16



LESSONS LEARNED FROM REPRODUCING AIQ TEST RESULTS

3.2.4 DATA ANALYSIS

As can be seen in Figures 9 and 4, both the best achieved and mean results of agents differ from
those achieve using BF 5 when the size of the action space is modified, changing the ordering of
agents: Q0 or even Qλ perform in some cases as poorly as freq on BF 10 and BF 20. Some agents
perform similarly for longer episodes (eg. HLQλ and Qλ on BF 2). The AIQ scores of all agents
except for freq seem to decline when the action space is increased, also the results are more spread
out and the learning phase gets longer. MC-AIXI performs worse relative to other agents on BF 10
than in the default experiment, and in the case of BF 20 is in fact the worst. It seems to be affected
particularly strongly by the action space adjustment, and this effect can be observed across all tested
configurations.

Examining Figure 4, it seems that increasing the action space decreases the mean AIQ score at
EL of 100,000 interactions. When broken down by agents, this effect is clearly a result of more than
just the relatively poor performance of MC-AIXI. Also, there seems to be an interaction between
the size of action space and the episode length when AIQ is concerned. This effect of increasing
the action space can be seen to diminish with increasing episode length. Increasing the action space
at an EL of 100,000 also seems to have an effect on the SD of AIQ score, albeit a more complex
one. It seems to increase as the action space rises from 2-10 symbols, but decrease as the action
space continues to rise from 10-20. By looking at the SD of AIQ of individual agents, it can again
be seen that this effect on the overall score is not isolated to the performance of MC-AIXI. There
also seems to be an interaction between the episode length and the size of action space when SD of
AIQ is considered. While the SD of AIQ increases with increasing episode length for the 10 and 20
symbol action space, it decreases somewhat with increasing episode length for the 2 and 5 symbol
action space.

To ascertain the significance of the effects and interactions observed in Figure 4, a statistical
analysis was conducted using repeated measures ANOVA with sphericity corrections. For the
analysis, the BF reference machine used is the manipulated within-subject factor with levels of BF 2,
BF 5, BF 10, and BF 20 denoting the size of the action space. In cases where the interaction with
episode length is considered, EL is an observed within-subject factor with levels of 1,000, 3,000,
10,000, 30,000 and 100,000 interactions. The subject is the tested agent configuration, giving 25
subjects to be tested at each factor level. Lastly, the dependent variable is the estimated AIQ score
of the tested agent configuration at given episode length, or SD of the estimated AIQ respectively.

• According to this analysis, changing the action space size at an EL of 100,000 interactions
did indeed have a statistically significant effect on the AIQ score of agents, F (3, 72) =
20.98, GGe = 0.44, p = 1.9× 10−5, ges = 0.30.

• According to this analysis, changing the action space size at an EL of 100,000 interactions
did indeed have a statistically significant effect on the SD of AIQ score of agents, F (3, 72) =
34.57, GGe = 0.61, p = 2.4× 10−9, ges = 0.42.

• According to this analysis, there was, indeed, a statistically significant interaction between
the episode length and the size of action space when the AIQ score of agents is concerned,
F (12, 288) = 30.86, GGe = 0.12, p = 1.8× 10−7, ges = 0.059.

• According to this analysis, there was, indeed, a statistically significant interaction between the
episode length and the size of action space when the SD of AIQ score of agents is concerned,
F (12, 288) = 48.41, GGe = 0.29, p = 7.5× 10−20, ges = 0.12.
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Longer runtimes were observed in accordance with the report of Legg and Veness (2013).

3.2.5 DISCUSSION

Based on the data analysis above, all hypotheses from Section 3.2.1 should be rejected:

• The ordering of agents according to their maximal and mean AIQ is not the same among the
reference machine groups.

• Group means of AIQ according to a reference machine are significantly different.

• Group means of SD of AIQ according to a reference machine are significantly different.

• There is a significant interaction between the episode length and the size of the action space
among the group means of AIQ as well as those of SD of AIQ.

Therefore, changing the action space indeed has an impact on the agents’ results in the AIQ test.
Some caution is needed when interpreting the results, since the comparison is based on five

configurations of each agent. Furthermore, the configurations were picked as a result of their strong
performance on BF 5, which may not ensure the same level of performance when action space is
modified, since it changes the complexity of the test and the configurations may be too finely-tuned
to the complexity of BF 5 environments, effectively being curbed by that complexity. To fully
ascertain the effects of varying the action space, a more complex but also more demanding set of
experiments is needed. One featuring a full parameter sweep for all the tested agents. Nevertheless,
there is a significant impact at least on the tested configurations of the tested agents.

Since the exact results and agent configurations used by Legg and Veness are unknown, the fact
that this experiment achieved different results may not necessarily mean the test itself is unreliable.
However, since the same configurations were used in this as well as in the default experiment it can
be concluded that the test seems to be sensitive to changes in the size of the action space.

3.3 Varying the Observation Space

Another experiment mentioned by Legg and Veness (2013) increases the maximal number of
observation symbols supplied to the agent from the default of 1. However, no details are given
at all and results are only described as being “qualitatively the same” as the default case.

3.3.1 HYPOTHESES

Since a better formulated hypothesis is needed than just “results are qualitatively the same”, the
following specifications were devised, similarly to those described in Section 3.2.1.

• Weak interpretation – The ordering of agents according to their maximal and mean AIQ is
the same among the reference machine groups.

• Strong interpretation – Group means of AIQ according to a reference machine are not
significantly different.

• Supporting – Group means of SD of AIQ according to a reference machine are not
significantly different.

• Supporting – There is not a significant interaction between the episode length and the size of
the observation space among the group means of AIQ as well as SD of AIQ.
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3.3.2 SETTINGS

BF 5 setups with 2, 3, and 4 observation symbols (BF 5,2, BF 5,3, and BF 5,4) were tried. Since
BF 5,4 proved too time-demanding, it was dropped. For each setup 200,000 new environment
programs were generated using the sampler by Legg and Veness (2013). The number of unique
programs produced were 161,922, 162,189, and 162,238, for the BF 5,2, BF 5,3 and BF 5,4,
respectively. Statistics according to program length are given in Table 1. Overall, the sample
characteristics were fairly similar to those of the default case, with some differences in maximum
length. The same agent configurations were tested as in Section 3.2. Also, other settings of the test
remained the same.

3.3.3 RESULTS

The best achieved AIQ score estimates with a margin of error corresponding to a 0.95 confidence
interval for each agent after the tested number of interactions are given in Appendix A, in Figure 9.
Results of all tested agent configurations are shown in Appendix A in Tables 12 and 13.

3.3.4 DATA ANALYSIS

As can be seen from Figures 9 and 5, varying the observation space seems to have very little impact
on both the best achieved and the mean AIQ scores of agents compared to the default experiment.
The exception is MC-AIXI which achieves a slightly worse AIQ at best, only reaching the levels of
Q0, and Qλ. Also, the configurations #1 and #3 perform especially poorly with BF 5,3, pulling the
overall group mean down noticeably. Comparing their results in all experiments, it would seem that
a context tree depth of 8 proves too restrictive for the agent in more complex settings (represented
by BF 20, and BF 5,3), although this warrants a more thorough investigation.

Looking closer at Figure 5, at an EL of 100,000 interactions, increasing the observation space
seems to have no effect on AIQ score. The slight decrease of AIQ for BF 5,3 seems to be caused
by the poorer performance of some of the MC-AIXI configurations, as can be seen from the scores
broken down by agents. There also seems to be no interaction between the EL and the observation
space when AIQ score is concerned. The observation space increase may have some small effect on
the SD of AIQ score at an EL of 100,000 that cannot be accounted for by the results of MC-AIXI,
as well as some slight interaction of EL and observation space where SD of AIQ is concerned.

To ascertain the significance of the effects and interactions observed in Figure 4, a statistical
analysis was conducted using a repeated measures ANOVA with sphericity corrections. In this
case, the BF reference machine used is the within-subject factor with levels of BF 5,1, BF 5,2, and
BF 5,3 denoting the size of the observation space. The rest of the parameters of the analysis are
analogous to the action space variation experiment.

• According to this analysis, changing the observation space size at an EL of 100,000
interactions had no significant effect on the AIQ score of agents, F (2, 48) = 1.66, GGe =
0.50, p = 0.21, ges = 0.043.

• According to this analysis, changing the observation space size at an EL of 100,000
interactions did indeed have a statistically significant effect on the SD of AIQ score of agents,
F (2, 48) = 4.68, GGe = 0.59, p = 0.034, ges = 0.071.
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Figure 5: Interaction plots showing the impact of varying the observation space on the means of
estimated AIQ scores (top) and on the means of SD of estimated AIQ scores (bottom) of
different episode lengths (to the left), and of tested agents at EL of 100,000 iterations (to
the right). For MC-AIXI only configurations #1 – #5 are used for the mean of BF 5.
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• According to this analysis, there was no statistically significant interaction between the
episode length and the size of observation space when AIQ score of agents is concerned,
F (8, 192) = 0.21, GGe = 0.23, p = 0.79, ges = 5.8× 10−5.

• According to this analysis, there was a statistically significant interaction between the episode
length and the size of observation space when SD of AIQ score of agents is concerned,
F (8, 192) = 24.45, GGe = 0.44, p = 1.9× 10−12, ges = 0.027.

Longer runtimes were observed in accordance with the report of Legg and Veness (2013).

3.3.5 DISCUSSION

Based on the data analysis above, some hypotheses from Section 3.3.1 were rejected:

• The ordering of agents according to their maximal and mean AIQ is the same (with the
exception of MC-AIXI) among the reference machine groups.

• Group means of AIQ according to a reference machine are not significantly different.

• Group means of SD of AIQ according to a reference machine are significantly different,
although the significance is weak and the effect size is small to medium.

• There is not a significant interaction between the episode length and the size of the
observation space among the group means of AIQ, however, there is a significant interaction
among the group means of SD of AIQ, although the effect size is small.

Therefore overall, it can be said that changing the observation space has no impact on the results of
agents in the AIQ test.

When interpreting the results, some caution is needed since the comparison is based on five
configurations of each agent. Furthermore, the configurations were usually picked so as to perform
well on BF 5 which may not ensure the same level of performance when the observation space
is modified, since it changes the complexity of the test and the configurations may be too finely-
tuned to the complexity of BF 5 environments with single observation only, effectively being curbed
by that complexity. Having said that, this only appears to be the case for two of the tested MC-
AIXI configurations. To ascertain more thoroughly the effects of varying the observation space a
more complex but also more demanding set of experiments using a full parameter sweep for all
the tested agents is needed. Also, an investigation is needed into whether the complexity of all the
environments increases as expected when the size of the observation space grows. Nevertheless,
there is not a significant impact at least on the tested configurations of the tested agents.

Since the exact results and agent configurations used by Legg and Veness are unknown, the fact
that this experiment achieved the same results may not necessarily mean the test itself is reliable.
However, since the same configurations were used in this as well as in the default experiment it can
be concluded that the test seems to be insensitive to changes in the size of the observation space.

4. Towards Addressing the Limits of the AIQ Test as a General AI Evaluation Method

Having tested the AIQ test practically, Section 4.1 contains observations about its suitability as a
general AI evaluation method. Section 4.2 considers methods to address the observed limits of the
test, some of which are demonstrated in Section 4.3. Finally, Section 4.4 shows ways of using a
suitable general AI evaluation method.
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4.1 Observations from Conducted Experiments and Related Work

In the previous section, an attempt was made to replicate the results given by Legg and Veness
(2013, 2011). The main observation that can be drawn from the conducted experiments is that the
AIQ test results are dependent on the parameters of the BF reference machine in a manner contrary
to the original findings of Legg and Veness. While this seems not to be the case when varying the
size of the observation space, there is a significant impact when the size of action space is changed
which dominates the replication experiments.

