
Journal of Artificial General Intelligence 7(1) 1-103, 2016
DOI: 10.1515/jagi-2016-0001

Submitted 2015-10-01
Accepted 2016-6-21

 Published by De Gruyter Open under the Creative Commons Attribution 3.0 License.

The Sigma Cognitive Architecture and System:
Towards Functionally Elegant Grand Unification

Paul S. Rosenbloom ROSENBLOOM@USC.EDU

Abram Demski
Institute for Creative Technologies and
Department of Computer Science
12015 Waterfront Dr.
Playa Vista, CA 90094, USA

ADEMSKI@ICT.USC.EDU

Volkan Ustun
Institute for Creative Technologies
12015 Waterfront Dr.
Playa Vista, CA 90094, USA

USTUN@ICT.USC.EDU

Reviewers: Ahmad Al-Kashef, Roland Fernandez, Ho John Lee, Timothy Mann, Javier Snaider,
Mary-Anne Williams

Editor: Brandon Rohrer

Abstract

Sigma (Σ) is a cognitive architecture and system whose development is driven by a combination of
four desiderata: grand unification, generic cognition, functional elegance, and sufficient efficiency.
Work towards these desiderata is guided by the graphical architecture hypothesis, that key to
progress on them is combining what has been learned from over three decades’ worth of separate
work on cognitive architectures and graphical models. In this article, these four desiderata are
motivated and explained, and then combined with the graphical architecture hypothesis to yield a
rationale for the development of Sigma. The current state of the cognitive architecture is then
introduced in detail, along with the graphical architecture that sits below it and implements it.
Progress in extending Sigma beyond these architectures and towards a full cognitive system is
then detailed in terms of both a systematic set of higher level cognitive idioms that have been
developed and several virtual humans that are built from combinations of these idioms. Sigma as a
whole is then analyzed in terms of how well the progress to date satisfies the desiderata. This
article thus provides the first full motivation, presentation and analysis of Sigma, along with a
diversity of more specific results that have been generated during its development.

Keywords: Cognitive architecture, graphical models, cognitive system, Sigma

1. Introduction

Sigma (Σ) is a nascent cognitive system, the beginnings of an integrated computational model of
intelligent behavior, that is built around an eponymous cognitive architecture: a model, which is
also called Sigma, of the fixed structure underlying a cognitive system (Langley, Laird, and
Rogers, 2009). It harks back to the original grand goal of artificial intelligence (AI), as well as to

ROSENBLOOM ET AL.

2

the more recent reformulation of this goal within artificial general intelligence (AGI) (Goertzel,
2014), in seeking a working implementation of a full cognitive system. As such, it is intended
ultimately to support the real-time needs of intelligent agents, robots and virtual humans.

Sigma also has roots in the grand goal within cognitive psychology/science of developing a
unified theory of human cognition (Newell, 1990; Anderson, 2007). The desire with Sigma is for
a fully working and useful system whose development is guided heuristically by what is known
about human cognition, and which will also ultimately explain human intelligence at some
appropriate level of abstraction. In service of this goal, maintenance of a fully working system at
all times has been essential, with short-term gains in the form of detailed matches to human
behavior sacrificed as necessary in return for long-term gains in functionality and integration, but
with the ultimate hope that human cognition will be explainable in terms of the capabilities
provided plus the interactions, both positive and negative, among them.

Both Sigma’s overall development path and its relatively unique niche within cognitive
systems/architectures have been driven by a quartet of general desiderata: (1) grand unification,
spanning not only traditional cognitive capabilities but also key non-cognitive aspects such as
perception, motor control, and affect; (2) generic cognition, spanning both natural and artificial
cognition at a suitable level of abstraction; (3) functional elegance, yielding broad cognitive (and
non-cognitive) functionality – ultimately all that is necessary for human(-level) intelligence –
from a simple and theoretically elegant base; and (4) sufficient efficiency, executing quickly
enough for real-time applications involving virtual humans and intelligent agents/robots, and for
large-scale experiments in modeling human cognition. Three of these desiderata – grand
unification, functional elegance and sufficient efficiency – have been explicit for some time in the
development of Sigma. The new desideratum – generic cognition – has until now been largely
implicit because of the predominant initial focus on functionality. But, given that Sigma’s
development has always been guided by an understanding of both natural and artificial cognition,
and that a unified theory of cognition has always been an important long-term goal of work in
Sigma, expanding the earlier trio to a full quartet seemed both necessary and appropriate.

These desiderata express the long-term goals we are working towards with Sigma, while not
necessarily making claims about what Sigma currently achieves. The body of this article is about
what currently exists – everything discussed is actually implemented and running as part of an
integrated architecture unless otherwise noted – but Sigma still does fall short in significant ways
of the full desiderata. To better understand this gap, a qualitative assessment of how well Sigma
currently meets the desiderata, along with a discussion of where it concomitantly is known to fall
short, will be attempted. Cognitive architectures and systems are notoriously difficult to evaluate
via traditional experimental approaches, but sidestepping this to investigate how well such a
system meets a challenging set of desiderata can yield an alternative approach with real value.

The goals of this article are to provide the first thorough explanation of the Sigma cognitive
system in print, and perform the interim evaluation just mentioned of how well it currently
satisfies the four desiderata. The remainder of this introduction, however, first lays important
groundwork for what is to come by presenting the key hypothesis driving Sigma’s approach to
achieving its four desiderata, identifying the research strategy used in developing Sigma and the
range of results generated with it to date, overviewing Sigma’s structure as a cognitive system,
and laying out a map of the rest of this article.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

3

1.1 Graphical Architecture Hypothesis

The essence of how Sigma is to meet its four desiderata is captured by the graphical architecture
hypothesis; that is, the key at this point to achieving them is blending what has been learned from
over three decades of independent work in cognitive architectures and graphical models (Pearl,
1988; Koller and Friedman, 2009). With respect to cognitive architectures, an effort has recently
begun to capture the consensus lessons from the general history of cognitive architectures in the
form of a standard model of them (Lebiere, 2013). General architectural lessons that have been
leveraged in Sigma include the need for a long-term memory, a working memory, and perceptual
buffers; the importance of multiple forms of long-term memory; the centrality of the ~50 msec
cognitive cycle; and the criticality of combining symbolic and statistical information. Section 3
includes a discussion of additional, more specific lessons from particular architectures that have
influenced the development of Sigma, while also making the case for why the development of a
new architecture such as Sigma is necessary.

A technical introduction to graphical models is provided in Section 5.1, but in general they
concern efficient computation with complex multivariate functions by leveraging forms of
independence to decompose them into products of simpler functions, mapping the resulting
decompositions onto graphs, and computing over these graphs via message passing or sampling
algorithms. Graphical models provide working approaches to both symbol and signal processing,
and to both logical and probabilistic reasoning, thus implying a potential to support the wide
range of capabilities demanded by grand unification. They underlie much of modern artificial
intelligence while also being closely related to a pair of dominant modern threads in cognitive
modeling – neural networks (Jordan and Sejnowski, 2001) and probabilistic reasoning (Oaksford
and Chater, 2007) – and being capable of producing classical symbolic models (Domingos and
Lowd, 2009; Rosenbloom, 2009). Graphical models can, furthermore, yield all of this from a
single form of representation and inference, such as factor graphs and the summary product
algorithm (Kschischang et al., 2001), thus implying a potential to support functional elegance.
They also can go beyond merely yielding algorithms for processing signals, probabilities and
symbols, to often defining the state of the art, and thus plausibly enabling sufficient efficiency.

Graphical models have taken much of artificial intelligence and cognitive science by storm,
while also making significant contributions in other fields (Kschischang et al., 2001). They have
also inspired a spate of recent AI languages (Milch et al., 2007; McCallum et al., 2008; Domingos
and Dowd, 2009). However, what they haven’t done is have a significant impact on cognitive
architectures and systems. Graphical models should enable a much broader and tighter
integration of the capabilities required in a full cognitive system while supporting working
systems and cognitive models embodying enhanced simplicity, elegance and efficiency.

Early work on Sigma occurred under the generic label of a graphical cognitive architecture
(Rosenbloom, 2011a) to emphasize the essential graphical nature of the new work, and because it
was ambiguous whether what was being developed was more a framework based on graphical
models for exploring the space of cognitive architectures/systems or a specific
architecture/system. A name was finally chosen when it could no longer be ignored that one
particular graphical architecture/system was emerging. Sigma is a proper noun rather than an
acronym, although it was inspired by “Sigma is an integrated (and/or intelligent) graphical model
architecture.” The name was also motivated by the integrative nature of Sigma (with the goal of
summing across many capabilities), the core use of the sum(mary) product algorithm
(Kschischang et al., 2001), and the metaphorical ambition to exceed the existing state of the art
by at least a standard deviation.

ROSENBLOOM ET AL.

4

The primary point of the graphical architecture hypothesis is to make explicit what is most
unique about Sigma’s approach to achieving the above desiderata rather than to propose a
scientific hypothesis to be tested via controlled experiments. However, in a significant sense the
entire Sigma research programme is a test of the hypothesis, which is validated to the extent that
Sigma succeeds by leveraging it. As this paper proceeds, there will be numerous examples of the
power of the hypothesis, along with some situations in which it is challenged but not quite
invalidated. Together, the desiderata and the graphical architecture hypothesis provide the two
legs on which Sigma now stands.

1.2 Research Strategy and Results

Given Sigma’s desiderata and the graphical architecture hypothesis, the overall research strategy
has been to investigate capabilities suggested by an amalgam of the disparate mechanisms and
capabilities provided by existing cognitive architectures and systems, and how Sigma might
provide these in a functionally elegant manner; further mechanisms and capabilities needed for
grand unification; low hanging fruit, in terms of what graphical models most readily provide in
terms of both functionality and modeling; and what is presently doable. For each new capability
selected for investigation, functional elegance encourages deconstructing it in terms of existing
mechanisms (Rosenbloom, 2012a, 2014) to the extent feasible, where feasibility is defined as
(potential) sufficient efficiency; (potential) consistency with our understanding of human
cognition at an appropriate level of abstraction; and reusability as a component in constructing
even more complex capabilities (Rosenbloom, 2015). When architectural changes are required to
provide a new capability, preference is given to minimal changes that can yield the new capability
when combined with reuse of existing architectural mechanisms rather than to modular
construction of the new capability from scratch.

This strategy contrasts with an approach in which a necessary and sufficient set of modules
and their interconnections is hypothesized at the beginning, and then the bulk of the work consists
of implementing and testing the modules, both individually and in combination. We do not claim
to know at the beginning what modules will be necessary by the end. Instead, what we learn from
each incremental step informs the decisions that come later about both what to implement and
how to implement it. There is thus no overall architectural diagram of Sigma that shows all that
is anticipated to be part of the architecture, with some boxes implemented and others still
nominal. To a large extent, though, such a diagram is replaced by the desiderata as an expression
of all that is ultimately to be there, and the evaluation of what does and does not exist at the
moment. As will be discussed further, the non-modularity of Sigma’s design that is encouraged
by functional elegance also makes the creation of such an architectural diagram problematic.

Since 2008, when the development of Sigma was begun, progress towards grand unification
has occurred across learning and memory (Rosenbloom, 2010, 2012a, 2014; Rosenbloom et al.,
2013; Pynadath et al., 2014; Ustun et al., 2014; Ustun and Rosenbloom, 2015), perception and
imagery (Chen et al., 2011; Rosenbloom, 2011b, 2012b; Joshi et al., 2014), reasoning and
problem solving (Chen et al., 2011; Rosenbloom, 2011c), speech and language (Joshi et al., 2014;
Rosenbloom et al., 2013; Ustun et al., 2014), and social and affective cognition (Pynadath et al.,
2013, 2014; Rosenbloom, Gratch and Ustun, 2015). Insights from both natural and artificial
cognition have been incorporated, and some novel contributions to cognitive modeling – such as
the emergence of base-level activation as the prior learned over a temporal variable in episodic
memory (Rosenbloom, 2014) – have started to appear. Providing so much generality and
diversity in a functionally elegant and sufficiently efficient manner has been a constant challenge.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

5

Functional elegance, for example, makes the development of new capabilities more a process of
discovery than one of construction, while simultaneously constraining what is possible in terms of
special purpose optimizations. However, functional elegance has also implied that any
optimization to the general core that is provided by graphical models should yield pervasive
speed improvements (Rosenbloom, 2012c; Rosenbloom, Demski and Ustun, 2015).

Listing this overall range of results does not imply that the underlying capabilities can
necessarily be considered as fully complete within Sigma, but enough of each has been
demonstrated to lay a plausible case, and to begin exploring interactions among them. These
demonstrations also begin to lay the case that Sigma will ultimately be able to support the full
behavioral arc from perception and understanding, up through reasoning and cognition, and back
down to planning and action, incorporating in essence all of the computational aspects of
intelligent behavior entirely within the system rather than via interfaces to external modules.

1.3 Overall Structure of Sigma as a Cognitive System

At a high level, Sigma as a cognitive system is best understood in terms of a sequence of layers
that are analogous to those found in computer systems. Historically, the notion of a cognitive
architecture was inspired by that of a computer architecture – not coincidentally, Allen Newell,
the father of cognitive architecture, co-authored with Gordon Bell an early seminal text on
computer architecture (Bell and Newell, 1971). Both forms of architecture are fixed structures
that provide a language in which the system can be programmed; or, more appropriately for
cognitive architectures, a language in which knowledge and skills can be embodied and learned.
But, the analogy can also productively be extended beyond this single layer, as in Figure 1.

Below the
computer
architecture is a
more parallel
firmware
architecture that
defines a microcode
language for use in
bridging the gap
between what the
hardware directly
provides at the layer
below and the
desired computer
architecture. The
firmware itself is
not hardware, but
must be present at
boot time and is rarely if ever changed. This layer maps in Sigma onto a graphical architecture,
a largely parallel lower layer based on factor graphs (Kschischang et al., 2001) – an undirected
(bidirectional) form of graphical model – that bridges between Lisp, Sigma’s analogue of
computer hardware, and the cognitive architecture. The graphical architecture is the main
algorithmic driver of behavior in Sigma, with constructs expressed within the cognitive
architecture being compiled down to structures and functions at this level that can be directly

Figure 1: Corresponding computer and Sigma cognitive systems layers.

ROSENBLOOM ET AL.

6

processed. It is uncommon to think of multiple levels of architectures in cognitive systems, rather
than just a single layer defining the cognitive architecture, but just as it can provide leverage in
computer systems to have multiple architectural levels, each with its own distinct role and
defining its own language, it can also be of value in cognitive systems.

Sigma’s cognitive and graphical architectures form the two halves of the graphical
architecture hypothesis, with the former capturing much that has been learned from Soar
(Rosenbloom et al., 1993; Laird, 2012), ACT-R (Anderson et al., 2004), and other cognitive
architectures, and the latter capturing the essence of what graphical models have to contribute.
The dynamic tension, interplay and constraint between these two architectures, in both their
development and execution, is the source of much of Sigma’s unique contributions to cognitive
architectures, artificial (general) intelligence, and cognitive science. Both architectures are
intended to stay relatively simple and elegant, with straightforward compilation from the
cognitive level to the graphical level. Much of the optimization effort within Sigma has
concerned the efficiency of the graphical architecture (Rosenbloom, 2012c; Rosenbloom,
Demski and Ustun, 2015), but this will not be a major focus in this article. The latest
instantiation of Sigma – version 38 of Spring 2016 – comprises ~20K lines of code for these two
architectures, including the compiler and ancillary code (such as an interactive graphical
interface).

Above the computer architecture is a software layer that is home to a diversity of programs
and services, and which itself can be decomposed into further sublayers that are home to such
things as operating systems, programming languages and compilers. In Sigma this maps onto a
similarly diverse layer of knowledge and skills. One fragment of this layer that is of particular
importance in this article comprises cognitive idioms, which are effectively Sigma’s analogues of
software idioms, design patterns, libraries and services. Cognitive idioms provide conventional
ways of structuring knowledge and skills to yield many of the capabilities typically provided
directly as part of other cognitive architectures. For example, dividing long-term memory into
procedural and declarative memories, and dividing declarative memory further into semantic and
episodic memories, occurs via cognitive idioms rather than architectural modules in Sigma.
Similarly, distinguishing concept learning from perceptual learning, and both of these from
reinforcement learning, occurs via idioms. Being able to construct, integrate, and build
hierarchically on a wide variety of cognitive idioms is crucial to the criterion of feasibility
mentioned previously. It is also the source of many of Sigma’s other unique contributions

The earlier work under the heading of a graphical cognitive architecture actually conflated
the cognitive idioms from the top layer with the cognitive architecture at the layer below. This
combination made sense at the time because many of the capabilities implemented in standard
cognitive architectures map onto cognitive idioms in Sigma. So, thinking in terms of what exists
in Sigma that is architectural in other systems led to this combination. However, extending the
overall analogy from computer systems has helped tease out the appropriate distinction between
an architecture (and its language) versus idiomatic usages of the language; and thus clarified that
much of what is architectural in other systems is idiomatic in Sigma. This idiomatic provision of
such capabilities is a core part of what makes Sigma functionally elegant, with the manner in
which the graphical architecture implements the cognitive architecture providing the remainder.

1.4 This Article

This is admittedly a very long article, but its length enables us to describe both Sigma and the
results generated with it to date in sufficient detail. The body of this article begins with a deeper

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

7

discussion of Sigma’s driving desiderata in Section 2, followed by a discussion in Section 3 of
Sigma’s raison d’être given these desiderata, the graphical architecture hypothesis, and the space
of existing cognitive architectures. Readers most interested in the why of Sigma may want to
focus on these two sections, while readers who care only about how it works and what it yields
should feel free to skip them. Sections 4 and 5 detail the architecture, with the former covering
the cognitive architecture and the latter the graphical architecture. (The lowermost Lisp layer,
along with how the graphical architecture is implemented on top of it, is not the focus of this
article, but interested readers can see Rosenbloom, 2012c; Rosenbloom, Demski and Ustun,
2015). The cognitive architecture is presented (almost completely) without appeal to the
graphical architecture to enable those who are not interested in the lower level details of the
graphical architecture to skip over them. Sections 4.4 and 5.4 also dig further into details than
some readers may need, with the former describing the cognitive language and the latter the
compiler that converts expressions in this language into graphs. Again, readers should feel free to
skip them if so desired, although at least a cursory understanding of the cognitive language will
be helpful in following the examples that come later.

Sections 6 and 7 present results, the former in terms of a set of capabilities and their
associated idioms that can be yielded via knowledge and skills in the layer above the cognitive
architecture, and the latter via two early-stage virtual humans that are each based on integrating
multiple idioms. These sections, along with Section 4, are the right place to focus for readers
who want to understand the scope of the capabilities Sigma can deploy at present.

The results of concern in this article comprise the two architectures and how they relate, the
cognitive idioms and how they are deconstructed in terms of the cognitive architecture, and the
two virtual humans. Based on these results, Section 8 qualitatively evaluates progress to date in
Sigma by analyzing how well it presently satisfies its four desiderata, with Section 9 then
wrapping up and summarizing what has been accomplished.

2. Desiderata

Most research is driven by desiderata that are an implicit part of the discipline’s standards and
norms. Research in computer science, for example, is driven by the desire to understand what
computers are capable of, plus the achievement of key properties – such as tractability, efficiency,
robustness, and security – concerning how these capabilities can be provided. As a subdiscipline
within computer science, artificial intelligence narrows this desire to those capabilities
hypothesized to be necessary for intelligent behavior, and where the key properties tend to focus
on the quality of the outputs generated – such as how accurately a learned classifier categorizes
previously unseen inputs – and the tractability or efficiency of the requisite processing. Research
in cognitive science is instead driven by the desire to understand how people think, with
experiments that illuminate aspects of this process and models that attempt to accurately
reproduce, and hopefully explain, the results.

Research in cognitive systems and architectures is driven by the desire to understand and/or
replicate the entirety of human(-level) intelligence. Human intelligence concerns both what
people can exhibit in terms of intelligent behavior and how they achieve this. Human-level
intelligence likewise strives for the former, but generalizes the latter to any computational means
of achieving the former. Such work may sit firmly within artificial intelligence or cognitive
science, or it may span both. In the pure cases, the desiderata generally align well with the
encompassing field, with the notable added complexity of how the focus on entirety, and thus on

ROSENBLOOM ET AL.

8

an integrated whole, skews things. For example, locally optimizing each capability – in terms of
either raw performance or match to human data – to compete with the best techniques in isolation
may not be the best approach to developing the most globally optimal system. In the mixed case,
the two sets of desiderata must be blended in some way. A simple union of the two fields’
desiderata would most facilitate publication, by enabling easy alignment with existing standards
and norms, but this is typically not feasible in practice.

In the remainder of this section we explicate the four desiderata briefly mentioned in Section
1, which are hypothesized to be appropriate for work that involves both of these complexities;
that is, models of the entirety of human(-level) intelligence that span both artificial intelligence
and cognitive science. Some of these desiderata are variations on long-standing ones in cognitive
architectures/systems, while others make additional assumptions about what is desired. Either
way, by delving down below the general notion of “understanding and/or replicating the entirety
of human(-level) intelligence” they can help to both guide and evaluate the research. This section
concludes by mapping the desiderata onto the unifying notion of a cognitive hourglass.

2.1 Grand Unification

The essence of any
cognitive architecture
is the combination of
capabilities
hypothesized to
underlie thought and
intelligent behavior.
A traditional unified
cognitive architecture
attempts to integrate
the cognitive
capabilities required
for human(-level)
intelligent behavior,
with appropriate
sharing of knowledge,
skills and uncertainty
among them. A
grand unified
architecture goes
beyond this, in
analogy to a grand
unified theory in
physics, to attempt to
include the crucial
pieces missing from a
purely cognitive
theory. The goal can be thought of as being to cover all of the time scales in Newell’s analysis of
human cognition – Table 1 – which decomposes human performance into broad social, rational,
cognitive and biological bands, with each band further decomposed into a trio of layers that

Table 1: Time scales in human cognition (adapted from Newell, 1990).

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

9

individually span a single order of magnitude (Newell, 1990). This analysis includes not only the
full range of cognitive behavior but also the relevant subcognitive behavior, in the biological
band. Anderson (2002), for example, discussed the specific possibility of a single model
spanning seven of these layers. In Sigma, we are striving to cover all four bands in the long term,
but as described further in Section 2.2, with respect to the biological band this ambition extends
only as far as a graphical abstraction of it.

Another way to think about grand unification is in terms of unifying across the full arc from
perception and attention, up through cognition, and back down to intention and action. This shifts
issues of embodiment, grounding and interaction into the foreground, to converge with work on
(intelligent) robot and virtual human architectures (Coste-Manière and Simmons, 2000; Murphy,
2000; Badler, 1997; Hartholt et al., 2013), but without then relegating traditional cognitive
concerns to the background.

So grand unification involves spanning both cognitive and subcognitive functionalities as
well as both central thought processes and more peripheral perceptual and motor processing. It
also involves spanning both the traditionally studied rational thought processes and what may
seem like the less rational processes involved in emotion and affect, but which capture what can
be considered the wisdom of evolution in natural systems by providing non-voluntary pressures
that have proven – via natural selection – to be adaptive over the long-term.

Although creating a (grand) unified cognitive system was the originating grand challenge of
AI, it is now more a definition of the span of topics covered by the field, and even then, many of
the topics have branched off into their own separate disciplines, with only residuals left within the
main line of AI itself. Similarly, (grand) unification is more of a way of defining the span of
topics within cognitive science than an explicit goal for most researchers in that interdisciplinary
field. (Grand) unification is, however, an important goal in Artificial General Intelligence (AGI),
which has explicitly resurrected the original AI grand challenge, and in various subfields that
focus explicitly on cognitive systems and architectures, including work on architectures for
intelligent robots, agents and virtual humans.

2.2 Generic Cognition

Generic cognition concerns a deliberate conflation of natural and artificial cognition. Ideas and
results from both may be freely intermingled in guiding and constraining the development of an
artificial mind that may serve both as a useful artifact on its own and as a model of natural minds
at some level of abstraction. Unlike grand unification, generic cognition is not about combining
multiple capabilities per se, but about finding the essential underlying commonality among their
natural and artificial variants. The recent notion of substrate independence – that mental states
can exist on a variety of different organic and inorganic substrates (Bostrom, 2001) – captures
one aspect of what is meant here by “some level of abstraction.” But the general idea is much
older, going back at least to Marr’s (1982) three levels of analysis of information processing
systems and Newell’s analysis of time scales in cognition (Table 1). The work on Sigma – as
with Soar before it – has been heavily influenced by Newell’s analysis.

At a high level, the key questions Newell’s analysis raises for cognitive modeling are, what
are the distinctive properties of the different bands, and of the time scales within each band?
within which bands and time scales do different human functionalities fall? and, can a cognitive
system provide comparable layers and a comparable distribution of functionalities across the
layers? A precise mapping is difficult between Sigma and this analysis, but Sigma’s graphical
and cognitive architectures are intended to correspond roughly to portions of the biological and

ROSENBLOOM ET AL.

10

cognitive bands, respectively. Newell’s and others’ work with Soar helped establish the latter
part of this mapping. The known mapping between graphical models and neural networks
(Jordan and Sejnowski, 2001) bolsters the former part of it, but with the graphical architecture
clearly abstracting away many of the lower-level details of the biological band. From the
perspective of generic cognition, it may even be worth asking whether it would be better to
replace Newell’s “natural” notion of a biological band with the more generic notion of a
graphical band that subsumes neural networks, graphical models, and other highly parallel
graphical/network models.

Although not always stated explicitly in writings on Soar, the desideratum of generic
cognition is a direct inheritance from the work practice in that project. In Sigma, the emphasis on
functionality, the appeal to graphical models, and the prospect of applications in virtual humans
and intelligent agents/robots are clearly most tied to the artificial side. The relevance of existing
cognitive architectures, the concern with time scales in cognition – for example, distinguishing
what happens within a single deliberate act at the bottom of the cognitive band (~100 msec)
versus a sequence of deliberate acts at longer time scales – and the prospect of (unified) theories
of human cognition are clearly most tied to the natural side. The initial emphasis in modeling
within Sigma is on getting the gross structures right, with the expectations that more detailed
matches will follow (typically starting with low hanging fruit).

Cognitive science might have developed as the science of generic cognition, but it has instead
mostly followed a narrower path, leveraging insights from both natural and artificial systems in
modeling natural cognition, that has led it to bypass how these insights could also help develop
artificial (general) intelligence. Two relatively new communities, Biologically Inspired Cognitive
Architectures (BICA) and Advances in Cognitive Systems (ACS), are more committed to generic
cognition, but with the former emphasizing the low-level subcognitive aspects and the latter the
high-level cognitive aspects.

2.3 Functional Elegance

Functional elegance implies combining broad functionality – generically cognitive grand
unification in this case – with simplicity and theoretical elegance. The goal is something like a
set of cognitive Newton’s laws that yield the required diversity of behavior from interactions
among a small set of general primitives. Illustrative analogies can also be drawn to chemistry,
where a diversity of molecules arises from interactions among a relatively small set of elements;
and to mathematics, where large numbers of theorems can be proven from small sets of axioms.
Developing new capabilities in such a framework typically amounts to more of a discovery
process than simply an implementation process, with many of the functionalities exhibited within
Sigma most appropriately being thought of as being deconstructed (in terms of a combination of
more primitive capabilities) or proven (in an informal sense from ground mechanisms). As a
result, many of the results are demonstrations that an appropriate deconstruction/proof can be
found with little to no extensions at lower levels. Functional elegance bears a relationship to the
notion of emergence (O'Connor and Wong, 2015), but is a weaker notion in not necessarily
implying that nothing need explicitly be added as we move upwards.

Whatever approach is taken to achieving functional elegance, if the primitives are combinable
in a flexible enough manner, new capabilities continue to flower without the need for new
architectural modules, and integration occurs naturally through shared primitives. There is also
increased potential for establishing theoretical claims about such a model, and for yielding

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

11

systems that are ultimately easier to understand, use and maintain. A functionally elegant theory
may also provide a deeper and fundamentally better explanation with reach (Deutsch, 2011).

Still, functional elegance is far from generally accepted as a goal for cognitive systems, due
presumably to doubts that such a theory is within reach or to an assessment that a diverse core
provides a better path to developing full cognitive systems. When modeling human behavior is of
concern, the importance of functional elegance is even more debatable than when implementing
artificial cognition. Against it is the argument that evolution has been tinkering with natural
minds, and extending them in ad hoc ways, for millions of years (Minsky, 1986). But in its favor
is the argument from rational analysis: that human minds have developed to provide
(computationally bounded) optimal responses to their environments (Anderson, 1990; Chater and
Oaksford, 1999). Moreover, if two equally accurate models of human cognition were to exist,
one of which was functionally elegant and the other not, Occam’s razor would favor the former.

2.4 Sufficient Efficiency

Sufficient efficiency implies implementing cognitive systems in a manner that is efficient enough
to support their anticipated uses. It takes a satisficing perspective on the classic computer science
and AI goal of optimization, in the spirit of Herb Simon’s proposal that humans are satisficers
rather than optimizers in making decisions (Simon, 1956), and as partial protection from
overdoing local optimization. Still this does not mean that timing is unimportant; it is in fact still
crucial. What it does imply, though, is that the criterion of comparing timings across systems –
who beats whom – is to be replaced by how well the timings match the needs of the models and
applications that are relevant to human(-level) intelligent behavior. Comparisons across systems
are still relevant, but only in terms of which systems yield more appropriate timings.

Sufficient efficiency has both a real-time component and a model-time component. The real-
time component concerns the speed, and at times the boundedness, of execution. This has a
theoretical aspect, concerning whether an implementation is even possible that is computable and
either sufficiently tractable or boundable; for example, whether the core cognitive cycle – which
is to map onto ~50 msec in humans (Card, Moran and Newell, 1983; Anderson, 2007; Kieras and
Meyer, 1997; Laird, 2012; Rosenbloom, 2012c), or roughly half of a deliberate act from Table 1
– is provably bounded, or at least tractable. But the larger part of this is pragmatic, ensuring that
the system executes quickly enough on available computers for anticipated applications, whether
controlling robots in the physical world or providing virtual humans that can interact with people
in real time. For cognitive modeling, it is sometimes possible to get by with just simulated real-
time. However, even there speed becomes increasingly critical as experiments scale up, such as
with very large memories (Douglass et al., 2009; Derbinsky et al., 2010). Efficiency has been a
continuing concern in the development of Sigma, starting with an initial appeal to the breadth of
state-of-the-art performance yielded by graphical models, and extending to further optimizations
that are discussed partly in Section 5.2.4 and in further detail in Rosenbloom (2012c) and
Rosenbloom, Demski and Ustun (2015). Yet, significant additional work is still necessary.

The model-time component of sufficient efficiency concerns whether activities execute at
appropriate human time scales when counting the number of primitive model steps, independent
of how much real time is required to execute the model steps. In Soar, for example, the model
steps are decision cycles, each of which is to correspond to ~50 msec of human time. If humans
can execute some aspect of processing in less than 50 msec, then implementing it via multiple
decision cycles would be insufficiently efficient in model-time. In principle, sufficient efficiency
– whether model-time or real-time – can lead to tradeoffs with functional elegance when the most

ROSENBLOOM ET AL.

12

elegant way to implement a capability is not sufficiently efficient. Such situations are worth
particular attention as critical challenges to the feasibility criterion introduced earlier.

2.5 Cognitive Hourglass

Physics analogies were used in explaining the first
desideratum, but there is a different analogy, from computer
networking, that can provide further insight into all four
desiderata and how they relate to each other (Rosenbloom,
2011a). The Internet Hourglass (Deering, 1998) – Figure 21 –
ties together the diversity of network applications and
implementation technologies via the narrow waist of the
Internet Protocol (IP). In the network protocol stack, IP
divides the world into “everything on IP” (i.e., the diversity of
applications implementable on top of IP) versus “IP on
everything” (i.e., the diversity of implementation technologies
available for IP). In the corresponding cognitive hourglass,
shown in Figure 3, the move from unification to grand
unification amounts to a horizontal expansion of the top of the hourglass. Generic cognition
thickens the hourglass, making it 3D, so that its entirety covers both natural and artificial
cognition. Functional elegance corresponds to the
upper half of the hourglass, where behavioral
diversity at the top is grounded in the small elegant
core provided by the waist. Sufficient efficiency
spans the height of the hourglass, with the overlap in
the top half reflecting the tradeoffs that may occur
between it and functional elegance.

The four layers of Sigma shown in Figure 1 can
be mapped onto this cognitive hourglass, although it
has taken a few years to understand how to do this
properly. In the early work on Sigma, when its
cognitive architecture and cognitive idioms (i.e., its
analogues of programming idioms) were combined
conceptually into a graphical cognitive architecture,
the bottom two layers – to be more precise, the
graphical architecture and its implementation in Lisp
– were also combined, into what was called an
implementation layer, which was so named because
it implemented the cognitive architecture
(Rosenbloom, 2011a). At that time, this
implementation layer was mapped onto the waist of
Sigma’s cognitive hourglass. However, two significant adjustments have since been made to this
mapping to yield the hourglass in Figure 4. First, recent work on optimizing Sigma’s
implementation code (Rosenbloom, 2012c; Rosenbloom, Demski and Ustun, 2015) has made it

1. Reproduced under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0
Generic and 1.0 Generic license.

Figure 2: Internet Hourglass.

Figure 3: Cognitive Hourglass.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

13

obvious that the layers do widen in moving down from the graphical architecture to the code that
implements it, via alternative special-case implementations and optimizations, and that thus only
the former should be at the waist, with the latter below it.2 The implementation – now of the
graphical architecture rather than the cognitive architecture – is still shown in the figure, but in a
distinctive manner to signify that it isn’t an identifiable
layer in Figure 1. Second, separating cognitive idioms
from the cognitive architecture revealed how truly minimal
the latter was when considered on its own, although still
not quite as minimal as the graphical architecture. Both
the idioms and architecture are shown in Figure 4, with the
same caveat about the former as about the implementation.