It should be noted that based on the summarized related work, several concerns regarding the
suitability of the AIQ test as a general AI evaluation method can be raised:

• As originally noted by Legg and Hutter (2007b) and further analyzed by Hibbard (2009) and
Hernández-Orallo (2015), Universal Intelligence, and therefore the AIQ test results, depend
on the choice of reference machine. The observed dependence of the test results on the action
space size of the BF reference machine seems to be in support of this concern.

• The Universal Intelligence definition considers agent’s performance in all computable
environments. These necessarily include, as Hernández-Orallo and Dowe (2010) correctly
point out, many non-discriminative environments including so called “heaven” or “hell”
environments. While this issue might not be so critical when looking for a definition, it
is of crucial importance when discussing a practical test for which there are only limited
resources available (which would be wasted by these non-discriminative environments) and
only a sample of environments is tested (which can be skewed by the non-discriminative
environments). The AIQ test is not guarded against such cases unlike the AIT.

• The Universal Intelligence measure, as well as the derived AIQ score, only implicitly contains
some aspects of intelligence, while others are not reflected at all. While the score integrates
the measure of an agent’s success in environments and the measure of its generality, coined as
Intellectual Breadth by Goertzel (2010), neither of these are explicit which makes it difficult
to form a detailed agent comparison. Further, the aspect of effectiveness is not considered
even though it is advocated e.g. by Goertzel (2010), neither is the aspect of time though
proposed by Hernández-Orallo and Dowe (2010).

Furthermore, based on the conducted experiments, the following observations regarding the test
complexity can be made:

• Given the test format, computational requirements of an agent become apparent. This is due
to the high number of agent–environment interactions necessary for a sufficient AIQ score
convergence, as well as due to the high number of environment programs necessary for a
reasonable representativeness of AIQ estimate.

• For AIQ score to converge, many agent–environment interactions are needed. Their number
differs both among the agents as well as among the BF reference machine settings.

• Response times of an agent can differ during the test episode.

• Different configurations of the same agent can score rather different values of AIQ. The
configuration space of an agent can be large.
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• Since the differences in scores among tested agents are rather limited, the default test setting
may still be too simple.

Any evaluation process based on the AIQ test should be devised with these observations in
mind. However, these observations are of concern for any other similarly general and complex test
involving many interactions with many environments. In fact, this is also the case for the Anytime
Intelligence Test, although its adaptive nature reduces some of the concerns.

To allow for more observations and better interpretation of the test results, a deeper analysis of
the AIQ test’s inner workings is needed. This could be achieved by looking closer at the environment
programs, focusing on the way in which rewards and observations are computed. A preliminary
investigation indicates that in some environments rewards or observations are solely dependent on
chance, while in others they depend on an agent’s actions. This suggests that it is feasible to classify
environment programs according to some criteria and further investigate the impact of such criteria
on an agent’s AIQ. While this investigation may focus on the role of chance and an agent’s actions
in computing rewards and observations, other aspects could be analyzed, including the role of the
complexity of an environment program, pointless code, or premature termination of environment
program execution. The method, further referred to as semantic analysis of environment programs,
consists of identifying the semantics of an environment program class and describing its possible
syntax in BF language using regular expressions. While such approach is necessarily incomplete as
all possible syntactical combinations for a given semantics cannot be listed, practically, it is possible
to capture a large proportion of environments in question. Preliminary results from this analysis will
be used in the next section to illustrate the prevalence of the addressed issues.

4.2 Proposals of AIQ Test Improvement

As several concerning observations were made in the previous section, this section will discuss them
in more depth and propose possible ways to alleviate the issues.

4.2.1 REDUCING DEPENDENCE ON REFERENCE MACHINE

The bias of the Universal Intelligence measure towards a certain class of environments due to
the choice of reference machine can be arbitrarily reduced by specifying a minimal length for
environment programs, as suggested by Hibbard (2009). The bias can also be reduced by changing
the way an agent’s overall score is computed to be based on the concept of difficulty, as suggested
by Hernández-Orallo (2015).

Let us first examine the proposal of Hibbard (2009). As for the AIQ test implementation by
Legg and Veness (2011), the minimal length of a program is 3 instructions, since read, write, and
end program instructions have to be present in every program. Furthermore, the adaptive stratified
score estimation procedure reduces the proportion of programs with fewer than 10 instructions in
the sample.

Figure 6 compares empirical cumulative distributions of program lengths to illustrate how
successfully the problem is dealt with in the current version of the AIQ test:

• The version of BF language used by the test has very few syntactical limitations, resulting
in a cumulative distribution shown by the dotted line. Here, short programs dominate the
sample with 44 % featuring a length of up to 3 instructions and 75 % with a length of up to
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10. Also, programs of length 1 and 2 are syntactically valid, and many of the programs do
not do anything useful.

• The BF sampler used by Legg and Veness (2011) imposes further restrictions on environment
programs (namely interactivity, computation limit, and some code optimisations) resulting in
a cumulative distribution shown by the dashed line. Here, short programs are less dominant
with about 3 % featuring a length of up to 3 instructions, and 38 % up to 10.

• However, the AIQ test uses adaptive stratified sampling to reduce the variance of the AIQ
estimate, therefore the actual distribution of tested programs differs from the distribution in
the sample. Also, there are differences in the distributions among agents based on their results
(further influenced by episode length). A cumulative distribution resulting from a total of 20
test runs of EL of 100,000 interactions with configurations #1 to #5 of agents freq, Q0, Qλ,
and HLQλ is shown by the solid line. Here, short programs are even less dominant with only
about 1 % featuring a length of up to 3 instructions, and 18 % up to 10.

Implementing Hibbard’s restriction should be relatively straightforward, although some changes
to the environment program stratification procedure are needed. The strata decided on according to
program length would have to use updated limits reflecting the new minimal length of a program.
The strata decided on according to an exhibited simple pattern in returned rewards might actually
have their criteria changed since the probability of a program exhibiting the given pattern may
become too low for high minimal lengths.

However, the main concern regarding Hibbard’s restriction is that it raises the question of
defining a suitable minimal length setting. The number of distinct instructions of a given reference
machine is a potentially interesting limit, since shorter programs necessarily miss some of the
instructions and are, therefore, somewhat syntactically degraded. Given their short length, the
syntactic degradation cannot be compensated for (some of the instructions can only be shorthands
for complex expressions), and becomes semantic. This limit can still be rather weak for very simple
reference machines (such as the BF used in the AIQ test), however, it can also be too strong for
very complex reference machines (such as some high level programming languages). It could even
undermine the very idea of the Universal Intelligence definition, that the entity has to be explicitly
tested in simple environments, not only in complex ones. As such, it has to be approached carefully.

With all that considered, implementing Hibbard’s length restriction as a free parameter of the
AIQ test could spark interesting empirical research into the dependence of the score on the reference
machine, and using the number of distinct instructions can be considered a reasonable lower limit
of the minimal length restriction. For an AIQ test running on the BF reference machine, this would
mean setting the limit to 10 instructions, effectively replacing 38 % of the current sample with
longer programs.

The proposal of Hernández-Orallo (2015), on the other hand, requires more extensive changes
to the AIQ test. There seem to be two approaches to incorporating the difficulty-based evaluation
into the current test:

1. The stratification procedure can be modified to stratify based on the difficulty estimation
of the generated environment programs. At the same time, the resulting distribution of the
program difficulty strata have to be kept either uniform or slowly decaying. Then the overall
score produced by the test would be an estimate of the score proposed by Hernández-Orallo
(2015).
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2. If the environment programs actually used in the test are saved and paired with the agent’s
results, these can then be used to estimate the actual difficulty of environment programs
through the construction of agent response curves. With that an estimate of the score
suggested by Hernández-Orallo (2015) can be computed independently.

The choice between the options 1 and 2 depends on how closely the difficulty estimation process
should be tied to the actual agent being tested. While the practical implementation is not as
straightforward as in the case of Hibbard’s length restriction, this proposal of Hernández-Orallo
(2015) shows inspiring direction for future work.

4.2.2 DEALING WITH NON-DISCRIMINATIVE ENVIRONMENTS

The AIQ test is not well-guarded against non-discriminative environments by testing only with
reward-sensitive environments as Hernández-Orallo and Dowe (2010) suggest. Environments that
stop interacting or that interact for too long are excluded due to the mandatory read and write
instructions as well as the imposed computation limit. Purely “heaven” or “hell” environments
(those that give constant rewards all the time) are also excluded by Legg and Veness (2013, 2011).
However, environments featuring potential “heaven”/“hell” situations (having a “heaven”/“hell”
subenvironment accessible on some conditions), as well as environments with random rewards or
observations remain.

A preliminary semantic analysis of environment programs indicates that in the case of the BF 5
sample, about 17 % of environment programs surely result in an agent’s actions having no effect on
its rewards. These are cases in which the resulting reward is random. Also, the mitigation of the
mentioned problems with environment programs is not always complete.

There are basically two possible solutions for the problem of non-discriminative environments
in the AIQ test:

1. Switch to a reference machine with a proven ability to generate only reward-sensitive
environments while still being universal. Such a machine was defined and its properties
were proven by Hernández-Orallo (2010). However, it has not yet been fully implemented,
since Insa-Cabrera et al. (2011) used only a simplified, non-universal version. Further, this
reference machine also solves the issue of balanced environments which is already solved in
a different way by the AIQ test, so an additional modification of one or the other would be
needed.

2. Decrease the proportion of problematic environments in the BF reference machine sample.
Some of the non-discriminative environment programs have an easy-to-describe pattern either
in their source code (as is shown by the preliminary semantic analysis) or in the interaction
sequence they create (e.g. return constant reward from a certain point in interaction sequence).
While such an approach would not mitigate the issue completely, it may reduce it reasonably.

However, it could be argued that the required property of reward-sensitivity as formulated by
Hernández-Orallo and Dowe (2010) is too strong. Namely, Hernández-Orallo and Dowe require
that “. . . at any point/time there are always at least two different sequences of actions that can lead
the agent to get different accumulated rewards for n interactions” (italics added for emphasis).
While the environments that only produce the problematic events (random/constant rewards all the
time) are obviously useless, the environments that produce the problematic events only on some
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conditions (e.g. only after a certain action following a certain observation) can have some evaluation
purpose. That is, the agent should be enabled to “fall in a hole and die” especially if the hole is
properly advertised by observations. Actually, the requirement explained by Hernández-Orallo and
Dowe as “. . . environments can have an agent stuck for a time (in a ‘hole’) if the good actions are
not taken, but there is a way to get out of there or at least to find different rewards inside the hole”
might be counterproductive since it effectively discourages self-preservatory behavior. Therefore,
detectable and avoidable (even and especially if not by all agents) traps should be allowed. So
perhaps, instead of the original strong formulation, some week reward-sensitive environments could
be of interest.

With that considered, improving the BF sampler of the AIQ test to exclude more of the reward-
insensitive environments (in the weak formulation of the concept) and running a comparative group
analysis against the original sampler on the test results may give interesting empirical results
regarding the real extent of the problem with non-discriminative environments.

4.2.3 INVESTIGATING POSSIBLE SIMPLICITY OF THE TEST SETTING

Both the best achieved and average scores among the tested agents show rather limited differences
and are placed around the middle between the minimal and maximal AIQ values. This is supported
by the original results of Legg and Veness (2013) as well as the replicated results in this paper (with
added details). The test may well be valid and the differences shown may be real, however the test
setting could also be too simple or the way the score is aggregated may favour simple environments
too greatly, thereby failing to bring out the real differences among agents.