3. Why Sigma?

Cognitive architectures are hypotheses about the fixed
structures, and their interactions, underlying intelligent
behavior in natural and/or artificial systems. In simpler
words, they are hypotheses about the nature of mind.
When implemented, they are typically large, complex
software systems. Given the range of cognitive
architectures that exist (see, for example, Langley, Laird
and Rogers, 2009; Goertzel, 2014), and the years – if not decades – required to fully develop a
new one, a compelling rationale is necessary for it to be worth developing a new one. With
Sigma, the impetus stemmed from the demands imposed by the four desiderata – which no
existing architecture fully satisfies – plus the revolutionary potential of graphical models to do so.

The two foundational systems in cognitive architecture are ACT-R and Soar, both of which
have been under development in some form for over three decades. ACT-R and its lineal
ancestors, such as ACT* (Anderson, 1983), have appeared in many variations over the years in
their drive to model a broad swath of the microstructure of human cognitive behavior. Although
ACT-R is primarily focused on modeling human cognition, and largely symbolic in nature, its
models have been used in applications, such as human performance modeling in military
simulation (Best et al., 2002), and it has always had a central, subsymbolic, activation component.
It has also more recently been mapped onto regions of the brain (Anderson, 2007) and hybridized
with neural networks for visual perception (Jilk et al., 2008). Two of the lessons from the history
of ACT-R that go beyond the standard model and have influenced Sigma are (1) the pervasive
importance of subsymbolic processing even in the context of traditional symbolic processing, and
(2) how to successfully use an architecture in modeling the microdetail of human cognition.

Soar began as a symbolic cognitive architecture geared towards building artificially
intelligent systems, but with a backstory that included building a unified theory of human
cognition (Newell, 1990). In its early days it was based on a working memory of object-attribute-
value triples and a long-term memory based on a parallel rule system (Laird, et al., 1987). Firing
rules in long-term memory could change working memory and yield preferences for operators to
be applied (by more rules) in problem spaces (Newell et al., 1991). This behavior was driven by

2. The role of the graphical architecture at the waist of this hourglass bears a strong resemblance to the
notion in Alchemy of Markov logic providing an interface layer for AI systems (Domingos and Lowd,
2009).

Figure 4: Sigma Hourglass.

ROSENBLOOM ET AL.

14

a decision cycle consisting of two phases: elaboration, during which rules fired; and decision,
during which operators were selected. When decisions were problematic, impasses occurred that
led to reflection. Soar’s learning mechanism (chunking) created new rules that captured the
reflective problem solving that resolved impasses. Since these early beginnings, additional long-
term memories have been added to Soar – for semantic, episodic and imaginal knowledge – and
several new learning mechanisms have also been added, including semantic, episodic and
reinforcement (Laird, 2012). Some aspects of Soar have also recently taken on a subsymbolic
flavor, such as numeric preferences (for decision making and reinforcement learning) and
activation (for attention). A number of these changes have been influenced strongly by ACT-R.

Sigma can be viewed as an attempt by one of the original co-developers of Soar to retain
what still seems right about it after all of these years – at least to him – while radically rethinking
those core assumptions that appear to be holding it back. The additional lessons from the history
of Soar that have influenced Sigma include (1) the use of problem spaces to structure cognitive
behavior; (2) the importance of the two-phase structure of the cognitive cycle; (3) the functional
elegance of a nested three-layer model of control that layers reactivity within deliberation and
deliberation within reflection; (4) the importance of an automatization/knowledge-compilation
mechanism such as chunking for real-time behavior in the presence of complex reflective
reasoning; (5) the push for uniformity that existed during Soar’s early days, with Allen Newell’s
advice of “listening to the architecture” rather than immediately adding new modules when
extending Soar’s functionality; (6) how to approach generic cognition by balancing the
construction of functional AI systems with modeling of human cognition; and (7) the importance
and difficulty of integrating capabilities implemented via knowledge on top of the architecture.

Rather than implementing a new architecture from scratch, could we instead have directly
built upon either ACT-R or Soar? The simple answer is no. Both architectures do achieve
significant levels of generic cognition, although ACT-R is stronger on the natural side and Soar is
stronger on the artificial side. Soar, and possibly ACT-R, is also strong on sufficient efficiency.
However, both are built from a diverse set of modules that are implemented directly in some
ground programming language, and require more modules of quite different sorts to expand from
unification to grand unification. Soar has, for example, been connected to external speech, vision
and SLAM (simultaneous localization and mapping) modules at various times. Figure 5
caricatures the difference between a diverse/modular architecture and a functionally elegant one.
Figure 5(a) is roughly based on the latest versions of Soar, but the general approach applies to
other diverse architectures such as ACT-R, CogPrime (Goertzel et al., 2014) and PolyScheme
(Cassimatis, 2002) as well. Figure 5(b) maps roughly onto Sigma’s functionally elegant
approach, with different functionalities arising as distinct specializations and combinations across
a common underlying base.

Figure 5: Caricature of modular versus functionally elegant architectures.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

15

To yield 5(b) from 5(a) would require reimplementing the modules making up the latter in a
more functionally elegant manner; that is, exactly what we are trying to do with Sigma by starting
out with a hybrid (discrete + continuous) mixed (symbolic + probabilistic) approach from the very
beginning, via a grounding in graphical models that span signals (continuous), probabilities
(discrete and continuous) and symbols (discrete).

One of the major roadblocks Soar ran into over the years was that, although its original small
set of architectural mechanisms could be shown to yield a wide diversity of intelligent behaviors,
due to control conflicts, too often these derived behaviors were in turn too difficult to reuse when
constructing more complex behaviors and systems. This is what led, for example, to the later
inclusion of a semantic memory module, even though the basic capability was demonstrated years
before via Soar’s existing rules and chunking mechanism (Rosenbloom, et al., 1987). In contrast,
a recent analysis explains how Sigma can implement semantic memory and learning in a
functionally elegant manner, as a supraarchitectural cognitive idiom that can integrate
straightforwardly with other such capabilities (Rosenbloom, 2015). Section 6 includes numerous
examples of how Sigma has enabled the specification and reuse of a diversity of intelligent
capabilities, while Section 7 demonstrates integrations across significant numbers of them.

When leveraging functional elegance in comparing Sigma with existing architectures like
Soar and ACT-R, an analogy with the Copernican revolution can be illustrative. Copernicus
revised a fundamental assumption at the heart of our understanding of the solar system – shifting
from a geocentric to a heliocentric view – to yield a new model that was simpler and more elegant
than the prior Ptolemaic model, although it didn’t necessarily match the astronomical data any
better, and in fact appears to have been slightly worse. The Copernican model also had some
additional rough edges itself, retaining some of the smaller epicycles from the Ptolemaic model
while dispensing with the larger ones. Yet by shifting to a simpler and ultimately more correct
core assumption, it started down a path that enabled Kepler to refine it further by generalizing the
orbits from circular to elliptical. In a similar manner, with Sigma we often first yield a
Copernican result that reformulates an existing capability to be more elegant, even though it may
still have rough edges of its own and may not be an improvement in functionality or modeling. In
some cases, though, we have also been able to take the next step of refining this to a more
Keplerian result.

What about starting with architectures other than Soar and ACT-R? Most are constructed
from a diverse set of modules, like ACT-R or Soar, including some like CogPrime and
PolyScheme that take strong positions in favor of this form of diversity. Starting with any of
these architectures would be as difficult, if not more difficult, than starting with ACT-R or Soar.
The biggest exception is AIXI, a proposal for universal artificial intelligence (Hutter, 2005) that
strives for an extreme version of functional elegance, in terms of a single equation that covers all
of intelligence. It also strives for a form of grand unification in its appeal to universality.
However, it is completely focused on artificial intelligence, and has major issues with sufficient
efficiency; as originally defined, it wasn’t even computable, although computable approximations
are being explored (Veness et al., 2011). A bigger issue with respect to the goals of Sigma is that
it does not support exploration of the graphical architecture hypothesis, incorporating neither the
lessons from cognitive architectures nor those from graphical models. Fundamentally, building a
cognitive architecture based on graphical models at this point requires starting from scratch.

It would be conceivable to start from a different, and possibly preexisting, graphical
architecture or language, rather than the homebrewed version used in Sigma. There are many
more candidates available now than existed when the work on Sigma was begun, but that is a

ROSENBLOOM ET AL.

16

different question, and one that still would require replication of all of the kinds of work
described in this article above the graphical architecture.

4. Sigma Cognitive Architecture

In this section the Sigma cognitive architecture will be presented without reference to the
graphical architecture that supports it at the level below. Early descriptions of Sigma began with
the graphical architecture because, given the state of understanding at that time, it was unclear
how to explain and justify the cognitive architecture without first covering the graphical
architecture, whose beginnings predated the cognitive architecture and whose capabilities
inspired its design. It is now, however, possible to explain the cognitive architecture on its own,
hopefully leading to a clearer and more autonomous understanding of it. Presentation of the
graphical architecture and the way the cognitive architecture maps onto it have therefore been
deferred to Section 5. Furthermore, the conceptual structure of the cognitive architecture is
presented first, without direct reference to the cognitive language that is induced by the
architecture (Section 4.4).

At the core of the cognitive architecture is a cognitive cycle (Figure 6) that is intended to
correspond to the ~50 msec cycle in humans, and which thus also maps approximately onto the
decision cycle found in Soar (Rosenbloom, 2011c) and onto the corresponding cycles in other
architectures. Sigma’s cycle has two minor and two major phases. Input and output, at the
beginning and end of the cycle, are minor phases intended to perform just the basic transduction
that enables the system to interface with its environment. Both grand unification and functional
elegance direct that perceptual and motor processing should as much as possible happen inside
the system, in a uniform manner with other forms of processing: that is, via processing within the
two major phases.

In the first major phase (Section 4.1) knowledge about the current situation is processed,
including retrieving it as necessary and drawing conclusions from it. It is named the elaboration
phase because its role is, much like that of the elaboration phase in Soar, to elaborate in a largely
monotonic manner (i.e., in a non-decreasing manner) what is understood about the current
situation. However, the kinds of knowledge that can be represented and the kinds of processing
that can occur have both been greatly expanded, spanning hybrid and mixed representations and
subsuming symbol, probability and signal processing. Sigma’s elaboration phase thus involves
both symbolic and sub-symbolic “knowledge,” and performs not only normal cognitive reasoning
but also perceptual processing and other critical forms of sub-cognitive processing. Functionally,

Figure 6: Sigma's cognitive cycle.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

17

the elaboration phase updates distributions over variables, in parallel (at least logically) and
repeatedly, until quiescence is reached: that is, until no more updates are available. It does not,
however, either make choices or learn.

The second major phase (Section 4.2) is largely non-monotonic, making choices and
persistent changes to memories based on the quiescent distributions engendered by the
elaboration phase, while also engaging in meta-architectural processing that senses and modifies
how the architecture itself works. This adaptation phase roughly maps onto the decision phase in
Soar, but the new name explicitly acknowledges that a wider range of adaptation is occurring that
goes beyond just the selection of operators to apply to states. Adaptation here spans short-term
modifications to working memory – including but not limited to selection of operators and the
reflection that can result when decisions about operators are not possible – as well as alterations
to the system’s affective and attentional states. It also includes long-term modifications to long-
term memory; that is, learning.

Consider a simple classification scenario that spans all four phases of this cycle, involving
perception, classification, selection and action:

Input: A set of features is perceived [color=silver] for an object o1
Elaboration: A classifier (Figure 7) yields a distribution over the implied concept for o1;

and then a rule proposes an operator that prints the concept
Adaptation: An operator is selected for printing the concept [walker]
Output: The concept name is printed [Concept: walker]

This scenario will serve as a running example
through this section and the next few. It is far
from comprehensive enough to cover everything
that will be seen, but it does encapsulate enough
of the
core
ideas

to be
illustr

ative – including procedural (rule) and declarative
(semantic) memory, operator selection, perception and
action – and it can be extended with semantic and
episodic learning. To cover where it falls short, a
variety of other implemented examples will also be
introduced as necessary, including several – such as the
Eight Puzzle and a small, discrete 1D world – to which
we will refer back a number of times.

As in Soar, Sigma’s cognitive cycle is central in
supporting the problem space computational model
(Newell et al., 1991), where goals are achieved by
searching in problem spaces that are specified in terms
of sets of states and operators. Also as in Soar the
cognitive cycle is the basis upon which a functionally
elegant tri-level control structure is constructed in a
nested manner: (1) a reactive capability that is based
on a single cognitive cycle (Figure 8(a)) serves as the inner loop of (2) a deliberative capability
that is based on a sequence of cognitive cycles (Figure 8(b)), and which itself serves as the inner

Figure 8: Tri-level control structure.

Figure 7: Simple naïve Bayes classifier (as a
Bayesian network).

ROSENBLOOM ET AL.

18

loop of (3) a reflective capability that is based on impasses in decision making plus processing at
the metalevel (Figure 8(c)). Section 4.3 further discusses this nested control structure.

4.1 Elaboration Phase

The elaboration phase is largely about memory, and about spinning out the consequences of what
is in memory. Sigma’s cognitive memory is conceptually partitioned into a long-term memory
(LTM), a working memory (WM) and a perceptual buffer (PB) (Figure 9). Like the early
versions of Soar, Sigma has only one long-term memory and one working memory. However, in
Soar, perception is stored directly in WM, whereas in Sigma it is most cleanly considered as
occupying a separate memory that maintains the contents of perception until it is changed, while
also passing the contents on to WM for consideration.

In effect, the elaboration phase combines the knowledge
that is available within these three memories at the beginning
of the phase to yield new WM content at the end of the phase.
Output in Sigma is still based directly on the contents of WM,
as in Soar, with no distinct output buffer defined, but this may
change if further experience with motor control should indicate
a need for it.

Distinctions between different types of LTM, WM (and
PB as appropriate) – such as procedural, declarative (whether
semantic or episodic), imagery, visual and auditory – occur
above Sigma’s cognitive architecture, via cognitive idioms
(Section 6). In other words, these varieties of memories are
deconstructed in terms of the more basic memory structures
provided by the cognitive architecture. One consequence of
this is that portions of perceptual, working and long-term
memory may be ascribed as necessary to each idiomatic
memory that is defined.

All three memories contain functions, each of which
specifies real values over a domain defined by a set of
variables. Long-term memory also contains structures that are
defined as patterns over multiple functions. The remainder of
this subsection explores these two topics.

4.1.1 FUNCTIONS

Functions yield real values over domains defined via zero or more variables. Each variable
within a function can be numeric – either continuous or discrete – or symbolic, and mixtures of
variable types across dimensions of individual functions are possible, and in fact common. The
real values in the range of the functions are typically non-negative, due to constraints imposed by
the graphical models at the level below, but at least one important situation in which negative
values matter, and are in fact allowed, will be discussed shortly. Functions may be normalized
over one or more variables – for example, to yield probability distributions – but they need not
be.

Consider a few examples. One of the simplest represents the conditional probability of the
color of an object given its category – P(Color | Category) – as a function over two symbolic
variables that is normalized along the Color variable. For each combination of Color and

Figure 9: Cognitive memories.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

19

Category, the value of the function is the probability of that Color given that Category. A more
complex example of a similar sort is the mental representation of a map during Simultaneous
Localization and Mapping (SLAM) (Bailey and Durrant-Whyte, 2006). Figure 10 shows the
small, discrete, 1D world in which the early experiments with SLAM in Sigma were done. In a
more realistic 2D version,
there are three variables: X
and Y for the two spatial
dimensions, and Object for
the objects that may exist in
the world. The spatial
dimensions could in principle be continuous, but the implementations of SLAM in Sigma have so
far used discrete numeric dimensions/variables. Object is a symbolic variable. What is
represented and in fact learned here is a conditional probability distribution corresponding to
P(Object | X, Y), with normalization along the Object variable.

The board in the Eight Puzzle (Figure 11), a classic
sliding-tile puzzle, can be represented similarly, although the
current implementation in Sigma uses two continuous, rather
than discrete, spatial variables plus a discrete numeric variable
for the tile. The resulting hybrid function, when normalized
along the Tile represents P(Tile | X, Y), as shown in Figure 12.
Effectively, a distinct 2D plane is defined for each tile, with

the
value

of 1
over

the entire region in the plane covered by
the tile and 0 everywhere else. This
representation can thus be viewed as both
an occupancy grid for the tiles and a
mental image for the board.

We will finish up these examples of
cognitive functions with two simple but
rather different forms. The first example
encodes whether one object is above
another via two symbolic variables for
objects, with a functional value of 1 when
the first object is above the second object,
and a functional value of 0 elsewise. The
result is an unnormalized Boolean
function – Above(Object1, Object2) –
that serves as a symbolic relation between
the variables. The second example
encodes distributed vectors, like in Figure
13 and as used in neural networks, deep learning, word embeddings and holographic models
(Rumelhart et al., 1986; Bengio et al., 2003; Collobert and Weston, 2008; Mikolov et al., 2013;
Mnih and Kavukcuoglu, 2013; Turney and Pantel, 2010; Jones and Mewhort, 2007). Such
vectors are typically used, for example, to learn and represent the meaning of words or concepts

Figure 12: Partial visualization of a hybrid representation
for the Eight Puzzle board, with one bounded

(continuous) 2D plane per tile (including the blank). Only
the regions corresponding to the blank and the first tile are

highlighted (in gray).

Figure 10: Small 1D world bounded by indistinguishable walls and
with two distinct doors.

Figure 11: Eight Puzzle board.

ROSENBLOOM ET AL.

20

in a form that enables vector similarity – for example, as computed by the standard cosine
similarity metric – to correlate with meaning similarity. We have initial experience in learning
and using such vectors in Sigma – under the name DVRS (Distributed Vector Representation in
Sigma) – for example, in supporting analogical reasoning among words (Ustun et al., 2014).
Distributed vectors do require negative functional values, as shown in the figure, so as to exploit
all four quadrants of the vector space. Normalization must then convert such functions into unit
vectors rather than ensuring that they sum to 1 – that is, it must yield vector rather than
probabilistic normalization.

When Sigma is used to represent multiple agents within a single software image, all of the

functions that are to be agent specific are augmented with an additional discrete variable – either
symbolic or numeric – for the Agent. For example, in SLAM the function is extended from
P(Object | X, Y) to P(Object | Agent, X, Y). This enables multiple agents to run independently
within one instance of the cognitive architecture, rather than requiring a new instance for each.

 Both working memory and the perceptual buffer are composed entirely of functions. The
values of perceptual functions are determined directly by what appears in the input phase of the
cycle. This is combined during the elaboration phase with the functions retained in WM from the
previous cognitive cycle and what is retrieved from long-term memory to yield new functions in
WM. This may then cue further retrievals from LTM until quiescence is reached. LTM also
contains functions, but structures also play a significant role.

4.1.2 STRUCTURES

In addition to functions, long-term memory also embodies more complex structures that are
defined as patterns over multiple functions. As a result, a more involved retrieval process is
necessary for LTM that ends up being inextricably bound together with inference: the structures
themselves implicitly define how both are to proceed.

One form LTM structures can take in Sigma is as fragments of probabilistic networks. For
example, combining a prior distribution over a
category with conditional distributions over
various features given the category can yield a
naïve Bayes classifier – Figure 7 – as found in
generative concept learning. Likewise,
combining a probabilistic transition function that
relates the previous state in a sequence to the
current state in the sequence – P(Si | Si-1) – with a
distribution over a perceived feature given the
state – P(Fi | Si) – can yield a hidden Markov
model (HMM), as shown in Figure 14 and used in
speech processing. Or, combining a pair of
probabilistic transition functions, one each for a
pair of agents, A and B, can yield a POMDP for solving the Ultimatum Game, as shown in Figure
15, where A starts with a fixed amount of money (3 in this example), and offers a portion of it to
B, who then accepts or rejects the offer. If B accepts, it receives the offered amount, while A
keeps the remainder. However, if B rejects the offered amount, both get 0 (Pynadath et al., 2013).

Figure 13: Example continuous vector for representing word meaning in a distributed fashion.

Figure 14: Three-stage hidden Markov model (as
a dynamic Bayesian network).

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

21

Sigma’s LTM structures can
also take the form of symbolic
rules, built from conditions and
actions over symbolic relations
(Figure 16). As with Soar, such
rules may play many roles in
Sigma, from providing basic
inferences (Figure 16(a)), to encoding plans and generating control information (Figure 16(b)), to
specifying how to apply selected operators.

Beyond directly enabling the encoding of
probabilistic networks and rules, Sigma’s LTM
can also support various micro- and macro-level
combinations of them. Micro-level combinations
combine aspects of both probabilistic networks
and rules into mixed and hybrid forms. They
may be as simple as probabilistic rules, or as
complex as some we shall discuss later. Macro-
level combinations combine multiple distinct
structures. This could simply involve chaining across rules, or combining multiple distinct
probabilistic networks, such as combining a conditional random field for object perception, a
probabilistic localization network (a key part of SLAM), and a POMDP for action choice, into a
larger composite network that goes from perception through localization to decision making
(Figure 17). Or it could involve combining rules and probabilistic networks, as when a rule is
used to select either the most probable concept in the classification scenario or the single best
word from a hidden Markov model for speech recognition (Joshi et al. 2014).

The details behind all of this will become clearer as the cognitive language is introduced in

Figure 15: Trellis for the Ultimatum Game (as a factor graph).

Above(a, b) ⋀ Above(b, c) → Above(a, c)
(a) Transitive rule for above.

Figure 16: Two example rules. Variables are
italicized while constants are not.

Concept(o1, c) → Operator(c)
(b) Rule for selecting the concept for object o1
as the operator in the classification scenario.

Figure 17: Combining a conditional random field, a probabilistic localization network, and a POMDP as
factor graphs in a composite graph that spans from perception to decision making (Chen et al., 2011).

ROSENBLOOM ET AL.

22

Section 4.4, but in summary at this conceptual level, such memory structures in Sigma have to
date been shown to subsume – typically via specific cognitive idioms – forms of procedural
(rule), declarative (semantic and episodic), constraint, perceptual (speech and vision), action and
imagery memories, along with various combinations of them. Memory retrieval, basic reasoning,
and perceptual processing all occur in Sigma by the processing implied by such structures.

4.2 Adaptation Phase

The adaptation phase is inherently about making changes. This includes decisions about the
operators to be applied to make progress in the current situation, but it also includes changes to
working memory more generally plus aspects of reflection, learning, affect (i.e., emotion), and
attention. This material is sequenced as follows in the rest of this section: selection and changes
to WM (Section 4.2.1), goals (Section 4.2.2), affect/emotion (Section 4.2.3), learning (Section
4.2.4), surprise (Section 4.2.5), and attention (Section 4.2.6). Although affect is listed as the topic
of Section 4.2.3, a full comprehension of it and its implications in Sigma requires an
understanding of much of the rest of this overall discussion of the adaptation phase. Also,
although attention is listed as the topic of Section 4.2.6, much of the relevant material is by
necessity delayed until the tri-level control structure is introduced in Section 4.3; and although
reflection is mentioned in Section 4.2.1, its discussion is also not completed until Section 4.3.

4.2.1 SELECTION AND CHANGES TO WM

Operator choices in Sigma – for example, choosing an operator to print the current concept, as
suggested by the rule from the classification scenario in Figure 16(b), or choosing to move the 3
tile down in Figure 11 – involve selecting a single value for the Operator variable of an
architecturally distinguished WM function. When multiple agents are to be run simultaneously,
this WM function also includes an Agent variable, with independent decisions then being made
for each of the agents represented.

Rather than including a special language of preferences for such decisions, they are based on
implicit numeric preferences, by choosing the argmax of the distribution over the Operator
variable (Rosenbloom, 2011c). For the rule in the classification scenario, each possible concept
is weighted according to the probability it is the correct concept, as computed by the classifier,
with the most probable concept – walker in this case – being thus chosen as the operator.
Operator selection of this sort, however, turns out to be just one special case of Sigma’s general
ability to select elements from distributions in updating working memory. Such selections can
happen for arbitrary functions, and need not be based on argmax. In general Sigma can also
select the expected value of a distribution; do probability matching to select one element with a
likelihood that corresponds to its value in the distribution; do Boltzmann selection, corresponding
to probability matching on a distribution that is first weighted and exponentially transformed; or
maintain the entire distribution, as is, without an explicit choice. A key task of the elaboration
phase is to yield the distributions that support these selections.

For operator selection, only a subset of these alternatives is valid, based on the implicit
assumption that a single element is always to be selected if the distribution is sufficient to
determine which element it should be. No operator is selected if none of them has a positive
value, as a positive value acts much like an acceptable preference in Soar. No element is also
selected if there are multiple elements with the same maximum positive value, but where this
maximum value is less than 1. (A value of 1 is roughly equivalent to a best preference in Soar.
So a random selection is made if there are multiple elements with a value of 1.) When no element

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

23

is selected, an impasse is generated – implying that no direct progress can be made on the current
decision – that triggers reflective problem solving during which indirect progress may be
possible, as is discussed further in Section 4.3. An impasse can occur when no element has a
positive value (a none impasse), when there are multiple non-1 maximal elements (a tie impasse),
or when an operator remains selected for more than one cycle (a no-change impasse).

Beyond operator selection, changes to working memory can take a variety of shapes, the most
traditional of which corresponds to state changes. In the problem space model, this concerns the
(internal) application of operators, such as to change the locations of tiles in the Eight Puzzle.
But not all changes to working memory need be driven by operator application, nor must they
even involve selections. For example, in isolated word recognition, rather than using an explicit
HMM that encodes a predefined number of time slices, as in Figure 14, only a single generic time
slice may be directly encoded, as in Figure 18, with the results generated during each cognitive
cycle yielding an updated distribution over the state in working memory for use during the next
cycle. This enables forward processing in an HMM of unbounded length, over a deliberative
sequence of cycles, with a selection – of the best word rather than the best operator – occurring
only when the end of a word is detected.

When prediction mode is enabled, the state being built up in
WM during the elaboration phase, such as Si in Figure 18, is
architecturally distinguished from the previous state, such as Si-1
in the figure, to enable both to be accessed simultaneously. This
lets Si-1 and Si coexist during the elaboration phase, and enables
the architecture to automatically shift the contents of Si back to Si-1
during the adaptation phase. Prediction mode also supports the
learning of transition functions, where access to successive pairs
of states is essential. Although presently an option, prediction
mode is likely to become the standard mode of handling state
changes in the future. It is more broadly a step towards
incorporating into Sigma the principle that prediction, and
learning to predict, should be pervasive in cognitive systems
(Bubic et al., 2010), and is, in fact, as central to the cognitive
cycle as decision making.

4.2.2 GOALS

Goals in Sigma, and Soar before it, have had somewhat of an ambiguous status, despite both
systems nominally being problem solving architectures. Impasses yield a form of architecturally
generated – and thus architecturally penetrable – (sub)goal. Yet, although other types of more
deliberate goals, such as for the desired configuration of tiles in the Eight Puzzle, can easily be
expressed via knowledge above the architecture, and used in this form both to guide a search and
to detect when it should be terminated, such goals are completely opaque to the architecture. The
architecture is neither aware of such goals nor able to facilitate their achievement.

This conundrum was recently resolved in Sigma by partitioning working memory into normal
state functions versus goal functions, with the latter being architecturally linked to the former
(Rosenbloom, Gratch and Ustun, 2015). The architecture was also then extended to automatically
compare corresponding state and goal functions, yielding measures of similarity (or progress) and
difference. This involves – for each combination of values of the independent variables in the
function, such as those like X and Y that are not normalized in the Eight Puzzle board function –
comparing the distribution over the dependent (normalized) variables via the Bhattarcharyya

Figure 18: HMM with a
single generic time slice to be

reused each cycle.

ROSENBLOOM ET AL.

24

coefficient (BC) to determine the similarity of that part of the goal (G) to the corresponding part
of the state (S), and via the Hellinger distance (HD) to determine the difference between them:

Similarity(S,G) = BC(S,G) = s(x)g(x) dx∫ . (1)

Difference(S,G) = HD(S,G) = 1−BC(S,G). (2)

These measures yield new functions in which the original dependent variables (e.g., Tile) have
been eliminated and in which a form of normalization – division by the integral over the goal
function – is applied over what originally were the independent variables (e.g., X and Y).

There is a large space of measures that could have been considered for comparing
distributions. The dot product, and its normalized variant the cosine similarity, can be used to
provide measures of similarity for discrete distributions, even though they are technically
applicable to vectors rather than distributions. The Kullback–Leibler (KL) divergence is a
common measure for the difference between two distributions, with KL divergence and the
Hellinger distance in fact being just two instances of a larger generic space of f-divergence
measures of the distance between two distributions. The Bhattarcharyya coefficient also yields,
in a different way from the Hellinger distance, the
Bhattarcharyya distance. The Hellinger distance was chosen
for Sigma, rather than the KL divergence or the
Bhattarcharyya distance, primarily because it can handle 0
values in distributions, which are common in Sigma but
problematic for both of the other measures. The Hellinger
distance is also symmetric, and thus provides a metric in
contrast to the KL divergence, and it obeys the triangle
inequality, in contrast to the Bhattarcharyya distance. With
the Hellinger distance, the computation of the Bhattarcharyya
coefficient as a measure of similarity comes along for free.

As an example of the use of these measures, consider the Eight Puzzle state and goal in
Figure 19, both of which are defined in Sigma as in Figure 12 in terms of Boolean distributions
over the tiles given the (continuous) locations, where there is a 1 only for the correct tile at each
location and a 0 for all others. There are eight nonzero regions of the goal here – as no goal has
been stated for the blank – so that after normalization all of the entries
are either 0 or 1/8 = .125, as shown for similarity/progress in Figure
20. The rationale for this form of normalization is that if we were then
to aggregate – that is, integrate – over such a function, the total
similarity would be 1, and the difference 0, when the goal is reached.
As a result, the aggregated similarity/progress function is directly
usable as an architecturally derived, albeit rather weak, evaluation
function for the Eight Puzzle.

When there are Boolean goal and state distributions, as in the
Eight Puzzle, what is computed for similarity/progress corresponds to
the fraction of the goal conjuncts achieved. If instead there were a
Boolean goal and a more general state distribution, what is computed
would more closely correspond to the probability that the goal has been achieved. A full
distribution over the goal would correspond more to a utility or heuristic function than a
traditional goal. For example, one aspect of the evaluation function for the two-person board
game Othello (or Reversi) – a territory capture game like Go but simpler – is called weighted
squares, where discs placed in different locations, such as the corners or edges of the board

Figure 19: Example Eight Puzzle
state and goal (there is no goal for

the center cell).

Figure 20: Eight Puzzle
similarity function.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

25

versus the interior, have different heuristic values (Rosenbloom, 1982). When there is instead a
full distribution over both the goal and state, the result should correspond more to probabilities of
achieving utilities. Not all of these
particular variations have yet been
explored in implemented tasks, but they
all should be realizable.

The difference function for the
Eight Puzzle given the state and goal in
Figure 19 is shown in Figure 21(a). In
the asymmetric version, as shown in
Figure 21(b), which is what is actually
made available to Sigma, differences are
set to 0 for regions with unspecified
goals. This function could conceivably
be used to drive means-ends problem
solving, as in GPS (Newell et al., 1959),
by identifying those goal conjuncts that
aren’t currently met.

 Both similarity/progress and difference are forms of
architectural self-monitoring, and thus appear in the
perceptual buffer as proprioceptive inputs. Figure 22 shows
a refined version of Sigma’s cognitive memory structure that
makes explicit both the split between states and goals in WM
and the split between external perception and proprioception
in PB.

4.2.3 AFFECT/EMOTION

Perhaps somewhat surprisingly, the initial motivation for the
architectural approach to representing goals and comparing
them to states that was described above, was to support the
needs of emotion, or affect. Cognitively, affect concerns
both the processing that leads to emotional states and the
ways these emotional states impact thought and behavior.
Affect is a central concern in interactions between humans
and virtual humans: without it visually realistic virtual
humans stray far into the Uncanny Valley while also losing
much of their intended effectiveness. Affect is also likely
critical in any autonomous system that is to survive and
thrive in sufficiently complex and open physical and social
environments. As mentioned earlier, in humans it captures part of what can be termed the
wisdom of evolution, providing non-voluntary pressures that have proven via natural selection to
be adaptive over the long-term.

The work on emotions in Sigma has so far focused on how both the induction of emotions
and their impact on thought and behavior can be grounded in the architecture. This narrows the
view for now to lower level aspects of emotion, deemphasizing those aspects dependent on
knowledge and reasoning, which are left for future work.

Figure 21: Eight Puzzle difference function. The
asymmetric version sets the value to 0 wherever the goal

isn't defined.

Figure 22: Refined structure of the
cognitive memories.

ROSENBLOOM ET AL.

26

The similarity/progress and difference functions comprise part of an architecturally grounded
approach to appraisal (Moors et al., 2013), what is typically considered the first stage in the arc
of emotional processing. During appraisal the current situation is assessed to yield values that
feed into the development of emotional states and responses. Similarity/progress and difference
map onto the desirability appraisal variable in affective models such as EMA (Marsella and
Gratch, 2009). Sigma also embodies a variant of the expectedness appraisal variable, but its
introduction will be deferred until Section 4.2.5, after learning is discussed in Section 4.2.4,
because its computation depends on learning models that can generate expectations. Both forms
of appraisal also impact attention, as will be discussed in Section 4.2.6.

4.2.4 LEARNING

Learning – that is, changes to long-term memory – occurs in Sigma via a process of gradient
descent over its functions (Rosenbloom et al., 2013). This can lead to learning distributions over
parameters as well as learning values of relations, but it does not acquire or modify the more
complex structures that are also found in LTM. Sigma is currently unable to learn new structures,
including anything corresponding to Soar’s chunking mechanism (Laird et al., 1986;
Rosenbloom, 2006). To understand the source of the gradients for learning, one must be familiar
with the graphical architecture – as gradients are messages arriving at the factor nodes that store
the LTM functions – and so this aspect will not be explained until Section 5.3. However, we can
outline here how these gradients are used to update LTM functions.

For functions that use standard normalization – where the integral over the dependent (or
child) variable(s) equals 1 – the learning algorithm is an adaptation of one earlier developed for
Bayesian networks (Russell et al., 1995), but with smoothing – that is, small increases to parts of
the updated function that ensure no element is below a specified threshold – and other
adjustments made to it. The essence of the algorithm, minus the final smoothing (and possible
post-normalization) operations, is captured by:

gt '(
!v) = gt (

!v)
ft−1(
!v)gt (
!v)d!v∫ (3)

ft (
!v) = ft−1(

!v)+ scale(λ(gt '(
!v)− average(gt '(

!v)))) (4)

Here,
!v is the vector of dependent/child variables; gt (

!v) is the incoming gradient; gt '(
!v) is

this gradient divided by the integral over the product of the incoming gradient and the prior
function ft−1(

!v) ; λ is the learning rate; and ft (
!v) is the result (or posterior) function. The

average is subtracted from the adjusted gradient before it is used to update the function so that it
integrates to 0, and thus so that the new function still integrates to 1 and follows the constraint
surface. To avoid wild swings, the gradient is capped by scaling it down multiplicatively if its
maximum is above a threshold. Key parameters to this algorithm include the learning rate, the
smoothing threshold, the maximum increment and the form of normalization.

This algorithm has also been explored for learning functions in which no variables are
normalized, such as in learning constraints, but a more appropriate algorithm is ultimately needed
for these types of undirected functions. For functions that use vector normalization – that is, ones
representing distributed vectors – gradient descent is simpler, amounting to multiplying the
incoming gradient by the learning rate and adding the result to the original function:

ft = ft−1 +λgt (5)

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

27

This corresponds to how learning works in cognitive science models based on distributed vectors,
such as BEAGLE (Jones and Mewhort, 2007).

True to functional elegance, this simple learning algorithm underlies distribution tracking,
concept learning (both supervised and unsupervised) – as for the classifier in the classification
scenario (Figure 7) – reinforcement learning, inverse reinforcement learning, learning of action
models (in reinforcement learning), learning of transition and perception models (in HMMs, such
as the one in Figure 14 for speech recognition), learning of maps (in SLAM), multiagent learning,
and more (Rosenbloom, et al., 2013; Joshi et al., 2014; Pynadath et al., 2014; Rosenbloom,
2012a, 2014). Each of these higher-level types of learning effectively induces a cognitive idiom
comprised of some knowledge plus gradient descent. Via a further application of functional
elegance, when multiple such idioms end up being isomorphic to each other, they are merged into
a single more general idiom. Two prime examples of this are learning action models in RL
versus learning transition models in HMMs, and learning perception models in speech versus
learning maps in SLAM (Rosenbloom, 2012a; Rosenbloom et al., 2013; Joshi et al., 2014). More
on learning idioms can be found in Section 6.2, but to provide one concrete example here, Figure
23 shows how the learned map for the simple 1D world of Figure 10, which is expressed in terms
of probability distributions for objects given locations – P(Object | X) – is refined over time.

4.2.5 SURPRISE

During the process of updating a function according to a gradient, there is a point during the
adaptation phase just before the prior is replaced by the posterior at which they co-exist, and
which therefore provides a window of opportunity for leveraging them in computing a measure of
surprise in a manner similar to the Bayesian theory of surprise (Itti and Baldi, 2006). In this
model the prior, which reflects the best understanding of the function before the latest input, is
compared via KL divergence to the posterior (which takes the input into account). The better the
prior predicts the input, the smaller the change is required in moving to the posterior, enabling
their difference to be used directly as a measure of surprise. In Sigma, the Hellinger distance, as
earlier discussed in the context of desirability, is used instead of KL divergence; and the existing
gradient-descent learning algorithm is used to update the model, as opposed to Bayesian belief
updating. The result directly yields the (un)expectedness appraisal variable mentioned in Section
4.2.2.

Figure 23: Results from map learning in Simultaneous Localization and Mapping (SLAM).

ROSENBLOOM ET AL.

28

4.2.6 ATTENTION

The last capability incorporated within the adaptation phase in Figure 6(b) is attention (Frintrop et
al., 2010; Itti and Borji, 2013). This, along with affect, represents some of the most recent work
in Sigma, and thus also some of the most preliminary and incomplete. Attention broadly
concerns the effective allocation of limited resources. What isn’t always recognized, though, is
that it in general can be pertinent at any of the three levels of control – reactive, deliberative and
reflective – although not necessarily in a uniform manner across levels. Because of this
stratification, the detailed discussion of attention in Sigma is deferred until Section 4.3.1.

4.3 Nested Tri-Level Control Structure

In Sigma, a single cognitive cycle – comprised of input and output plus one elaboration phase and
one adaptation phase – directly provides a reactive capability (Figure 8(a)). Activities such as
classifying an object (Figure 7), recognizing a fragment of speech (Figure 14), solving the
Ultimatum Game (Figure 15), and executing a body of rules (Figure 16) can all occur reactively,
within a single cognitive cycle. The entire classification scenario – from perception through
classification, selection, and action – occurs reactively in this manner, within a single cognitive
cycle. In human modeling, a single cognitive cycle may be sufficient for a simple reaction time
task, where a signal leads to an immediate choice of a response. Reactive processing is intended
to be computationally limited – although it isn’t at present in Sigma – and largely monotonic.

A deliberative capability uses this reactive capability, and thus individual cognitive cycles, as
its inner loop in providing sequential, knowledge-driven – or algorithmic – behavior (Figure
8(b)). Cognitive cycles enable both the intelligent selection of operators – as in the classification
scenario – and their application to yield new states, with deliberation then capable of stringing
together an arbitrarily long sequence of such steps to provide potentially unlimited, and largely
non-monotonic, computation within a single problem space. When sufficient knowledge is
available to directly select operators in the Eight Puzzle without impassing, it can be solved in a
deliberative fashion, with a sequence of operators being selected and applied that transforms the
initial state of the board into a goal configuration (Figure 24). Although there may be no explicit
goal in SLAM – the goal of learning a map is often implicit – a random walk driven by valuing
all possible moves at 1 can occur at the deliberative level as well.

A
reflective
capability
(Maes and
Nardi, 1988)
in turn uses
this
deliberative
capability as its inner loop (Figure 8(c)). In particular, when impasses occur, (sub)goals are
automatically generated, along with accompanying metalevels in which deliberative processing –
either in the same or different problem spaces – can be used reflectively to yield the knowledge
that would resolve the impasses. For our purposes here, reflection can be considered to comprise
reasoning about reasoning. At the base level, reasoning is about the world. At the first metalevel,
reasoning is about the base level; at the second metalevel, reasoning is about the first metalevel
(and possibly the base level); and so on up the metalevel hierarchy. In Sigma, as in Soar

Figure 24: Deliberative solution of an Eight Puzzle problem over 7 cognitive cycles, 3
each for selecting and applying operators, and 1 to detect the goal and halt.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

29

(Rosenbloom et al., 1988), reflection and new metalevels are initiated when an impasse occurs in
processing at some level that makes progress at that level impossible.

Figure 25, for example, shows what happens if the control information is eliminated from the
Eight Puzzle that enables the straight-line solution in Figure 24. Tie impasses result at the base
level, which are approached as metalevel (sub)goals to be resolved by trying out the operators in
simulation to see how good they are. In this case, the result is a form of steepest-ascent hill
climbing across meta-levels, as (meta-)operators are selected within the tie impasse to evaluate
the original operators. This yields no-change impasses within which the operators are tried and
the evaluations of the resulting states – based either on explicit evaluation knowledge or on
architecturally generated desirability appraisals – are assigned to the operators.

To
support the
possibility
of reflective
processing,
functions in
Sigma may
have an
additional
variable
added for
the State, as
in P(Tile |
State, X, Y)
for the
Eight
Puzzle
board.
Rather than
representing a state in a problem space, the State here represents the metalevel via a discrete
number from 0-100. The base level is state 0, with each higher metalevel (or lower subgoal)
assigned a number one more than its predecessor. The use of the term state for levels of the
reflective hierarchy in Sigma matches the corresponding usage in Soar, but it also thus retains the
potential confusion as to whether higher numbered states represent later situations in a problem
space search. They do when search occurs across impasses, but not when it merely involves
application of operators to states at one level. In the latter situation, the state number remains
unchanged as progress is made through the space.

A more complex multiagent example can be seen in Figure 26, which provides a schematic
for reflective decision-theoretic problem solving in the Ultimatum Game introduced in Section
4.1.2 (Pynadath et al., 2013). The impasse and metalevel/subgoal structure here is very similar to
that of the Eight Puzzle, but evaluation is possible only at end states – based on the rewards in the
game tree (Figure 27) – so lookahead proceeds to the end of the game at each top-level tie
impasse via deep metalevels/subgoals. Between Figures 15 and 26 it should be clear that a
decision-theoretic task such as solving the Ultimatum Game can be accomplished either in a
reactive or a reflective manner (and possibly even in a deliberative manner, but that has not yet
been investigated). Comparable results are generated via the two approaches, but the reactive
approach is much faster, while the reflective approach is much more flexible. In Soar, chunking

Figure 25: Reflective hill climbing within Sigma for the Eight Puzzle. Shown are the two
metalevels for evaluating sliding the 7 tile at the first decision, plus the evaluations

yielded by this kind of lookahead for each option at each decision.

ROSENBLOOM ET AL.

30

yields a skill acquisition mechanism that compiles (symbolic) reflective processing into
(symbolic) reactive processing (Laird et al., 1986). In Sigma, it is hoped that a planned
generalization of chunking will not only be able to compile symbolic processing, but also
processing that is decision-theoretic (as with the
Ultimatum Game here) or even perceptual (such
as compiling the HMM in Figure 14 from some
form of reflective processing).

Sigma’s overall tri-level control structure
maps well onto a number of existing bi-level
and tri-level conceptions of cognitive
processing, although the nesting of these levels
is unique to Soar and Sigma. For example, the
reactive capability maps not only onto the
notion of reactivity, but also automatic
(Schneider and Shiffrin, 1977), and System 1
(Kahneman, 2011) processing. The deliberative
capability maps onto knowledge intensive,
algorithmic, and controlled (Schneider and
Shiffrin, 1977) processing. Some combination
of the deliberative and reflective capabilities
maps onto System 2 (Kahneman, 2011)
processing. The overall tri-level structure also
maps directly onto tri-level control structures
that have been proposed in robotics (Bonasso et
al., 1997) and emotion (Ortony et al., 2005). In
traditional computer science terms, the reactive
level provides a parallel control structure, the
deliberative level a sequential or iterative control structure, and the reflective level a subroutine or
recursive control structure (with the State variable providing the call stack).

The combination of the reactive and deliberative capabilities can also be seen as a
generalization of the control structure found in the expectation maximization (EM) algorithm for
finding maximum likelihood parameters of statistical models (Dempster et al., 1977). A single

Figure 27: Reward tree for the Ultimatum Game,
showing the rewards received for each combination

of an offer and a response to it.

Figure 26: Reflective decision-theoretic problem solving within Sigma for the Ultimatum Game.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

31

cycle of EM generates expectations given the current parameter values and then modifies these
parameter values given the expectations. These two steps map abstractly onto the elaboration and
adaptation phases within Sigma’s cognitive cycle, and thus to a single reactive step. The full
algorithm involves a sequence of such steps, mapping onto deliberation. The claim here is not
that Sigma subsumes the EM algorithm, as there are mismatches in the details, but that EM can
be seen as a particular instantiation of the generic reactive+deliberative control structure, perhaps
ultimately enabling EM to be placed more in context with a complete model of cognitive
processing.

4.3.1 LEVELS OF ATTENTION

As mentioned in Section 4.2.6, attention, which concerns the allocation of limited resources, is
relevant across all three of Sigma’s control levels. Reflective attention is based on impasses; that
is, each impasse focuses the metalevel processing that happens in response to it. In fact, the
recent work in Sigma on appraisal, and its relationship to attention, has led to the conclusion that
the detection of impasses should itself be considered as a form of appraisal, likely related to the
notion of controllability in appraisal theories (Marsella and Gratch, 2009). Deliberative attention
is based on the decision process, and the knowledge that feeds into it, as this determines which
operators – and which values from other distributions – are selected to direct behavior. Thus,
even before work was explicitly begun on attention in Sigma, it already embodied two
architectural attention mechanisms (with the same also being true of Soar, with which it shares
these mechanisms).

 What has been missing in Sigma, and in most other cognitive architectures (except see, for
example, Madl and Franklin, 2012), with respect to attention is an appropriate form of it at the
reactive level that spans both covert perceptual attention – such as when attention is redirected in
the visual field without physically moving the eyes – and automatic forms of cognitive attention.
However, Sigma now exhibits such a capability via a mechanism that selectively abstracts
functions to make them simpler and thus smaller and more efficiently processed. This is based on
a combination of bottom-up and top-down inputs, a key concept in complete models of perceptual
attention (Itti and Borji, 2013). What is more, both of these types of inputs are derived from
appraisal variables already described, implying that reactive attention is driven by a subset of the
architectural assessments that drive emotional behavior. Bottom-up attention is based on
surprise, a standard practice at this point in state-of-the-art attention models (Itti and Baldi, 2006),
but here it is derived from the (un)expectedness appraisal variable and is applicable to any
function that is learned, not just to perceptual functions. Top-down attention is typically assumed
to involve goal or task relevance, but how this works in general is less standardized. In Sigma,
the desirability appraisal variable relates aspects of the state to the corresponding aspects of the
goal, thus providing an appropriate top-down input. These bottom-up and top-down factors are
then combined via an approximation to probabilistic or that assumes independence between the
two factors:

P(A∨B) = P(A)+P(B)−P(A∧B) ≈ P(A)+P(B)−P(A)P(B). (6)

ROSENBLOOM ET AL.

32

Consider for example a
visual search task, in which
the goal is to find the yellow
objects in the visual display
shown in Figure 28(b) after
first having stared for a while
at the display in Figure 28(a).
There is a bottom-up aspect
to attention here, due to the
surprise resulting from the
change in the bottom-left
corner from blue to green. There is also a top-down aspect due to the task of finding yellow
objects (Figure 28(c)). The resulting bottom-up surprise/unexpectedness map can be seen in
Figure 29(a), the top-down
progress/similarity map in Figure
29(b), and the combined attention
map in Figure 29(c). The
influence of both factors can
clearly be seen here, but in this
particular case the bottom-up input
outshines the top-down. After a bit
more time, when the surprise dies
down, the top-down influence
regains ascendancy, as shown in
Figure 29(d).

To use such a map in
abstracting a function, it is scaled,
exponentiated – to increase the
contrast between regions with high
and low attentional values – and
then multiplied times the original
function. When the differences
between the distributions in
adjacent regions of this result are small enough, the original regions are
combined into a larger region whose function is the average of the
regions out of which it is composed. For the display in Figure 28(b) and
the attention map in Figure 29(c), this yields Figure 30, which has 12
rather than 16 regions. A similar experiment with a 200×200 display has
shown a reduction from 160,000 regions down to 12, accompanied by
savings in processing time.

4.4 Cognitive Language

Sigma’s cognitive language is an instance of the general class of
statistical relational languages (or probabilistic programming
languages) (Milch et al., 2007; McCallum et al., 2008; Goodman et al., 2008; Domingos and
Lowd, 2009). However, many of the choices in the language are constrained directly by the

Figure 28: Displays and goal for a visual search task.

Fig. 30: Abstracted
function with two

mixed blue-red cells.

Figure 29: Computed maps in visual search.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

33

cognitive architecture – which was itself inspired by the graphical architecture hypothesis – rather
than being free parameters. Consider for example a contrast with Alchemy (Domingos and
Lowd, 2009), which is based on a clean conception of a probabilistic extension to first-order logic
(in particular, Markov logic). Some pre-Sigma explorations of graphical cognitive architectures
were pursued in Alchemy, and some aspects of Sigma’s current language design still owe a debt
to it; however, the inherent intractability of such logics suggests that it is not a good candidate for
the inner reactive loop of a cognitive architecture. In fact, it can be argued that Alchemy makes a
fundamental mistake in not being decomposed into reactive and deliberative layers at least, so
that the more combinatoric aspects of theorem proving can be controlled by further knowledge
(Rosenbloom, 2011a). Church (Goodman et al., 2008) provides a contrasting example, in which
probabilities are added to an efficient procedural language (Scheme). The core problem here is
that in focusing on a standard procedural language Church loses touch with much of what has
been learned about cognitive architectures over the past few decades.

At its core, Sigma’s cognitive language is based on types that specify the domains of
variables, functions defined over combinations of variables (as in Section 4.1.1), predicates that
specify relations among sets of typed arguments, and conditionals that structure long-term
memory. Together these constructs provide a language that effectively and deeply merges ideas
from both rule systems and probabilistic networks to yield a functionally elegant hybrid mixed
language for encoding the knowledge and skills required to approach grand unification and
generic cognition. Sufficient efficiency is approached by compiling the language down to the
graphical architecture (Section 5.4), which is based on the state-of-the-art formalism of factor
graphs but which itself must be implemented efficiently in a lower-level language such as Lisp (a
topic omitted in this paper, but which is discussed in Rosenbloom, 2012c; Rosenbloom et al.,
2015). The remainder of this section explains the four core constructs that comprise the cognitive
language, with conditionals being by far the most complex.

4.4.1 TYPES

Types specify the domains of variables, including their scope, whether they are numeric or
symbolic, and if they are numeric whether they are discrete or continuous. For instance, in the
Eight Puzzle example, two types are used. The tile[0:9) type is discrete (:) over the integers
0-8 to represent the blank, as 0, and the eight numeric tiles – numeric ranges in types are always
half open (closed at the bottom and open at the top).3 The dim[0-3) type is similarly
continuous (-) from 0 up to just less than 3. Two numeric types are also used in the classification
scenario: d4[0:4) for the integers 0-3, as needed for the number of legs, and weight[0-
500) for any weight below 500 (pounds). Four symbolic types are also used in this example:
boolean[false true] for whether the object is either alive or mobile, id[o1 o2 o3 o4
o5 o6] for identifying up to six distinct objects at once, color[silver brown white]
for object colors, and category[walker table dog human] for the concepts that can be
assigned to objects. Although these symbolic types are relatively small, very large symbolic ones
can also occur; for example, in language processing there may be a type containing all of the
(thousands to hundreds of thousands of) words in a language.

3. Given that Sigma is written in Lisp, Lisp-like representations are used in this article as appropriate, but
more concise representations are also used, as here, when they improve simplicity and clarity. In these
latter cases, the content is the same as is in Sigma’s Lisp structures, but the syntax differs.

ROSENBLOOM ET AL.

34

4.4.2 FUNCTIONS

Functions are just what were introduced in Section 4.1.1, but in the cognitive language they are
defined over sets of typed variables. For example, the hybrid Eight Puzzle function in Figure 12
is defined over the x, y, and tile arguments, with the first two being of type dim (continuous)
and the last one being of type tile (discrete). An occupancy grid for the state in Figure 11 may
be specified as a function:

([0-1) [0-1) 1) ([0-1) [1-2) 4) ([0-1) [2-3) 7)
([1-2) [0-1) 2) ([1-2) [1-2) 5) ([1-2) [2-3) 8)
([2-3) [0-1) 3) ([2-3) [1-2) 0) ([2-3) [2-3) 6).

Here each triple defines a 3D region – that is, a 3D orthotope or hyperrectangle – with the
assumption that a constant function of 1 is assigned to each region explicitly listed, with all other
regions being assigned by default a constant function of 0. If two regions overlap, the one
specified last (re)defines the overlapping portion. If a constant function other than 0 or 1 is
desired, the value can be placed in front, as in .8:(o1 walker) .2:(o1 dog) for a
distribution over categories given object o1.

If a linear function over one of the variables is desired, the constant portion of the function
remains in front of the region but the coefficient is added in front of the variable’s scope, as in
.3:(o1 .001:*) for the function .3 + .001×weight over the region spanned by object
o1 and all weights (specified via *) in the classification scenario. In general, Sigma’s cognitive
language is capable of specifying piecewise linear functions that can be decomposed into a set of
n dimensional regions, each with its own linear function. Constant region functions are just
special cases of this, with globally constant functions themselves being further special cases
where there is a single region. When convenient, any function may still be displayed in a more
tabular format, as was the practice in the previous subsections.

4.4.3 PREDICATES

Predicates specify relations among sets of typed arguments. Depending on the included types,
plus various optional annotations, predicates can be specified as symbolic or probabilistic or
mixed (symbolic + probabilistic), and discrete or continuous or hybrid (discrete + continuous).
For example, in the Eight Puzzle, the hybrid Board(x:dim y:dim tile:tile) predicate
defines a relation over the x, y, and tile arguments, where the first two arguments are of type
dim (continuous) and the last is of type tile (discrete). In the classification scenario, if we
combine the id and category types we can create a predicate for object classes:
Concept(object:id value:category). We could then extend this towards the full
naïve Bayes classifier in Figure 7 by adding predicates for the five object attributes:

Alive(object:id value:boolean)
Legs(object:id value:d04)
Color(object:id value:color)
Mobile(object:id value:boolean)
Weight(object:id value:weight).

When combined with the appropriate functions for the relevant probability distributions plus the
appropriate conditionals, as will be discussed shortly, a full classifier results that when given
evidence of the values of cued attributes can retrieve (or predict) an object’s category along with
the values of its unseen attributes. The value arguments here essentially yield the variables of a
Bayesian network, with the object argument inducing an instance of the network for each
object to be classified.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

35

Functions and predicates are closely related, but not in a one-to-one manner. First, each
predicate may have multiple functions associated with it, as part of the three different forms of
cognitive memory (Figure 9). In particular, functions can provide a learned model for a predicate
in LTM, or the current state or goal of the predicate in WM, or what is being perceived about the
predicate in PB. For example, the naïve Bayes classifier in the classification scenario (Figure 7)
can be built from the predicates above plus additional predicates that relate concepts to features,
with the appropriate conditional probabilities built into LTM functions for the predicates, as in

Concept-Mobile(concept:category mobile:Boolean
 <M 1:(walker true)

 .95:(table false) .05:(table true)
 .05:(dog false) .95:(dog true)
 .05:(human false) .95:(human true)),

where <M signals the beginning of the LTM function specification. Second, functions need
not be tied to specific predicates. In particular, they may instead be associated with conditionals.
Also, multiple predicates (or conditionals) may use the same function through tying, where they
all point to the same function.

One key distinction among varieties of predicates is whether they are unique or universal,
which is itself grounded in whether the predicate’s arguments are unique or universal. Universal
arguments are like variables in rule systems, where any or all of the elements in the variable’s
domain may be valid. Unique arguments are like random variables in probabilistic systems,
where a distribution is provided over all of the elements of the variable’s domain but only a single
value is actually correct. In the naïve Bayes classifier, the object arguments are all universal,
enabling any number of the objects to coexist, while the value arguments are unique. If unique
arguments are normalized they may represent probability distributions, but they need not be
normalized, nor if they are normalized must they represent probabilities. However, here they are
normalized and do represent probabilities.

If all of the arguments in a predicate are unique then the predicate represents a full joint
distribution, with the integral/sum over the entire distribution equaling 1 if it is normalized. If a
subset of the arguments in a predicate is unique then the predicate represents a conditional
distribution over this subset given the universal arguments. In the naïve Bayes classifier, for
example, the Concept-Mobile predicate represents the conditional probability of mobility
given the concept. Similarly, in the Eight Puzzle Board predicate the tile argument is unique,
while the x and y arguments are universal, denoting that there is a single correct tile per location.
No matter how many unique variables there are, there is a single correct value over the
combination of them given any particular combination of values for whatever universal
arguments there are. Any predicate that has at least one unique argument – which includes both
the classifier predicates and the board predicate – is itself considered unique. All unique
predicates can be mapped conceptually onto fragments of Bayesian networks, where the cross
product of the unique arguments becomes a single child node and the universal arguments
become its parents. In more mathematical terms, the cross product of the unique arguments is a
function of the universal arguments.

An important sub-distinction for unique predicates concerns whether their WM functions
maintain full distributions or embody selections of individual elements. Annotating a unique
argument with % implies that the full distribution should be maintained; for example, the
predicate definition Concept(object:object value:category%) in the classifier
indicates that the full distribution over the category for each object should be represented in
working memory. All of the feature predicates in the classifier also maintain the full distribution.

ROSENBLOOM ET AL.

36

Selections, in contrast, imply choices must be made, as discussed in Section 4.2.1. As there are
multiple ways to make such choices, there are multiple ways to annotate unique arguments. For
example, use of ! – as in Board(x:dim y:dim tile:tile!) for the Eight Puzzle –
implies that a best alternative (i.e., the most likely tile) is to be selected; use of $ denotes that the
expected value of the unique argument is to be selected; and use of = denotes that probability
matching should occur, where a single value is chosen randomly according to the distribution
over the values.

Decisions in Sigma, in the classical sense of choosing one among the best operators to
execute next, are an immediate consequence of introducing an architecturally distinguished
selection predicate. In the rule for the classification scenario shown in Figure 16(b), the use of
“Operator(c)” in the action was shorthand for Selected(state:state
operator:category!), where the operator argument is unique and defaults to random
selection of one of the best alternatives (although this can be overridden, for example, to yield
Boltzmann selection). Rather than representing states in a problem space, the state here
represents metalevels (Section 4.3), in this case via a discrete numeric type: state[0:100).
Although the reasoning with the naïve Bayes classifier occurs reactively, so no impasses occur,
the state argument is always there in case an impasse does occur. When there is no impasse,
all activity occurs in state 0 (i.e., the base state).

Impasses are themselves also represented via a unique predicate –
Impasse(state:state operator:operator type:impasse!) – that is based on a
unique symbolic type: impasse[none tie no-change]. In multiagent situations, an
additional agent argument supports agent-by-agent operator selection and impassing:
Selected(agent:agent state:state operator:operator!) and
Impasse(agent:agent state:state operator:operator type:impasse!).

If there are no unique arguments in a predicate – that is, they are all universal – the predicate
itself is considered to be universal. A universal predicate does not maintain a distribution;
instead, each possible combination of values of its variables is considered independently of all of
the others. Universal predicates map onto the traditional forms of relations found in rule systems,
where each (potential) element of working memory is considered independently. The universal
predicate Above(first:object second:object), which for example would be used in
the transitive rule in Figure 16(a), can represent a multi-valued relationship among objects.
Universal predicates can also be mapped onto the Boolean-valued predicates traditionally found
in logic.

A second key distinction among varieties of predicates is whether they are distributed
vectors. In many ways a vector predicate behaves much like an unnormalized unique predicate,
except that the former are normalized via standard vector normalization. In addition, as we have
already seen, the way gradient descent works for them has been tuned; and, as we shall see
shortly, the way actions are combined for them has been tuned as well.

A final key distinction among varieties of predicates concerns whether they are open world or
closed world, and thus whether unspecified regions in their functions are assumed to be unknown
(as in probabilistic networks and many logics) or false (as in rules and other logics). This
distinction also ends up determining whether WM functions are recalculated for every decision or
latched across decisions, thus mapping roughly onto the related notions of: i-support (elaboration)
versus o-support (operator application) in Soar; justifications versus assumptions in truth
maintenance systems; and theorems versus axioms in logic. Latching also maps onto the
traditional notion of working memory in rule systems, where values remain until explicitly
changed or deleted. Both Soar and Sigma go beyond this traditional rule notion to allow some

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

37

elements in WM to be automatically retracted when no longer valid rather than requiring them to
be explicitly modified or deleted. The Selected and Board predicates in the Eight Puzzle are
both closed world, latching the operator and the state until they are explicitly changed. The
predicates in the naïve Bayes classifier are all open world, with unspecified values assumed
unknown and no latching in WM.

4.4.4 CONDITIONALS

Conditionals structure long-term memory in terms of interactions among predicate patterns – that
is, conditions, actions and condacts (which yield bidirectional constraint by fusing aspects of both
conditions and actions, and which will be explained further shortly) – plus optional functions.
They are named for how they provide a deep blending of the types of conditionality found in both
rule systems (based on conditions and actions, as in Figure 31) and probabilistic networks (based
on prior and conditional probability
distributions, and condacts, as in Figure
32).

A predicate pattern looks much like a
predicate definition, but it only includes
the predicate’s name and arguments, and
argument types are replaced by constants
(Roman font) or variables (italic font).
The patterns in Figures 31(a) and 32 are all
based on variables. In contrast, the pattern
Concept(object:o1 value:c) in
Figure 31(b) characterizes the whole
distribution over the concepts for object
o1; and Board(x:x y:y tile:1)

characterizes the entire xy span of the
Eight Puzzle board that is occupied by tile
1. Although it is possible, and often
makes semantic sense, to use the same
symbol for an argument and its associated
type and/or variable – with only the
context of use distinguishing them –
different symbols can also be used when
desirable. A pattern such as
Concept(object:o
value:walker) can, for example, be
specified with the variable o for the
object and the constant walker for the value.

A conditional that includes a function, as in Figure 32, must specify which pattern variables
the function is defined over along with a function over these variables. In a Bayesian network,
the direction of such a function’s conditionality is determined by the directionality of the graph,
with a child variable always conditioned on its parent variables. In predicate functions (PFs) the
direction is determined by which arguments are unique versus universal. In conditional functions
(CFs), the direction, which is necessary for gradient descent to correctly learn these functions, can
be indicated by underscoring the child variables in the specification, as with m in the figure. If

CONDITIONAL Concept-Mobile-CF
 Condacts: Concept(object:o value:c)
 Mobile(object:o value:m)
 Function(c,m):
 walker table dog human
false 0 .95 .05 .05
true 1 .05 .95 .95

Figure 32: Conditional for conditional probability of an

object being mobile given its concept. This provides one
leg of the naïve Bayes classifier in Figure 7 for the multi-

object case covered by the classification scenario.

CONDITIONAL Transitive-Above
 Conditions: Above(first:a second:b)
 Above(first:b second:c)
 Actions: Above(first:a second:c)

(a) Transitive conditional for above.

Figure 31: Conditionals for rules in Figure 16.

CONDITIONAL Select-Concept-as-Operator
 Conditions: Concept(object:o1 value:c)
 Actions: Selected(state:0 operator:c)

(b) Conditional for selecting the concept for object o1

as the operator in the classification scenario.

ROSENBLOOM ET AL.

38

the functions in multiple conditionals are to be tied, then the actual function is provided for only
one of them, while the others specify the name of this conditional instead.

Figure 33 shows an alternative
way of encoding the same functionality
found in Figure 32 but via an
additional predicate that was
introduced in Section 4.4.3 plus its
associated function instead of a
conditional function. Only conditional
functions were supported in early
versions of Sigma, but when it was realized that the specification of a conditional function
essentially required the creation of a pseudo-predicate within the conditional – in terms of which
pattern variables are involved and which of these are the children – the latter was added to make
this simpler and more uniform. At this point, it is recommended that conditional functions be
limited to constant functions – that is, ones without variables – with predicate functions taking
over the heavy lifting when there are variables.

The examples in Figures 31-33 should
not be taken to imply that rules and Bayesian
networks are the only structural forms of
knowledge available, nor that conditional
probabilities are the only functions
representable. The blending of concepts is at
a deep enough level and at a small enough
granularity that a substantially larger space of
possibilities emerges. For example, Figure
34 shows a conditional for a link in a constraint satisfaction network that eliminates the
possibility that vertices v1 and v2 are both red. Such a function is not inherently probabilistic.
Functions also need not even involve variables, as already intimated. The conditional in Figure
35, for example, shows a rule that uses a function with a constant value of 1 to encode the
equivalent of a best preference in Soar.

As shall be discussed further
in Section 6.1, using conditions
and actions together in
conditionals, as in Figure 31,
provides a procedural-memory
idiom, whereas using condacts
and functions together, as in
Figures 32-34, provides a
declarative-memory idiom.
Thus, the use in Figure 35 of conditions,
actions and a function yields a memory
fragment that is in some sense a hybrid
between these two. Other kinds of hybrids are
also possible; for example, Figure 36 shows a
conditional comprised of one condition, one
condact and a function that provides an initial
uniform distribution over a policy that is ultimately to be modified via reinforcement learning

CONDITIONAL Q
 Conditions: Location(state:s x:x)
 Condacts: Q(x:x operator:o value:q)
 Function(x,o,q): .1

Figure 36: Conditional for an initial uniform
distribution over Q values for operators by location.

CONDITIONAL Constraint-C1-C2
 Condacts: Assign(vertex:v1 color:c1)
 Assign(vertex:v2 color:c2)
 Function(c1,c2):
 red blue
red 0 1
blue 1 1

Figure 34: Conditional constraining two vertices in a
graph to not both be red.

CONDITIONAL Left-Best
 Conditions: Operator(id:left state:s x:x y:y)
 Board(state:s x:x y:y tile:t)
 Goal(state:s x:x-1 y:y tile:t)
 Actions: Selected(state:s operator:left)
 Function(): 1

Figure 35: Conditional in the Eight Puzzle that makes the left
operator best if it moves a tile into its goal location.

CONDITIONAL Concept-Mobile-PF
 Condacts: Concept(object:o value:c)
 Mobile(object:o value:m)
 Concept-Mobile(class:c mobile:m)

Figure 33: Alternative conditional for the computation in
Figure 32, but based on a predicate function.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

39

(RL) to yield improved operator selection.
Predicate patterns are closely tied to their predicates’ WM functions. During conditional

processing, a condition constrains to 0 all portions of the corresponding WM function that do not
match the pattern. An action proposes changing the corresponding WM function to more closely
match the pattern. In Figure 31(a), for example, the two conditions and the action all concern the
Above WM function. The two conditions map the existing function onto variables a and b, and
b and c, respectively, with the shared variable b constraining what results are legitimate for the
combination of variables a, b and c. The action then proposes changes to the function based on
variables a and c. Given Above(first:o1 second:o2), Above(first:o2
second:o3), Above(first:o4 second:o5) and Above(first:o5 second:o6)
in the WM function, the conditional suggests that Above(first:o1 second:o3) and
Above(first:o4 second:o6) be added to the Above WM function.

One important subtlety here is what happens to variable b in moving from the conditions to
the action. In a standard rule system, an a-c pair would result whenever there is some value of b
compatible with the pair. Thus there is an implicit existential quantifier for b. In Sigma this
occurs by summarizing out variable b via max from the function over a, b and c yielded by the
conditions; that is, by assigning to each a-c pair a value corresponding to the maximal value for
that pair across all elements of variable b. For a Boolean function, such as here, this yields a 1
(i.e., true) for every a-c pair that has at least one a-b-c triple with a value of 1.