Finding the truth among these possibilities is not easy, but the following methods can help to
answer the question:

• Observe the changes in differences between agent scores when the complexity of the test is
increased.

• Compare the differences between agent scores achieved in the AIQ test with the differences
in other general tests.

• Analyze the differences between agent scores in environments of varying complexity featured
in the AIQ test.

What could the results of the outlined investigations be and what would they mean for the issue at
hand? Basically, either rather similarly limited differences would be observed, or the differences
would (profoundly) change. The evaluation of this question needs to be sufficiently fuzzy, especially
in case of comparison to other (possibly very different) tests. If the differences remain sufficiently
alike in other scenarios, it would suggest that the differences are real. However, if the differences
change extensively, it would suggest that the differences are only due to the test setting simplicity.

While this ideally calls for a new set of experiments focused on increasing the test complexity
and eliminating the possibility of agent configurations being too finely-tuned towards a certain
test setting by doing a thorough parameter sweep, the results of conducted experiments and the
overviewed literature, could (with some caveats) serve as an illustration of the outlined approaches.

Experiments conducted in Sections 3.2 and 3.3 should increase the complexity of the test
setting by increasing the size of action space (and the derived number of symbols used by the
BF reference machine), or by increasing the size of observation space respectively. The interaction
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Table 4: Results of agents per stratum averaged from results of configurations # 1–5 weighted by the
number of tested programs for a given stratum on episode length of 100,000 interactions
(BF 5 Reference Machine).

Agent Average Rewards per Stratum
# 1 2 3 4 5 6 7 8 9 10

% 17.6 10.4 2.5 0.6 1.9 1.8 1.8 1.8 1.8 0.7

freq 92.9 78.0 75.0 73.0 93.0 93.0 79.5 77.6 94.0 78.6
Q 0 97.3 86.1 76.4 64.0 97.1 97.2 87.9 89.9 96.1 88.2
Qλ 97.3 91.5 80.1 70.5 96.9 96.7 92.5 92.0 96.2 92.0
HLQλ 97.7 97.0 93.7 92.0 97.5 96.6 97.0 96.9 96.0 96.0
MC-AIXI 98.9 97.4 81.8 80.1 99.0 99.0 98.6 92.1 96.6 87.0

# 11 12 13 14 15 16 17 18 19 20
% 5.9 4.6 6.8 6.2 6.9 5.5 6.8 6.9 4.7 4.8

freq 0.0 20.7 24.9 22.7 21.3 24.2 22.7 22.4 25.1 23.7
Q 0 0.0 21.4 27.5 24.6 21.8 24.3 23.7 23.6 25.2 23.4
Qλ 0.0 22.3 27.9 25.8 22.5 25.2 24.7 24.5 26.7 24.9
HLQλ 1.6 24.2 30.0 27.6 24.0 27.7 27.2 27.3 29.0 28.0
MC-AIXI 0.0 17.1 33.7 28.4 19.9 15.9 27.0 26.6 34.3 24.6

plots in Figures 4 and 5 suggest that there is in fact a change in the differences among the scores of
agents when the action space is varied, while there is no change in the score differences when the
observation space is varied. This discrepancy may, however, only be apparent, since the preliminary
semantic analysis of the environment programs indicates that in about 31 % of the environment
programs no observation is produced in computation and therefore increasing the size of observation
space in those environments cannot have any effect on the complexity. Furthermore, only in 9 % of
the environment programs, more than one observation is always produced during the computation.
Therefore, the results from the experiment varying the action space dominate.

Insa-Cabrera et al. (2011) conducted an experiment with a simplified version of the Anytime
Intelligence test comparing humans to a Q-learning agent. It might be informative to conduct a test
using their settings and the agent configurations tested in this paper, however this would be rather
demanding since some interfacing of python and C-based agents to a Java testing platform would
be needed. The test would also have to be run using many agent configurations and environments,
which is beyond the scope of this paper. However, comparing the published results of Insa-Cabrera
et al. with the results of this paper could still be useful. Regarding the question at hand, the important
result of Insa-Cabrera et al. (2011) is that they did not find a significant difference between the tested
Q-learning and human intelligence, suggesting that the test setting they used is too simple to bring
out the expected difference. Since the AIQ test has not been used on humans (although it is possible
to input actions manually and the interface approach of Insa-Cabrera et al. shows a promising
method to make it user-friendly), it cannot be compared directly with results of Insa-Cabrera et al.
However, since the AIQ test shows some difference among the tested agents, the test setting of Legg
and Veness (2013) is probably not as simple as the setting of Insa-Cabrera et al. (2011).

Legg and Veness (2011) stratify environment programs into 20 strata based both on the presence
of simple patterns in returned rewards (strata 1–10), and the program length if the simple patterns
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are absent in returned rewards (strata 11–20). The test can print the results of an agent in individual
strata. An analysis of the differences among the agents can then attribute these differences to a
certain stratum, or at least to a group of strata with simple environment programs (strata 1–10) or
more complex ones (11-20). Looking at the agents’ results per stratum in Table 4, it seems that
the strata can indeed be partitioned into the previously mentioned groups based on complexity.
However, stratum 11 most likely contains programs returning either close-to-random or close-to-
zero rewards constantly. Focusing on the titular question of this section, there are indeed changes in
differences of agents’ results per stratum. However, a quick inspection of the differences does
not show the expected pattern between the two groups. With the pattern of differences being
possibly more fine-grained, a deeper analysis (which would greatly benefit from implementing the
suggestions of Section 4.2.2) is required in order to get more conclusive results.

The preliminary results, based on the current level of detail of the analysis, are therefore
inconclusive. As such, a more thorough investigation into the potential effects of an overly simplistic
test setting is needed, following not only the outlined approaches but also additional perspectives.

It is also possible that the perceived limited differences among agents are only apparent. While
the AIQ may invite a linear interpretation as a result of its formula, the test is based on the Universal
Intelligence, which uses exponential weighting by environment complexity in the form 2−K(µ).
This is approximately kept in the way the environment programs are sampled by the AIQ test.
Thus, a logarithmic interpretation of the AIQ score may not be improper, at least in cases when the
difference in scores is caused by a success in an additional more complex environment. However,
it is currently unclear to what extent a logarithmic interpretation would pose a problem in cases
where the difference is solely due to an improved performance in the same environments, or due to
a mixed case. Supporting the AIQ score by additional characteristics (as discussed in Section 4.2.4)
may help, since in the current AIQ test it is difficult to tell the precise source of the difference.

4.2.4 MEASURING SUPPORTING QUALITIES OF INTELLIGENCE

The AIQ score combines a measure of an agent’s success in an environment along with a measure
of its generality, however it does not include a measure of an agent’s time-frame as advocated by
Hernández-Orallo and Dowe (2010), nor a measure of its computational effectiveness as suggested
e.g. by Goertzel (2010). While these additional aspects can be integrated into an overall score, as
the authors suggest, it would make interpreting the test results even more complicated.

In the current version of the test, it is actually difficult to tell whether a change in AIQ is due to
the change in the agent’s ability to achieve goals, or to the change in its generality. Integrating the
dimension of time or computational effectiveness would be at the cost of adding more dimensions
of uncertainty when interpreting the results. While it can be argued that the aspects of success and
generality are sufficient for the definition of intelligence as an ideal concept, it is also true that the
aspects of effectiveness and time-frame are of at least practical concern.

Instead of integrating further aspects into the overall score (or perhaps besides integrating them),
the following measures should accompany the AIQ score to characterize the agent in detail:

• A measure of the agent’s generality which could be based on a modified and completed
version of Intellectual Breadth by Goertzel (2010).

• A measure of the agent’s time-frame which could be based on the time-sensitive formalization
of the Anytime Intelligence Test by Hernández-Orallo and Dowe (2010) as well as a measure
of the dynamics of agent’s response times.
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• A measure of the agent’s computational effectiveness as proposed e.g. by Goertzel (2010).

• A measure of the AIQ score convergence speed as discussed in later section of this paper.

Having the AIQ score augmented by these accompanying measures would facilitate both the
comparison of different agents as well as an improved version of the same architecture.

4.2.5 DECREASING HIGH COMPUTATIONAL REQUIREMENTS

The format of the AIQ test highlights the computational requirements of tested agents. It can be
controlled by setting several parameters of the test.

In the case of episode length and environment programs sample size, an increase in compu-
tational requirements leads to more precise results. A testing procedure based on a concept of
sufficiently precise results can be adopted, if suitable stopping criteria are found and set. Such a
procedure would include several testing rounds progressively increasing the episode length/sample
size respectively, and evaluating for each agent configuration if the stopping criterion is met. Only
the configurations not reaching a stopping criterion advance to the next round. Adopting this
testing procedure, the demanding test runs with long episodes or large sample sizes are used only
if they can meaningfully contribute to an increase in the precision of the results. An example of
possible stopping criteria includes absolute or relative difference in AIQ scores, or a statistical test
of significant difference of two means. The next section will elaborate on another criterion based
on convergence speed.

As for the sizes of action and observation spaces of the BF machine, the increase in
computational requirements should lead to the increase of test complexity. It is unclear, whether or
not there is a preferable setting for these parameters. However, in the case of a suspected difference
in the intelligence of two agents, a testing procedure could be attempted which would gradually
increase the action and observation spaces, until the either the difference between agents shows,
or further continuation becomes infeasible due to computational requirements. Again, such an
approach could decrease the computational resources required when compared to conducting tests
on a full predetermined set of BF reference machine settings.

On the more practical side of things, it would be beneficial to be able to resume incomplete test
runs as well as combine results of a given environment program sample size to increase the precision
of AIQ estimates. Also, the ability to save results of a tested agent after some intermediate number
of interactions would speed up the testing process, since currently results for different episode
lengths need to be computed separately. In the conducted experiments, each agent configuration
was therefore tested in a total of 144,000 interactions instead of 100,000 as enabled by the proposed
improvement. A similar change could be considered for results at intermediate sample sizes if
integrated with the proposed multi-round method for sufficiently precise AIQ estimation.

4.2.6 ADAPTING TO DIFFERENCES IN NUMBER OF INTERACTIONS TO CONVERGE

Since the AIQ test is based on the Universal Distribution, the AIQ score of a tested agent should
converge. Practically, the concept of a sufficiently converged AIQ score is of more interest. Also, the
convergence is influenced by both the BF reference machine settings as well as by the configuration
of an agent. Therefore, using a predetermined episode length as a test setting is ineffective, since in
some cases the AIQ may be sufficiently converged already, while in other cases the score may not
be sufficiently converged yet.
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To address the issue, a measure describing the convergence process is needed. One such
measure is the current rate of convergence vΥ̂

c = ∆Υ̂
∆T , where ∆Υ̂ denotes the change in the AIQ

score that occurred with the change in the number of interactions denoted as ∆T . This measure
shows an average change in AIQ score per interaction computed from some interval of the agent –
environment interaction sequence. For convenience (due to the numerical disproportions) it may be
shown in a form per thousand interactions.

The current rate of convergence can be used as a stopping criterion for the proposed multi-round
method for sufficiently converged AIQ score. More precisely, having a modified AIQ test so that
it saves the current AIQ estimate after every n interactions, and a (reasonably set) minimal current
rate of convergence, the method would compute the current rate of convergence from the two AIQ
estimates and only continue the test if said rate is above the set minimum. Using this method, the test
run would be terminated once the sufficiently converged AIQ is achieved resulting in a reasonably
short episode length.

4.2.7 TESTING AGENTS WITH LARGE CONFIGURATION SPACE

Some agents have a large configuration space. As such, their performance in an intelligence
test can vary greatly depending on their configuration. Given evenly-picked configurations or a
random sample from the whole configuration space, a simple descriptive statistics can capture the
differences.