This approach was inspired by the summary product algorithm used in the graphical
architecture, where variables are summarized out in messages either by sum/integration or max.
In the cognitive architecture, all universal variables are summarized out via max. Unique
variables are typically summarized out by sum/integration, to yield the marginal distribution over
the individual variables; that is, the distribution over each variable that is yielded when all of the
other variables are summarized out. However, unique variables can also be summarized out via
max, to yield the best joint choice over all of the relevant variables (what is known in
probabilistic reasoning as maximum a posteriori (MAP) estimation).

Both conditions and actions can be negated by inverting their functional values. In particular,
inverting a function f yields a function f =max(1− f , 0) . True (1) becomes false (0) and vice
versa. Intermediate values are similarly inverted, while functional values greater than 1 are
treated as if they are 1 during the inversion. Figure 37, for
example, shows a degenerate (conditionless) rule that removes
the first object from an image via a negated action that inverts
the object’s entire plane (with x and y specified implicitly as
unnamed variables over their whole domains).

A condact exhibits effects that are akin to both a condition
and an action. Like a condition it yields a constrained function for combination with the rest of
the conditional. Like an action it proposes changes to WM based on the function determined by
the rest of the conditional. Condacts effectively combine local constraint from the predicate’s
own segment of working memory with global constraint from both long-term memory and the
rest of working memory, in support of, for example, partial matching in declarative memory,
constraint satisfaction, signal processing, and general probabilistic reasoning. Figure 32, for
example, specified a fragment of general probabilistic reasoning via two condacts and a function.
The binding of variables o and c by the Concept condact combines with the function to
constrain the Mobile WM, while simultaneously the binding of variables o and m by the
Mobile condact combines with the function to constrain the Concept WM. With only
conditions and actions, and no condacts, such influence could only proceed in one direction,

CONDITIONAL Delete-1
 Actions: -Image(o:1)

Figure 37: Deletion of object 1
from an image.

ROSENBLOOM ET AL.

40

either from the category to the feature or vice versa, but not in both directions. Likewise, in
SLAM, the map could impact localization or it could be learned from perception of objects in
particular locations, but both localization and mapping could not proceed simultaneously.
Condacts have so far always been based on open-world predicates and typically include no
constants, being instead constrained by conditional or predicate functions.

Modifications to working memory can be proposed by both actions and condacts, but with
distinct differences in how they operate. Actions, when based as they usually are on closed-world
predicates, change working memory in a persistent manner – latching their results – while
condacts, which are usually based on open-world predicates, typically have no persistence.
Actions for open-world predicates behave along this dimension like condacts, with no
persistence. A distinction also exists between actions and condacts in what it means to combine
several of them. In a sequential rule system there is no fundamental need to combine actions, as
only one action is executed at a time. In a parallel rule system, such as Soar, multiple actions are
combined disjunctively. Initially disjunction was mapped onto maximum in Sigma, but max is
now only used in action combination for non-vector universal predicates. For unique predicates
with normalized functions, actions are combined via the same approximation of probabilistic-or
used for combining bottom-up and top-down inputs in attention (Equation 6).4 Actions are
combined via summation for both non-normalized unique predicates and vector predicates.

Disjunctive combination, as just described, is actually only used for positive actions. Negated
actions for vector products are combined by subtracting them from the result of the positive
actions. For all other negated actions, the inverted function is combined with the positive actions
via product, so that regions are deleted if they are positively mentioned in any such negated
action. Likewise, multiple condacts combine via product, as might be expected of constraints that
are being conjoined. If non-vector positive actions exist along with either condacts or negated
actions for the same predicate, the positive actions are first combined disjunctively, with the
result then multiplied in with the condacts and negated actions.

The earlier statement that arguments in
predicate patterns are specified by constants or
variables actually oversimplifies the situation
considerably, as the language supports
significant generalizations of the traditional
notions of both constants and variables.
Starting with the former, a constant in a condition denotes that the pattern should only match to
those parts of working memory with that value. This functionality can be reconceptualized as a
piecewise constant filter that has a value of 1 for the constant mentioned and 0 values for all of
the others (Figure 38). Match of the pattern to the appropriate working memory then simply
involves a pointwise product – like an inner or dot product but without the final summation over
all of the elements – of the WM function times the piecewise constant function that represents the
pattern filter. When an argument in a pattern is specified as a variable, it implies a value of 1
across the argument’s whole domain.

Based on this perspective, which was inspired by the graphical architecture, it was realized
that the full expressibility of piecewise linear filters was already supported by the architecture,
and so the language was extended to allow this as well. For example, the condition Q(x:x
operator:o value:[.1*q]) in Figure 39 uses a linear filter with a slope of .1 and an

4. This is problematic if values can be greater than 1, so incoming messages are first scaled uniformly to a
maximum value of 1 whenever their maximum value exceeds this.

walker table dog human
1 0 0 0

Figure 38: Piecewise constant function for the
constant walker in a category variable.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

41

intercept of 0 to weight the different possible Q values – that is, utilities of possible operators (o)
given particular attributes of the state (x) – by their probabilities. In this example, the Q values
range in [0,10), so using a coefficient of .1 scales this down to [0,1). Using this condition
enables the action for the Selected predicate to rate operators according to their expected Q
values for the current location, so
that a decision can be based on a
learned policy. In particular, the
variable q here is summarized out
before the action is executed, and
because value is a unique
argument in the Q predicate, this
involves integrating over the (scaled
down) Q values, as weighted by
their probabilities, to yield a functional value for each operator corresponding to its expected Q
value.

The generalization for variables supports affine transforms over them; that is, combinations
of linear transforms and translations that can together yield object translations, rotations, scaling
and reflections. Such transforms are central to work in mental imagery (Section 6.1.4), as well as
playing a significant role in other capabilities of interest – such as episodic memory, reflection,
and reinforcement learning – by providing a primitive form of arithmetic directly within
conditionals. As an example, consider the transformation in Figure 40. The key pattern here is
Image(o:4 x:x/2+1 y:y), which operates on object 4 in a mental image, preserving its y
dimension while shrinking its x dimension by a factor of 2 and offsetting it by 1 (so that the
center of the object remains fixed). Although the pattern may appear to involve just addition and
multiplication of individual numbers, the figure makes it clear that such a transformation actually
operates on entire functions, with an offset shifting the whole function along its variable’s
dimension, and a coefficient expanding, contracting, or reflecting the function.

In the transformation just
exemplified, both the coefficient
and the offset were specified as
constants. Yet they could, at least
in principle, have been specified
by variables. A variable in an
offset implies that what is desired
is the sum of two (random)
variables, which in general
implicates a convolution.
Although convolutions have not
yet been implemented in Sigma,
when the offset variable only has a
single nonzero value, it can simply
be extracted and used like a
constant. This has been
implemented in Sigma, and used for example in reinforcement learning to add rewards to
projected values (Section 6.2.5). Coefficients can at present only be specified as constants.

When an affine transformation needs to be specified across multiple dimensions, translation
and scaling can both be decomposed into individual components along each dimension.

CONDITIONAL Scale-Half-Horizontal
 Conditions: (Image o:0 x:x y:y)
 Actions: (Image o:4 x:x/2+1 y:y)

Figure 40: Scaling a Z tetromino by half, horizontally, in place.

CONDITIONAL Select-Operator
 Conditions: Location(state:s x:x)
 Q(x:x operator:o value:[.1*q])
 Actions: Selected(state:s operator:o)

Figure 39: Conditional that transforms a policy – a distribution
over utilities in [0,10) for operators given locations – into

operator weights – in [0,1) – for selection.

ROSENBLOOM ET AL.

42

However, rotation is trickier, as it inherently involves interactions across dimensions. Rotations
by multiples of 90° are presently handled by swapping variables, but more about this will be said
in Section 5.2.2.

4.5 Summary

The Sigma cognitive architecture has much in common with more traditional architectures, such
as Soar and ACT-R, particularly Soar, with its appeal to problem spaces plus its cognitive cycle
and the tri-level control structure it induces. The most significant extension provided by Sigma is
the pervasive availability of functions, along with the bidirectional processing of the condacts that
typically accompany them. This contrasts strongly with strictly symbolic approaches, and even
approaches based on activation, in fully supporting hybrid mixed processing. In particular, this
extension has been essential for enabling the representation and processing of distributions,
images, and distributed vectors – and for the broadening of constant and variable tests to filters
and affine transforms – within the elaboration phase of the cognitive cycle; and of flexible and
pervasive selection, gradient-descent learning, appraisal and attention within the adaptation
phase.

This core extension stems directly from the graphical architecture hypothesis, as functions
and condacts are definitional in graphical models, even if the term condact is a new one. In the
next section we will examine Sigma explicitly from the perspective of graphical models,
including the way knowledge structures within the cognitive architecture compile down into such
models in the graphical architecture.

5. Graphical Architecture

Below the cognitive architecture is the graphical architecture, with its core of graphical models
(Section 5.1). The graphical architecture is essential to the simplicity and elegance at the waist of
the Sigma hourglass and to the breadth and efficiency of the hourglass’s top half. It is also what
is implemented by the bottom half of the hourglass. As shown in the lower portion of Figure 41,
processing within the graphical architecture – that is, the graphical cycle – is structured into two
major phases, one concerned with solving graphs and the other with modifying them.

As revealed by
Figure 41 as a whole,
what is particularly
notable about these two
graphical phases is that
the elaboration and
adaptation phases from
the cognitive
architecture directly
map onto them. The
cognitive language is
translated into a
graphical language by a compiler (Section 5.4) that enables elaboration – including memory
access, reasoning and perceptual processing – to occur by solving graphs (Section 5.2). The
compiler also enables adaptation – decisions, reflection, learning, and affective and attentive
processing – to occur by modifying these graphs (Section 5.3). For the classification scenario, the

Figure 41: Mapping the two major phases in the cognitive cycle to the
corresponding phases in the graphical cycle.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

43

naïve Bayes classifier in Figure 7 is solved, and the rule in Figures 16(b) and Figure 31(b) is
fired, all within a single graph solution. The best concept is selected as the operator as part of
graph modification.

Very little will be said here about the details of the graphical language that serves as the
target for the cognitive compiler. However, a few aspects that are critical for understanding how
diversity is enabled at higher layers are included: in particular, the hybrid mixed function
representation at the heart of the graphical models plus the key graphical idioms and settable
parameters that are exploited by the compiler. Graphical idioms are analogous to but distinct
from cognitive idioms, being defined as they are one level down in the systems hierarchy. Their
core purpose is to support structured compilation from the cognitive language to the graphical
language. Although the compiler itself is not discussed until Section 5.4, other aspects of the
mapping between the cognitive and graphical architectures will be detailed as appropriate in the
prior sections. Readers interested in an introduction to the graphical architecture, but who are not
interested in the way knowledge expressed in the cognitive architecture maps onto factor graphs
in the graphical architecture, should feel free to skip Section 5.4 on the compiler.

5.1 Graphical Models

Graphical models in general provide an efficient means of computing with complex multivariate
functions by decomposing them into products of simpler functions and then translating them into
graphs. For example, the trivariate algebraic function f(x,y,z) = y2+yz+2yx+2xz can be
decomposed into the product (2x+y)(y+z) – or generically f1(x,y)f2(y,z) – which can then be
encoded as a factor graph, as in Figure 42. From such a graph, the marginals of the individual
variables – that is, the function’s values when all other variables are summarized out – can be
computed efficiently, as can the function’s global mode: for example, yielding maximum a
posterior probability (MAP) estimation. The meaning, or semantics, of the graph is determined
by the function it is to compute, with algorithms for solving such graphs necessarily respecting
this meaning.

Major variants on graphical
models include Bayesian and
Markov networks, Markov and
conditional random fields, and
factor graphs. Bayesian networks
are the most familiar within
artificial intelligence and cognitive
science. They provide an efficient
means of computing with joint
probability distributions, by
decomposing them into products of
prior and conditional probabilities,
and then translating the results into
directed acyclic graphs that have a node for each random variable and a directed link from one
node to another if and only if the distribution of the second depends directly on the value of the
first. Each node defines the conditional probability of its variable (the child) given those
variables upon which it depends (its parents). The naïve Bayes network in Figure 7 is one such
network. Figure 43 shows just the concept (k) from this classifier plus two of its features –
number of legs (l) and color (c) – along with the equation for this reduced graph.

Figure 42: Factor graph for the algebraic function
f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = f1(x,y)f2(y,z).

ROSENBLOOM ET AL.

44

Markov networks and Markov/conditional random
fields are similar to Bayesian networks, but they exploit
undirected graphs that may be cyclic, along with potential
functions that are defined over cliques of variable nodes.
Both these directed and undirected forms of graphical
models are typically used for probability distributions, but
their precise expressibility varies, with some distributions
not directly expressible in directed acyclic graphs and
others not in undirected cyclic graphs.

Factor graphs, as in Figure 42, are also undirected and
cyclic, but they reify clique potentials as factor nodes in the graph itself, yielding bipartite graphs
in which factor nodes connect to all of the variable nodes whose variables are used in their
functions. Variable nodes in turn connect to all of the factor nodes that use them (Figure 42).
Factor graphs were first developed in coding theory, where they underlie the remarkably effective
performance of turbo codes, and are the most expressive form of graphical model known,
subsuming both Bayesian and Markov networks
(Kschischang et al., 2001). Figure 44, for example, shows
how to encode the Bayesian network from Figure 43 as a
factor graph. Factor graphs can be applied to arbitrary
multivariate functions, not just to probabilistic functions,
as seen in Figure 42 for a simple algebraic function. This
generality was the motivation for basing Sigma on them.

As a factor graph, Sigma’s graphical architecture can
be characterized in terms of three interconnected
memories, one each for factor nodes, variable nodes, and
the undirected links that connect factor and variable nodes
(Figure 45). Although these memories are shown as
distinct boxes in the figure, in reality each consists of
many individual elements that are intermingled, with individual factor and variable nodes being
connected by individual links. All three of the cognitive memories – LTM, WM and PB – map
into combinations of factor nodes, variable nodes and links at this level. Each memory in the
cognitive architecture is thus a graphical idiom defined in terms of particular combinations of
structures in the graphical architecture’s memories.

The
traditional way to
specify a factor
graph, or any
form of graphical
model, is via a
single expression
for the whole
function that is then mapped into a graph that reflects its semantics when associated with an
appropriate solution algorithm. In Sigma, factor graphs are created in a more piecemeal fashion.
Via the compiler, fragments of the overall graph are built based on the individual types, functions,
predicates and conditionals specified in the cognitive language (Section 5.4). The meaning of the
overall factor graph is thus determined bottom-up from its nodes, their connectivity, and the
functions embodied in the factor nodes.

Figure 45: The three core memories in the graphical architecture.

Figure 44: Factor graph for the Bayesian
network in Figure 43.

Figure 43: Bayesian network for the
distribution p(k,l,c) = p(k)p(l|k)p(c|k).

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

45

The graphical language must therefore provide the ability to specify nodes and links, and to
define factor functions. Nodes and links are straightforward data structures without much worthy
of explicit note. However, the representation of factor functions is a critical determinant of the
expressibility and efficiency of the resulting system. Some natural representations support only
Boolean functions, ruling out the explicit encoding of uncertainty that is required for a mixed
approach, whereas others support only either discrete or continuous functions, ruling out hybrids.
Likewise, function representations may vary significantly in terms of the efficiency with which
they can be processed during graph solution and modification. The remainder of this section first
provides more details on the function representation used in Sigma and then explains several key
ways that Sigma’s graphical architecture diverges from standard factor graphs.

5.1.1 FUNCTION REPRESENTATION

During Sigma’s prehistory, an approach to function representation was explored based on
exptrees (Rosenbloom, 2011a), an n-dimensional generalization of quad/octrees in which
dimensions were bisected as necessary until regions with constant values were reached. Later
this was structurally simplified to an n-dimensional doubly linked list of orthotopic regions, but
now with the possibility of linear functions in regions. A dimension-spanning slice would exist
in such a structure whenever any pair of regions across it had functions that differed by more than
a small value of epsilon. Slices were automatically removed when no longer needed. As with
exptrees, these data structures would thus automatically adapt in size, being as small as one
region for a uniform function, or as large as thousands or millions of regions when there was
much detailed structure to represent. Figure 46 shows two examples, for the conditional
probabilities of the weight and mobility given the concept for the naïve Bayes classifier in Figure
7. Only the initial portion of the weight function is shown, but it is enough to see how the overall
function is piecewise linear. The mobility function is piecewise constant, as in Figure 32, but
here it is shown how slices can be eliminated – in this case the one between dog and human –
when they are not needed to distinguish the functions on either side of the slice.

This was the standard representation used throughout most of Sigma’s history. It was
particularly efficient when functions were to be destructively modified, such as when a portion of
a working memory function is to be changed during the adaptation phase; however, it could not
efficiently represent sparse functions nor was it particularly easy to process in the systematic
manner required during graph solution. Consider first the question of sparse functions that are
zero almost everywhere. The Eight Puzzle board, as shown in Figure 12, provides a simple
example. There are nine planes here, one per tile, and only one non-zero x,y region per plane.
Thus there are only nine non-zero regions out of eighty-one total regions. As discussed in
Rosenbloom, Demski and Ustun (2015), an experimental version of Sigma has been explored
with a sparse representation, in which (1) only non-default – typically non-zero – regions were
explicitly represented and (2) region boundaries along a dimension did not need to align into
slices. This approach did speed up processing over large sparse functions, but there was a trade
off, in that region indexing was more complex so that processing was slower for large dense
functions.

ROSENBLOOM ET AL.

46

In the most recent versions of Sigma, functions are structured as n-dimensional arrays of
orthotopic piecewise-linear regions (Figure 47). This sacrifices the ease of modification provided
by the list-based representation in return for a more compact representation that is easier to
traverse. Destructive function modification turned out to be the exception rather than the norm,
so not too much had to be sacrificed by always requiring copying during function modification.
In addition, a more efficient form of sparse function product was developed for use with these
region arrays that yields some of the
computational gain that was achieved by the
sparse representation (Rosenbloom, Demski and
Ustun, 2015). This representation can be viewed
as a generalization of a pixel (or voxel) array,
where (1) there can be any number of dimensions;
(2) the pixels can vary in size along each
dimension; and (3) the functions can be linear
rather than just constant within each region. As
with the earlier list-based representation, slices are
automatically removed when no pairs of regions across them differ by more than epsilon. Figure
47 shows in this manner the conditional probability of the mobility given the concept from Figure
46(b).

Figure 46: Conditional probabilities of two of
the naïve Bayes features given the concept as
2D doubly linked lists of orthotopic regions.

Figure 47: Conditional probability of the weight
given the concept from Figure 46(b) as a 2D

array of piecewise-constant orthotopic regions.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

47

Although this representation is continuous at its core, it is general enough to support both
hybrid and mixed processing. It can approximate arbitrary continuous functions as closely as
desired when small enough regions are used (Figure 48(a)); yet, both discrete and symbolic
functions can be represented via appropriate idioms that limit how these continuous functions are
used, much in the manner that digital circuits arise from restrictions on a continuous underlying
electrical substrate. Discrete functions can be represented via regions of unit length, with
functions over these regions limited to constant values (Figure 48(b)). Such regions can
potentially either start at integral values (Figure 48(b)), or be centered on them (Figure 48(c)).
The default in Sigma is the former, which is conceptually simpler. However, the latter is also
available as an alternative that enables the expected value of a constant function of 1 over such a
region to equal its corresponding integer.

For discrete variables, a half-open interval such as [0,5) comprises the integers from 0 up
to one less than the maximum specified, yielding a largest value of 4 here. Purely symbolic
functions are handled like discrete ones, except that the constant region functions are further
limited to Boolean: 0/1 for false/true (Figure 48(d)). Symbolic variables are accompanied
by symbol tables that are defined by the compiler, such as that [walker table dog
human] maps onto [0,5) for concept names. But these are for human use only, and have no
direct effect on how the graphical architecture either solves or modifies factor graphs.

Although a pure symbolic function is Boolean, with functional values limited to 0 or 1, by
leveraging the mixed aspect of the representation it is possible to define a non-Boolean function
over a symbolic domain, to represent for example uncertainty over a choice among symbolic
values. Functions can also be hybrids if they are composed of multiple variables of different
types, as in the Eight Puzzle example presented earlier (Figures 10-11).

5.1.2 EXTENSIONS TO FACTOR GRAPHS

Several extensions have been made in Sigma to the standard notion of factor graphs in service of
supporting desirable aspects of the cognitive architecture (Rosenbloom et al., 2016). Some are
merely special purpose optimizations that replace normal factor graph structures and processing

Figure 48: Idioms for representing continuous, discrete and symbolic functions.

ROSENBLOOM ET AL.

48

while still respecting the overall semantics. Others have a less clear status with respect to factor
graph semantics, and may ultimately need to be considered as yielding some form of extended
factor graph. Ideally, the semantic impact of any such extension would be clear and well
understood theoretically, but much of this remains for future work. To the extent that such an
understanding does not exist, and until it does exist, some sacrifice of functional elegance must be
the consequence. More specifically, some theoretical elegance in the formulation of the graphical
models and some guarantees about their solution algorithm may be sacrificed, at least in the short
run, to produce given our current state of knowledge the desired cognitive functionality in an
elegant manner from the graphical architecture.

One straightforward extension of basic factor graphs is to allow, in a manner similar to
junction trees, each variable node to correspond to one or more function variables. This is critical
within Sigma in solving the binding confusion problem, of determining which values go together
across the marginals of multiple variables (Tambe and Rosenbloom, 1994). For example, this
makes it possible to keep straight that there is a circle that is blue and a square that is red, rather
than only knowing that there is a square and a circle
and that one object is blue and the other red. In such
a case, a single variable node may have variables for
both shape and color. Logically this is the same
as having a single new variable shape×color that
is defined as the cross product of the two ground
variables.

One other extension that is purely an
optimization is the addition of specialized factor
nodes for affine transforms. Factor functions in
general can perform affine transformations via delta
functions that, for continuous functions, are effectively of zero width and infinite height, with an
integral of 1. Figure 49, for example, shows a 1D delta function, and Figure 50 shows the 2D
footprint of a shifted, angled, delta function that
translates variable x up by one. Although factor
functions are in principle capable of representing
delta functions, they are not easily represented, or
even approximated, via piecewise linear
functions. So specially optimized nodes have
been added in their stead, while maintaining the
existing semantics of the factor graph.

The most significant extension that involves
ambiguous semantics is the ability to limit the
direction of influence along a link. Along a
normal link in a factor graph, the variable node
influences the factor node and vice versa.
However, in service of implementing conditions
and actions, the option has been added to
selectively cut off either direction of influence. It
is important to note that this is not the same as the
directedness found in Bayesian networks; the
latter concerns the direction of variable
dependencies in conditional probability distributions rather than the direction in which influence

Figure 50: Footprint of 2D delta function for
shifting variable x up by one.

Figure 49: 1D delta function.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

49

spreads in the network, and so maps in Sigma onto choices of unique and universal variables in
functions.

To the extent that the influences eliminated are irrelevant to the final marginals or MAP
estimation, there is an aspect of this approach that amounts purely to optimization. However, it
cannot yet be guaranteed that this yields well-defined factor graphs in the traditional sense.
Instead, what currently exists is a non-semantic extension of the notion of a factor graph, plus an
associated solution algorithm, as a useful and general processing mechanism.

A final class of extensions worth mentioning are special purpose factor nodes, for filters,
action combination, and negations, that may yield an appropriate influence in one direction but
not necessarily in the other. Action combination and negation also introduce the additional
complication that, rather than just computing functions on the domains of the variables as is
normal for factor nodes, they are computing functions on the distributions over the domains of the
variables. Because these nodes appear close to the periphery of the graph, as will be explained in
Section 5.4, they can almost be viewed as forms of pre- or post-processing that are outside of the
factor graph. Thus, in one sense, they can be conceived of as not being part of the normal
solution process for the factor graph. However, by incorporating them into the graph, a
generalized notion of graph solution can provide a more uniform means of implementing these
necessary forms of processing within the graphical/cognitive cycle.

5.2 Graph Solution

Solving a factor graph requires applying one of the many inference algorithms available for
computing the values of variables in graphical models. Such a solution typically involves
providing evidence for some of the variables – for example, by fixing their values via peripheral
factor nodes – and then either computing the marginal distributions over the other variables
individually or the modal value jointly over all of them. Given that evidence is usually supplied
for only some of the variables in the graph, and may even then only cover some regions of these
variables, a default value is required for unspecified variable regions. Typically, in Sigma, this is
based on the open-world versus closed-world nature of the relevant predicate in the cognitive
architecture.

The following subsections introduce the sum(mary) product algorithm (Kschischang et al.,
2001) (also known as the belief propagation algorithm [Pearl, 1988]), as it has been adapted to
solve graphs in Sigma, before delving further into three more specialized topics of importance for
graph solution in Sigma: (1) special purpose implementations of factor nodes that do not follow
standard summary product computations; (2) closure of the function representation over the
operations performed by the summary product algorithm; and (3) several important optimizations
that have been incorporated within graph solution, including initial work towards parallelizing
message passing.

5.2.1 SUM(MARY) PRODUCT ALGORITHM

The sum(mary) product algorithm provides a message passing approach to computing graph
marginals and modes in Sigma. Messages – structured as piecewise linear functions – are sent in
both directions along links, from factor nodes to their neighboring variable nodes and from
variable nodes to their neighboring factor nodes (Figure 51). Irrespective of the message’s
direction, what it represents is always a distribution over the variable node’s variables. Figure 52
shows how the summary product algorithm can compute the marginal on the concept (k) given
evidence that the color (c) is silver, and no evidence – that is, a uniform distribution – on the

ROSENBLOOM ET AL.

50

number of legs (l), for the reduced naïve Bayes classifier in Figure 44. For presentation purposes,
the figure has been simplified to show only the meaningful messages going upwards in the graph
rather than the full set of bidirectional messages, and to display the messages in terms of vectors
and arrays
rather than via
piecewise
linear
functions. The
details of the
processing
illustrated in
this figure will
be explained as this section proceeds. In Sigma, there would also be perceptual factor nodes not
shown here that would be connected to each of the three variable nodes. Instead, the perception
for both legs and color is shown adjacent to the corresponding variable nodes.

In general, the
summary product
algorithm begins
by initializing all
of the messages in
the graph. In
Sigma, all
messages start on
the first cycle with
a constant value of
1, with two
exceptions:
messages arriving
at action-
combination
nodes, which are
initialized to 0 so
that they don’t
saturate the
outgoing
messages, masking
inputs that would otherwise provide meaningful content; and messages from assumption nodes –
that is, factor nodes whose output can’t change during the solution to the graph – which are
initialized to the function stored in the node. In Figure 52, what is shown is not the initial
messages, but the “meaningful” ones that are sent before the end of processing.

Assumption nodes derive their name from an analogy to assumption-based truth maintenance
systems (ATMS) (de Kleer, 1986), and include (1) evidence factors, which specify the latched
contents of working memory in the cognitive architecture; (2) factors for predicate and
conditional functions in long-term memory; (3) perceptual factors; and (4) discount factors,
which enable the currently latched contents of working memory to become the default values for
selection during the next cycle (as discussed further in Section 5.4). For brevity, the functions in
these nodes can be referred to as assumptions. In Figure 52, all three of the factor nodes embody

Figure 52: Message passing via the summary product algorithm for the marginal
on the concept (k) in the factor graph of Figure 44.

Figure 51: Graphical architecture with bidirectional messages passing over the links
between factor and variable nodes

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

51

assumptions for predicate functions. The unshown perceptual factor nodes also embody
assumptions. Figure 53 extends Figure 51 to explicitly mark a portion of the graphical
architecture’s factor-node memory as comprising assumption nodes.

Once the
messages are
initialized,
whenever a node
receives a new
incoming message
along a link, new
outgoing messages
can be generated
for the node’s other links (although messages are now generated in a lazy manner so that a
message isn’t actually generated until it is time to send it [Rosenbloom, Demski and Ustun,
2015]). Normally, new messages are generated for all of these other links; however, to
implement the option of shutting off directional influence, each link direction – a combination of
a link and a direction of the message passing along the link – can be individually deactivated so
that messages are not passed in that direction along the link. Each link can therefore pass
messages bidirectionally, or in either individual direction and not in the other, or in no direction.
Bidirectional message passing captures the full semantics of factor graphs, as used in condacts
and in Figure 52, while passing messages in neither direction deactivates the link without
physically removing it from the graph. Unidirectional message passing is used for both
conditions and actions, where working memory should either influence processing in the graph or
be influenced by it, but not both.

At a variable node, the new outgoing message on each link is the pointwise product of the
incoming messages on all of the other links. This is the product aspect of the summary product
algorithm, which can be thought of in general as a means of conjunctively combining the
evidence/constraints provided by the messages on the incoming links. This can be seen most
clearly in the simple Boolean case, where 0 is mapped to false and 1 to true. Here pointwise
product effectively ands the messages, as for example when the Boolean vectors [0 1 0 1]
and [1 0 0 1] are multiplied to yield [0 0 0 1]. More generally, the message from
variable node k to factor node p(k) in Figure 52 is computed by multiplying together the messages
to k from the other two connected factor nodes, p(l|k) and p(c|k), to yield [1 1 1 1]*[.95
.05 .05 .00] = [.95 .05 .05 .00]. When normalized, this yields a distribution over
the concept of [.90 .05 .05 0].

Except for those with special purpose implementations, factor nodes compute the same
pointwise product, but the node’s own function is also included in the product. For example, in
Figure 52 factor node p(c|k) computes a message for variable node k by multiplying the message
from variable node c – [1 0 0], which indicates that the color is definitely silver – and the
function in node p(c|k) to leave the top row of the function unchanged while the two rows below
it, for brown and white, become 0. This isn’t the final message, as it still needs to be
summarized, so it isn’t shown in the figure. The process is the same for computing the product
for the message from factor node p(l|k) to variable node k, but here a product with a uniform input
message – all 1 – just yields the original function.

Unlike at variable nodes, where the outgoing message is simply the message product, further
processing is required to compute a normal factor node’s outgoing message. Because the product
here includes all of the node’s variables, not just those corresponding to the variable node on the

Figure 53: Graphical architecture with assumption nodes explicitly marked off
within the factor-node memory.

ROSENBLOOM ET AL.

52

outgoing link, all other variables must be summarized out via a form of disjunctive combination.
This is where the summary aspect of the summary product algorithm becomes relevant. For
computing marginals in factor graphs, sum is normally used for discrete functions and integral for
continuous functions. But, since discrete functions in Sigma are just idioms over continuous
functions, integration is always used – the unit widths of discrete regions ensure that integrating
over them yields the same result as simply adding their constant values. In Figure 52 the product
computed above at factor node p(c|k) thus must have the color integrated out to yield the message
[.95 .05 .05 0] to variable node k. This is just the top row of the function, as any message
with a single 1 and the rest 0 effectively acts as an index into a function when the two are
combined in this way via the summary product algorithm. For the message from node p(l|k),
integrating out the legs leaves a uniform, all 1, message – illustrating how a feature with no
evidence, and thus a uniform distribution, has no impact on the choice of concept. For computing
functional modes rather than marginals, such as for MAP estimation, maximum is used instead of
integration. Maximum effectively computes a pure or when the values are Boolean.

In general, the summary product algorithm can be used for any pair of a combination
operation (such as product) and a summarization operation (such as sum/integral or max) that
define a commutative semi-ring, where both operations are associative and commutative and have
identity elements, and the distributive law exists (Kschischang et al., 2001). Sum/integral-
product and max-product are common variations, but others are also possible. Sigma always uses
product for message combination, except when it is done at special purpose factor nodes such as
are used for action combination. Integral is used by default when summarizing over unique
variables, although this can be changed to maximum when, for example, the mode of the graph,
or of some part of it, is to be computed. Maximum is always used when summarizing over
universal variables. Sigma thus employs a mixture of the sum/integral-product and max-product
algorithms. When both unique and universal variables are to be summarized out at the same
node, the unique variables are summarized out first.

5.2.2 SPECIAL PURPOSE IMPLEMENTATIONS OF FACTOR NODES

Most factor nodes with special purpose implementations still utilize the product of the input
messages, but may process it in ways that don’t merely involve multiplying it by a factor
function, as with affine transforms, action combinations and negations. Or, factor nodes may do a
multiplication but in a way that only works correctly for one link direction – as with filters – thus
necessarily taking advantage of the fact that the other direction is deactivated. Action-
combination nodes explicitly use operations other than product in combining their inputs.

For example, what affine factor nodes do is dependent on a set of (optional) parameters
specifying the offset, the coefficient, and several other more minor aspects. The offset specifies a
constant or variable whose value determines how much the function is to be translated to the right
or left, depending on the sign of the offset. This amounts to simple addition of the offset to the
locations of the region boundaries. Likewise, the boundary locations are multiplied by the
coefficient to yield scaling – up or down depending on whether the coefficient is more or less
than one – and to yield reflection when the coefficient is negative. Transformed functions may
also need to be padded or cropped if the transformation causes them to be too small or large,
respectively, for the transformed variable’s type. Padding is by 1 for open-world predicates and
0 for closed-world ones unless these default values are overridden.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

53

One other form of processing that can occur at affine factor nodes is variable swapping, in
support of limited forms of object rotation (and several other functionalities that will be discussed
in Section 5.4). Consider the tetromino in the left half
of Figure 40, with its continuous x and y dimensions. If
these two variables are swapped – in combination with a
reflection to return it to the right sense and an offset to
reposition it to where it started – then the result is a
rotation by 90°, as shown in Figure 54. This form of
variable swap, along with accompanying reflections and
offsets as necessary, can yield rotations at any multiple
of 90°. Rotation at arbitrary angles, however, remains
for future work.

5.2.3 CLOSURE OVER THE FUNCTION REPRESENTATION

Ostensibly the application of this version of the summary product algorithm to Sigma depends on
its core function representation being closed under integration, maximization and product; that is,
applying these operations to piecewise linear functions should yield new such functions. A
piecewise linear function is integrated by computing the definite integral along the dimension of
interest for each region, and summing the results across regions that share the same values for the
other variables. Both definite integral and summation are closed over linear functions, so
integration is closed over piecewise linear functions. Piecewise linear functions are, however, not
closed under product. There is no issue if at least one of the operands is a constant function, but
if both are linear the result is quadratic. To work around this, quadratic results are
reapproximated to (piecewise) linear. Sigma currently does this in a simple region-by-region
manner, by calculating the quadratic’s average intercept and slope over the region’s minimal,
maximal and medial points. More sophisticated approximations, where individual quadratic
regions are decomposed into multiple smaller regions, each with its own linear approximation,
are possible, but have not so far proven necessary. Piecewise linear functions are closed under
maximization, but in general this may also require decomposing individual regions into multiple
smaller ones wherever two linear functions cross, since linear functions are not themselves closed
under maximization in such situations. As with product, Sigma currently reapproximates each
such region via a new linear function – in this case, averaging the two linear functions – rather
than decomposing it at the crossover point.

5.2.4 OPTIMIZATION

Sigma’s variant of the summary product algorithm provides an unusual form of a lifted inference
algorithm (e.g., Singla and Domingos, 2008). Given first-order – that is, variablized – knowledge
structures, a lifted algorithm reasons directly with these structures, whereas a grounded inference
algorithm must create new instantiations of the graph structure for each combination of variable
values and then reason over all of these ground graph structures. Sigma only reasons with
variablized structures, but with the messages that are sent in the graph sliced as required to
distinguish regions with distinct functions. Thus, a message may contain anything from a single
region, implying that all combinations of variable values can be processed identically and
together, up to a completely shattered representation of all possible variable values. This
automatic lifting, to the extent allowed by the data, provides an important source of optimization
in solving Sigma’s graphs that naturally arises from its message representation.

Figure 54: Rotation of Z tetromino by 90°
in place.

ROSENBLOOM ET AL.

54

In support of this, once a new output message along a link has been computed, unnecessary
slices – that is, ones for which no spanning pair of regions differs by more than epsilon – are
removed. In Figure 46(b) and 47, for example, the function has only three regions: one for
walker at .95, one for both table and dog at .05, and one for human at 0. The same would
be true in Figure 52 of the messages from nodes p(c|k) and k if straight vectors weren’t being
shown. This does not in general change the meaning of the message, only its size in terms of
number of regions. The one exception is for outgoing messages at predicate LTM assumption
nodes when attention is enabled. In these cases, as described in Section 4.3.1, determining which
slices aren’t “needed” is based on the function resulting from the product of the scaled,
exponentiated attention map and the outgoing message, with the results potentially leading to not
only removal of “needed” slices from the outgoing message but also abstraction, via averaging, of
regions across these slices. The implementation of this abstraction process is based on an
extension to the preexisting mechanism for removing unneeded slices.

One relatively obvious but still critical further optimization to the graph solution process is
based on the fact that it only makes sense to send an outgoing message if it is significantly
different from the prior message along that link. To enable this to be checked, message memory
has been introduced into the graphical architecture for storing the last message sent along each
link direction, with summary product using this memory as an intermediate staging point in
message passing (Figure 55).5 The new message is compared to the one stored in message
memory by determining if all corresponding parameters in all corresponding regions of the two
messages are
within epsilon of
each other. For
functional values,
Sigma uses a
relative epsilon,
proportional to
the magnitude of
the numbers
being compared,
whereas it uses an
absolute epsilon
for all other
comparisons. As
with the other graphical-architecture memories, message memory is actually a collection of
distributed structures, one associated with each link direction.

Message memory also enables another optimization – message reuse across cognitive cycles
– that is analogous to state saving/reuse across cycles of production match and firing (Forgy,
1982). The approach to message reuse currently taken in Sigma is based on Rosenbloom
(2012c), where only messages dependent on changed assumptions are reinitialized. But because
the recursive algorithm described for dependency analysis in that article does not scale well for
graphs with many bidirectional links, it has since been replaced with a dynamic programming
approach that is much more efficient on large graphs. For example, in a word sense
disambiguation task in which each word in the vocabulary led to a distinct set of nodes in the

5. In Rosenbloom (2011c), message memories were referred to as link memories, but that name is now used
for the memory of links, as it seems more appropriate to name memories based on what they store rather
than on their location.

Figure 55: Graphical architecture with the addition of message memory.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

55

graph, with many bidirectional links per node, the gain in speed was roughly proportional to the
size of the vocabulary; for example, a speedup factor of 100 with 100 words and 1000 with 1000
words.

Sigma currently can only leverage a single thread of processing during graph solution, so
message passing is serial, with just one message passed at a time (also known as asynchronous
belief propagation). One consequence of this is that the order in which the messages are passed
can be a major determiner of how many must be sent before quiescence is reached. Details on
how messages are ordered in non-loopy portions of the graph, based on how far each link
direction is from the assumption nodes that feed it – that is, its depth in the graph – can be found
in Rosenbloom (2012c). To help with message ordering within loops, this approach has since
been extended to link directions where a simple notion of depth doesn’t apply. Given the depths
for the link directions that are not affected by loops, the loop depth of a link direction that is
affected by loops is computed by finding all of its nearest preceding link directions that do have
assigned depths, and then assigning a loop depth that is the maximum over these predecessors of
their depth plus their distance in links from the link direction. Experiments in Sigma with
computing Nash equilibria over single-stage simultaneous-move games such as the Prisoner’s
Dilemma (Section 6.1.3), which are highly loopy, have shown speed gains of 15-20% with this
extension.

On a parallel processor, messages could potentially be sent simultaneously in both directions
along all links. For exploratory purposes, a form of simulated parallelism has been implemented
that updates all output messages from all nodes on every cycle (also known as synchronous belief
propagation) (Rosenbloom, 2012c). This makes it possible to calculate how many cycles of
parallel message processing would be needed to solve a graph on a parallel machine. A true
parallel implementation, however, has been left for future work.

Whichever of these two approaches is taken to message ordering, the natural stopping
criterion for the graph-solution phase is quiescence; that is, when no significantly different
messages remain to be sent. This works whether a single interconnected factor graph is defined
or there are an arbitrary number of unconnected ones. It is analogous to the use of quiescence in
Soar as a stopping criterion for the elaboration phase, although here it is messages that are passed
until quiescence, whereas in Soar it is rules that are fired until quiescence.

5.3 Graph Modification

Once the graph-solution phase is complete, the graph-modification phase begins. In one sense
this phase is extremely limited, as all it can do at present is modify functions associated with a
subset of the assumption nodes. However, these do correspond to modifications of WM
functions, LTM functions and some PB functions (for internal input), and thus map cognitively
onto state changes, (non-structural) learning, and proprioception (taking this as the general
capability of sensing internal state). As shown in Figure 56, the input for these modifications can
stem from two sources: messages and assumptions. For completeness, the figure also shows one
additional two-headed arrow connecting to the assumption memory, but it actually corresponds to
the input phase (for external input into PB functions) and the output phase (for external action
from WM functions), rather than representing part of the modification phase. No more will be
said about input or output here.

ROSENBLOOM ET AL.

56

State changes
in working
memory, which
occur only for
closed-world
predicates, such
as selected (in
operator
decisions) and
board (in the
Eight Puzzle),
involve latching
WM functions by
storing them into
WM assumption nodes. There are three variants of this worth noting. The simplest variant is for
unique predicates that maintain their full distribution, where the existing assumption is replaced
by the message coming into the assumption node. A slightly more complex variant is for
universal predicates, where the existing assumption is included as an implicit input to disjunctive
action combination, implying that regions of the assumption not modified by explicit actions will
remain as they are. The most complex variant is for unique predicates that make selections based
on the distributions arriving via messages at the WM assumption nodes. When selection is to be
of the best/argmax choice, if the existing choice is among the best proposed it is retained,
otherwise one of the best is chosen at random. This default retention of an existing best choice is
implemented in the graph itself by multiplying the existing assumption by a small discount factor
(.01) before combining it disjunctively – effectively as a tiebreaker – with the actions.

Messages into WM assumption nodes in support of selection serve the function of
preferences in Soar. The message memories in which these are stored thus also handle the
functionality of preference memory in Soar. Soar’s preference memory is generally considered
an implementation detail rather than a first-class memory shown in architectural diagrams, but
here it becomes part of a more general memory structure within the well-defined graphical
architecture that sits below and implements the cognitive architecture.

Selection also raises a subtle yet conceptually thorny issue, in that it requires the graphical
architecture to be aware of whether a variable is continuous or discrete – with symbolic variables
treated the same as discrete ones – so that it can know how broad a region to use around the
selected value: ε for continuous variables versus 1 for discrete variables. Thus, in this one sense,
discrete variables are more than just idiomatic uses of continuous ones, albeit in graph
modification rather than solution.

The two more complex forms of state changes in working memory were initially based on
both messages and assumptions, thus necessitating special-purpose architectural code for
combining them within the graph modification phase. But much of this processing has since been
“regularized” in service of functional elegance by injecting the assumptions as messages into the
graph in such a way that general-purpose graph solution can perform the combination (see
Section 5.4 for more details on how this works). The result is that these changes are all now
based solely on the messages arriving at the appropriate assumption nodes, yielding a simple
model: messages coming out of WM assumption nodes drive solution while messages coming
back into them drive modification.

Figure 56: Graphical architecture with addition of graph modification (plus a two-
headed arrow for input and output).

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

57

Impasses, and the reflection they trigger, are also largely based on messages, in particular
those arriving at the WM assumption node for the Selected predicate. This approach is
sufficient for detecting tie and none impasses, but detecting no-change impasses also requires
examining the existing assumption to determine which operator is already selected. Changes to
the current impasse structure are then based on modifying the WM assumption for the Impasse
predicate and extending or contracting the hierarchy of metalevel states.

Learning can occur at any LTM assumption node – such as node p(k) in Figure 52 – based on
the node’s existing LTM assumption and the message arriving at the node. Leveraging the work
in Russell et al. (1995) on learning in Bayesian networks, the incoming message turns out to
provide the gradient needed by Sigma’s gradient-descent learning algorithm (Section 4.2.4).
Thus there is a symmetry here akin to the one just mentioned for WM, in which messages out of
LTM assumption nodes drive solution while the messages coming back into them drive
modification. The main difference between the two cases is the nature of the modification
algorithm.

An earlier version of Sigma embodied an additional learning algorithm, for episodic
knowledge, that was less local than the gradient descent algorithm in how it operated. However,
later work showed that this special-purpose learning algorithm could be eliminated by
deconstructing the requisite learning functionality in terms of gradient descent in combination
with the appropriate conditionals to structure the graph (Rosenbloom, 2014).

Sigma uses proprioception to yield several appraisal variables (Section 4.2.3) based on a
combination of messages and assumptions. Desirability is based on a goal WM assumption plus
either a state WM assumption (for closed-world predicates) or the variable posterior – that is, the
product of the incoming messages – at a goal WM variable node (for open-world predicates).
Expectedness is based on the LTM assumptions before and after learning, which represent,
respectively, the prior – or model – and the posterior distribution. Attention, which can be
thought of as a higher-order or derived appraisal, is based on a combination of the perceptual
assumptions for desirability and expectedness.

5.4 Compiler

The main task for Sigma’s compiler is to convert predicate and conditional statements, along with
their functions, from the cognitive language into fragments of factor graphs in the graphical
language. The compiler also converts types into data structures that guide how functions are
compiled and creates symbol tables for symbolic types that are usable during output to the human
user, but little needs to be said about these aspects. The following subsections explain predicate
compilation (Section 5.4.1) and conditional compilation (Section 5.4.2), and then illustrate these
with examples of the compilation of a naïve Bayes classifier and a rule (Section 5.4.3).

5.4.1 PREDICATE COMPILATION

Predicate compilation is fairly straightforward, although a few subtleties result from specific
characteristics of the predicates. The core of this process is the creation of a working memory
variable node (WMVN) to which perceptual-buffer, working-memory, and long-term-memory
assumption nodes (hereafter abbreviated as PBFN, WMFN and LTMFN, respectively) can be
attached (Figure 57(a)). There is a PBFN if the predicate is perceptual, a WMFN if it is closed-
world, and an LTMFN if it is memorial. In the classification scenario, there is a PBFN for the
concept and each of the features in the naïve Bayes classifier, a WMFN for the Selected

ROSENBLOOM ET AL.

58

predicate in the rule (Figures 16(b) & 31(b)), and an LTMFN for each prior and conditional
probability function in the classifier.

There is a unidirectional link from a PBFN to its corresponding WMVN, since cognitive
processing shouldn’t impact input, whereas the connections with the other two types of
assumption nodes are bidirectional in general. During graph solution (i.e., elaboration), results
for a predicate are combined and inferences are chained through the WMVN, with the
assumptions not changed until graph modification (i.e., adaptation), based on the quiescent
messages arriving at their nodes.

If the predicate’s entire distribution is not replaced each cycle – as, for example, with the
Selected predicate – then the direct path from the WMFN to the WMVN is converted into an
indirect path through a disjunctive action-combination factor node, to which actions can also be
attached (Figure 57(b)). In effect, the current WM assumption is treated simply as another action.
A discount factor node may also be included when appropriate in this subgraph. The outgoing
link direction from the WMFN follows this new path, while the incoming link direction remains
directly attached to the WMVN. The loop in this graph does not induce a loop during graph
solution because the WM assumption does not change until the graph modification phase.

If the predicate also makes a selection over any of its variables – again as with the
Selected predicate – then an extra WMVN is added to distinguish what is being proposed for
selection during graph modification versus what is considered valid
during graph solution (Figure 57(c)). The additional WMVN node
is to support the use of the WM assumption during the elaboration
phase, so an additional outgoing link is added from the WMFN to
it.

When prediction mode is on, the graph is slightly different for
closed-world predicates that include the state as one of their
arguments (Figure 58). A corresponding open-world predicate
with the suffix of *Next is created – so, for example, the closed-
world Location predicate at the heart of SLAM is augmented by
an open-world Location*Next predicate – with a unidirectional
link from the open-world predicate’s WMVN to the closed-world predicate’s WMFN. This
enables all of the changes for the predicate to be gathered in the *Next WMVN, somewhat like
what is done for predicates that make selections, but here both the current and *Next functions
are accessible during graph solution.

Figure 58: Graph structure for
prediction.

Figure 57: Schematic factor graphs for predicate compilation, assuming predicate is closed-world,
perceptual and memorial.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

59

5.4.2 CONDITIONAL COMPILATION

Compiling conditionals is considerably more complex than compiling predicates, being based on
a generalization of the Rete algorithm for rule match (Forgy, 1982) that has been extended
beyond handling symbolic conditions to the full expressibility of Sigma’s conditionals: in
particular, also handling actions, condacts, functions, inversions, filters and affine transforms.
This generalized form of Rete can be thought of as a large-scale graphical idiom that is leveraged
by the compiler to convert conditionals into factor graphs.

Rete’s match process is partitioned
into an alpha network that handles
individual conditions and a beta network
that combines results from the alpha
network into consistent matches across
conditions (Figure 59). The alpha
network is a discrimination network that
branches on within-condition tests, such
as for particular constants. The beta
network is a linear join network that
combines matches across conditions
upon success of inter-condition tests,
such as of variable equality and
inequality. Alpha memories are inserted
at the leaves of the discrimination
network to maintain the state of the
match for individual conditions. Beta memories are inserted after each join to maintain the state
of the match across initial subsequences of conditions.

The match process in Rete is then driven by changes to working memory. When a working
memory element (WME) is added or deleted, it is sorted through the alpha network until it is
either filtered out or reaches the appropriate alpha memories. Changes to alpha memories
stimulate the beta network, where they may combine with results from other alpha and beta
memories to yield changes in later beta memories. As with changes to alpha memories, changes
to beta memories may also stimulate processing in later regions of the network. Actions are
triggered by changes arriving at the terminal nodes of the beta network – that is, at rule nodes.
By maintaining intermediate results in alpha and beta memories, Rete achieves dynamic-
programming-like efficiencies within a single match cycle; and, by maintaining these memories
across cycles, match time becomes a function of the number of changes to working memory
rather than its overall size. Rete also achieves a significant efficiency boost from sharing network
structure (and memories) across comparable conditions and sequences of conditions.

If we break this down a bit more, when mapping Rete onto Sigma we can talk in terms of two
smaller graphical idioms, one for alpha networks and the other for beta networks. In particular,
conditionals compile into fragments of factor graphs structured according to these idioms, with
the summary product algorithm providing the requisite message passing and computation.
Because bidirectionality is the norm in graphical models, condacts rather than conditions become
the most natural form of pattern supported, but both conditions and actions can be supported via
the capability the graphical architecture provides for selectively deactivating link directions. For
a condition, the link between the WMFN and the WMVN is deactivated towards the WMFN; and
for an action, it is deactivated in the reverse direction. (For a condact based on an open-world
predicate there is simply no WMFN.) In addition, all other link directions in the alpha and beta

Figure 59: Schematic of Rete with processing and memory
nodes (rather than factor and variable nodes).

ROSENBLOOM ET AL.

60

networks that pass messages towards working memory for conditions and away from it for
actions become irrelevant, and so can be deactivated as a simple optimization that reduces the
number of messages required for quiescence but doesn’t change the meaning of the graph.

In consequence, all three forms of predicate patterns compile to comparable fragments of
(extended) factor graphs, with the main difference being the direction of message passing within
them. Figure 60 shows the full graph for a notional conditional with two conditions, one condact,
and two actions (plus a conditional function). This figure will provide a useful reference
throughout much of the following discussion.

Because Sigma
induces a distinct
segment of working
memory for each
predicate, the first
discrimination in the
alpha network, on the
name of the predicate, is
implicit. Also, since we
are showing a single
conditional here whose
conditions are based on
different predicates,
there is no further
branching within the
alpha network (sharing
across conditionals is
possible in Sigma
through much of the
alpha network, but not at
present into the beta
network). Therefore,
each pattern instance
here compiles to its own
linear alpha subgraph
that is anchored to the
working memory for its
predicate. The message
memories for the
terminal links of the
condition subgraphs
serve as alpha memories,
maintaining the results of
the subgraph processing
in the direction of the
beta network, while the
message memories in the beta network serve as beta memories. Thus, just as Sigma’s message
memory subsumed Soar’s preference memory (Section 5.3), it also subsumes the alpha and beta

Figure 60: Graph for a conditional with two conditions (left two alpha
networks, with arrows pointing away from WM), one condact (middle alpha
network, with undirected links), two actions (right two alpha networks, with
arrows pointing towards WM), and a function (CF). Four distinct predicates
are involved, with the second one supporting both a condition and an action.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

61

memories used in Soar’s implementation of Rete (while also storing the last message along every
link rather than just at particular points in the alpha and beta networks).

Within an alpha subgraph, Sigma handles all of the within-pattern processing for a single use
of a predicate pattern. If there is a constant test, such as would be used for the pattern
Concept(object:x value:walker), a factor node for it is included in the alpha
subgraph. Consider first what should happen if this pattern were to serve as a condition. A
message should go forward that is nonzero only for objects that are of category walker, and
which retains the functional value found in the corresponding region(s) of the incoming message.
This is easily implemented in the factor node via a functional value of 1 where the value is
walker and a value of 0 everywhere else. This is also then easily generalized to filters, as the
same nodes must simply handle piecewise linear rather than merely piecewise constant functions.

This same approach straightforwardly extends to the use of constant tests and filters in
actions as well. Figure 60, for example, shows filters, which may be constant tests or more
general piecewise linear functions, in both the conditions and actions. The situation is somewhat
more complicated for the use of filters in condacts, and with open-world predicates in general.
Sigma is still in flux concerning whether the filter functions here should be 1 outside of the area
of concern – corresponding to the open-world notion unknown – rather than 0. The standard at
this point is for 0 to be used for all open-world patterns, except for condact processing towards
working memory, as these “outside” regions in condact filters should not constrain the messages
coming back into WM. However, this is likely to evolve in the future, with hopefully a less ad
hoc solution still to be found.

If a pattern is negated, as we saw in Figure 37, its alpha network includes an inversion node,
as in the second condition of Figure 60. Affine transforms, such as for the conditionals in Figures
40 and 54, may also be included, as in the second action in Figure 60. The variable swapping
capability demonstrated in Figure 54 also turns out to subsume an additional form of processing
within alpha subgraphs that previously required its own specially optimized nodes. Because a
single set of working memory nodes is shared across all patterns for the corresponding predicate,
the variables used in these nodes are not in general the same as those specified in the conditional
patterns defined for that predicate. A factor node is thus needed – at least if these variables are
used beyond the scope of the pattern under consideration – that makes the working memory
variable equal to the pattern variable. This requires a delta function in general, which has already
been mentioned as problematic. However, a specially optimized node can implement the
requisite functionality simply by swapping the variables. Because affine nodes support variable
swapping, the previously used special-purpose delta nodes could be eliminated. The compiler
now automatically introduces more affine nodes – referred to as affine delta nodes – into the
alpha subgraphs as needed for this kind of variable swapping, placing them between filter nodes
and normal affine nodes, as shown in Figure 60.

Affine nodes also have one more trick up their sleeves. As will shortly be described, tests of
variable equality across patterns are handled in the join nodes of the beta network, but variable
equality within a pattern – as in Test(a:v b:v) – is tested within the alpha subgraph, at the
affine delta nodes. Effectively, two distinct working memory variables must be mapped to a
single pattern variable (v), yielding a 1 only for values common to both. This is implemented
within affine nodes for conditions by diagonalizing along the two working-memory variables and
using the result for the pattern variable. Reuse of variables within individual actions and condacts
is not yet supported.

This completes the range of processing that can occur within a single alpha subgraph. So, the
question now becomes how the subgraphs for patterns within a single conditional can be joined in

ROSENBLOOM ET AL.

62

the beta network. Conditional functions (CFs) also need to be compiled into fragments of factor
graphs – forming what can be referred to in Rete-like terms as gamma networks – and joined to
the conditional’s beta network. In principle this all could occur via a single join node to which
the alpha subgraphs and the gamma subgraph (should there be one) are directly attached.
Alternatively, there could be a hierarchical join network that combines two subgraphs at a time or
a linear join network that introduces one new alpha network at a time. A Rete-like linear join
network is currently used in Sigma for conditions, condacts and functions, with conditions
ordered before condacts and condacts ordered before the function (as in the first part of the beta
network in Figure 60). Whenever a new variable is introduced by a pattern in the join network,
the messages and join nodes from there until the pattern in which it is last used must include a
dimension for that variable so that the constraint implied by its bindings is shared in all of the
patterns containing it.

This accumulation of variables in intermediate factor nodes and messages bears a surface
resemblance to the junction tree optimization that is commonly applied to loopy graphs.
However, here the accumulation is necessary for correctness rather than merely being an
optimization that enables the removal of loops from the graph. Still, as with junction trees, this
accumulation of variables can significantly affect the efficiency of processing, with execution
potentially combinatoric in the tree width; that is, in the maximum number of variables in a
message or node (Rosenbloom, 2011a). On the plus side, this can still yield worst-case bounds
better than those achievable by the standard form of Rete, which can be combinatoric in the
number of (condition) patterns in a rule rather than in the number of variables whose values need
to be simultaneously maintained.

To join subgraphs, each factor node in the beta network – that is, each beta factor – embodies
a constant function of 1 over the union of the variables on its links. As incoming messages are
multiplied times this function, the constraints from their variable bindings affect outgoing
messages, with across-pattern variable-equality checks implicitly occurring when multiple uses of
the same variable jointly constrain the same dimension. If an incoming variable isn’t required in
an outgoing message, the variable is summarized out from the outgoing message. This eliminates
from messages along links in the linear join network the variables that aren’t needed along those
links because they are neither used in the variable nodes directly connected to the links nor
required for comparisons in patterns further afield. It also eliminates variables not needed in
outgoing messages to the alpha networks for actions or condacts, or in the gamma network for the
function. The memories on the links within the beta network serve as beta memories,
maintaining intermediate results, for example, for initial subsequences of conditions and
condacts.

By subsuming the functionality of Rete’s alpha and beta memories, Sigma’s message
memories yield Rete-like dynamic-programming gains within a single cycle; and, with the
optimization discussed in Section 5.2.4 for message reuse across cycles, it maintains these gains
across cycles. What is different, though, is the level of granularity of the messages that are being
reused. In Rete, a message in the beta network is a token that comprises a single WME for each
of the conditions joined, whereas in Sigma a message in the beta network effectively spans all
possible tokens for the corresponding patterns. There is a potential for significant savings in
Sigma when multiple tokens map into a single region of a piecewise linear function that can be
processed as a unit, with these savings being (logically) infinite for continuous variables.
However, if any part of such a message is altered, the entire message must be resent, possibly
duplicating work for the unchanged portions. The possibility of messages representing only
altered portions of functions remains an issue for the future.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

63

Action patterns are consumers of variables introduced in conditions and condacts, rather than
introducers of new variables that can further contribute to the combinatorics. It thus becomes
feasible to attach all of a conditional’s action subgraphs directly to the last join node in the linear
sequence (see the latter part of the beta network in Figure 60).

In general, the subgraphs for different conditionals connect in working memory, at the
WMVNs, implying that it is the WMVN nodes rather than the WMFN nodes that mediate result
chaining across conditionals within the graph solution (or elaboration) phase. WMFNs can’t
mediate chaining for open-world predicates, as they do not even exist in such cases, and for
closed-world predicates, changes to WMFNs aren’t made until the graph modification phase.
The subgraphs for condacts and conditions receive messages directly from the WMVNs, while
action and condact subgraphs yield messages to them (Figure 61). In the latter case, actions and
condacts are combined as discussed in Section 4.4.4. There are, however, cases in which there
are many – thousands or millions of – condacts for the same predicate, where for computational
reasons the large product at a lone WMVN is replaced with a hierarchy of nodes that compute the
same result. The key to this is that the message memories in this expanded WMVN subgraph
enable reusing partial products, and thus can dramatically reduce the cost of changing a single
message in the overall product (Rosenbloom, Demski and Ustun, 2015).

5.4.3 EXAMPLES

As one example of a compiled factor
graph, consider how the two-feature
fragment – Color, which is perceived
as silver, and Mobile, which is
unperceived – of the naïve Bayes
classifier from Figure 7 that is shown
abstractly in Figures 44 and 52 compiles
into an actual factor graph in Sigma.
Figure 62 is a screen capture from
Sigma’s interactive factor-graph display.
The relevant conditional for the
Mobile attribute was shown in Figure
33, with the conditional probability
distribution shown in Figure 32. The conditional for Color is similar, but the conditional for the
prior distribution on the Concept is a bit simpler, comprising just two condacts, one that ties
concepts to objects and the other for the concept’s memorial predicate. The labels on the
individual nodes are unreadable at this resolution, but the rectangles are factor nodes and the
ellipses are variable nodes.

At the top of the figure are the PBFN and WMVN for the Concept, with the node on the far
right providing the LTMFN for the prior distribution on the Concept. The two longer chains
ending with bidirectional links in this figure end at LTMFNs, whereas the two shorter chains
ending with unidirectional links terminate with PBFNs. (None of the chains terminate in
WMFNs because the predicates are all open-world here.) The variable nodes directly connected
to the assumption nodes are the WMVN nodes. All of the non-assumption factor nodes
connected to the various WMVN nodes – that is, those factor nodes towards the interior of the
graph – are affine delta factors (ADFs) that change the names of the variables used in WM to
those used in the patterns. The remaining factor nodes are all beta factors (BFs) that join together
alpha networks. The two chains that join on the left connect the LTMFN for Concept-

Figure 61: Connecting subgraphs in working memory for
a single predicate.

ROSENBLOOM ET AL.

64

Mobile with the PBFN for Mobile, while the similar structure in the middle does the same for
Concept-Color and Color. These two subtrees connect at the Concept WMVN.

Given the perception of silver for the Color PBFN, and the conditional probability
distribution in the Color LTMFN, the product of these two functions in the middle of the graph
yields a distribution over the Concept once the Color is summarized out. This combines
multiplicatively with the prior distribution on the Concept from the rightmost node to yield the
posterior/marginal on the Concept. The messages from the Concept PBFN and the Mobile
tree are both uniform because of lack of input for these predicates, so they have no influence on
the posterior. However, given the posterior computed for the Concept, the message back to the
Mobile tree combines with the LTMFN to generate a prediction for it in the WMVN that sits
just above the PBFN. The messages arriving at the three LTMFNs drive learning from
experience of the prior and conditional probability distributions. There is little to learn when only
one feature is perceived and the Concept is also not seen, but there is no inherent difference
between a learning trial and a test trial, so Sigma always tries to learn what it can given what
information is available.

It is worth noting that this factor graph is considerably larger than the minimal factor graph
shown in Figures 44 and 52 for this fragment of a naïve Bayes classifier in isolation because of
the additional structures introduced by the compiler in implementing the generalized Rete idiom.
(This is analogous to, but more extreme than, the expansion that occurs when converting a
Bayesian network (Figure 43) to its equivalent in the more general formalism of factor graphs
(Figure 44).) This expansion should yield a constant-factor slowdown over the minimal graph
but not otherwise change what is computed. It is an open question whether additional compiler
optimizations might eventually be able to reduce this extra overhead in situations where the full
generality is not required.

Figure 62: Sigma's interactive factor graph display for the reduced two-feature version of the naïve Bayes
classifier from Figure 7 that is shown in Figures 44 and 52.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

65

As a second example of a compiled factor graph, consider the abstracted diagram in Figure
63 that shows how the transitive rule in Figures 16(a) and 31(a), which includes three patterns
over a single universal, closed-world Above predicate, is compiled into a factor graph and then
processed, given Above(first:o1 second:o2) and Above(first:o2 second:o3)
initially in working memory, and thus a WMFN function with 1s for just these two WMEs. In
the first step a message is sent from the WMFN via a variable node to a max action-combination
node whose other input is currently 0 (not shown).6 Since 0 is the identity element for max over
non-negative numbers, the result is the same as the message from the WMFN. This is then sent
to the
WMVN, and
from there
along the two
condition
paths. At the
affine delta
nodes, the
variable
names used in
working
memory
(first and
second) are
converted to
pattern
variable
names – a
and b, and b
and c,
respectively –
but the
messages are
not otherwise
changed
(ignoring for
now the gray
1s in the
bottom left regions). The messages from the two conditions are then joined via product at a beta
factor, with variable b summarized out to yield a message over variables a and c. This is then
joined with the action, whose variable names are changed back to those used in working memory.
When this message arrives at the max combination node it combines with the message from the
WMFN to yield an updated message to the WMVN. From the WMVN this message is sent to the
WMFN, replacing its previous function during graph modification with one that has
Above(first:o1 second:o3) added to it. Simultaneously, the message reaching the
WMVN is also passed back along the two condition paths to yield updated messages with 1s in
the bottom left regions (as shown in gray in the corners) rather than 0s. When these new

6. As mentioned in Section 5.2.1, messages into action-combination nodes are initialized to 0 rather than 1.

Figure 63: Abstracted factor graph and message passing for the transitive rule in Figure
15, given an initial working memory of Above(first:o1 second:o2) and

Above(first:o2 second:o3).

ROSENBLOOM ET AL.

66

messages are combined at the second join node, the output is unchanged from the previous
message on the link, so processing reaches quiescence at that point.

The compiled factor graph for the rule in the classification scenario that is shown in Figures
16(b) and 31(b) follows a similar pattern, although it only has one condition rather than two, and
the action is for a different predicate and involves a selection. This rule graph connects to the
factor graph for the Bayesian network that is shown in reduced form in Figure 62 via the WMVN
for the Concept predicate (the top-most variable node in the figure).

5.5 Summary

At its core, Sigma’s graphical architecture is comprised of a factor graph that is solved by a
mixture of the sum-product and max-product message-passing algorithms, and that is modified by
altering its embedded assumptions; that is, by changing values in functions associated with PB,
WM and LTM factor nodes. Several extensions have been made to the standard factor graph
formalism and to the solution algorithm – some that continue to reflect classical factor graph
semantics and others that, at least currently, do not – so that it could both serve as a better target
of the cognitive compiler and generate solutions to the resulting graphs more efficiently. The
compiler itself is built around a generalized version of the Rete algorithm, with numerous
extensions to handle the increased expressivity of the cognitive language. Despite the warts, this
generalized combination of factor graphs and Rete (as a graphical idiom that is used pervasively
on top of the graphical base) provides a functionally elegant means of supporting the breadth of
functionality provided in the cognitive architecture.

The next section shifts the focus up above the cognitive architecture, to examine how it yields
an even wider range of intelligent capabilities as functionally elegant cognitive idioms.

6. Cognitive Idioms

A cognitive idiom is a form of stylized knowledge above the cognitive architecture that can be
ascribed its own meaning. In a more conventional computing context, it is analogous to a
software idiom, design pattern, library or service. In Sigma it can also be thought of as providing
a form of supraarchitectural capability that should be broadly (re)usable in much the same way
that an architectural capability is (Rosenbloom, 2015). For example, a rule, as in Figures 16(a)
and 31(a), is a cognitive idiom in Sigma rather than an architecturally delineated knowledge
structure. It is a conditional based on conditions and actions over universal closed-world
predicates. Such rules behave much like those in Soar, firing in parallel during the elaboration
phase, and chaining until quiescence is reached. A Bayesian network is also a cognitive idiom in
Sigma, based on conditionals restricted to just condacts and a function; one unique variable – the
child – per function; functions representing conditional (or prior) probability distributions; and no
variable included as a child in more than one function. The naïve Bayes classifier(s) in Figures 7,
44, 52 and 62, and the reactive HMM in Figure 14, are simple examples of such networks.

These examples reveal that cognitive idioms can occur at multiple levels of granularity, here
at the level of a single conditional or a combination of an arbitrary number of them. Many
cognitive idioms can also be composed or decomposed into additional idioms, yielding a
hierarchy of such idioms. For example, multiple rules can be combined into a rule memory, and
Bayesian networks can be decomposed into idiomatic conditionals, such as those in Figures 32
and 33, that each represents an individual network node (in a Bayesian network); that is, a
conditional or prior probability distribution over a child variable given its parents.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

67

These examples also reveal that cognitive idioms can be based on restrictions of
architecturally provided structures and/or combinations of multiple knowledge fragments; and
that therefore the availability of a broad range of cognitive idioms depends on both the expressive
generality provided by the cognitive language and the ability to integrate effectively across
knowledge structures above the architecture (Rosenbloom, 2015). In general, different cognitive
idioms arise from different combinations of properties of predicates and conditionals, and from
the integration of different combinations of these at multiple levels of complexity.