However, given prior knowledge about the agent, certain regions of the configuration space can
be searched more thoroughly while others can be mostly ignored, skewing the simple statistics in
favor of the better mapped regions. This calls for a system of weights representing the coverage of
the configuration space tested. The issue can actually be further divided into two cases:

• difference in the number of configurations tested for each value of a parameter,

• imbalance in coverage of the parameter value space by the choice of tested values.

To compensate for a difference in the number of configurations tested for each value of a
parameter, value group means of other parameters should be constructed from value group means
of the imbalanced parameter and not directly from the data.

To compensate for an imbalance in coverage of the parameter value space, weights should be
assigned to parameter values depending on the parameter type:

• Boolean – can be simply weighted in ratio 1 : 1.

• Category – can also be weighted equally according to the number of categories.

• Bounded real number – can be weighted in proportion to the interval the number represents.
The endpoints of the interval can be either a mean of two chosen values of the parameter
closest to each other, or the endpoint of the parameter interval in case there is no other chosen
value in between them.

• Natural number:

– In cases where a reasonable upper limit can be found, e.g. when it is computationally
infeasible to test with higher than a certain value, natural number parameter values can
be weighted as bounded real numbers.
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– If no reasonable upper limit can be found, parameter values can be weighted in
proportion to the differences of the consecutive tested values. The weight of the lowest
value can be its difference from 0.

Having a set of weights wi assigned as suggested above, a parameter coverage mean AIQ ῩC

of an agent π according to its parameter p with n tested values can be computed as a weighted mean
of the parameter value group means ῩG as shown by equation 3. This equation is in fact a special
case of equation 1 by Legg and Hutter (2007b) with a particular reference machine.

ῩC(πp) =
n∑
i=1

wiῩGi(πp) (3)

4.3 Demonstrations of AIQ Test Improvements

As several ways to improve the AIQ test were proposed in the previous section, this section will
briefly demonstrate some of them. See Appendix C for details on the extended AIQ test.

4.3.1 REDUCING DEPENDENCE ON REFERENCE MACHINE

Based on the discussion in Section 4.2.1, the sampling procedure of the AIQ test was extended so
that it was possible to specify the minimal program length. Two methods were tried: 1) extending
sampled programs of insufficient length until the condition was met, and 2) dropping programs of
insufficient length until a program meeting the condition was sampled. The stratification procedure
now takes into account the minimal program length when stratifying programs by length. The
stratification according to an exhibited simple pattern in returned rewards was not modified.

A comparison of the new methods with the original sampling procedure is shown in Table 5.
While the original BF 5 sample contains 40.9 % of simple programs (strata 1 – 10), setting minimal
program length to 10 instructions reduces their proportion to 34 % using method 1) and even to
25.7 % using method 2). Figure 6 compares empirical cumulative distributions of program lengths.
Among the samples with a minimal program length of 10, there is a higher probability of a program
being syntactically valid and interactive than in the original sample. Also, since the longer programs
are more diverse, giving higher variance in agents results, the benefit of using an adaptive sampler is
reduced. Method 2) favors longer programs compared to method 1). The method that drops shorter
programs should, therefore, be preferred over the method that extends shorter programs.

A statement by Hibbard (2009) regarding the reduction of the dependence on reference machine
can now be practically validated by repeating the experiment that manipulates the size of the action
space while also changing minimal program length. The impact of action space size manipulation
should diminish with the increasing minimal program length. As the experiment is demanding, it is
out of the scope of this paper. However, it will be attempted as a part of future work.

4.3.2 DECREASING HIGH COMPUTATIONAL REQUIREMENTS

In order to make the AIQ test more effective, a method proposed in Section 4.2.5 was implemented
that saves the current AIQ score after every 1,000 interactions. Thus, the experiments’ settings
reported in Section 3 can be computed with only 2/3 of the required resources. Using this option a
more detailed set of results documenting the score convergence process can be obtained, as shown
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Table 5: A comparison of distributions of environment programs in strata among the original
program sample, and samples with minimal program length of 10 instructions generated
by the method 1) (extended), and 2) (dropped). (BF 5 Reference Machine)

Sample Strata Proportions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

original 17.6 10.4 2.5 0.6 1.9 1.8 1.8 1.8 1.8 0.7 5.9 4.6 6.8 6.2 6.9 5.5 6.8 6.9 4.7 4.8
extended 13.6 7.8 3.0 1.0 1.8 1.9 1.5 1.5 1.3 0.7 28.3 4.4 5.4 4.3 4.5 3.5 4.3 4.6 3.2 3.6
dropped 10.6 5.4 1.8 0.6 1.3 1.3 0.9 1.0 2.0 0.9 25.7 5.0 6.4 5.3 5.8 4.4 5.8 6.2 4.5 5.2
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Figure 6: A comparison of cumulative proportions of BF 5 environment program lengths (up to
100 instructions): all syntactically valid BF programs (theoretical), programs following
the restrictions of Legg and Veness (2013, 2011) (empirical), programs actually chosen
for 20 test runs (adaptive). The programs sampled by the original BF sampler are to the
left, the programs with minimal length of 10 sampled by extending shorter programs are
in the middle, and the programs with minimal length of 10 sampled by dropping shorter
programs are to the right.
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Figure 7: A comparison of an agent’s AIQ score convergence process on BF 5 reference machine
as obtained by the original test settings (original) and by the improved test settings
(effective).

by Figure 7. Moreover, implementing this method facilitates further improvements proposed in
Section 4.2.5.

To validate the implemented method, an experiment was conducted according to the default
settings as described in Section 3.1. The results were computed directly for 100,000 interactions,
with intermediate results saved after every 1,000 interactions. The new results were compared to
the results reported in Table 7. Two-sample t statistics were computed to determine the significance
of the differences of the agent results both at the final EL of 100,000 interactions, as well as at the
intermediate lengths of 1, 3, 10 and 30 thousand interactions.

As for the EL of 100,000 interactions, the test did not reject that the difference is zero. At shorter
episodes (mostly at 1,000 and 3,000 interactions), however, there were a total of 16 cases when the
test rejected that the difference is zero. Since the largest difference was−1.5±0.6, the implemented
method can be considered valid. The method gives slightly lower AIQ estimates for shorter
episodes, most likely due to the adaptive sampler now choosing programs to minimize the variance
at 100,000 interactions when the agent had better learned the regularities of the environment.

4.3.3 TESTING AGENTS WITH LARGE CONFIGURATION SPACE

The following example, based on a parameter sweep of MC-AIXI in the default setup, should
illustrate the method that deals with a large configuration space of agents as proposed in
Section 4.2.7.

There was a difference in the number of configurations tested with and without exploration
decay, therefore value group means of other parameters must compensate for this. In the case
of exploration, 4 values were only used in combination with exploration decay while 4 other
values were only used with no exploration decay, canceling the need to compensate on the level
of group means. Also, the following parameters of MC-AIXI had their value space searched
unevenly: context tree depth (natural), exploration (bounded real), and exploration decay which can
be viewed either as a bounded real, or as a Boolean compound of using (bounded real) and not using
exponentially decayed exploration. Considering that other methods of decaying the exploration
strategy might be implemented, thus creating an additional category attribute, this would seem to
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Figure 8: Intervals represented by parameter values and their assigned weights for the exploration
parameter of MC-AIXI.

Table 6: The computation of parameter coverage mean AIQ scores ῩC (*) of MC-AIXI from value
group means ῩG (AIQ) for an episode length of 100,000 interactions.

MC Simulations Context Tree Depth Search Horizon Exploration Exploration Decay
# value weight AIQ value weight AIQ value weight AIQ value weight AIQ value weight AIQ

1 50 0.5 43.55 8 0.25 45.21 1 0.2 36.48 0.05 0.075 45.12 0.3 0.225 47.68
2 100 0.5 45.52 16 0.25 44.22 2 0.2 46.68 0.1 0.05 41.91 0.6 0.15 48.2
3 32 0.5 44.17 3 0.2 47.95 0.15 0.05 38.59 0.9 0.0875 48.91
4 4 0.2 45.91 0.2 0.325 35.78 0.95 0.0225 48.79
5 5 0.2 45.63 0.8 0.325 48.91 0.99 0.01125 49.33
6 0.85 0.05 48.81 0.995 0.00375 49.38
7 0.9 0.05 48.6 1 0.5 40.35
8 0.95 0.075 48.52

* 44.53 44.44 44.53 43.44 44.25

be a preferable approach. The assigning of an interval represented by the parameter value and its
weight is shown in Figure 8 for the example of exploration. The resulting weights of all parameters,
the respective value group means for 100,000 interactions, and the parameter coverage means are
summarized in Table 6. In the given example, compensating for the unequal number of tested
configurations for each parameter value has a substantial impact on the resulting parameter coverage
means. The differences caused by parameter value space coverage imbalance are less pronounced.

4.4 Using a Suitable General AI Evaluation Method

Having a suitable general AI evaluation method, there are still two important questions: “How to
use it?” and “What to use it for?”

The ‘how’ question is tightly related to the observation of differences among configurations of
an agent (or among individuals of a species). This calls for a statistics-based approach in presenting
and evaluating the results (box plots, descriptive statistics, etc.), as hopefully illustrated by this
paper or by Insa-Cabrera et al. (2011), and not just a plot of the best results achieved, as shown
by Legg and Veness (2013). Since it requires searching a large configuration space, the weighted
statistics approach proposed in Section 4.2.7 should be considered as well as the effectiveness of the
testing process. For the AIQ test this was discussed in Sections 4.2.5 and 4.2.6. In the AIT proposal,
Hernández-Orallo and Dowe (2010) also discuss this issue extensively.

The ‘what for’ question is basically a question of motivation. Obviously, the primary use of such
a method is to evaluate AI or AGI systems, however as Vadinský (2015) suggests, generalizations
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from the results of particular systems can be made to the level of a certain AI or AGI paradigm.
These paradigms can then be compared, and even some fundamental questions of AI could be (at
least partially) answered and grounded in experimental results. Furthermore, the evaluation of an AI
or AGI system need not only be external, it could be internalized to some form of meta-learning that
would enable the system to fine-tune its parameters to the different needs of specific tasks. Based
on knowledge of the performance of its configurations in a general test, especially if broken down
to a more fine-grained level as proposed in Section 4.2.4, this meta-learning could be guided by
prioritizing the generally more promising configurations.

5. Conclusion and Future Work

This paper attempted to replicate the results Legg and Veness (2013, 2011) presented along with
the transformation of the Universal Intelligence definition into a practicable AIQ test. Three
experiments were conducted: the default setting, and variation of both the action and observation
space settings. The replication of the original results has only been partially successful:

• The score of freq, Q0, Qλ, and HLQλ in the default setting matched the original results,
while for MC-AIXI it was higher for the short episodes and lower for the long episodes.

• Overall results when varying the observation space setting were “qualitatively the same” as
the default setting as reported by Legg and Veness.

• Overall results when varying the action space setting however were not “qualitatively the
same”, contrary to the results of Legg and Veness.

In cases when the exact configuration of agents and all the test parameters were known, the
replicated results match the original results rather well, suggesting that the test is reliable. Since
insufficient details are given by Legg and Veness about the variation of the action and observation
space settings, the reliability of the test in these cases cannot be assessed. However, as all of the
replication experiment settings used the same agent configurations, the sensitivity of the test to the
changes in the BF machine settings can be evaluated. The discrepancy in the conclusions of the
two experiments is likely only apparent, since increasing the size of the observation space does
not in fact increase the number of produced observations in all environments, causing the resulting
increase in complexity to be less than expected. Therefore, the results from the experiment varying
the size of action space dominate, and it can be concluded that the AIQ test is sensitive to changes in
the BF reference machine settings contrary to the original claim of Legg and Veness. An additional
contribution of the paper lies in a precise specification of the conducted experiment settings and the
achieved results. This is in contrast to Legg and Veness who are rather vague in this regard.

Since Legg and Veness (2013, 2011) do not state the precise configurations of MC-AIXI used
in the original experiments, this case should be interpreted with caution. On inquiry, Joel Veness
helped to clarify what settings were used, but could no longer provide exact values. This is most
likely the reason why the replicated results do not match. Concerning the performance of MC-
AIXI with respect to the episode length, Legg and Veness (2013) note that “Our initial attempts
at modifying MC-AIXI to be similarly high scoring on shorter runs failed.” As the conducted
parameter sweep shows, restricting the world model by lowering the number of Monte Carlo
simulations, context tree depth, and search horizon increases its performance for short episodes.
Furthermore, since a total of 840 distinct configurations were tested, the results were analyzed for
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any impact of modifying parameter values on the performance of an agent. Notably, the following
observations concerning the performance of MC-AIXI configurations in the default experiment were
made:

• The overall performance of configurations using exponentially decaying exploration is
substantially better than those featured constant exploration values.

• Configurations with a search horizon of 1 perform rather poorly. When its value is increased
to 2 or 3, the results improve considerably, however, further increasing the parameter value
has a slightly negative effect (although this effect diminishes with increasing episode length).

• Configurations with high exploration decay values have a rather lower spread of their results
at long episodes than with lower exploration decay.

A detailed structure of the influence of parameter values was discovered using data mining
techniques. This way several highly (as well as poorly) performing configurations were identified.
This explorative analysis also contributes by illustrating a possible use for any suitable AGI
evaluation method.

The final contribution of the paper rests in assessing the AIQ test regarding its suitability as a
general AI evaluation method. Based on the literature overview and the conducted experiments,
several limits of the AIQ test were noted and some ways to amend them were suggested. While
some of the proposals were only discussed, some others were implemented or demonstrated:

• There is a dependence of the AIQ test on the chosen reference machine (and its parameters)
which could be reduced by enforcing a limit on the minimum length of environment
programs as suggested by Hibbard (2009). The number of reference machine instructions
was proposed as a possible value of such a limit for further investigation. This proposal was
implemented in the extended test and the properties of the resulting new program samples
were demonstrated. An alternative solutional approach of Hernández-Orallo (2015, 2017) to
reducing the dependence on the reference machine was also discussed.

• Although the AIQ test is guarded against some non-discriminative environments, others still
remain. However, the proposal of Hernández-Orallo and Dowe (2010) to use only reward-
sensitive environments seems too strong (as it also excludes those containing “heaven” and
“hell” subenvironments). Instead, it was proposed to extend the capabilities of the AIQ test
to exclude particular types of problematic environment programs.

• The AIQ score contains some aspects of intelligence only implicitly, while others it does not
contain at all. There are proposals e.g. by Goertzel (2010) or by Hernández-Orallo and Dowe
(2010) to integrate those into the score. While this could be helpful, it would also add further
dimensions of uncertainty when interpreting the results. Thus, it was proposed that the overall
score be supplemented by also providing suitable scores for particular aspects of intelligence.

• Since the AIQ test reveals rather limited differences among the tested agents, there is a
concern that the test setting may be too simple. Several approaches were proposed and
demonstrated which would help to answer this concern, if conducted in sufficient depth.

• The test format highlights the computational requirements of an agent. Among others, a
procedure was proposed to achieve sufficiently converged estimates of the AIQ score by
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progressively increasing the demanding parameters of the AIQ test only if the chosen stopping
condition had not yet been met. One of the proposed methods was implemented, and its
benefits were demonstrated. This method both saves some resources and also facilitates the
implementation of other proposed methods.

• Since there are differences in the dynamics of the AIQ score convergence process, some
characteristics were proposed to describe it. These could also serve as suitable stopping
criteria in the previously-mentioned testing procedure.

• Noting the differences in the results of agent configurations, a thorough parameter sweep is
needed to research its capacities, the results of which should be reported statistically. In case
of prior knowledge about the agent resulting in a non-random sample of its configurations, a
method to weight such statistics was proposed and demonstrated using the example of MC-
AIXI.

While the methods to amend the limits of the AIQ test were proposed and discussed, and
some were even implemented, there remain many opportunities for future work involving both
the implementation and testing of the remaining proposals. The following areas are of particular
interest for future work since they could benefit from the precisely stated results of the conducted
experiments:

• A detailed analysis using other reference machines as well as the newly implemented minimal
program length restriction would bring empirical light into the debate on the extent of
reference machine dependence of the AIQ test.

• An in-depth comparison with the Anytime Intelligence Test prototype would further help with
AIQ test evaluation, as well as with investigating the possible simplicity of the test setting.

• A better understanding of the AIQ test inner workings is still needed. The preliminary results
of semantic analysis of the environment programs seem promising, however the analysis is
still incomplete and the resulting program classes should be investigated in more depth.
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Table 7: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 5 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 39.5 ± 0.5 42.1 ± 0.5 43.9 ± 0.5 45.9 ± 0.5 47.7 ± 0.4
freq 2 (0.05) 40.1 ± 0.5 42.3 ± 0.5 44.5 ± 0.5 46.6 ± 0.5 48.1 ± 0.4
freq 3 (0.07) 40.1 ± 0.5 42.8 ± 0.5 44.8 ± 0.4 46.9 ± 0.4 48.0 ± 0.4
freq 4 (0.09) 39.6 ± 0.4 42.5 ± 0.4 44.9 ± 0.4 46.6 ± 0.4 47.4 ± 0.4
freq 5 (0.11) 39.7 ± 0.4 41.7 ± 0.4 44.9 ± 0.4 45.9 ± 0.4 46.8 ± 0.4
Q 0 1 (0,0,0.5,0.04,0.6) 41.8 ± 0.4 45.5 ± 0.4 46.6 ± 0.4 46.9 ± 0.4 47.0 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 41.6 ± 0.4 46.1 ± 0.4 48.0 ± 0.4 49.1 ± 0.4 48.9 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 40.4 ± 0.5 46.0 ± 0.5 49.0 ± 0.4 50.7 ± 0.4 50.9 ± 0.4
Q 0 4 (0,0,0.5,0.01,0.9) 37.9 ± 0.5 42.5 ± 0.5 48.5 ± 0.5 51.4 ± 0.4 52.7 ± 0.4
Q 0 5 (0,0,0.5,0.005,0.95) 37.1 ± 0.5 39.2 ± 0.5 44.4 ± 0.5 49.7 ± 0.4 53.0 ± 0.4
Qλ 1 (0,0.5,0.5,0.04,0.6) 44.0 ± 0.4 47.8 ± 0.4 48.5 ± 0.4 48.9 ± 0.4 49.1 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 44.0 ± 0.4 48.1 ± 0.4 49.4 ± 0.4 50.1 ± 0.4 50.1 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 42.5 ± 0.5 47.6 ± 0.5 50.6 ± 0.4 51.6 ± 0.4 52.2 ± 0.4
Qλ 4 (0,0.5,0.5,0.01,0.9) 40.0 ± 0.5 43.9 ± 0.5 49.3 ± 0.5 52.3 ± 0.4 53.4 ± 0.4
Qλ 5 (0,0.5,0.5,0.005,0.95) 39.0 ± 0.5 40.6 ± 0.5 46.0 ± 0.5 51.1 ± 0.5 53.8 ± 0.4
HLQλ 1 (0,0,0.99,0.02,0.7) 46.5 ± 0.5 51.9 ± 0.5 53.8 ± 0.5 54.7 ± 0.5 55.0 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 48.6 ± 0.5 50.8 ± 0.4 51.9 ± 0.4 51.9 ± 0.4 52.0 ± 0.4
HLQλ 3 (0,0,0.99,0.04,0.6) 48.3 ± 0.5 51.0 ± 0.4 53.3 ± 0.4 53.5 ± 0.4 53.4 ± 0.4
HLQλ 4 (0,0,0.995,0.01,0.8) 42.8 ± 0.5 49.3 ± 0.5 53.7 ± 0.5 54.5 ± 0.4 55.2 ± 0.4
HLQλ 5 (0,0,0.995,0.005,0.9) 40.3 ± 0.5 46.2 ± 0.5 51.5 ± 0.5 54.6 ± 0.5 55.0 ± 0.5
MC-AIXI 1 (50,8,3,0.85,0.3) 42.1 ± 1.2 50.2 ± 1.3 54.0 ± 1.4 53.8 ± 1.4 54.3 ± 1.4
MC-AIXI 2 (50,16,2,0.95,0.9) 44.5 ± 1.1 48.6 ± 1.1 51.2 ± 1.2 51.5 ± 1.3 51.8 ± 1.2
MC-AIXI 3 (100,8,3,0.9,0.6) 38.8 ± 1.1 48.5 ± 1.2 53.6 ± 1.4 54.4 ± 1.4 55.3 ± 1.4
MC-AIXI 4 (100,16,4,0.85,0.9) 40.3 ± 1.1 48.3 ± 1.2 51.8 ± 1.3 52.9 ± 1.3 53.5 ± 1.3
MC-AIXI 5 (100,32,3,0.05,1.0) 36.1 ± 1.1 42.1 ± 1.1 46.8 ± 1.2 48.8 ± 1.3 50.5 ± 1.3

Appendix A. Tables and Plots of Results from All Experiments

The detailed results of the default experiment described in Section 3.1 are given by Table 7. All
tested configurations of freq, Q0, Qλ, and HLQλ are shown, while only selected configurations
of MC-AIXI are listed to illustrate its performance. Table 8 gives descriptive statistics of MC-
AIXI results computed from all tested configurations. Full results are available from: https:
//github.com/xvado00/RATR/archive/v1.0.zip.

The detailed results of the experiment that varies the action space as described in Section 3.2
are given by Tables 9, 10, and 11.

The detailed results of the experiment that varies the observation space as described in
Section 3.3 are given by Tables 12, and 13.