As was mentioned in Section 5.1, the three memories in the cognitive architecture –
perceptual, working and long-term – arise in Sigma as graphical idioms (over factor graphs).
More specialized cognitive memories for such knowledge structures as rules, facts, episodes,
constraints, images, perceptions, and actions all arise in Sigma as high-level cognitive idioms,
each of which is composed from a combination of predicates and conditionals that themselves
represent particular low-level cognitive idioms. In combination with Sigma’s decision
mechanism, cognitive idioms can also yield diverse forms of reasoning, whether a classifier
(Figures 7, 32, 33, 44, 52 and 62), an HMM (Figures 14 and 18), a POMDP (Figures 15 and 17),
problem-space search (Figures 25 and 26) or Theory of Mind (Figures 15 and 26). Likewise, in
combination with Sigma’s gradient-descent learning mechanism, cognitive idioms can yield a
diversity of forms of learning, such as concept formation, clustering, perception modeling, action
modeling, map learning (in SLAM), and reinforcement learning. Cognitive idioms, whether
spanning memory, reasoning and/or learning are essential to enabling functional elegance above
the cognitive architecture, much as graphical idioms are essential to enabling functional elegance
in implementing the cognitive architecture.

Idioms that are well enough understood and sufficiently constrained may form the basis of
templates that automatically create any additional required predicates and conditionals from the
predicates that have been explicitly specified. A template enables Sigma to act much as if it has
an architectural mechanism for the corresponding idiom – with the idiom being enabled
automatically and no further knowledge needing to be added explicitly – but with processing still
occurring via the knowledge above the architecture that defines the idiom. The template itself
can conceivably be viewed as an additional architectural mechanism, possibly even as a special-
purpose compile-time structure-learning mechanism, but it is typically a more minimal piece of
special-purpose code than would be necessary to implement the idiom from scratch within the
architecture. We are still working to fully understand the status and meaning of templates in
Sigma, including whether they might eventually be replaced by an approach akin to default rules
– that is, task-independent rules with which the system is initiated, such as those used in Soar for
controlling weak-method search (Laird et al., 1987) – but this remains a topic for future work.

In the remainder of this section we will illustrate a variety of cognitive idioms related to
memory, reasoning and learning – plus their associated templates when they exist – most of
which would require special-purpose mechanisms or modules in a traditional cognitive
architecture. The goal here is both to explain the basics of how such capabilities are defined and
function within Sigma and to provide evidence concerning how far Sigma has been extended to
date towards achieving grand unification in a functionally elegant manner.

For simplicity of exposition, the ideal would be to explain each group of idioms in its own
subsection. However, memory and reasoning – at least reactive reasoning within a single
cognitive cycle – cannot really be separated in Sigma, as it is not a von Neumann architecture in
which the contents of a passive memory module are retrieved and then processed. Instead, each
form of memory induces a form of reasoning that is an inextricable part of it, and which is
indistinguishable from the notion of retrieval from the memory. Thus memory and reasoning will

ROSENBLOOM ET AL.

68

be described together in Section 6.1. The reasoning side of this will focus on reactive forms,
which are those most closely tied to memory, but will also include bits of deliberative and
reflective reasoning. For the rest, an understanding of how Soar does deliberative and reflective
reasoning, plus the few examples from earlier sections of how Sigma goes beyond Soar in this
area, will need to suffice here. Learning also has conflation issues with memory and reasoning in
Sigma, but it is somewhat more decoupleable, and so will be described separately in Section 6.2.

6.1 Memory & Reasoning Idioms

Memory idioms are based on characteristic LTM structures – that is, on particular forms of
conditionals – plus possibly particular forms of predicates and whether they include WMFNs,
LTMFNs and PBFNs. A reasoning idiom then is simply the distinct form of processing that
results from such a combination of structures and functions.

The most basic memory distinction in cognitive science, beyond those already captured in
Sigma’s cognitive architecture, is between procedural and declarative memory. This is different
from, although not completely unrelated to, the distinction in artificial intelligence between
procedural and declarative semantics, with the essence of the memory distinction being that the
former drives behavior while the latter provides knowledge about the world. Rule memories
provide the classical form of procedural memory in cognitive architectures (Anderson et al.,
2004; Laird, 2012; Meyer and Kieras, 1997), but such memories can take on other forms as well,
such as plans, cases and hierarchical skills (Fikes et al., 1972; Veloso and Carbonell, 1993;
Langley and Choi, 2006) or even programs (Goodman et al., 2008; Goertzel et al., 2014).
Declarative memories traditionally take on the form of semantic memories (facts and/or concepts)
and/or episodic memories (past history) (Vere and Bickmore, 1990; Laird, 2012), but they too can
take on other forms, including full logics (Wang, 2007; Domingos and Lowd, 2009; Goertzel et
al., 2014).

The procedural-versus-declarative distinction is useful here as a top-level of organization
across many of Sigma’s idiomatic memories, but after exploring it in some detail in Sections
6.1.1 and 6.1.2 we will examine a combined idiom for trellises in Section 6.1.3, followed by two
additional idioms that don’t map as neatly onto this distinction – for imagery in Section 6.1.4 and
distributed vectors in Section 6.1.5 – before concluding with some general discussion in Section
6.1.6.

6.1.1 PROCEDURAL IDIOMS

As mentioned in Section 4.4.4, one key aspect of the distinction between procedural and
declarative memory in Sigma is that the former is characterized by conditions and actions,
whereas the latter is characterized by condacts and a function. It is the unidirectionality of
information flow in conditions and actions that provides the basis for behavior. This
unidirectionality is also one of the key reasons why logical implications are not quite the same as
the rules that are typically supported in cognitive architectures.

The full memory idiom for standard rules – which match conditions to working memory and
make changes back to it according to how actions are instantiated by variables bound in the
conditions – is characterized by three traits in Sigma: (1) conditionals are based (only) on
conditions and actions; and predicates are (2) closed-world and (3) universal. It is thus an idiom
based on particular forms of LTM structures plus WM functions. The form of idiomatic rule-
based reasoning that emerges from these traits proceeds by matching and firing rules in parallel,
and chaining across the rules that fire within a single elaboration phase.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

69

Figure 31(a) exemplified a standard rule in Sigma, with its accompanying universal, closed-
world Above predicate. Figure 64 shows a similar kind of rule that uses an affine transform to
implement the (deterministic) operator left in a 1D grid, such as the one in Figure 10.
However, this particular rule violates trait 3 by including an action for a unique predicate –
Location(state:state x:x!) – which indicates that there is only one correct location
resulting from moving left. The results of such an action are not available in WM until after a
decision occurs, rather than enabling
further chaining within a single
elaboration phase. This conditional
is therefore best considered as an
instance of a separate idiom for
transition functions or action
models, which are still rules in a generic sense but not standard rules.

Even though rules have dominated discussions of procedural memory in cognitive
architectures, the essence of any procedural memory is simply a combination of actions with
control over their execution. In ACT-R, rule actions provide the necessary actions, with match of
buffers to rule conditions providing one aspect of control, and levels of activation providing the
other. In Soar, rules also provide actions, which in this case non-monotonically alter working
memory. Soar’s parallel rule system enables conditions to provide the sole means of control in
choosing which actions to execute. In Sigma, actions make persistent – that is, latched – non-
monotonic changes to working memory. Conditions provide one form of control on action
execution, but condacts and functions may also provide such control, thus potentially extending
what should be considered procedural memory in this generic sense within Sigma.

One such extended procedural
idiom is probabilistic transition
functions, which include a
function as part of the context for
a transition function, and which
thus violate trait 1 for standard
rules. Figure 65 shows such a
conditional for modeling
movements in a 1D grid during
SLAM. The conditional probability distribution over the next location given the current one is
stored in the LTMFN of the Location-Transition predicate. Rather than an action for the
closed-world Location predicate, there is now a condact for the open-world
Location*Next predicate – yielding a second type of violation of trait 1 – because prediction
mode is enabled and bidirectional processing will be required between the function and this
predicate for learning. This conditional thus not only violates trait 3, but it also violates trait 1 in
two ways. Via the condact, information about the next location is gathered in the (non-latched)
working memory of the Location*Next predicate – that is, in its WMVN – before being
gated for selection to the Location predicate, which then during the adaptation phase latches
the new distribution in place of the previous one. So this has the same effect on the Location
predicate as if an action had been used in the conditional for it, but with an intermediate
representation of it also being created in the Location*Next predicate.

Figure 66 shows a similar transition function that has been used in an isolated-word speech-
recognition HMM based on a reusable generic time slice (Figure 18). The function, which is
stored in the LTMFN of the Phone-Transition predicate, represents the joint conditional

CONDITIONAL Transition
 Conditions: State(state:s)
 Location(state:s x:x)
 Selected(state:s operator:o)
 Condacts: Location*Next(state:s x:nx)
 Location-Transition(x:x operator:o
 nx:nx)

Figure 65: Conditional for a 1D transition function.

CONDITIONAL Move-Left
 Conditions: Selected(state:s operator:left)
 Location(state:s x:x)
 Actions: Location(state:s x:x-1)

Figure 64: Grid conditional for moving left.

ROSENBLOOM ET AL.

70

probability of the next word and phone given the currently selected word and phone.7 In Figure
18, this corresponds to the horizontal arrow. As in SLAM, this transition function leverages
prediction mode, so there is a
condact for Phone*Next rather
than an action for Phone. What
is different, though, is that no
current operator is tested, as this
transition function is part of
perception, with no associated
operators. Thus, although this is
still a transition function, it isn’t
an action model.

A template has been defined in Sigma for probabilistic transition functions that automatically
turns on prediction mode if it isn’t already on, to yield *Next predicates, and creates a transition
conditional for each unique closed-world state predicate that is defined (where a state predicate is
a predicate that includes an argument for the state). If the Selected predicate is defined, a
condition for it is also included in the conditional, to convert the transition function into an action
model.

In Soar, rules (and transition functions) reside within the reactive control level, whereas in
ACT-R they are at the deliberative level, with one rule selected for execution each cognitive
cycle. Soar also has a distinct notion of actions at the deliberative level – problem-space
operators – with preferences retrieved from rule memory providing control for them (Section
5.3). Rules in Soar thus play an important role in procedural memory at both the reactive and
deliberative levels, with standard rules and their actions at the reactive level and control rules
guiding operator selection at the higher level. Sigma too augments its standard rules at the
reactive level with a Soar-like higher level of operators and control rules. Control rules in Sigma
are based on the same procedural idiom as transition functions: they are like standard rules in
form, but their actions are based on unique rather than universal closed-world predicates. These
actions may be based on the Selected predicate, for choosing the next operator to execute, or
on any predicate that requires a choice.

This control-rule idiom leverages how distributions over unique closed-world predicates in
Sigma can replace Soar’s special-purpose preference language for operator choice. Figure 39, for
example, showed a task-independent control rule that converts policies, in the form of Q
functions, into distributions over the Selected predicate. The selection rule in the
classification scenario –
Figures 16(b) and 31(b) – is
also such a control rule,
although it strays even further
from a standard rule by
violating trait 2 to include an
open-world condition that
enables it to extract results
from the classifier (a part of
declarative memory that will
be discussed shortly). In contrast, Figure 67 shows a task-dependent control rule for the Eight

7. A phone is similar to a phoneme, but the former is a physical realization of a sound while the latter is an
idealized sound.

CONDITIONAL Goal-Right-Best
 Conditions: State(state:s)
 Board(state:s x:x y:y tile:t)
 Board(state:s x:x+1 y:y tile:0)
 Board*Goal(state:s x:x+1 y:y tile:t)
 Actions: Selected(state:s operator:t)
 Function: 1

Figure 67: Eight Puzzle control rule for establishing that moving a
tile to the right is best when it is its goal location.

CONDITIONAL Acoustic-Transition
 Conditions: State(state:s)
 Phone(state:s word:wp phone:pp)
 Condacts: Phone*Next(state:s word:wc phone:pc)
 Phone-Transition(word:wp phone:pp
 nword:wc nphone:pc)

Figure 66: Conditional for a transition function from a word-
recognition HMM based on a reusable generic time slice.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

71

Puzzle that assigns the highest possible rating to moving a tile into the blank cell to its right when
that is the tile’s desired location.

The most important result in general from this discussion of Sigma’s procedural memory is
that it is not limited to standard rules, and thus to the three traits listed above for them. It may, as
we have seen, violate trait 3 by including actions for unique predicates, or violate trait 1 by
including functions and/or condacts. It may also violate trait 2 by including a condition or action
over an open-world predicate. These “violations” expand the space of procedural memory idioms
– while still remaining focused on actions and their control – to span standard rules, control rules,
(probabilistic) transition functions, and likely more.

6.1.2 DECLARATIVE IDIOMS

Declarative memory in Sigma was based in Rosenbloom (2010) on the antithesis of the three
traits characterizing rules: (1) conditionals are based on (only) condacts and a function; and
predicates are (2) open-world and (3) unique. In this case, traits 1 & 2 still seem essential: trait 1
to specify the relevant variables and relations plus the functional values over them (whether
Boolean or fully numeric); and trait 2 to enable multiple pieces of evidence to be combined
conjunctively (i.e., multiplicatively). However, trait 3 is perhaps best considered as one side of a
further distinction within declarative memory, in analogy to the role trait 3 was eventually
concluded to play in procedural memory. If we violate trait 3, and thus use universal predicates,
we have an idiom for constraints, in which any number of the domain elements may be valid for
the variables (Figure 34). Multiple such constraints yields a constraint network, or what could be
called a constraint memory in the terminology used here. Bidirectional processing over the
constraint conditionals ensures that all of the functions in the network/memory propagate
appropriately.

Although a constraint memory of this type is not typically considered for inclusion in
cognitive architectures – as opposed to the kind of soft constraint networks over which neural
network models often seek to optimize (O’Reilly and Munakata, 2000; Sun, 2006; Eliasmith,
2013) – we are not aware of any direct evidence as to whether or not such a memory might play a
role in human cognition. Still, in the generic cognition sense, it does make sense to consider such
a constraint memory as providing a declarative memory idiom in Sigma.

With trait 3 intact – that is, with unique predicates – we are in the world of soft/probabilistic
constraints, where there are distributions over the domains of the variables and the goal is to
identify the best values for these variables. The reason this trait was originally considered
essential to declarative memory was because it is central to the memory idioms for the two
classical forms of declarative memory: semantic memory and episodic memory.

A sample of the conditionals involved in semantic memory – as mapped onto a naïve Bayes
classifier (Figures 7, 44 and 52) – was seen in Figures 32 and 33, with the full factor graph for a
portion of this classifier in Figure 62. An abstract view of the factor graph for the full classifier
from the classification scenario is shown in Figure 68. Only the PBFN,8 LTMFN and join/beta
factors are shown. Evidence here appears in the perceptual nodes, with messages passing
bidirectionally to generate a distribution over the concept in the forward direction – that is,
towards the concept – and predicted distributions over the attributes in the backward direction.

8. In earlier versions of Sigma, this was a WMFN, but since then the perceptual buffer was added and
WMFN nodes for open-world predicates were eliminated.

ROSENBLOOM ET AL.

72

This idiom for semantic memory induces classification reasoning as well as a form of
synchronic prediction. In a bit more detail, it provides a complete partial match capability, where
evidence can be provided for any of the attributes, as well as for the concept itself, with all those
unspecified being predicted. For example,
given perception that the Color is
silver, plus a standard set of LTM
functions for the prior on the Concept and
the conditional distributions of the attributes
given the Concept, the predicted values
(and their probabilities) were
Concept=walker (.90),
Weight=15.67 (expected value via $
rather than best value), Mobile=true
(.95), Alive=false (.95), and
Legs=4 (.99). The most significant
examples of semantic memory so far
implemented within Sigma have all been in
the context of language processing,
covering part of speech tagging and word
sense disambiguation (Rosenbloom et al.,
2013), as well as utterance classification (Ustun et al., 2015).

Digging more deeply into the naïve Bayes idiom for semantic memory reveals that it is itself
decomposable into two smaller idioms, one for a prior distribution over the concept and the other
for a conditional distribution over an attribute given the concept (Figures 32 or 33), both of which
are usable independently. We can also see that although this overall naïve Bayes idiom is limited
by the strong independence assumptions underlying such classifiers, Sigma as a whole is not
limited in this manner. For example, the conditional in Figure 36 showed a (uniform) conditional
distribution for the Q value (the child variable) given the combination of the location and the
operator (the parent variables). Thus it is conceivable that Sigma’s semantic memory could be
more flexible in terms of its underlying independence assumptions – and might even learn which
forms of independence do or do not exist – but this remains to be explored. There is also no
inherent limit to a one-level hierarchy, although initial experiments with multiple levels – as in
deep learning/networks (LeCun et al., 2015) – have not yet generated anything particularly of
note.

Perceptual memory is typically considered as distinct from semantic memory, and clearly not
a part of declarative memory. As a subcognitive skill, perception seems in many ways even more
an antithesis of the symbolic facts and concepts in semantic memory than is (cognitive)
procedural memory, with the notion of “declarative” usually even carrying along with it the
connotation of a symbolic relational structure about which one can explicitly reason. Yet, in
Sigma these distinctions largely disappear, even when focused, as in this section, on the long-
term form of perceptual memory in LTMFNs rather than on the transient form of it in PBFNs.
The perceptual memories used currently in SLAM, where the current location is to be determined
indirectly from object perception, and in word recognition, where the current phone (the hidden
state variable in the HMM) is to be determined from perception of spectral labels, are based on
conditionals that are nearly isomorphic to the one in Figure 33, albeit with state arguments and a
condition for the state added. Figure 69, for example, shows the conditional that relates objects to
locations, with the resulting map – in the form of a conditional probability distribution over the

Figure 68: Abstraction of (naïve Bayes) semantic-
memory factor graph, with (S)ymbolic, (D)iscrete,

(B)oolean and (C)ontinuous types.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

73

object given the location – stored in the LTMFN for the Object-Location predicate. Figure
70 further shows the corresponding conditional for isolated-word recognition, which encodes the
conditional probability of the spectral
label given the word and phone, and
which corresponds to the vertical arrow in
the single-slice HMM in Figure 18. (Such
conditionals can actually be thought of as
inducing an instance of that diagram for
each word). Thus, in Sigma’s terms, such
perceptual memories appear as fragments
of semantic memory. The attributes and concepts here may be numeric rather than symbolic, but
that turns out to be just as true a possibility for semantic memory in general.

As with transition
functions, a template has
been defined for
perceptual memories. It
enables prediction mode if
it isn’t already enabled,
and then creates for each
perceptual predicate a conditional that has a condition for the state plus condacts for the
perceptual predicate, all of the *Next predicates, and a new memorial predicate whose LTMFN
stores the conditional probability of the unique variables in the perceptual predicate given the
variables in the *Next predicates. Ultimately, a smarter approach will likely be required for
determining upon which *Next predicates the perceptual predicates should be conditioned, but
the approach described here has been sufficient to date.

An even simpler idiom for perceptual memory dispenses with conditionals entirely, in favor
of a single perceptual predicate with an LTMFN. The concept in the classification scenario, as
shown at the top and right of Figure 62, is of this sort, as is the perceptual memory for the visual
search task in Section 4.3.1, where there is simply an Image-Color predicate with an LTMFN
for the distribution over the color given the location in the 2D visual field. Similarly, in work on
reinforcement learning (Section 6.2.5) there is a Reward predicate with an LTMFN for the
distribution over the reward given the state (in this case, a location in a grid). In principle, this
simpler idiom seems like it need not be limited to perceptual memory, and perhaps could provide
a simple idiom for semantic memory or even declarative memory as a whole; however, if the
LTMFN is to be learned based on gradient descent then it must either receive input from
perception – that is, from a corresponding PBFN – or from the rest of the graph (via structure
defined by an encompassing conditional), and so the predicate must either be perceptual or be
connected via conditionals to other portions of the graph.

If we now move from semantic (and perceptual) memory to the other traditional form of
declarative memory – episodic memory – the main differences between the two cognitive idioms
at a high level are that episodic memory uses: (1) a concept corresponding to the episode number,
with the original concept becoming just another attribute (Figure 71); and (2) max rather than
integral for summarization so as to retrieve all of the attribute values for the single most
appropriate past episode rather than the best individual attribute values across all episodes.
Episodes here correspond to cognitive cycles, based on: an architectural Time predicate with a
single argument whose value corresponds to the number of cognitive cycles that have elapsed,
and attributes that are based on closed-world state predicates. As with all naïve Bayes classifiers,

CONDITIONAL Acoustic-Perception
 Conditions: State(state:s)
 Condacts: Observation(label:o)
 Phone*Next(state:s word:w phone:p)
 Observation-Phone(label:o word:w phone:p)

Figure 70: Perceptual conditional for word recognition.

CONDITIONAL Object-Location-Map
 Conditions: State(state:s)
 Condacts: Object(state:s value:o)
 Location*Next(state:s x:x)
 Object-Location(value:o x:x)

Figure 69: Map conditional for conditional distribution
over objects given locations.

ROSENBLOOM ET AL.

74

there is a prior distribution over the concept, which is Time here, and conditional distributions
over all of the attributes given the concept.

This is roughly how episodic memory was
originally implemented in Sigma (Rosenbloom,
2010), with a special-purpose episodic learning
mechanism later added for it. However, more
recent work has shown how, with a more
elaborated memory structure and some
parameter tuning, gradient descent could yield
episodic learning in a manner that is uniform with the other forms of learning in Sigma
(Rosenbloom, 2014). The more elaborated memory structure stems from the need to distinguish
between the past and the present: episodic learning depends on what is true now; episodic
selection – that is, deciding which episode to retrieve – depends on matching what is true now to
what was true in the past; and episodic retrieval – that is, retrieving the attribute values associated
with the episode – depends on what was true in the past. Semantic memory lacks this explicit
historical/autobiographical aspect, being essentially timeless. In episodic memory, what is true
now is represented in the WMFNs for closed-world selection state predicates. Each such
predicate is assumed to define a single attribute with respect to episodic memory. These are
therefore not quite the same predicates of the same name used in the classification scneario, as
those are open-world. Instead these are selection predicates, like the use of Selected in the
classification scenario, but here for the concept and each feature. As with the open-world *Next
predicates for prediction (Section 5.4.1), open-world predicates with a suffix of *Episodic are
added in episodic memory to represent
what was true in the past. Three
conditionals are then required per
attribute/predicate, one each for
learning, selection and retrieval. The
key to making this work is tying the
functions across these conditionals, as
introduced in Section 4.4.3. The
details can be found in Rosenbloom (2014).

For illustration, Tables 2 and 3 show a sequence of eleven episodes, starting with four that are
fully specified and followed by
seven that are partially specified
(Rosenbloom, 2014). The latter
seven are functionally “query”
episodes, but they are themselves
also learned as episodes, as there is
no architectural distinction been
training and testing trials.

There is one curve in Figure 72
for each of the query episodes,
graphing the posterior distribution
over the previous episodes9 during the episode when the query appears (and thus when it acts as a
cue for episodic retrieval). These distributions arise from a (multiplicative) combination between

9. The curves actually start two episodes back, as it takes one cognitive cycle, and thus one episode, for
learning to incorporate episodes into the appropriate LTMFNs.

 Queries Best
T5 Concept=walker T1
T6 Color=silver T4
T7 Alive=false, Legs=4 T1
T8 Alive=false, Legs=2 T3
T9 Concept=dog, Color=brown T4
T10 Concept=walker, Color=silver, Alive=true T1
T11 Alive=false T8

Table 3: Sequence of seven partially specified "queries".

 Concept Color Alive Mobile Legs Wgt.
T1 walker silver false true 4 10
T2 human white true true 2 150
T3 human brown true true 2 125
T4 dog silver true true 4 50

Table 2: Sequence of four full instances.

Figure 71: Naïve Bayes classifier for episodic
memory.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

75

the temporal prior learned across the episodes and the (partial) match between the present
attribute values and those stored in the episodes. The episode retrieved for each of these queries
can be seen in the final column in Table 3.

A template for episodic memory
enables it to work automatically with no
manual additions of knowledge. For each
unique, closed-world state predicate that
makes a selection, it generates an open-
world *Episodic predicate plus the
appropriate learning, selection and
retrieval conditionals.

In summary on declarative memory,
the primary focus has concerned idioms
that are based on classifers, mostly of the
naïve Bayes sort, to span semantic
memory, perceptual memory and episodic
memory. Other forms of classifiers are
possible but have been explored less in
Sigma. Declarative memories not based on classifiers are also conceivable, but so far
unexplored.

6.1.3 MIXED IDIOMS: THE TRELLIS

One important way to move beyond the distinction between procedural and declarative memories
(and idioms) is to consider memories (and idioms) that combine the two. For example, when the
idioms for probabilistic transition functions and perceptual memories are combined, a new
cognitive idiom arises that spans procedural and declarative memory. In particular, it yields a
generalization over the generic single-slice HMM found in Figure 18 that includes the option for
conditioning on the action performed (Figure 73). This combined idiom subsumes HMMs, but
also covers a broader set of trellis graphs, enabling it to be used for both SLAM and word
recognition. In SLAM, exploiting this pair of templates implies
that only two conditionals, to drive a random walk around the
environment, need be specified explicitly. To complete the
processing in word recognition, only one conditional need be
added, which combines a condition over the open-world
Phone*Next predicate; an action for a unique closed-world
Word-Selected predicate; and max summarization to select the
best word from this predicate. (This conditional itself can be
thought of either as representing a hybrid between procedural and
declarative memory or as an additional procedural idiom.) The
combined trellis idiom/template, as well as either of its subidioms,
may also be useful elsewhere. For example, the probabilistic
transition function idiom/template is also leveraged in the
reinforcement learning work that will be described in Section
6.2.5.

These single-slice trellis graphs are inherently deliberative, spinning out in a forward
direction across a sequence of cognitive cycles, although they can also support reflective
variations as necessary, such as that shown in Figure 26 for the Ultimatum Game. Reactive

Figure 72: Posterior distributions for the seven partially
specified “query” episodes.

Figure 73: Generic single-
slice trellis with an optional

action.

ROSENBLOOM ET AL.

76

within-cycle trellises are also possible in Sigma, and may be either unidirectional or bidirectional.
The key to reactive trellises is for the probabilistic transition functions to be able to chain without
requiring a selection, and thus a decision. For bidirectional graphs, the transition functions must
themselves be bidirectional, and thus based on pairs of condacts. Figure 15 showed a POMDP
for the Ultimatum Game as a unidirectional reactive trellis, whereas Figure 17 showed
(unidirectional) interactions among three bidirectional reactive trellises, for perception (a CRF),
localization (part of SLAM) and decisions (a POMDP). Like deliberative trellises, reactive
trellises can be considered as hybrids between procedural and declarative memory, or possibly
even as occupying a netherland between them.

Theory of Mind (ToM), such as in the Ultimatum Game, involves forming models of others’
minds and generating expectations about their behavior based on these models, to enable effective
decisions in social settings (Whiten, 1991). The reactive and reflective POMDPs for the
Ultimatum Game in Figures 15 and 26 thus also reflect reactive and reflective idioms for ToM in
Sigma. Other forms of ToM reasoning have also been demonstrated in Sigma – such as the
computation of the Nash equilibrium for the Prisoner’s Dilemma – that involve different ToM
idioms (Pynadath et al., 2013), but these will not be further detailed here.

Trellises in general, but most particularly unidirectional ones at the reactive and higher
control levels, show the leverage that is possible when “different memories” – here procedural
and declarative – are combined not by loosely coupling monolithic modules but by tightly
coupling small fragments of each into a new hybrid fragment, yielding both a new hybrid idiom
and a new form of idiomatic memory. Such trellises are not possible in conventional cognitive
architectures such as Soar and ACT-R without the explicit addition of new architectural modules.
Typically these additional modules must also be implemented in a manner that is inhomogeneous
with the core architecture because they require controlled forms of subsymbolic processing.

6.1.4 IMAGERY IDIOMS

One major memory (and reasoning) idiom that has not yet been covered yields imagery memory
(Rosenbloom, 2011b, 2012b). It is one of the simplest idioms in Sigma because it requires no
specific conditionals. Essentially, a form of mental imagery is implicated anytime there is a
predicate with at least one universal numeric argument, either discrete or continuous, and one
unique argument. This could be 1D, 2D, 3D or more, depending on the number of universal
arguments. The Location predicate implicit in Figure 10 and explicit in Figures 36, 39, 64, 65
and 69 is a discrete 1D fragment of imagery memory. The Image-Color predicate implicit in
Figures 28 and 30 is a discrete 2D fragment of imagery memory. The Board predicate for the
Eight Puzzle, as introduced in Section 4.4.3, is a continuous 2D fragment, as is the Image
predicate used in Figures 37, 40 and 54. Perhaps more surprisingly, the Q predicate in Figures 36
and 39 that represents a policy for operator selection yields a discrete 1D fragment of imagery
memory, as it has a universal discrete numeric argument like the one used in the Location
predicate, plus a unique argument for the utility.

Even perceptual memories are effectively fragments of imagery memory, as long as they
have the right combination of argument types. For example, both the perceptual field in visual
search and the map function in SLAM are part of mental imagery, whereas the acoustic function
currently used in word recognition is not, because the first two are based on discrete numeric
locations, while the latter is based on symbols representing acoustic labels. Similarly, the
perceptual Reward predicate mentioned earlier in this section is part of imagery memory when
the reward is conditioned on a numeric state and is not when it is conditioned on a symbolic state
(unless the definition of what it means to be an image is further extended). A hybrid state might

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

77

yield a memory fragment whose category is ambiguous, but whose meaning should still be
straightforward.

As with all of the other
idioms described in this
section, reasoning over
imagery occurs via
conditionals: in particular, ones
based on affine transforms for
translation, scaling and
reflection (Figure 40); filters to
extract and weight parts of
images (Figure 39); function
products to conjunctively
combine images, such as in
computing the intersection or overlap among them (Figure 74); function summarization to
disjunctively combine images, such as in computing their union (Figure 75); and
negation/inversion to assist
in computing the differences
between images (Figure 76).
Of these architectural
capabilities implicated in
imagery reasoning, only one
was explicitly developed in
support of imagery
reasoning: affine transforms.
Surprisingly, this classical
form of imagery reasoning
also turned out to support a
primitive form of
architectural arithmetic over
numeric variables, where
translation performs addition and scaling/reflection performs multiplication.

6.1.5 DISTRIBUTED-VECTOR IDIOMS

The last idiom that will be covered in
this subsection is for distributed
vector memory (Figure 13) and
its associated reasoning (Ustun
et al., 2014). This idiom is like
the one for imagery memory in
only constraining the
predicates. However, in this
case they are limited to vector
predicates. Sigma was able to
support distributed vectors to
some extent prior to the development of the vector predicate type, via unnormalized unique
predicates with a single discrete argument, but small tweaks to the ways normalization, action

Figure 74: Computing the overlap between images 0 and 3.

CONDITIONAL Overlap-0-3
 Conditions: Image(o:0 x:x y:y)
 Image(o:3 x:x y:y)
 Actions: Overlap(i:1 x:x y:y)

Figure 75: Combining four objects into a single new object.

CONDITIONAL Union
 Conditions: Image(o:o x:x y:y)
 Actions: Union(x:x y:y)

Figure 76: Computation of the left edge of a complex object via
translation, negation and multiplication.

CONDITIONAL Left-Edge
 Conditions: Union(x:x y:y)
 -Union(x:x-.0001 y:y)
 Actions: Left-Edge(x:x y:y)

ROSENBLOOM ET AL.

78

combination, and learning would work for vectors improved Sigma for this form of memory
(Section 4). With these changes, vector summation occurs via action combination, vector binding
continues to occur via multiplication, and vector comparison occurs via cosine similarity (based
on a combination of multiplication, summarization and vector normalization).

Figure 77, for example, illustrates how knowledge about which other words have co-occurred
with a particular word in a fragment of text is converted into a single new vector representing this
context (Ustun et al., 2014). It starts with (a) a local Boolean vector over the vocabulary that has
a 1 for each co-occurring word and a 0 for all other words, and (b) the lexicon, represented as a
matrix that maps
local word
representations
into distributed
representations.
The product of
these two (c)
yields non-zero
rows in a matrix
for only the co-
occurring words,
a form of
multiplicative
selection.
Summarizing
out the rows via
integral yields a single summed vector (d), which is then vector normalized (L2) to yield the
context vector (e).

6.1.6 ADDITIONAL DISCUSSION

There are other memory and reasoning idioms in Sigma, such as heuristic search (Figure 25), but
the way this currently occurs in Sigma is similar to the way it has always been done via decisions,
impasses, reflection and metalevels in Soar, and thus not worth a further discussion here. Instead
we’ll wrap up this subsection with noticing how the memory and reasoning idioms introduced in
this section together manifest functionally elegant grand unification above the cognitive
architecture. From simple variations over the predicates and conditionals used, plus combinations
of them, we have seen how everything from core perceptual activities to purely symbolic rule
behavior is evidenced, along with a variety of more intermediate forms. Some architectural
extensions have been implicated in the process, such as for affine transforms and vector
predicates, but these are localized modifications that yield a missing fragment of generalized
capability rather than new modules for their respective memories.

6.2 Learning Idioms

Sigma’s learning idioms yield a diversity of supraarchitectural learning capabilities that are all (1)
grounded in changes to LTMFNs, whether within predicates or conditionals, and (2) driven by
gradient descent based on the “reverse” messages arriving at the corresponding factor nodes.
Learning in Sigma is thus primarily a side effect of memory and reasoning – as was also the case
earlier with chunking in Soar (Laird et al., 1986) – implying that learning idioms are typically

Figure 77: A small example, over a four-word vocabulary, of computing a context
vector from a co-occurrence vector and the lexicon.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

79

side effects of memory and reasoning idioms. This section is therefore organized around the
idioms introduced in Section 6.1, but with the discussion extended here to incorporate their
consequences for learning. Memory idioms that do not involve LTMFNs will be passed over, as
gradient descent can have no impact on them.

6.2.1 PROCEDURAL IDIOMS

With procedural idioms, we must immediately skip over both standard rules and basic transition
functions because neither contains functions. Probabilistic transition functions, however, do
contain functions and, in fact, require learning if the template is used because the LTMFN created
for the transition function is initialized to a uniform distribution and thus can only have
appropriate content through learning. Action modeling – that is, learning transition functions that
provide models of actions – has been demonstrated via a transition conditional like the one in
Figure 65 for a random walk in which there is perception of the location, but with noise in both
this perception and in the outcome of the actions. For example, Table 4 shows the results from
one experiment spanning 10K cognitive cycles in a 1D grid of size 8, with actions for left,
right, and stay. Any attempt to move beyond the bounds of the grid here yields the same
result as executing stay. The probability of perceiving the correct location is .9, the total
probability mass allocated to the
location perceived is .9 (with the rest
allocated to adjacent locations) and
there is a .9 probability of the selected
action being the one executed. While
the results in the table aren’t perfect, a
uniform distribution would yield just
.125 while the minimum value for the
correct location in the table is .58 and
the maximum is 1.

Action modeling without noise has also been investigated in the context of reinforcement
learning (RL) (Rosenbloom, 2012a), where the probabilities of correct predictions quickly
approach 1, and noisy, action-free transition function learning – as structured by the conditional
in Figure 66 – has been demonstrated successfully for word recognition (Joshi et al., 2014).
Action modeling has not been demonstrated successfully in SLAM, as without access to either an
action model or location information it has not proven possible to bootstrap meaningful learning.

Learning for the simplest control rules, such as the Eight Puzzle control rule in Figure 35,
which has a constant function and thus no variables, is not possible via gradient descent in Sigma
because there are no child variables over which a distribution can be learned. However, control
learning does become possible when a distribution exists over a variable for which a selection is
to be made. For example, learning the full function underlying the contents of Table 4, which
defines a distribution over the next location given the current location and action, amounts to
learning to control the selection of the predicted next location, assuming that a selection will
actually be made.

A more conventional example of control learning involves learning to select actions that yield
better outcomes. Reinforcement learning, for example, learns a policy (or Q function): that is, a
distribution over a utility variable given the state and action (Sutton and Barto, 1988). When
combined with the generic conditional in Figure 39 that converts such policies into distributions
over operators, a learned policy can help determine which actions are selected (Rosenbloom,
2012a). In Sigma, reinforcement learning is a complex, compound, cognitive idiom, and is the

 0 1 2 3 4 5 6 7
left .97 .83 .86 .58 .60 .71 .69 .89
stay 1.00 .89 .74 .98 .87 .96 .89 .98
right .80 .96 .75 .75 .71 .66 .61 .89

Table 4: Probability associated with the correct next location,
given the action at the left of the table and the current location
at the top of the table, as assigned by the learned action model

from a random walk.

ROSENBLOOM ET AL.

80

only learning idiom not directly tied to a single memory/reasoning idiom described in Section 6.1.
As such, its further explanation will be deferred until Section 6.2.5, after all of the more primitive
learning idioms out of which it is composed have been introduced.

6.2.2 DECLARATIVE IDIOMS

The first form of declarative learning idiom to consider is constraint learning. As introduced in
Section 6.1.2, constraint reasoning in Sigma involves only universal variables, and thus there are
no child variables on which gradient descent can operate. However, as was mentioned in Section
4.2.4, useful learning has proven possible here even with this basic assumption violation. But in
the longer term, a valid learning algorithm is required for constraint memory and for all similar
undirected functions in Sigma.

To understand semantic learning in Sigma, it helps to start by considering the abstract graph
for semantic memory in Figure 68. For an attribute, messages from its PBFN and from the
concept combine, via product and summarization at the corresponding beta/join node, to provide
a message to this LTMFN that is usable as the gradient in learning the conditional probability of
the attribute given the concept. For the concept, the message from its PBFN is combined with the
messages from all of the attributes to provide the gradient at the LTMFN for learning the prior
distribution, as shown by the top message in Figure 52. Work on learning such classifiers for two
key aspects of natural language processing – word sense disambiguation (WSD) and part of
speech (POS) tagging – has demonstrated supervised concept learning as well as aspects of
language learning (Rosenbloom et al., 2013). For WSD, such learning yielded 78% correct on
the Senseval-3 dataset and 70.3% correct on the Semcor dataset. For POS, such learning yielded
90.3% correct. Although this latter result was no better than the baseline of choosing the most
common tag, it did at least show that this approach could learn to match this baseline.

This form of concept acquisition has also been extended in a straightforward manner to
unsupervised learning (or clustering) (Rosenbloom et al., 2013). The key was to move the
concept from its privileged position in the classifier to a position as just another attribute, as was
similarly done for episodic memory in Figure 71, and then to add in the privileged position a
variable that has one domain element per cluster to be found and neither evidence nor a prior.
The LTMFNs here are initialized with random rather than uniform values to help break initial ties
concerning how the different clusters respond to the initial attribute values that are experienced.
Gradient descent over such a structure yields unsupervised learning in a manner that resembles
standard clustering techniques such as expectation maximization (Rosenbloom et al., 2013). In
particular, evidence for attribute values engenders distributions over the available clusters, which
bounce back to generate expectations for the values of the (unspecified) attributes. Learning
occurs for the conditional probabilities in the LTMFNs in service of aligning expected and actual
values. Such an approach can learn a correct model for exclusive or (XOR), whereas a one-level
supervised naïve Bayes classifier cannot.

A partial template exists for semantic memory that can automatically generate a supervised or
unsupervised classifier based on a specification of the concept and attributes, but the development
of a full template that would automatically create an appropriate semantic memory given the
predicates otherwise defined for task-oriented behavior remains for future work.

A template does however exist for perceptual memory that yields perceptual learning. For
SLAM and word recognition this template has been used successfully to learn a map and an
acoustic model, respectively. There are also a number of successful examples of more primitive
perceptual learning, where there is a perceptual predicate with an LTMFN but no conditional or
template: for example, for the Image-Color and Reward predicates mentioned in Section

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

81

6.1.2. Figure 78, for example, displays the expected values learned over the Reward LTMFN as
a function of the location in a 1D grid, where there is an externally provided reward of 9 in cell 4
and 0 everywhere else (Rosenbloom, 2012a).

Episodic
learning occurs over
the elaborated
classifier defined by
the temporal prior
plus the three
conditionals per state
attribute/predicate
discussed in Section 6.1.2 (Rosenbloom, 2014). However, two additional tweaks have also been
made: raising the learning rate for the episodic LTMFNs so as to increase the contrast for one-
shot learning (given that each episode is seen only once), and switching from the subtractive form
of normalization that is used elsewhere in gradient-descent learning to a divisive form. Divisive
normalization, where individual values are divided by the sum/integral over all of the values, is a
common form of normalization and was originally used in Sigma’s learning algorithm, but it was
eventually replaced by a subtractive version to help learning track the constraint surface more
closely (Rosenbloom et al., 2013). The original divisive form is used in episodic learning so as
to yield a temporal prior that decreases exponentially backwards in time. With this adjustment,
and the fact that message bidirectionality implies that temporal learning occurs both when an
episode is learned and when it
is accessed, it was possible to
map this temporal prior (Figure
79) onto ACT-R’s notion of
base-level activation without
building in a separate
activation model or base-level
equation (Rosenbloom, 2014).
In base-level activation, the
activation of items in memory
is based on a combination of
their (exponentially decaying)
recency and frequency. The
inhomogeneity resulting from
these two tweaks is
troublesome conceptually, but
resolving this is left for future
work.

One standard optimization in purpose-built episodic memory modules within other
architectures comes for free with episodic learning over piecewise-linear memories: as new
episodes are acquired, new regions are required in an LTMFN only when the value of the
attribute for the current episode differs from that in the previous episode. Otherwise, the boundary
of the previous region is just effectively extended. Unfortunately, this optimization by itself is
insufficient to make episodic retrieval sufficiently efficient when learning a large number of
episodes, as the cost of episodic retrieval still grows linearly with the size of the LTMFNs due to
the entire function for each attribute being passed as a message each cycle. Future work includes

Figure 79: The learned temporal prior over the episodes so far
experienced. It has a natural exponential shape from the learning of
the episodes with divisive normalization, but portions of it also are

bumped up as episodes are retrieved.

0

10

0 1 2 3 4 5 6 7

Figure 78: Expected values by location for the learned Reward LTMFN.

ROSENBLOOM ET AL.

82

exploring how this cost may be reduced either via attentional focusing or via a form of
incremental message passing, where only the changes to functions need be sent each cycle.

6.2.3 MIXED IDIOMS: THE TRELLIS

Full trellis learning combines the idioms and templates for transition functions and perceptual
memories. The prime example of this to date is the simultaneous learning of transition and
acoustic (perception) functions in a deliberative HMM for isolated-word recognition (Joshi et al.,
2014), where an accuracy of 99.2% was achieved for a ten-digit vocabulary (compared to a
baseline for random selection of 10%).

6.2.4 IMAGERY IDIOMS

Learning has not so far been explored in the work explicitly focused on representing and
transforming mental imagery, but examples of imagery learning can be found in more naturalistic
settings, where imagery simply exists in the context of work on other capabilities. One
significant class concerns perceptual learning over numeric fields, as already described for maps
in SLAM
and the
Image-
Color and
Reward
predicates.
A key non-
perceptual
example is shown in Figure 80, where a policy for the Q predicate is acquired via reinforcement
based on the learned reward function in Figure 78 (Rosenbloom, 2012a). As is clear in this chart,
the Left operator is preferred for locations to the right of the reward and the Right operator for
locations to the left of it.

6.2.5 REINFORCEMENT-LEARNING IDIOM

Template-driven reinforcement learning in Sigma starts with perceptual learning of a reward
function, as in Figure 78. This is then used as the basis for conjointly learning the projected
future utility of states in the LTMFN for the Projected predicate, and the policy in the
LTMFN of the Q predicate (Figure 80). Figure 81 shows the conditional that drives Projected
learning, based on
backing up the sum of
the reward and the
discounted projected
value for the next state
(from
Projected*Next).
This conditional uses an
affine transform to
discount the projected
distribution (by scaling) and to add (by translation) the local reward to it in computing the
Projected distribution from which it will learn. It furthermore weights this by the filtered Q

CONDITIONAL Backup-Projected
 Conditions: State(s:s)
 Location(s:s x:x)
 Location*Next(s:s x:nx)
 Selected(s:s operator:o)
 Projected*Next(x:nx value:np)
 Reward(x:nx value:r)
 Q(operator:o location:x value:[.05*q])
 Actions: Projected(x:x value:r+.95*np)

Figure 81: Conditional for backing up the Projected predicate in RL.

0

10

0 1 2 3 4 5 6 7

Left
Right

Figure 80: Expected values by location for the policy learned for the Q predicate given the
reward function learned in Figure 78.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

83

distribution, which converts the explicit distribution over utilities into an implicit distribution of
functional values, as in Figure 39, so that if Boltzmann selection causes a poorly valued action to
be tried, the projected future utility of the current state is not affected too greatly by any bad
result that might occur. The conditional for backing up the policy is much like this one, but has
an action for the Q predicate instead. Figure 82 shows the expected values learned for the
Projected predicate for the same situation in which the Reward and Q predicates were
learned in Figures 78 and 80. The distribution dips to 0 at the goal location because trials are
terminated when the goal location is reached, and so there is no backup at that point from which
to learn.

In RL, rewards are
propagated backwards
in time to learn
policies. Reversing
this – that is,
propagating policies
forward in time to learn
rewards – yields inverse reinforcement learning (IRL) (Ng and Russell, 2000). IRL has been
used in Sigma to learn, as reward functions, models of other agents – a key part of Theory of
Mind – in a two-person negotiation game (Pynadath et al., 2014). The first step is to leverage
simple perceptual learning to acquire a distribution over the other agent’s operator choices given
the current state, under the assumption – which works fine in the two-person games investigated
so far – that agent choices are clear from their behavior. Then these action likelihoods are re-
interpreted in terms of the expected values of Q distributions, and a softmax distribution is used
to translate these Q values into a Boltzmann distribution. This distribution is then propagated
forward to learn the projected reward in the resulting state. Because of the potential noise and
error in this projection, each update is weighted by the likelihood of the observed operator, as in
reinforcement learning. Finally, the constraint is exploited that in these domains rewards are only
provided in terminal states, so that there is no projected utility at states where rewards are
received. Therefore, the projected utility propagated forward to such a state can be assumed to be
the reward for the state.

6.2.6 DISTRIBUTED-VECTOR IDIOM

The idiom for distributed-vector learning involves summing together, via action combination, the
kind of context vector for a word computed in Figure 77 for co-occurrence information with an
ordering vector for the word that is based on a variant of skip-grams, an alternative to n-grams in
which nearby words are bound (by pointwise product) to unique vectors for their positions
relative to the word of interest. This sum then becomes the gradient for learning a distributed
representation of the word via the vector variant of gradient-descent learning described in
Equation 5 (Section 4.2.4). Because of the large number of large distributed vectors used here,
this idiom presently runs rather slowly in Sigma. We are investigating ways to speed this up in
Sigma, but in the meantime a simulator, DVRS’, has been used to generate results not currently
feasible within Sigma (Ustun et al., 2014). Table 5 illustrates the results of this simulator for the
task of finding similar words. In general, when comparing the results of this simulator versus the
state-of-the-art Word2Vec system (Mikolov et al., 2013), we see cases where this approach does
better, similar and worse (Ustun et al., 2014). There is clearly a core similarity between what the
two approaches learn, but there is also enough difference that combining the vectors learned via
the two approaches yields better results than either approach individually (Garten et al., 2015).

0

10

0 1 2 3 4 5 6 7

Figure 82: Expected values by location for the Projected future utility.

ROSENBLOOM ET AL.

84

6.2.7 ADDITIONAL DISCUSSION

One key global result derivable from the set of learning idioms described in this section is that all
memory and reasoning idioms, except those lacking directed functions – that is, those that have
no function with a child variable – directly engender effective learning idioms, so that the scope
of learning
behaviors
naturally
grows with
the scope of
memory and
reasoning
behaviors.
A second
key result is
that learning
behaviors
can range
from the
very simple,
where there
is just one
function in
isolation, up to complex forms such as trellis, episodic, reinforcement, and inverse reinforcement
learning, where multiple functions in a complex relationship with each other must be learned in
concert.

6.3 Summary

Figure 83 summarizes the key idioms presented in this section, divided according to whether they
concern memory and reasoning or learning. It should be clear that these idioms span many of the
capabilities typically desired in a cognitive architecture, but in Sigma they have all appeared
instead as cognitive idioms. There are important interactions among many of these idioms as
well, whether it is combining multiple memory-and-reasoning idioms into a more complex
reasoning structure, such as with trellises, or combining memory-and-reasoning idioms with
corresponding learning idioms. Building towards virtual humans via complex combinations of
such idioms is the core subject of the next section.

		 language	 		 		 		 film	 		
Context	 Order	 Composite	 		 Context	 Order	 Composite	
spoken	 cycle	 languages	

	
director	 movie	 movie	

languages	 society	 vocabulary	
	

directed	 german	 documentary	
speakers	 islands	 dialect	

	
starring	 standard	 studio	

linguistic	 industry	 dialects	
	

films	 game	 films	
speak	 era	 syntax	 		 movie	 french	 movies	
		 business	 		

	
		 run	 		

Context	 Order	 Composite	 		 Context	 Order	 Composite	
businesses	 data	 commercial	

	
home	 play	 runs	

profits	 computer	 public	
	

runs	 hit	 running	
commercial	 glass	 financial	

	
running	 pass	 hit	

company	 color	 private	
	

hit	 die	 break	
including	 space	 social	 		 time	 break	 play	

Table 5: Five nearest neighbors of four words based on context, ordering and the

composition of the two.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

85

7. Combining Cognitive Idioms into Virtual Humans

In the previous sections, several combinations of cognitive idioms were seen, such as the
combination of a probabilistic transition function with perceptual memory (and learning) to yield
a generic single-slice trellis (Figure 73), and the combination of perception and localization with
decision making (Figure 17). The combination of a POMDP with reinforcement learning and
inverse reinforcement learning for agent modeling in Theory of Mind has also been demonstrated
(Pynadath et al., 2014). However, a key goal for Sigma must always be to go beyond just
combinations of small numbers of cognitive idioms, to full integration across all of the cognitive
idioms that have so far been developed. This is a constantly receding goal, at least as long as new
idioms are being developed, but one that can continually be approached by composing ever more
ambitious combinations in the context of building virtual humans (VHs). Virtual humans are
synthetic characters that can take the part of humans in a variety of contexts. Like intelligent
agents and robots, they form one of the great integration challenges for research in AI.

Swartout (2010) has argued that the main goal for virtual humans is to look and behave as
real people to the extent possible. Behaving like real people requires (1) using perceptual
capabilities to observe the environment and other virtual/real humans in it; (2) acting
autonomously in the environment based on what is known and perceived; (3) interacting in a
natural way with both real and other virtual humans using verbal and non-verbal communication;
(4) possessing a Theory of Mind to model both one’s own mind and the minds of others; (5)
understanding and exhibiting appropriate emotions and associated behaviors; and (6) adapting
one’s behavior through experience. Most critically, although most current virtual humans

Memory and Reasoning Idioms

Procedural Memory

Standard Rules
Control Rules
Transition Functions

Probabilistic Transition Functions
Action Models

Declarative Memory
Constraint Memory
Semantic Memory
Perceptual Memory

Map Memory
Episodic Memory

Trellis Memory (HMMs, POMDPs, etc.)
Reactive Trellises
Deliberative Trellises
Reflective Trellises

Imagery Memory
Distributed Vector Memory
Problem Space (Heuristic) Search

Learning Idioms

Transition Function Learning

Action Modeling
Control Learning

Reinforcement Learning
Constraint Learning
Semantic Learning

Supervised Concept Learning
Language Learning

Unsupervised Learning
Perceptual Learning

Map Learning
Episodic Learning

Temporal Learning
Trellis Learning
Imagery Learning
Inverse Reinforcement Learning
Distributed Vector Learning

Figure 83: Primary cognitive idioms introduced in this section.

ROSENBLOOM ET AL.

86

succeed in their aims with only a small fraction of these capabilities, ultimately this full range of
capabilities must be integrated and must function coherently.

Broadly capable real-time virtual humans provide ideal testbeds for demonstrating and
evaluating progress on Sigma’s four desiderata, with “broadly capable” challenging the extent of
its grand unification; “real-time” challenging its sufficient efficiency; and “virtual humans,” with
their need to exhibit human-like behavior in artificial systems, challenging its generic cognition.
The fourth desideratum, functional elegance, implies a relatively unique path towards the
construction of such virtual humans, where instead of a disparate assembly of modules (Hartholt
et al., 2013), all of the required capabilities are constructed from a small combination of
architectural mechanisms plus a hierarchy of cognitive idioms.

Two quite different, but both still fairly simple, virtual humans have been implemented in
Sigma: a task-oriented chatbot, and a virtual humanoid robot. These two VHs occupy points in
the virtual-human spectrum that would normally require quite distinct architectural support. The
fact that both can be constructed in reasonable ways within Sigma demonstrates key aspects of all
four of Sigma’s desiderata.

7.1 Chatbot

The first attempt to build a virtual human in Sigma had modest goals, focused on replicating just
the mind of a deployed, but cognitively rather simple, virtual human that was originally
developed for the Immersive Naval Officer Training System (INOTS), a training vehicle for
leadership and basic counseling by junior leaders in the U.S. Navy (Campbell et al., 2011; Ustun
et al., 2015). The control structure of this existing virtual human is based on a branching –
directed acyclic – network of states and utterances, with a statistical utterance classifier used to
determine which choice, and thus also what response, to make at each point. In the original
system, two separate tools were combined to make this work, with one providing the control
structure and the other the utterance classifier (Campbell et al. 2011). In Sigma these two
functionalities were mapped, respectively, onto: deliberative movement in a discourse problem
space composed of operators for speaking and listening, and a reactive bag-of-words naïve Bayes
utterance classifier. The first component involves the kind of deliberative Soar-like idiom on
which this article hasn’t focused, but it is built from a pair of simpler idioms that have been
described, for action models and control rules. The second component comprises a standard
application of Sigma’s semantic memory idiom. This application can be viewed as an adaptation
and extension of the classification scenario first introduced in Section 4, where the features are
now words, the selection is of a sentence, and there is a deliberative sequence of such
classifications + selections structured as a dialogue.

The goals for implementing this particular VH mind in Sigma were to show that simple
minds of this sort could be created simply, and in an integrated fashion, and that they could then
be extended as more complex intelligent behavior is required. These goals are related to Alan
Kay’s mantra “Simple things should be simple and complex things should be possible,” and are
intended to support typical customer requirements that start simple but then grow as it becomes
understood what the initial system can and cannot do. It was in fact possible to demonstrate that
a simple VH mind could be created simply and in an integrated fashion, in this case via a
straightforward combination of a deliberative procedural idiom and a reactive declarative idiom,
to yield a mixed supraarchitectural capability combination that spans multiple levels of the
control hierarchy.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

87

In a bit more detail, the VH control structure alternates whose turn it is to talk, with a
listen operator selected when it is the human’s turn and a speak operator selected when it is
the VH’s turn. When it is the human’s turn, their typed utterance is classified as one from among
a small set of standard utterances – typically between one and three – that have been predefined
for the corresponding dialogue state. The selected standard utterance then feeds the transition
function, to determine the subsequent dialogue state. Only one utterance is specified for each
dialogue state in which it is the VH’s turn to speak, so it is merely produced, and the next
dialogue state then is a direct function of the previous one. This VH mind works in real-time, and
can hold a dialogue like the one in the original system; however, due to extrinsic constraints its
development was terminated before extensions to more complex behavior could be investigated.

7.2 Virtual Humanoid Robot

The second attempt to build a virtual human in Sigma started at a point that was already
significantly more ambitious than the first attempt, and with the long-term aim of driving ever
more aggressive combinations of capabilities. This initially yielded what can be considered an
early form of an adaptive, interactive virtual human (Ustun and Rosenbloom, 2015), through a
combination of (1) cognitive idioms for control rules, imagery, Theory of Mind, SLAM and
(multiagent) reinforcement learning; and (2) a virtual physical embodiment via the SmartBody
character animation system (Shapiro, 2011). The VH is adaptive not only in terms of
dynamically deciding what to do via a rule-based decision framework, but also in terms of
embodying both map and reinforcement learning. It is interactive both in terms of its (virtual)
physical environment – through high-level perception and action – and its relationship to other
participants, although the latter is still quite limited. Neither speech nor language was deployed
in this virtual human, so social interaction was limited to constructing – actually learning with the
help of RL – models of the self and others.

Embodiment occurred within a simulated convenience store for a shoplifting scenario, a
civilian variant of the important class of physical security systems scenarios. In a typical
shoplifting plot, offenders first pick up merchandise in the store and then try to leave without
getting caught by any of the store’s security measures. A simple grab-and-run scenario has been
the initial focus, where the intruder needs to locate the desired item in the store, grab it, and then
leave the store. The role of security is to detain the intruder before s/he leaves the store. A basic
assumption is that it is not possible to tell what the intruder will do until s/he picks up an item and
starts running. The security can immediately detect the activity and start pursuing the intruder
once the item is picked up (assuming CCTV). If the intruder makes it to the door, it is considered
a success for the intruder. Sigma has deliberately been denied direct programmatic access to the
virtual environment here – as is provided in many VH and game applications – instead needing to
perceive and act on the environment through a restricted, and deliberately noisy, perceptual-motor
interface.

The original scenario involved only a single VH, for the intruder, but with part of the security
functionality “grafted” into its brain; that is, a portion of it leveraged multiagent RL to learn a
model of by which door the intruder would choose to exit (Ustun and Rosenbloom, 2015). This
has since been extended to distinct intruder and security virtual humans. The intruder does not
know the layout of the store and hence must learn a map and be able to use it to localize itself in
the store. When the intruder locates the item of interest, it grabs the item and leaves the store via
one of the exits. In the hypothetical retail store used here (Figure 84), there are shelves (gray
rectangles), the item of interest (the blue circle) and two entry/exit doors (red rectangles). The

ROSENBLOOM ET AL.

88

intruder leaves the store via either the door by which it entered or the door closest to the item of
interest. The
main task for the
security agent is
to learn about
the exit
strategies of
intruders and to
use this
knowledge to
effectively
detain them.
However, the
security agent
also doesn’t begin with knowledge about the layout of the store, and so must also learn a map.

SmartBody (Shapiro, 2011), a Behavior Markup Language (BML) (Kopp et al., 2006)
realization engine, is used as the character animation platform, with communication between the
Sigma VHs and SmartBody handled via BML messages. In the current setup, locomotion and
path finding are delegated to the SmartBody engine. Sigma sends commands and queries to
SmartBody to perform these tasks and to return perceptual information. Two basic types of
perception are utilized by each of the two Sigma virtual humans in service of map learning:
information about its current location, mimicking the combination of direction, speed and
odometry measurements available to a robot; and objects that are in its visual field, along with
their relative distances, mimicking the perception of the environment by a robot. Location
information is conveyed to the Sigma VHs with noise added; perfect location information is not
available to them.

A 31×31 grid is imposed on the store for map learning. A virtual human only occupies a
single grid cell, whereas objects in the environment, such as shelves, can span multiple cells. The
cognitive idiom for SLAM here, as shown in Figure 85, is a bit different from that used in the rest
of this article, as a Dynamic Bayesian
Network (DBN) (Murphy, 2002) is
utilized in which l is the location, u
captures the odometry readings, p
represents perceptions of the
environment, and m is the map of the
environment. Locations are defined in
terms of two predicates – Location-
X(x:location) and Location-
Y(y:location) – where the
location type is discrete numeric
with a span of 31. These are perceptual
predicates, and hence induced
perceptual buffers, that emulate
odometry readings. In particular,
perception of the current location of the
agent involves a default noise model in which any cell adjacent to the correct one may be
perceived as the agent’s current location. In addition to the odometry readings, the objects in the

Figure 85: Dynamic Bayesian Network for SLAM.

 u1 ut-1 ut uT

 l1 lt-1 lt lT

 p1 pt-1 pt pT

 l0

 m

Figure 84: Layout of the store and its SmartBody representation.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

89

visual field are also perceived, along with the relative distances along x and y of the centers of
these objects to the agent.

The DBN is encoded via two almost identical conditionals, one for Location-X (Figure
86) and a similar one for Location-Y. These conditionals convert the perceived relative
locations of the objects given the agent location to absolute locations in the map, using the affine
transform translation to offset the agent’s current location by the distances to the objects. In
Figure 86, Object-Location-X is a memorial predicate whose LTMFN learns the x
component of the map via gradient descent. Since both the Location-X and Object-
Location-X patterns are condacts, the processing is bidirectional between them: both (noisy)
perception of the VH’s location and perception of the visible objects’ relative locations have an
impact on the posterior for the VH’s location. This bidirectional processing forms the basis for
SLAM, where the map is learned while it is simultaneously used for localization.

The objective of the
intruder is to grab the item of
interest and to leave the store
through one of the exits
without being detained. In
the current implementation,
four basic behaviors are
available to the intruder via
operators that can be selected: (1) walk towards target object; (2) run towards target object; (3)
pick up target object; and (4) walk towards random object. Target objects are important for the
intruder to achieve its goals, while random objects drive exploration of the store.

The intruder is initialized with a sequence of target objects that it needs either to walk
towards or to pick up. Given that the intruder has no a priori knowledge of the store, the location
of the current target object may be unknown to it. In this case it needs to explore the store,
mapping it in the process, to locate the target object. The basic operator used for exploration is
walk towards random object. The intent is that doing this will help the agent discover new
objects, and eventually the target object. This exploratory operator is always available; however,
if other more task-relevant behaviors are available they take precedence. For example, Figure 87
shows a conditional in which
the operator walk towards
target object is proposed for
selection, with a utility of 0.5,
when the virtual human has
seen the target object, and
hence there is an estimate of its
location. Exploration has a
lower utility, so walking to a target object takes precedence if both operators have been proposed.
When the virtual human is within a threshold distance of the target object, a new operator, pick up
target object, is selected. The trial terminates when the intruder reaches its preferred exit door,
which acts as the target object for the run towards target object operator.

The security VH learns a map in the same manner as the intruder, but its primary task is to
catch the shoplifter. One basic assumption here is that it is easy to recognize that a grab-and-run
scenario has been initiated, by observing the pick-up behavior of the intruder. However, even
though the security VH can thus easily recognize when such a scenario has been initiated, it still

CONDITIONAL SLAM-X
 Conditions: Observed(object:o visible:true)
 Object-Distance-X(dist-x:dx object:o)
 Condacts: Location-X(x:lx)
 Object-Location-X(object:o x:(lx-dx))

Figure 86: SLAM conditional for the x coordinate.

CONDITIONAL Walk-Towards-Target
 Conditions: Target-Object(object:o)
 Seen-Objects(object:o visible:true)
 Actions: Selected(operator:walk-target)
 Function: 0.5

Figure 87: Conditional that proposes walk towards target object.

ROSENBLOOM ET AL.

90

needs to intercept the intruder before it leaves the retail store. As there are two exit doors, early
anticipation of the intruder’s choice increases the chances of a successful detention.

In decision theoretic approaches to Theory of Mind, such as are leveraged here, agent models
can be represented as reward functions. For the intruder in our scenario there are two possible
models, distinguished by whether a reward is received when the agent returns to its door of entry
or when it reaches the nearest door to the item of interest. Here, as in Pynadath et al. (2014),
multiagent RL is leveraged in selecting among models of other agents; in particular, it enables the
security VH to select a model of the intruder. First, RL is used to learn a distinct policy, or Q
function, for the intruder under each possible model. These policies are then used in combination
with the perception of the intruder’s actions to determine which model yields a higher Q value for
the actions actually performed by the intruder, and thus which model is more likely driving its
action choices. This quickly enables the security VH to determine the correct door, with the Q
value learned by RL substituting for what would otherwise be a need to explicitly extrapolate and
compare the paths the intruder might take to the two doors.

As in Pynadath et al. (2014), it is possible to move from single-agent to multiagent RL, and
from RL given a single reward function to RL given a range of possible reward functions, or
models, by appropriately changing the predicates and conditionals. The conditional that
compares the Q values and generates a distribution over the models is shown in Figure 88. It uses
a filter to multiply the Q values for the observed action – specified by the location of the intruder
and the
direction of
movement
from that
location – in
each policy
by 0.1, to
scale utilities in [0,10] to values for selection in [0,1], and then projects these values onto the
model predicate to generate a distribution over the model currently being used by the intruder.

In addition to demonstrating key – albeit still very initial – steps towards grand unification
and generic cognition, the intruder and security virtual humans leverage Sigma’s functionally
elegant approach to implementing and integrating a range of both architectural and idiomatic
capabilities. It also stretches, but does not quite break, the desideratum of sufficient efficiency.
Although at ~250 ms the cognitive cycles were longer than the desired 50 ms, the impact on the
performance of the VHs was minimal because those activities requiring faster decisions were
delegated to SmartBody’s internal algorithms (Ustun and Rosenbloom, 2015). Ultimately the
goal is to move these activities fully into Sigma. There are also many additional capabilities that
need to be, and can be, incorporated into these virtual humans, and many ways that this
shoplifting scenario can be extended to provide new challenges.

8. Discussion

An evaluation of a long-term, large-scale research project – as opposed to a more traditional but
narrower, scientific contribution – should focus on the scientific value of its desiderata, and how
well these desiderata have been met. For Sigma, the case for the first part of this has been made
in some detail in Section 2. Ultimately, the second part calls for challenging global evaluations,
such as some variant of the Turing test or other comprehensive measures of human-level

CONDITIONAL Predict-Model
 Conditions: Previous-RL-Loc(location:loc)
 RL-Direction(direction:d)
 Q(model:m location:loc direction:d value:[0.1*q])
 Actions: Model(model:m)

Figure 88: Model prediction conditional.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

91

performance or human likeness. The virtual humans described in Section 7 are clearly initial
steps in this direction, although they are still far from where they eventually need to be. In this
section, an interim approach is taken to the second part that focuses on an informal analysis of
where Sigma currently sits with respect to each of its four desiderata. This analysis will also act
as a summary of the work described in this article, while pointing out gaps where future work is
needed.

8.1 Grand Unification

Grand unification requires implementation of, and integration across, the full set of capabilities
necessary for spanning the time scales – and associated levels and bands – shown in Table 1.
Here we’ll consider each of the four bands explicitly, beginning with the biological band, the
natural home of work on neural/brain architectures and models, including recent attempts at
whole brain models such as Blue Brain (Frackowiak and Markram, 2015) and Spaun (Eliasmith,
2013). In this article this band has been generalized to the more generic notion of a graphical
band, which has then been modeled via Sigma’s graphical architecture. The key motivation for
beginning work on Sigma was the ability of graphical models to provide state-of-the-art
algorithms across signal, probability and symbol processing from a single representation and
processing algorithm, and even subsume several classical approaches to modeling neural
networks. We have just begun to explore the relationship of Sigma’s graphical architecture to
neural networks, with a small extension for special one-way factor nodes that compute logistic
functions, enabling the representation and solution of standard feedforward neural networks,
although not yet with learning (Rosenbloom et al., 2016). But the bigger point is that results with
Sigma to date have shown that the primary promise of graphical models for cognitive
architectures/systems is in fact realizable. Signal processing shows up in vision (via a CRF) and
speech (via an HMM); probabilistic reasoning appears in many places, but most obviously in
semantic memory; and symbolic processing shows up in many places, such as in rule memory
and problem-space search. Learning has also been demonstrated in these graphs.

The biggest current gaps from this perspective on the graphical band concern signal
processing and learning. With respect to signal processing, piecewise-linear functions have
turned out to provide a somewhat unwieldy means of representing, reasoning and learning with
continuous functions; and learning so far has only yielded piecewise-constant functions that are
even less amenable, particularly when spiky, for use in representing continuous functions. Both
of these limitations point to a potential need to generalize further the function representation and
learning algorithm for continuous signals. With respect to learning, beyond the current limitation
to piecewise-constant functions, there is a general lack of reasonable learning for undirected
functions – that is, ones with no child variables – and a complete lack of structure learning for
acquiring and modifying nodes and links in the graph. Potential approaches to each of these gaps
in Sigma can be imagined – for example, we are exploring a generalization of Soar’s chunking
mechanism to compile new graphical models from experience in reflective problem solving – but
none has yet made its way into reality. There are also more minor issues with the need for
alternative parameter values in gradient-descent learning, such as has been seen for both the
learning rate and form of normalization used in episodic learning.