Figure 9 shows the best achieved AIQ score estimates with a margin of error corresponding to
a 0.95 confidence interval for each agent after the tested number of interactions in all experiments.
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Table 8: Statistics of MC-AIXI AIQ scores for Episode Length (BF 5 reference machine)
Measure AIQ Score Statistics for Episode Length

1,000 3,000 10,000 30,000 100,000

Mean 35.07 42.21 45.68 46.84 47.52
Standard Error 0.15 0.16 0.19 0.20 0.20
Minimum 21.9 25.1 24.5 23.7 23.4
First Quartile 32.2 39.9 42.875 44 44.4
Median 35.2 43.35 47.4 48.65 49.4
Third Quartile 38.4 45.2 49.4 50.825 51.7
Maximum 44.5 50.5 54 54.8 55.3
Standard Deviation 4.37 4.61 5.37 5.74 5.89
Kurtosis −0.31 1.09 1.45 1.81 1.94
Skewness −0.37 −1.06 −1.27 −1.36 −1.38

Table 9: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 2 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 28.2 ± 0.6 33.6 ± 0.5 41.4 ± 0.5 46.7 ± 0.5 50.3 ± 0.4
freq 2 (0.05) 31.2 ± 0.5 39.2 ± 0.5 45.3 ± 0.5 48.3 ± 0.5 50.4 ± 0.4
freq 3 (0.07) 34.6 ± 0.5 42.2 ± 0.5 46.5 ± 0.5 49.4 ± 0.4 49.9 ± 0.4
freq 4 (0.09) 36.6 ± 0.5 42.2 ± 0.5 46.9 ± 0.5 48.5 ± 0.4 49.6 ± 0.4
freq 5 (0.11) 38.2 ± 0.5 43.2 ± 0.5 45.9 ± 0.4 48.0 ± 0.4 48.6 ± 0.4
Q 0 1 (0,0,0.5,0.04,0.6) 50.5 ± 0.4 51.0 ± 0.4 51.1 ± 0.4 51.0 ± 0.4 51.0 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 51.6 ± 0.4 52.3 ± 0.4 52.4 ± 0.4 52.4 ± 0.4 52.2 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 52.8 ± 0.4 53.6 ± 0.4 53.8 ± 0.4 53.9 ± 0.4 53.8 ± 0.4
Q 0 4 (0,0,0.5,0.01,0.9) 53.5 ± 0.4 54.6 ± 0.4 55.3 ± 0.4 55.3 ± 0.4 55.2 ± 0.4
Q 0 5 (0,0,0.5,0.005,0.95) 53.6 ± 0.5 55.0 ± 0.4 55.8 ± 0.4 56.1 ± 0.4 56.0 ± 0.4
Qλ 1 (0,0.5,0.5,0.04,0.6) 52.4 ± 0.4 52.9 ± 0.4 53.0 ± 0.4 53.0 ± 0.4 52.9 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 53.6 ± 0.4 53.9 ± 0.4 54.0 ± 0.4 54.2 ± 0.4 53.8 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 55.0 ± 0.4 55.4 ± 0.4 55.6 ± 0.4 55.7 ± 0.4 55.3 ± 0.4
Qλ 4 (0,0.5,0.5,0.01,0.9) 55.6 ± 0.4 56.7 ± 0.4 57.0 ± 0.4 57.1 ± 0.4 56.9 ± 0.4
Qλ 5 (0,0.5,0.5,0.005,0.95) 55.6 ± 0.5 57.0 ± 0.4 57.7 ± 0.4 57.9 ± 0.4 57.8 ± 0.4
HLQλ 1 (0,0,0.99,0.02,0.7) 54.9 ± 0.4 55.2 ± 0.4 55.3 ± 0.4 55.3 ± 0.4 55.0 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 54.7 ± 0.4 55.3 ± 0.4 55.6 ± 0.4 55.6 ± 0.4 55.3 ± 0.4
HLQλ 3 (0,0,0.99,0.04,0.6) 55.9 ± 0.4 56.7 ± 0.4 56.8 ± 0.4 56.8 ± 0.4 56.6 ± 0.4
HLQλ 4 (0,0,0.995,0.01,0.8) 56.5 ± 0.4 57.3 ± 0.4 57.5 ± 0.4 57.5 ± 0.4 57.3 ± 0.4
HLQλ 5 (0,0,0.995,0.005,0.9) 56.9 ± 0.4 57.5 ± 0.4 57.8 ± 0.4 57.9 ± 0.4 57.5 ± 0.4
MC-AIXI 1 (50,8,3,0.85,0.3) 45.0 ± 1.6 45.4 ± 1.7 47.2 ± 1.8 46.8 ± 1.7 46.2 ± 1.7
MC-AIXI 2 (50,16,2,0.95,0.9) 54.1 ± 1.2 55.6 ± 1.3 56.1 ± 1.3 56.0 ± 1.3 55.4 ± 1.3
MC-AIXI 3 (100,8,3,0.9,0.6) 44.0 ± 1.4 45.5 ± 1.5 45.5 ± 1.5 45.2 ± 1.5 45.2 ± 1.4
MC-AIXI 4 (100,16,4,0.85,0.9) 53.8 ± 1.2 55.9 ± 1.3 57.4 ± 1.3 57.6 ± 1.3 57.1 ± 1.3
MC-AIXI 5 (100,32,3,0.05,1.0) 51.9 ± 1.2 53.7 ± 1.2 54.7 ± 1.2 54.4 ± 1.2 54.3 ± 1.2
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Table 10: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 10 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 37.4 ± 0.5 40.9 ± 0.5 44.2 ± 0.5 47.1 ± 0.5 49.6 ± 0.5
freq 2 (0.05) 38.5 ± 0.5 42.0 ± 0.4 45.7 ± 0.4 48.4 ± 0.5 50.1 ± 0.5
freq 3 (0.07) 38.9 ± 0.4 42.8 ± 0.4 46.0 ± 0.4 48.3 ± 0.5 49.7 ± 0.5
freq 4 (0.09) 38.9 ± 0.4 42.9 ± 0.4 46.4 ± 0.4 48.0 ± 0.4 49.4 ± 0.5
freq 5 (0.11) 39.0 ± 0.4 43.1 ± 0.4 45.9 ± 0.4 47.4 ± 0.4 48.4 ± 0.4
Q 0 1 (0,0,0.5,0.04,0.6) 35.9 ± 0.4 40.9 ± 0.4 44.4 ± 0.4 45.9 ± 0.4 46.5 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 35.4 ± 0.4 40.9 ± 0.4 45.4 ± 0.4 47.5 ± 0.4 48.2 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 33.9 ± 0.4 39.6 ± 0.4 45.4 ± 0.4 48.3 ± 0.5 49.5 ± 0.5
Q 0 4 (0,0,0.5,0.01,0.9) 30.4 ± 0.4 35.2 ± 0.4 42.1 ± 0.5 47.9 ± 0.5 51.1 ± 0.5
Q 0 5 (0,0,0.5,0.005,0.95) 29.0 ± 0.4 30.6 ± 0.4 36.7 ± 0.4 44.2 ± 0.5 49.8 ± 0.5
Qλ 1 (0,0.5,0.5,0.04,0.6) 38.8 ± 0.4 43.7 ± 0.4 47.3 ± 0.4 48.6 ± 0.4 49.3 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 38.6 ± 0.4 44.0 ± 0.4 47.6 ± 0.4 49.5 ± 0.4 50.2 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 36.5 ± 0.4 42.4 ± 0.4 47.7 ± 0.5 50.9 ± 0.5 51.9 ± 0.5
Qλ 4 (0,0.5,0.5,0.01,0.9) 33.5 ± 0.4 37.6 ± 0.4 44.5 ± 0.5 49.8 ± 0.5 52.4 ± 0.5
Qλ 5 (0,0.5,0.5,0.005,0.95) 31.9 ± 0.4 34.0 ± 0.4 38.8 ± 0.5 45.7 ± 0.5 51.0 ± 0.5
HLQλ 1 (0,0,0.99,0.02,0.7) 44.5 ± 0.4 48.9 ± 0.4 51.2 ± 0.5 52.1 ± 0.4 52.5 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 44.3 ± 0.4 49.6 ± 0.5 52.6 ± 0.5 53.9 ± 0.5 54.0 ± 0.5
HLQλ 3 (0,0,0.99,0.04,0.6) 42.2 ± 0.5 48.9 ± 0.5 53.0 ± 0.5 54.8 ± 0.5 55.3 ± 0.5
HLQλ 4 (0,0,0.995,0.01,0.8) 37.9 ± 0.5 45.6 ± 0.5 52.1 ± 0.5 54.8 ± 0.5 55.9 ± 0.5
HLQλ 5 (0,0,0.995,0.005,0.9) 34.3 ± 0.5 41.7 ± 0.5 49.1 ± 0.5 53.5 ± 0.5 55.4 ± 0.5
MC-AIXI 1 (50,8,3,0.85,0.3) 33.6 ± 1.0 42.6 ± 1.3 47.6 ± 1.4 49.4 ± 1.4 48.2 ± 1.3
MC-AIXI 2 (50,16,2,0.95,0.9) 35.0 ± 1.1 43.1 ± 1.3 47.5 ± 1.5 49.2 ± 1.5 49.4 ± 1.6
MC-AIXI 3 (100,8,3,0.9,0.6) 28.0 ± 1.1 39.6 ± 1.3 47.1 ± 1.4 49.6 ± 1.5 49.6 ± 1.5
MC-AIXI 4 (100,16,4,0.85,0.9) 26.4 ± 1.0 36.5 ± 1.3 47.0 ± 1.3 51.8 ± 1.5 51.4 ± 1.6
MC-AIXI 5 (100,32,3,0.05,1.0) 27.2 ± 0.9 33.7 ± 1.0 41.4 ± 1.2 44.2 ± 1.2 45.8 ± 1.3
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Table 11: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 20 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 35.7 ± 0.4 38.4 ± 0.4 41.5 ± 0.4 45.5 ± 0.4 48.1 ± 0.5
freq 2 (0.05) 36.1 ± 0.4 39.1 ± 0.4 43.7 ± 0.4 46.8 ± 0.4 48.8 ± 0.5
freq 3 (0.07) 37.0 ± 0.4 40.4 ± 0.4 44.5 ± 0.4 47.2 ± 0.4 48.9 ± 0.4
freq 4 (0.09) 37.0 ± 0.4 41.2 ± 0.4 44.8 ± 0.4 47.1 ± 0.4 48.6 ± 0.4
freq 5 (0.11) 37.2 ± 0.4 41.2 ± 0.4 44.9 ± 0.4 46.5 ± 0.4 48.1 ± 0.4
Q 0 1 (0,0,0.5,0.04,0.6) 31.9 ± 0.4 36.7 ± 0.4 40.9 ± 0.4 43.3 ± 0.4 44.5 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 31.2 ± 0.4 36.3 ± 0.4 41.1 ± 0.4 44.3 ± 0.4 45.7 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 30.0 ± 0.4 34.8 ± 0.4 40.5 ± 0.4 44.6 ± 0.4 46.7 ± 0.4
Q 0 4 (0,0,0.5,0.01,0.9) 27.5 ± 0.4 30.6 ± 0.4 36.9 ± 0.4 42.6 ± 0.4 46.8 ± 0.5
Q 0 5 (0,0,0.5,0.005,0.95) 26.2 ± 0.4 27.8 ± 0.4 31.3 ± 0.4 37.9 ± 0.4 44.7 ± 0.5
Qλ 1 (0,0.5,0.5,0.04,0.6) 35.2 ± 0.4 39.7 ± 0.4 43.9 ± 0.4 46.1 ± 0.4 47.0 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 34.8 ± 0.4 39.6 ± 0.4 44.1 ± 0.4 46.5 ± 0.4 47.7 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 32.6 ± 0.4 37.3 ± 0.4 43.3 ± 0.4 47.1 ± 0.4 49.2 ± 0.4
Qλ 4 (0,0.5,0.5,0.01,0.9) 30.2 ± 0.4 32.8 ± 0.4 38.7 ± 0.4 44.8 ± 0.5 48.9 ± 0.5
Qλ 5 (0,0.5,0.5,0.005,0.95) 29.6 ± 0.4 30.7 ± 0.4 33.8 ± 0.4 39.9 ± 0.5 46.2 ± 0.5
HLQλ 1 (0,0,0.99,0.02,0.7) 40.5 ± 0.4 45.2 ± 0.4 48.1 ± 0.4 49.5 ± 0.4 50.1 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 40.1 ± 0.4 46.1 ± 0.4 49.5 ± 0.4 51.1 ± 0.4 51.6 ± 0.5
HLQλ 3 (0,0,0.99,0.04,0.6) 38.6 ± 0.4 45.0 ± 0.5 49.7 ± 0.5 52.0 ± 0.5 53.1 ± 0.5
HLQλ 4 (0,0,0.995,0.01,0.8) 34.5 ± 0.4 41.9 ± 0.5 48.4 ± 0.5 52.0 ± 0.5 53.6 ± 0.5
HLQλ 5 (0,0,0.995,0.005,0.9) 30.8 ± 0.4 38.0 ± 0.4 45.5 ± 0.5 50.3 ± 0.5 52.7 ± 0.5
MC-AIXI 1 (50,8,3,0.85,0.3) 11.7 ± 0.7 14.9 ± 0.9 18.6 ± 1.2 22.6 ± 1.3 26.4 ± 1.4
MC-AIXI 2 (50,16,2,0.95,0.9) 27.2 ± 0.9 34.9 ± 1.0 38.9 ± 1.1 42.2 ± 1.3 42.1 ± 1.3
MC-AIXI 3 (100,8,3,0.9,0.6) 10.7 ± 0.8 16.8 ± 1.0 22.1 ± 1.2 27.1 ± 1.5 29.0 ± 1.5
MC-AIXI 4 (100,16,4,0.85,0.9) 21.0 ± 0.6 28.6 ± 0.8 34.9 ± 0.9 39.5 ± 1.1 42.3 ± 1.3
MC-AIXI 5 (100,32,3,0.05,1.0) 21.4 ± 0.7 25.1 ± 0.7 28.9 ± 0.7 34.0 ± 0.8 37.4 ± 1.0
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Table 12: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 5,2 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 38.6 ± 0.5 42.1 ± 0.5 43.9 ± 0.5 45.6 ± 0.5 47.7 ± 0.5
freq 2 (0.05) 39.7 ± 0.5 42.0 ± 0.5 44.3 ± 0.5 46.4 ± 0.4 48.6 ± 0.4
freq 3 (0.07) 39.5 ± 0.5 42.7 ± 0.5 44.8 ± 0.5 46.7 ± 0.5 48.0 ± 0.4
freq 4 (0.09) 39.3 ± 0.4 42.5 ± 0.5 44.6 ± 0.4 46.5 ± 0.5 47.7 ± 0.4
freq 5 (0.11) 39.4 ± 0.4 42.1 ± 0.4 44.1 ± 0.4 46.1 ± 0.4 47.1 ± 0.4
Q 0 1 (0,0,0.5,0.04,0.6) 42.3 ± 0.4 45.1 ± 0.4 45.8 ± 0.4 46.0 ± 0.4 45.9 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 42.4 ± 0.4 46.5 ± 0.4 47.7 ± 0.4 48.0 ± 0.4 48.2 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 41.9 ± 0.5 46.9 ± 0.5 49.3 ± 0.4 50.2 ± 0.4 50.3 ± 0.4
Q 0 4 (0,0,0.5,0.01,0.9) 39.4 ± 0.5 43.9 ± 0.5 49.3 ± 0.5 51.9 ± 0.5 52.7 ± 0.4
Q 0 5 (0,0,0.5,0.005,0.95) 38.4 ± 0.5 40.2 ± 0.5 46.3 ± 0.5 50.8 ± 0.5 53.7 ± 0.5
Qλ 1 (0,0.5,0.5,0.04,0.6) 44.5 ± 0.4 47.2 ± 0.4 48.5 ± 0.4 48.0 ± 0.4 48.8 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 44.7 ± 0.4 47.8 ± 0.4 48.9 ± 0.4 49.3 ± 0.4 49.3 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 43.8 ± 0.5 47.9 ± 0.4 50.6 ± 0.4 51.8 ± 0.4 51.7 ± 0.4
Qλ 4 (0,0.5,0.5,0.01,0.9) 41.3 ± 0.5 45.4 ± 0.5 51.1 ± 0.5 53.0 ± 0.5 53.4 ± 0.4
Qλ 5 (0,0.5,0.5,0.005,0.95) 39.9 ± 0.5 43.0 ± 0.5 47.8 ± 0.5 51.6 ± 0.5 53.8 ± 0.5
HLQλ 1 (0,0,0.99,0.02,0.7) 48.8 ± 0.5 51.1 ± 0.4 51.7 ± 0.4 51.7 ± 0.4 51.8 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 48.5 ± 0.5 52.0 ± 0.5 53.1 ± 0.4 53.3 ± 0.4 53.4 ± 0.4
HLQλ 3 (0,0,0.99,0.04,0.6) 47.3 ± 0.5 52.0 ± 0.5 53.9 ± 0.5 54.6 ± 0.4 54.7 ± 0.4
HLQλ 4 (0,0,0.995,0.01,0.8) 43.4 ± 0.5 50.6 ± 0.5 53.6 ± 0.5 55.3 ± 0.5 55.6 ± 0.5
HLQλ 5 (0,0,0.995,0.005,0.9) 40.7 ± 0.5 47.1 ± 0.5 52.9 ± 0.5 54.8 ± 0.5 55.4 ± 0.5
MC-AIXI 1 (50,8,3,0.85,0.3) 38.9 ± 1.3 46.7 ± 1.2 50.9 ± 1.4 52.4 ± 1.4 52.5 ± 1.4
MC-AIXI 2 (50,16,2,0.95,0.9) 39.6 ± 1.1 47.4 ± 1.2 50.8 ± 1.3 52.4 ± 1.3 52.7 ± 1.4
MC-AIXI 3 (100,8,3,0.9,0.6) 36.0 ± 1.2 46.4 ± 1.2 51.6 ± 1.4 52.9 ± 1.4 54.3 ± 1.4
MC-AIXI 4 (100,16,4,0.85,0.9) 33.8 ± 1.2 42.6 ± 1.1 47.2 ± 1.3 49.3 ± 1.3 49.3 ± 1.4
MC-AIXI 5 (100,32,3,0.05,1.0) 35.0 ± 1.1 40.2 ± 1.1 44.0 ± 1.2 46.6 ± 1.2 49.7 ± 1.2
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Table 13: Estimated AIQ scores with a 0.95 confidence interval for all tested agent configurations.
Agent’s extremes in italics, overall extremes in bold. Agent’s parameters explained in
Section 2.6 (BF 5,3 Reference Machine).

Agent Configuration AIQ Scores with Confidence Intervals for Episode Length
# Parameters 1,000 3,000 10,000 30,000 100,000

freq 1 (0.03) 38.8 ± 0.5 41.2 ± 0.5 43.5 ± 0.5 45.8 ± 0.5 48.5 ± 0.5
freq 2 (0.05) 38.7 ± 0.5 41.8 ± 0.5 44.7 ± 0.5 46.7 ± 0.5 49.0 ± 0.5
freq 3 (0.07) 39.1 ± 0.5 41.8 ± 0.5 44.6 ± 0.5 47.2 ± 0.5 48.9 ± 0.5
freq 4 (0.09) 39.0 ± 0.4 42.0 ± 0.5 44.9 ± 0.5 46.7 ± 0.5 48.4 ± 0.5
freq 5 (0.11) 38.6 ± 0.4 41.9 ± 0.4 44.4 ± 0.4 46.4 ± 0.5 47.9 ± 0.5
Q 0 1 (0,0,0.5,0.04,0.6) 42.0 ± 0.4 44.7 ± 0.4 45.4 ± 0.4 45.8 ± 0.4 46.0 ± 0.4
Q 0 2 (0,0,0.5,0.03,0.7) 42.4 ± 0.4 46.1 ± 0.4 47.6 ± 0.4 48.1 ± 0.4 48.2 ± 0.4
Q 0 3 (0,0,0.5,0.02,0.8) 41.9 ± 0.4 46.6 ± 0.4 49.5 ± 0.4 50.4 ± 0.4 50.5 ± 0.4
Q 0 4 (0,0,0.5,0.01,0.9) 39.5 ± 0.5 44.3 ± 0.5 49.9 ± 0.5 52.4 ± 0.4 53.2 ± 0.4
Q 0 5 (0,0,0.5,0.005,0.95) 38.6 ± 0.5 41.0 ± 0.5 47.7 ± 0.5 52.2 ± 0.5 54.0 ± 0.5
Qλ 1 (0,0.5,0.5,0.04,0.6) 44.4 ± 0.4 46.6 ± 0.4 47.5 ± 0.4 47.8 ± 0.4 47.9 ± 0.4
Qλ 2 (0,0.5,0.5,0.03,0.6) 44.6 ± 0.4 47.3 ± 0.4 48.6 ± 0.4 48.9 ± 0.4 49.0 ± 0.4
Qλ 3 (0,0.5,0.5,0.02,0.8) 44.0 ± 0.5 48.2 ± 0.4 51.0 ± 0.4 51.9 ± 0.4 51.9 ± 0.4
Qλ 4 (0,0.5,0.5,0.01,0.9) 41.7 ± 0.5 46.3 ± 0.5 51.3 ± 0.5 53.3 ± 0.5 54.0 ± 0.5
Qλ 5 (0,0.5,0.5,0.005,0.95) 41.1 ± 0.5 43.3 ± 0.5 48.9 ± 0.5 52.9 ± 0.5 54.7 ± 0.5
HLQλ 1 (0,0,0.99,0.02,0.7) 48.6 ± 0.4 50.9 ± 0.4 51.9 ± 0.4 52.0 ± 0.4 52.0 ± 0.4
HLQλ 2 (0,0,0.95,0.04,0.7) 48.7 ± 0.4 51.9 ± 0.5 53.2 ± 0.5 53.8 ± 0.5 53.7 ± 0.5
HLQλ 3 (0,0,0.99,0.04,0.6) 47.7 ± 0.5 52.1 ± 0.5 54.5 ± 0.5 55.1 ± 0.5 55.2 ± 0.5
HLQλ 4 (0,0,0.995,0.01,0.8) 44.1 ± 0.5 50.6 ± 0.5 54.6 ± 0.5 55.9 ± 0.5 56.4 ± 0.5
HLQλ 5 (0,0,0.995,0.005,0.9) 41.8 ± 0.5 47.9 ± 0.5 53.3 ± 0.5 55.6 ± 0.5 56.5 ± 0.5
MC-AIXI 1 (50,8,3,0.85,0.3) 1.7 ± 0.5 2.3 ± 0.7 5.0 ± 0.9 5.8 ± 1.0 7.7 ± 1.1
MC-AIXI 2 (50,16,2,0.95,0.9) 37.5 ± 1.0 45.7 ± 1.3 50.0 ± 1.4 51.8 ± 1.5 51.9 ± 1.5
MC-AIXI 3 (100,8,3,0.9,0.6) 3.4 ± 0.5 7.5 ± 0.6 9.6 ± 0.8 12.9 ± 0.9 13.0 ± 1.0
MC-AIXI 4 (100,16,4,0.85,0.9) 30.5 ± 0.9 42.6 ± 1.2 50.2 ± 1.4 53.0 ± 1.4 53.9 ± 1.5
MC-AIXI 5 (100,32,3,0.05,1.0) 33.6 ± 0.9 42.6 ± 1.1 47.1 ± 1.3 48.3 ± 1.3 49.5 ± 1.3
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25

30

35

40

45

50

55

60

1 3 10 30 100
Episode Length (thousands of interactions)

BF2

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

1 3 10 30 100

25

30

35

40

45

50

55

60

Episode Length (thousands of interactions)

BF5

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

25

30

35

40

45

50

55

60

1 3 10 30 100
Episode Length (thousands of interactions)

BF10

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

1 3 10 30 100

25

30

35

40

45

50

55

60

Episode Length (thousands of interactions)

BF20

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

25

30

35

40

45

50

55

60

1 3 10 30 100
Episode Length (thousands of interactions)

BF5,2

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

1 3 10 30 100

25

30

35

40

45

50

55

60

Episode Length (thousands of interactions)

BF5,3

Freq

Q(0)

Q(l)

H(l)

MC-AIXI

Figure 9: Best achieved estimated AIQ scores of agents as a function of episode length on BF 2,
BF 5 (for comparison), BF 10, BF 20, BF 5,2, and BF 5,3 reference machines.
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Figure 10: The impact of varying the Monte Carlo simulations parameter on AIQ of MC-
AIXI configurations without exploration decay (to the left), and configurations with
exponentially decayed exploration (to the right).

Appendix B. Explorative Analysis of MC-AIXI Results

Since in the case of MC-AIXI a limited parameter sweep was conducted, a more detailed results
analysis can be attempted than in the case of other agents. As can be seen from Table 8 and Figure 2,
there is a rather pronounced difference between the maximal and minimal AIQ achieved for a
given episode length (especially noticeable with configurations not featuring exploration decay).
Distribution of achieved AIQ is somewhat eccentric, favoring the higher values. There is a striking
difference between the configurations with exploration decay and those without. Using exponential
decay of exploration leads to generally better performance, both in terms of higher mean, median,
quartiles, minimum, and maximum values, as well as less spread out results. Let us now examine
the degree to which the parameters of MC-AIXI influence its results:

• Figure 10 shows the impact of using 50 versus 100 Monte Carlo simulations in the
experiments, which is rather slight. Surprisingly, while mean and median scores are better
for 100 simulations, maximal scores are better for 50 simulations at shorter episode lengths.

• Figure 11 shows the influence of setting context tree depth to 8, 16, and 32, which is also
rather limited. If exploration decay is used, mean and median scores are somewhat better
for the depth of 8 than for others, and overall are also notably less spread, except for at the
shortest episode length.

• Figure 12 illustrates the impact of adjusting the search horizon, which is rather pronounced.
Setting the search horizon to 1 leads to rather low AIQ and rather spread out results across
all episode lengths, while setting it to 2 or 3 increases the AIQ by a notable margin. A search
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Figure 11: The impact of varying the context tree depth parameter on AIQ of MC-AIXI
configurations without exploration decay (to the left), and configurations with
exponentially decayed exploration (to the right).

horizon value of 4 and 5 gives rather low AIQ at short episode lengths, however, when the
number of iterations is increased it improves notably.

• Figure 13 illustrates the influence of varying the exploration parameter, which seems to
further depend on whether it is decayed or not. In the case of exponentially decayed
exploration, the influence is minimal, while in the case of undecayed exploration, it is rather
pronounced. Increasing the exploration in the second case decreases the resulting AIQ for all
episode lengths.

• Figure 14 shows the impact of varying the exploration decay, which is noticeable at lower
episode lengths, where configurations that decayed more slowly (with decay of 0.99, and
0.995) perform rather more poorly. However, the effect declines with increasing episode
length until the means and medians differ only slightly. Also, the results of configurations
with faster decay rates get more spread out at higher episode lengths.

Consequently, there seems to be some influence of the chosen parameter values on the MC-AIXI
performance in the AIQ test. However, the nature of the influence is not a simple one, and therefore
further analysis is needed. To model the impact of MC-AIXI parameters on its AIQ, data mining
methods were used, specifically the classification and regression trees (CART) of Breiman et al.
(1984) and the conditional inference trees (CIT) by Hothorn, Hornik, and Zeileis (2006).

For the analysis, AIQ was used as a dependent variable for regression, while for classification, a
derived dependent variable AIQrcat was introduced with ordered values low (AIQ below 1st quartile
for given EL), medium (AIQ between 1st and 3rd quartiles for given EL), and high (AIQ above 3rd
quartile for given EL). Since AIQ is a mean over multiple tested environment programs, looking
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Figure 12: The impact of varying the search horizon parameter on AIQ of MC-AIXI configurations
without exploration decay (to the left), and configurations with exponentially decayed
exploration (to the right).
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Figure 13: The impact of varying the exploration parameter on AIQ of MC-AIXI configurations
without exploration decay (to the left), and configurations with exponentially decayed
exploration (to the right).
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Figure 14: The impact of varying the exploration decay parameter on MC-AIXI AIQ results (only
configurations with enabled exponential decay shown).

closer at its standard deviation (SD) might provide further insight into the possible differences in
the spread of performance of MC-AIXI configurations among tested environment programs. This
is especially interesting when considered together with the AIQ score so that configurations with
relatively high AIQ, but low SD could be identified. SD was first classified as low, medium, or high
using rules analogous to the case of AIQrcat, then a combined dependent variable AIQSDrcat was
introduced with ordered values: low;high (lh), low;medium (lm), medium;high (mh), low;low (ll),
medium;medium (mm), high;high (hh), medium;low (ml), high;medium (hm), and high;low (hl)
where the first part is AIQ classification and the second one is SD classification. This classification,
however, proved too fine-grained, with data fitting particularly the first and last category being
very rare. Therefore, another derived dependent variable was introduced, AIQSDarcat, with
ordered values low (aggregating lh, lm, and mh), medium (aggregating ll, mm, and hh), and
high (aggregating ml, hm, and hl). As covariates, all the manipulated MC-AIXI parameters were
used: number of Monte Carlo simulations (MC), context tree depth (CTD), search horizon (AH),
exploration (E), and exploration decay (ED), all with numerical values, as well as a derived Boolean
attribute, decay (D), signifying whether exponential decay of exploration was used or not. The
decisive episode length is 100,000 interactions since the score should be well converged by then.
Additionally, in order to see whether some parameters are only influential at lower episode lengths,
another analysis was attempted using results on all episode lengths with another covariate EL.

Regression trees were attempted both for EL of 100,000 interactions, as well as for results of all
tested episode lengths. However, since there is a sizable impact of EL on the AIQ, higher EL was
used as the main predictor for higher AIQ. Among other predictors for high AIQ, there was AH ≥ 2,
and D = true. At an EL of 1,000 interactions, configurations with ED = 0.995 were grouped with
undecayed configurations as low performing as opposed to other values of ED. Configurations with
AH = 1, D = true, and CTD > 8 were identified as especially low performing at EL > 1000. In
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Figure 15: Conditional inference regression tree showing the impact of varying the parameters of
MC-AIXI on its AIQ at EL of 100,000 interactions.

the analysis at EL of 100,000 interactions, AH ≥ 2 was confirmed as the main prognostic factor
for high AIQ, followed by D = true and CTD = 8. Configurations with AH = 1, D = false, and
CTD > 8 were identified as especially low performing.

Classification trees were also attempted both for EL of 100,000 interactions, as well as for
all tested episode lengths to classify both AIQrcat, and AIQSDrcat. However, the resulting models
achieved a relatively low total percentage of correctly classified configurations.

Finally, conditional inference tree analysis was conducted. Since this method allows for a more
detailed presentation of the resulting groups, and takes into account statistical properties of the data
when constructing the tree (Hothorn, Hornik, and Zeileis, 2006), the results of this method were
chosen to be presented in this paper in more detail:

• For a conditional inference regression tree showing the impact of MC-AIXI parameters on
its AIQ at EL of 100,000 interactions see Figure 15. The tree identified decay as the main
predicting attribute of AIQ. Configurations with D = false were further divided according to
the parameter exploration: the group with E ≤ 0.1 was significantly better than the group
with higher exploration. The main effort of the tree, however, focused on the configurations
with D = true. There, the main contributing factor was found to be search horizon, followed
by context tree depth. Configurations with D = true, AH = 1, CTD = 8, and MC = 100
were identified as especially high performing (Node N#14), followed by configurations with
D = true, AH ≥ 4, CTD ≥ 16, and MC = 100 (Node N#25), and those with D = true,
CTD ≥ 16, MC = 100 and AH of 2 or 3 (Node N#24). Meanwhile, the configurations with
D = true, and AH = 1, were identified as rather poorly performing (Nodes N#8, and N#10)
with a notable exception of those with CTD ≥ 16, and ED ≥ 0.99 (Node N#9).
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Figure 16: Conditional inference classification tree showing the impact of varying the parameters
of MC-AIXI on its AIQ at all test episode lengths.

• A conditional inference classification tree showing the influence of MC-AIXI parameters on
its AIQrcat at all test episode lengths is depicted in Figure 16. The tree also identified decay as
the main predicting factor of AIQrcat. Configurations with D = false were further partitioned
into three groups according to their exploration: E > 0.1 with mostly low AIQrcat (Node
N#6), E = 0.05 with mid-range AIQrcat (Node N#4), and E = 0.1 somewhat between medium
and low AIQrcat (Node N#5). For configurations with D = true, the search horizon attribute
was also identified as the main predictor, followed by context tree depth. Configurations with
D = true, AH = 3, and CTD = 8 (Node N#21) were identified as mostly having high
AIQrcat, followed by configurations with D = true, CTD = 8, AH of 2 or 3 at EL ≤ 3, 000
(Node N#23), and those with D = true, AH = 2, and CTD = 8 (Node N#20) which were,
in both cases, somewhere between medium and high AIQrcat. Configurations with D = true,
and AH = 1 were classified as mostly medium (Nodes N#12, N#13, and N#15), except from
those with CTD ≥ 16 at EL ≥ 3, 000 (Node N#16), and those with CTD = 8, and ED ≤ 0.6
(Node N#10) which were classified as having mostly low AIQrcat.

• Conditional inference classification trees for the impact of MC-AIXI parameters on its
AIQSDrcat, and AIQSDarcat for all the tested episode lengths ended up being rather complex.
Attempts at simplifying them resulted in a rather balanced distribution of values in terminal
nodes. For the sake of brevity, only the selected terminal nodes of the large trees are shown
in Figure 17. The following configurations were classified as rather highly performing with
relatively high AIQ but relatively low SD:

– D = true, MC = 100, CTD = 32, AH > 3, E = 0.8, and ED = 0.3 (a);

– D = true, MC = 100, CTD = 8, AH > 1 ≤ 3, and ED ≤ 0.6 (b);

– D = true, MC = 50, CTD = 8, AH = 3, and ED ≤ 0.95 (c);
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Figure 17: Chosen terminal nodes of a conditional inference classification tree showing the impact
of varying the parameters of MC-AIXI on its AIQ and SD at all tested episode lengths.

– D = true, MC = 100, CTD ≤ 16, AH = 2, E ≥ 0.85, and ED = 0.3 (d);

– D = true, MC = 50, AH = 3, E ≥ 0.85, and ED = 0.9 (e);

– D = false, MC = 50, AH = 3, and E ≤ 0.1 (f);

Meanwhile, the following configurations were identified as rather poorly performing with
relatively low AIQ but relatively high SD:

– D = true, MC = 50, AH = 1, E ≥ 0.85, and ED = 0.9 (g);

– D = true, MC = 100, AH = 1, and ED ≤ 0.6 (h);

– D = true, MC = 100, CTD ≥ 16, AH = 1, and ED ≥ 0.9 (i);

– D = true, CTD = 16, AH = 1, and ED = 0.995 at EL ≥ 3, 000 (j);

– D = true, MC = 100, CTD ≤ 16, AH = 1, E = 0.8, and ED ≤ 0.9 (k);

– D = true, CTD = 32, AH = 1, and ED = 0.995 at EL ≥ 3, 000 (l);
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Appendix C. Extended AIQ Test

As a part of the work on this paper, the AIQ test was extended by adding the following functionality:

• The parameter exploration decay of MC-AIXI agent can be set.

• Standard deviation (SD) of AIQ score is printed by ComputeFromLog.py.

• A sample of all syntactically valid programs can be generated by BF_Sampler.py using
--theoretical_sampler option.

• Environment programs actually used by the AIQ test can be saved by AIQ.py using
--save_samples option.

• The current AIQ estimate can be saved every 1,000 interactions by AIQ.py using the option
--verbose_log_el.

• A sample of environment programs with a given minimal length can be generated by
BF_Sampler.py using -l minimal_length option. By default, programs shorter than
the specified minimal length are dropped. To use the method that extends shorter programs,
add option --extend_shorter.

Full sources are available from: https://github.com/xvado00/AIQ/archive/v1.1.
zip.
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