A second useful perspective on the graphical band is that it is the home to any necessary
subcognitive processing. Beyond signal and probability processing, the recent work on appraisal
and attention contributes here, but more work is required on additional appraisal variables and on
further exploration of the implications of the attention mechanism. The rest of the emotional arc,

ROSENBLOOM ET AL.

92

in particular additional ways in which emotion may impact thought and behavior via coping and
other mechanisms, also requires more work. Also missing here are motivation and personality
(Sun and Wilson, 2010; Bach, 2015), and the notion of bodily state. With respect to motivation,
we have begun exploring whether the application of desirability appraisals to variables
representing basic needs might yield an approach akin to that embodied in MicroPsi 2 (Bach,
2015). With respect to bodily state, there is recent work, for example, that connects ACT-R with
a state-of-the-art model of human physiology (Dancy et al., 2012), but from a generic cognition
perspective, it would be useful to start from a more generic notion of bodily state, and of how
such a state interacts with cognition, than is specifically provided by human physiology. The
architectural appraisals implemented so far within Sigma start to approach this, but still leave a
large gap to be filled.

The cognitive band is the natural home for work on traditional cognitive architectures, such
as ACT-R and Soar. Sigma’s cognitive architecture also sits within the cognitive band, as do its
cognitive idioms. The many relevant varieties of memory, reasoning and learning that have been
demonstrated within this band reveal the strength of Sigma here. There are almost certainly gaps,
but they are smaller and thus less obvious. For example, there has not been much emphasis on
planning in Sigma, but much that is known about planning in Soar (Laird and Rosenbloom, 1990;
Rosenbloom et al., 1990) should transfer straightforwardly to Sigma. Two other potential gaps of
note concern abductive reasoning, as is central in the Icarus architecture (Bridewell and Langley,
2011), and analogical reasoning, as is central in the Companions architecture (Forbus and
Hinrichs, 2006). The former is hypothesized to play a significant role in understanding, for both
natural languages in particular and for the world more generally. The latter has been
hypothesized to play a critical role in much of cognition, and in particular for transfer of what has
been learned to new situations.

Abduction has not yet been investigated in Sigma, but there has been some work on analogy.
A simple form of analogy arises directly from leveraging the form of word/concept similarity that
is implicitly represented in distributed vectors (Ustun et al., 2014). There has also been a
preliminary investigation into how the more sophisticated approach to analogy that is embodied
by the Structure Mapping Engine (Falkenhainer et al., 1989) might fit within Sigma, but there are
not yet publishable results to report from this work. One hypothesis that has arisen from the
combination of these two preliminary investigations is that distributed vectors might provide an
appropriate reactive form of analogy, whereas an approach like SME might yield appropriate
forms that are deliberative or reflective. Still, despite such potential gaps, the cognitive band is
generally in good shape in Sigma.

The rational band is where (hierarchies of) goals combine with knowledge to yield rational
responses to situations. It is the natural home for integrated systems focused more on the content
of intelligent systems than on their architecture, such as Cyc (Lenat and Guha, 1990) and
Polyscheme (Cassimatis, 2002). This is not yet a particular strength in Sigma, but some critical
support for it does exist in terms of the availability of a blend of symbolic and probabilistic
reasoning within the reactive control level; the existence of deliberative and reflective control
levels that allow the system’s full span of knowledge and processing to be brought to bear in
service of achieving goals; and the recent addition of an architecturally penetrable representation
for goals that enables the architecture to more directly contribute to rational goal-oriented
behavior. If Sigma were to incorporate logics, they would be at this level, above the cognitive
architecture rather than within it – but logics aren’t currently included in Sigma. Whether or not
this lack reflects a gap needing to be filled is open to judgment concerning the ultimate relevance
of logic in natural and artificial intelligence. The biggest gap in the rational band is simply the

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

93

absence of large bodies of diverse knowledge that can be leveraged in achieving goals. This may
include abstract conceptual knowledge in the form of ontologies, laws and facts about the world
(both qualitative and quantitative), knowledge of self, and more.

Newell (1990) actually said very little about the social band when he introduced the notion,
but roughly it concerns organisms behaving appropriately in the context of other individuals and
groups of individuals. It is the natural home of multiagent architectures including explicitly
social architectures such as PsychSim (Pynadath and Marsella, 2005), while also depending
critically on the ability to communicate – often in natural language – among the participants. The
multiagent capability of Sigma, which enables multiple independent Sigma-based entities to run
concurrently, and the associated work on Theory of Mind are initial attempts at approaching this
band. The work on speech and language is also an important aspect of this as well. However,
there are a number of major gaps that must be addressed before Sigma can be considered a fully
social system. These include, but are not necessarily limited to a better understanding of other
individuals plus any understanding of groups; inclusion of affective aspects of participating in
social organizations; behaving appropriately in complex organizations with mixtures of shared
and opposing goals; and full, bidirectional verbal and non-verbal communication.

Some cognitive architectures/systems have largely been initiated within a single band, such as
Soar within the cognitive band and Spaun within the graphical band. Others have originated in a
more explicitly cross-band manner, such as Clarion (Sun, 2006) and Sigma with origins that span
the graphical and cognitive bands. Either way, if the development process continues for a
sufficient period of time, attempts will almost inevitably be made to expand to other bands.
Sigma is thus far from unique in this attempt, but it is one of the most well developed
combinations of the graphical and cognitive bands – and one that takes a significantly different
approach from other such attempts, in using graphical models in the graphical band in
conjunction with an implementation relationship to the cognitive band – with also significant
beginnings on both the rational and social bands.

In addition to spanning Table 1 in an integrated manner, grand unification also requires
integration across the full arc of intelligent behavior, from perception and understanding, up
through reasoning and cognition, and back down to planning and action, essentially covering all
non-physical aspects of intelligent behavior within the system itself. Sigma has made a good start
on this, with significant integration across central cognition, and with the cognitive cycle having
been generalized to handle not just central cognition but also perception and understanding,
including aspects of vision, speech and language. Speech processing – in addition to currently
being limited to speaker-dependent, isolated-word, small-vocabulary tasks – is still fairly high
level, beginning with acoustic labels rather than raw speech, and thus leaving a gap between the
raw signal and these labels that currently is filled by external preprocessing. It is thus important
to keep pushing Sigma further out towards the raw signal, not just in speech, but also in vision
and in the perception of virtual worlds. There is even a bigger gap in motor control, where
essentially nothing has been done to date, and a smaller gap in planning, where what has been
learned about planning in Soar has mostly not yet been transferred to Sigma.

8.2 Generic Cognition

Generic cognition requires spanning both natural and artificial cognition at a suitable level of
abstraction. At the bottom of the hierarchy in Table 1, the biological band has been abstracted to
what was termed the graphical band, and then an implementation of this graphical band has been
provided via graphical models. Graphical models are rooted in artificial intelligence and other

ROSENBLOOM ET AL.

94

engineering disciplines; however, they do generically model the parallel networks of local
processing that are found in the brain and, as has already been mentioned, subsume several
specific neural network models. As has also already been mentioned, gradient descent in factor
graphs bears a generic resemblance to backpropagation in neural networks, and extensions to
factor graphs are beginning to be explored that yield feedforward neural networks.

At the cognitive band, the cognitive architecture includes the distinction from cognitive
science among working memory, long-term memory, and perceptual buffers. Via idioms, Sigma
also reflects the further distinctions between procedural, semantic, episodic and imagery
memories. There is even a temporal prior in episodic memory that maps onto the notion of base-
level activation in ACT-R. In contrast, there are also CRFs, HMMs, SLAM, POMDPs, and RL
from the artificial side, although RL has itself become successful of late as a model of learning in
neuroscience (Niv, 2009). Sigma also embodies the tri-level control hierarchy inherited from
Soar, which maps onto tri-level theories in both robotics and emotion, as well as onto the
automated (System 1) versus controlled (System 2) distinction in cognitive science.

At the rational band, Sigma has stayed away from formal logics, based largely on the lead
author’s sense that not only are they not appropriate in cognitive models, but that they aren’t even
the best choice for building artificial systems. At the social band, Sigma has made use of
concepts familiar from artificial intelligence such as Nash equilibria, and decision theoretic
approaches are seen, but the approach is in fact based on PsychSim (Pynadath and Marsella,
2005), which is itself well grounded in the modeling of both small and large social systems.

In summary on generic cognition, it is clear that Sigma mixes ideas and constraints from both
artificial intelligence (& robotics) and cognitive science, but it is not yet completely clear whether
this means that it will yield both effective artificial systems and sufficiently accurate models of
natural systems. Just to consider one major example from the natural side, does idiomatic
memory, reasoning and learning only model human cognition at an abstract functional level, or
does it reflect some deeper commonality waiting to be discovered in the structure of human
minds and brains? Much of this more challenging aspect of generic cognition remains for future
work.

8.3 Functional Elegance

Functional elegance requires broad cognitive (and non-cognitive) functionality – ultimately
grand-unified generic cognition – from a simple and theoretically elegant base. There are
currently three levels at which functional elegance can be assessed in Sigma: (1) from the
graphical architecture to the cognitive architecture; (2) from the cognitive architecture to the
cognitive idioms; and (3) from the cognitive idioms to virtual humans. The first and second
levels have been covered in detail in Sections 5.4 and 6, respectively. Rather than reviewing
these two levels here, we’ll just state that they both exhibit extensive functional elegance, though
not without a variety of rough edges, and leave to each reader to judge for her or himself those
aspects that support the former versus exhibit the latter. The third level is just beginning to
appear, and is thus too nascent to support much of an assessment. Still, even the early work in
Section 7 is starting to reveal how combinations of cognitive idioms may lead to useful virtual
humans, and how different combinations of such idioms may yield distinct varieties of virtual
humans.

As noted in Section 2, functional elegance resembles the more standard scientific notion of
emergence; however, it is a weaker notion that allows for some, although preferably minimal,
explicit additions. Many of the distinctions in the graphical and cognitive architecture were

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

95

introduced specifically to support the range of behavior that was to be produced above them, so it
can’t be said that all of these higher-level behaviors simply emerged. Nonetheless, they all are
based on combinations of small numbers of what can be called architectural microvariations,
rather than on distinct modules, thus fully complying with the notion of functional elegance.

8.4 Sufficient Efficiency

Sufficient efficiency requires executing quickly enough for real-time applications involving
virtual humans and intelligent agents/robots, and for large-scale experiments in modeling human
cognition. Given the optimizations described in Rosenbloom (2012c) and Rosenbloom, Demski
and Ustun (2015), simple tasks typically run well within 50 msec per cycle, but more complex
tasks can run considerably slower. The key determiner of combinatorics in graphical models is
their treewidth, which in Sigma depends on the maximum number of dimensions/variables in
functions and messages. However, the actual cost of Sigma’s factor-graph operations depends on
the effective sizes of its functions and messages, in terms of the number of distinct, non-zero
regions they possess. In the worst case, the effective size of a function/message is the product of
the domain sizes of all of its variables/dimensions, where the domain size of a continuous
variable is effectively its span divided by the epsilon (i.e., 10-7 for an absolute comparison) that
determines when two continuous values differ. Functional uniformity across this domain can,
however, reduce the number of regions, and any empty regions – that is, ones with a functional
value of 0 – can largely be ignored during processing. These two optimizations loosely
correspond to leveraging parameter equality and determinism, respectively, in more traditional
approaches to graphical models.

As was mentioned in Section 7, the speed of ~250 msec/cycle exhibited by the virtual
humans in the shoplifting scenario was sufficient because behavior that needed to be controlled at
shorter time scales was delegated to the body simulation system. As Sigma’s coverage is pushed
out more towards the periphery of perceptuomotor behavior, and to further subcognitive
capability in general, the ~50 msec/cycle constraint will inherently tighten. At the same time, as
the virtual humans and other systems developed within Sigma become more ambitious, and as
learning is used more pervasively, the computational demands within the cognitive cycle will
increase.

It may not be obvious a priori why parameter learning by itself might lead to increased costs,
but episodic learning provides a simple example, where each cycle adds a new region in each
episodic LTMFN whenever its value changes from the previous cycle. Thus such functions grow
roughly linearly with time. Perhaps less obviously, functions such as those learned for the Q
predicate in reinforcement learning also grow over time, possibly even exponentially. These
functions are initialized to uniform distributions with just one region, but learning differentiates
them, as necessary, as distinct subfunctions are learned for different combinations of states and
operators. Consider a 2D function that is initialized with a uniform distribution, and thus only
one region. Changing the function at just one point can add two slices along each dimension,
yielding nine regions in the result. This growth is bounded by the worst case of the treewidth, but
this can be a very large bound, particularly with continuous variables/dimensions.

Sufficient efficiency is thus a constant challenge in developing an architecture/system like
Sigma. Optimizations over the past few years have gained two orders of magnitude in speed, but
more is always necessary. Parallelism provides one obvious form of recourse that hasn’t yet been
explored, other than via a form of simulated parallelism in which messages along all link
directions were effectively sent at once (Rosenbloom, 2012c). The search for better

ROSENBLOOM ET AL.

96

representations of graphical models and for faster algorithms usable in solving them must also
continue unabated.

As mentioned in Section 2, in addition to the real-time aspect of sufficient efficiency that has
so far been discussed in this section there is also a model-time component that concerns whether
activities occur at human time scales when counting the number of primitive model steps, no
matter how much real-time those model steps take. This relates both to how appropriately Sigma
– particularly as partitioned into reactive, deliberative and reflective capabilities – maps onto the
time scales in Table 1 in the context of grand unification, and to how well it handles the natural
side of generic cognition. As already mentioned, the second part of this has largely been left for
future work. With respect to the first part of it, Sigma’s cognitive cycle is pegged to run at ~50
ms, providing a fixed model step for use higher in the hierarchy of layers and bands. A single
cognitive cycle – or a simple reactive step – thus appropriately also maps onto a Deliberate act, at
~100 ms in the hierarchy, although the numbers are approximate enough that it could instead be
two cognitive cycles, time enough to select and apply a non-problematic operator. The
Operations layer in the hierarchy roughly corresponds to a minimal number of
sequential/deliberative steps in service of behavior that requires more than simple reactivity.
Exact mappings get fuzzy above this, and mappings below the Deliberate act are less meaningful
because generic cognition is not concerned with precise modeling of networks of neurons.

9. Summary

At the highest level of description, what Sigma currently provides is a novel cognitive
architecture and system that is distinctively characterized by the four desiderata introduced as the
beginning of this article, with generic cognition and functional elegance the two that most
distinguish it from other approaches and systems, and by the graphical architecture hypothesis.
The specific contributions outlined in this article include the explicit explication of four key
desiderata for consideration with respect to cognitive architectures/systems (Section 2); the two
architectures embodied within Sigma, graphical and cognitive, and the functionally elegant
implementation relationship between them (Sections 4 and 5); the cognitive idioms and how they
are deconstructed in terms of microvariations in the cognitive architecture plus additional
knowledge on top of it (Section 6); and the virtual humans plus how they are built from a
combination of the cognitive architecture and idioms (Section 7). The discussion in Section 8 has
provided its own contribution as well, yielding a first systematic – if still rather informal –
analysis of Sigma with respect to its desiderata.

The many identified gaps that stand between where Sigma is today and where it ultimately
needs to be lay out a rich array of topics for future work. In addressing these gaps we expect to
continue leveraging the research strategy described in Section 1.2, which has stood us in good
stead during the early years of this effort. Much of what is most needed at present in Sigma sits
at the highest and lowest levels of analysis, such as further fleshing out of the social aspects of
cognition; embodying large amounts of diverse knowledge; completing the subcognitive
functionality needed for perception, motor control, emotion, and bodily state; and improving the
implementation with respect to speed and scalability. Also critical is more integrative work on
virtual humans, and possibly initial integrative work on intelligent robots and agents.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

97

Acknowledgements

The work described in this article was sponsored by the U.S. Army, the Air Force Office of
Scientific Research, and the Office of Naval Research. Statements and opinions expressed may
not reflect the position or policy of the United States Government, and no official endorsement
should be inferred. We would also like to thank our many collaborators on aspects of this effort,
most of whom show up as authors or co-authors on one or more of the papers cited here.

References

Anderson, J. R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard University Press.
Anderson, J. R. 1990. The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum

Associates.
Anderson, J. R. 2002. Spanning seven orders of magnitude: A challenge for cognitive modeling.

Cognitive Science. 26: 85-112.
Anderson, J. R. 2007. How Can the Human Mind Occur in the Physical Universe. Oxford:

Oxford University Press.
Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S., Lebiere, C.; and Qi, Y. 2004. An

integrated theory of the mind. Psychological Review. 111: 1036-1060.
Badler, N. I. 1997. Real-time virtual humans. In Proceedings of the IEEE Workshop on Non-

Rigid and Articulated Motion, 28-36.
Bach, J. 2015. Modeling motivation in MicroPsi 2. In Proceedings of the 8th Conference on

Artificial General Intelligence, 3-13.
Bailey, T.; and Durrant-Whyte, H. 2006. Simultaneous localisation and mapping (SLAM): Part II

State of the art. Robotics and Automation Magazine. 13: 108–117.
Bell, C. G.; and Newell, A. 1971. Computer Structures: Readings and Examples. New York, NY:

McGraw-Hill.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Janvin, C. 2003. A neural probabilistic language

model. The Journal of Machine Learning Research. 3: 1137-1155.
Best, B.; Lebiere, C.; and Scarpinatto, C. 2002. A model of synthetic opponents in MOUT

training simulations using the ACT-R cognitive architecture. In Proceedings of the Eleventh
Conference on Computer Generated Forces and Behavior Representation.

Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.; Miller, D. P.; and Slack, M. G. 1997.
Experiences with an Architecture for Intelligent Reactive Agent. Journal of Experimental and
Theoretical Artificial Intelligence. 9: 237-256.

Bostrom, N. 2001. Are you living in a computer simulation? Philosophical Quarterly. 53: 243-
255.

Bridewell, W.; and Langley, P. 2011. A computational account of everyday abductive inference.
In Proceedings of the Thirty-Third Annual Meeting of the Cognitive Science Society, 2289-
2294.

Bubic, A.; von Cramon, D. Y.; and Schubotz, R. I. 2010. Prediction, cognition and the brain.
Frontiers in Human Neuroscience. 4: 25.

Campbell, J.; Core, M.; Artstein, R.; Armstrong, L.; Hartholt, A.; Wilson, C.; Georgila, K.;
Morbini, F.; Haynes, E.; Gomboc, D.; Birch, M.; Bobrow, J.; Chad Lane, H.; Gerten, J.;
Leuski, A.; Traum, D.; Trimmer, M.; DiNinni, R.; Bosack, M.; Jones, T.; Clark, R.E.; and
Yates, K.A., 2011. Developing INOTS to Support Interpersonal Skills Practice. In Proceedings
of the Thirty-second Annual IEEE Aerospace Conference, 1-14.

ROSENBLOOM ET AL.

98

Card, S. K.; Moran, T.P.; and Newell, A. 1983. The Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Cassimatis, N. 2002. Polyscheme: A Cognitive Architecture for Integrating Multiple
Representation and Inference Schemes. Ph.D. diss., Media Laboratory, MIT, Cambridge, Mass.

Chater, N.; Oaksford, M. 1999. Ten years of the rational analysis of cognition. Trends in
Cognitive Sciences. 3: 57–65.

Chen, J.; Demski, A.; Han, T.; Morency, L-P.; Pynadath, D.; Rafidi, N.; and Rosenbloom, P. S.
2011. Fusing symbolic and decision-theoretic problem solving + perception in a graphical
cognitive architecture. In Proceedings of the 2nd International Conference on Biologically
Inspired Cognitive Architectures, 64-72.

Collobert, R.; and Weston, J. 2008. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, 160-167.

Coste-Manière, E.; and Simmons, R. G. 2000. Architecture, the backbone of robotic systems. In
Proceedings of the International Conference on Robotics and Automation, 67-72.

Dancy, C. L.; Ritter, F. E.; and Berry, K. 2012. Towards adding a physiological substrate to
ACT-R. In Proceedings of the 21st Conference on Behavior Representation in Modeling and
Simulation, 78-85.

Deering, S. 1988. Watching the waist of the protocol hourglass. Keynote address at ICNP '98.
de Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence. 28:127–162.
Dempster, A.P.; Laird, N.M.; and Rubin, D.B. 1977. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society. 39: 1–38.
Derbinsky, N.; Laird, J. E.; and Smith, B. 2010. Towards efficiently supporting large symbolic

declarative memories. In Proceedings of the 10th International Conference on Cognitive
Modeling, 49-54.

Deutsch, D. 2011. The Beginning of Infinity: Explanations that Transform the World. London,
UK: Penguin Books.

Domingos, P.; and Lowd, D. 2009. Markov Logic: An Interface Layer for Artificial Intelligence.
San Raphael, CA: Morgan & Claypool.

Douglass, S.; Ball, J.; & Rodgers, S. 2009. Large declarative memories in ACT-R. In
Proceedings of the 9th International Conference of Cognitive Modeling, 222-227.

Eliasmith, C. 2013. How to Build a Brain: A Neural Architecture for Biological Cognition.
Oxford: Oxford University Press.

Falkenhainer, B; Forbus, K. D.; and Gentner, D 1989. The structure-mapping engine: Algorithm
and examples. Artificial Intelligence. 41: 1–63.

Fikes, R., Hart, P; and Nilsson, N. 1972. Learning and Executing Generalized Robot Plans,
Artificial Intelligence. 3: 251-288.

Forbus, K. D.; and Hinrichs, T. R. 2006. Companion Cognitive Systems: A step towards human-
level AI. AI Magazine. 27:83-95.

Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence. 19: 17-37.

Frackowiak R; and Markram H. 2015. The future of human cerebral cartography: a novel
approach. Philosophical Transactions of the Royal Society of London B: Biological Sciences.
370.

Frintrop, S.; Rome, E.; and Christensen, H.I. 2010: Computational visual attention systems and
their cognitive foundation: A survey. ACM Transactions on Applied Perception. 7.

Garten, J.; Sagae, K.; Ustun, V.; and Dehghani, M. 2015. Combining distributed vector
representations for words. In Proceedings of the NAACL Workshop on Vector Space Modeling
for NLP, 95-101.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

99

Goertzel, B. 2014. Artificial General Intelligence: Concept, State of the Art, and Future
Prospects. Journal of Artificial General Intelligence. 5:1-46.

Goertzel, B.; Pennachin, C.; and Geisweiller, N. 2014. Engineering General Intelligence.
Amsterdam: Atlantis Press.

Goodman, N. D.; Mansinghka, V. K.; Roy, D.; Bonawitz, K.; and Tenenbaum, J. B. 2008.
Church: a language for generative models. In Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence, 220-229.

Hartholt, A.; Traum, D. Marsella, S. C.; Shapiro, A.; Stratou, G.; Leuski, A.; Morency, L.-P.; and
Gratch, J. 2013. All together now: Introducing the Virtual Human Toolkit. In Proceedings of
the 13th International Conference on Intelligent Virtual Agents, 368-381.

Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Berlin: Springer-Verlag.

Itti, L.; and Baldi, P.F. 2006. Bayesian surprise attracts human attention. In Advances in Neural
Information Processing Systems 18, 547-554.

Itti, L.; and Borji, A. 2013. State-of-the-art in visual attention modeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 35: 185-207.

Jilk, D. J.; Lebiere, C.; O’Reilly, R. C. and Anderson, J. R. 2008. SAL: An explicitly pluralistic
cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence. 20: 197-
218.

Jones, M. N.; and Mewhort, D. J. 2007. Representing word meaning and order information in a
composite holographic lexicon. Psychological review. 114: 1-37.

Jordan, M. I.; and Sejnowski, T. J. 2001. Graphical Models: Foundations of Neural Computation.
Cambridge, MA: MIT Press.

Joshi, H.; Rosenbloom, P. S.; and Ustun, V. 2014. Isolated word recognition in the Sigma
cognitive architecture. Biologically Inspired Cognitive Architectures. 10: 1-9.

Kahneman, D. 2011. Thinking Fast and Slow. New York, NY: Farrar, Straus and Giroux.
Kieras, D. E.; and Meyer, D. E. 1997. An overview of the EPIC architecture for cognition and

performance with application to human-computer interaction. Human-Computer Interaction,
12: 391-438.

Koller, D.; and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques.
Cambridge, MA: MIT Press.

Kopp, S.; Krenn, B.; Marsella, S.; Marshall, A. N.; Pelachaud C.; Pirker, H.; and Vilhjálmsson,
H. 2006. Towards a common framework for multimodal generation: The behavior markup
language. In Proceedings of the 6th International Conference on Intelligent Virtual Agents, 205-
217.

Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory. 47: 498-519.

Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge, MA: MIT Press.
Laird, J E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An Architecture for General

Intelligence. Artificial Intelligence. 33: 1-64.
Laird, J. E.; and Rosenbloom, P. S. 1990. Integrating execution, planning, and learning in Soar

for external environments, Proceedings of the Eighth National Conference on Artificial
Intelligence,1022-1029.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986. Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning. 1: 11-46.

Langley, P.; and Choi, D. 2006. A unified cognitive architecture for physical agents. In
Proceedings of the Twenty-First AAAI Conference on Artificial Intelligence, 1469-1474.

Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive architectures: Research issues and
challenges. Cognitive Systems Research. 10: 141-160.

ROSENBLOOM ET AL.

100

Lebiere, C. 2013. Summary presentation for panel on Consensus and Outstanding Issues. AAAI
2013 Fall Symposium on Integrated Cognition.

LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep Learning. Nature. 521: 436-444.
Lenat, D.; and Guha, R. V. 1990. Building Large Knowledge-Based Systems: Representation and

Inference in the Cyc Project. Reading, MA: Addison-Wesley.
Madl, T.; and Franklin, S. 2012. A LIDA-based Model of the Attentional Blink. In Proceedings

of the 11th International Conference on Cognitive Modeling, 283-288.
Maes, P.; and Nardi, D. eds. 1988. Meta-Level Architectures and Reflection. Amsterdam: North

Holland.
Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. San Francisco, CA: W. H. Freeman.
Marsella, S.; and Gratch, J. 2009. EMA: A Process Model of Appraisal Dynamics. Journal of

Cognitive Systems Research. 10: 70-90.
McCallum, A.; Rohanemanesh, K.; Wick, M.; Schultz, K.; and Singh, S. 2008. FACTORIE:

Efficient probabilistic programming via imperative declarations of structure, inference and
learning. In Proceedings of the NIPS workshop on Probabilistic Programming.

Meyer, D. E.; and Kieras, D. E. 1997. A computational theory of executive control processes and
human multiple-task performance: Part 1. Basic Mechanisms. Psychological Review. 104: 3-65.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient estimation of word
representations in vector space. In Proceedings of the International Conference on Learning
Representations.

Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and Kolobov, A. 2007. BLOG:
Probabilistic models with unknown objects. In Introduction to Statistical Relational Learning
eds. L. Getoor and B. Taskar. Cambridge, MA: MIT Press.

Mnih, A.; and Kavukcuoglu, K. 2013. Learning word embeddings efficiently with noise-
contrastive estimation. In Advances in Neural Information Processing Systems, 2265-2273.

Minsky, M. 1986. The Society of Mind. New York, NY: Simon & Schuster.
Moors, A.; Ellsworth, P.C.; Scherer, K.R.; and Frijda, N.H. 2013. Appraisal theories of emotion:

State of the art and future development. Emotion Review. 5: 119-124.
Murphy, K. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D.

diss., Computer Science Division, UC Berkeley, Berkeley, Calif.
Murphy, R. R. 2000. Introduction to AI Robotics. Cambridge, MA: MIT Press.
Newell, A. 1990. Unified Theories of Cognition. Cambridge, MA: Harvard University Press.
Newell, A.; Shaw, J. C.; and Simon, H. A. 1959. Report on a general problem-solving program.

In Proceedings of the International Conference on Information Processing, 256-264.
Newell, A.; Yost, G. R.; Laird, J. E.; Rosenbloom, P. S.; and Altmann, E. 1991. Formulating the

problem space computational model. In CMU Computer Science: A 25th Anniversary
Commemorative ed. R. F. Rashid. New York, NY: ACM Press/Addison-Wesley.

Ng, A. Y.; and Russell, S. J. 2000. Algorithms for inverse reinforcement learning. In Proceedings
of the 17th International Conference on Machine Learning, 663–670.

Niv, Y. 2009. Reinforcement learning in the brain. The Journal of Mathematical Psychology. 53:
139-154.

Oaksford, M.; and Chater, N. 2007. Bayesian Rationality: The Probabilistic Approach to Human
Reasoning. Oxford: Oxford University Press.

O'Connor, T.; and Wong, H. Y. 2015. Emergent properties. In The Stanford Encyclopedia of
Philosophy (Summer 2015 Edition), ed. E. N. Zalta.

O'Reilly, R. C.; and Munakata, Y. 2000. Computational Explorations in Cognitive Neuroscience:
Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

101

Ortony, A.; Norman, D. A.; and Revelle, W. 2005. Affect and Proto-affect in effective
functioning. In Who Needs Emotions? The Brain Meets the Machine : eds. J. M. Fellous and M.
A. Arbib. New York, NY: Oxford University Press.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Francisco, CA: Morgan Kaufman.

Pynadath, D. V.; and Marsella, S. C. 2005. PsychSim: Modeling Theory of Mind with decision-
theoretic agents. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence, 1181-1186.

Pynadath, D. V.; Rosenbloom, P. S.; and Marsella, S. C. 2014. Reinforcement learning for
adaptive Theory of Mind in the Sigma cognitive architecture. In Proceedings of the 7th Annual
Conference on Artificial General Intelligence, 143-154.

Pynadath, D. V.; Rosenbloom, P. S.; Marsella, S. C.; and Li, L. 2013. Modeling two-player
games in the Sigma graphical cognitive architecture. In Proceedings of the 6th Conference on
Artificial General Intelligence, 98-108. Berlin: Springer.

Rosenbloom, P. S. 1982. A world-championship-level Othello program. Artificial Intelligence.
19: 279-320.

Rosenbloom, P. S. 2006. A cognitive odyssey: From the power law of practice to a general
learning mechanism and beyond. Tutorials in Quantitative Methods for Psychology. 2: 43-51.

Rosenbloom, P. S. 2009. Towards a new cognitive hourglass: Uniform implementation of
cognitive architecture via factor graphs. In Proceedings of the 9th International Conference on
Cognitive Modeling, 116-121.

Rosenbloom, P. S. 2010. Combining procedural and declarative knowledge in a graphical
architecture. In Proceedings of the 10th International Conference on Cognitive Modeling, 205-
210.

Rosenbloom, P. S. 2011a. Rethinking cognitive architecture via graphical models. Cognitive
Systems Research. 12: 198-209.

Rosenbloom, P. S. 2011b. Mental imagery in a graphical cognitive architecture. In Proceedings
of the 2nd International Conference on Biologically Inspired Cognitive Architectures, 314-323.

Rosenbloom, P. S. 2011c. From memory to problem solving: Mechanism reuse in a graphical
cognitive architecture. In Proceedings of the 4th Conference on Artificial General Intelligence,
143-152.

Rosenbloom, P. S. 2012a. Deconstructing reinforcement learning in Sigma. In Proceedings of the
5th Conference on Artificial General Intelligence, 262-271. Berlin: Springer.

Rosenbloom, P. S. 2012b. Extending mental imagery in Sigma. In Proceedings of the 5th
Conference on Artificial General Intelligence, 272-281.

Rosenbloom, P. S. 2012c. Towards a 50 msec cognitive cycle in a graphical architecture. In
Proceedings of the 11th International Conference on Cognitive Modeling, 305-310.

Rosenbloom, P. S. 2014. Deconstructing episodic learning and memory in Sigma. In
Proceedings of the 36th Annual Conference of the Cognitive Science Society, 1317-1322.

Rosenbloom, P. S. 2015. Supraarchitectural capability integration: From Soar to Sigma. In
Proceedings of the 13th International Conference on Cognitive Modeling, 67-68.

Rosenbloom, P. S.; Demski, A.; Han, T.; and Ustun, V. 2013. Learning via gradient descent in
Sigma. In Proceedings of the 12th International Conference on Cognitive Modeling, 35-40.

Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2015. Efficient message computation in Sigma’s
graphical architecture. Biologically Inspired Cognitive Architectures. 11: 1-9.

Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2016. Rethinking Sigma’s graphical architecture
while extending it to neural networks. In Proceedings of the 9th Conference on Artificial
General Intelligence.

ROSENBLOOM ET AL.

102

Rosenbloom, P. S.; Gratch, J.; and Ustun, V. 2015. Towards emotion in Sigma: From Appraisal
to Attention. In Proceedings of the 8th Conference on Artificial General Intelligence, 142-151.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1988. Meta-levels in Soar. In Meta-Level Architectures and
Reflection eds. P. Maes and D. Nardi. Amsterdam, Netherlands: North Holland.

Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1990. Responding to impasses in memory-driven
behavior: A framework for planning, Proceedings of the Workshop on Innovative Approaches
to Planning, Scheduling, and Control, 181-191.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987. Knowledge level learning in Soar. In
Proceedings of Sixth National Conference on Artificial Intelligence, 499-504.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. eds. 1993. The Soar Papers: Research on
Integrated Intelligence. Cambridge, MA: MIT Press.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learning representations by back-
propagating errors. Nature. 323: 533-536.

Russell, S.; Binder, J.; Koller, D.; and Kanazawa, K. 1995. Local learning in probabilistic
networks with hidden variables. In Proceedings of the 14th International Joint Conference on
AI, 1146-1152.

Schneider, W.; and Shiffrin, R. M. 1977. Controlled and automatic human information
processing: I. Detection, search, and attention. Psychological Review. 84: 1-66.

Shapiro, A. 2011. Building a character animation system. In Proceedings of the 4th International
Conference on Motion in Games, 98-109.

Simon, H. A. 1956. Rational choice and the structure of the environment. Psychological Review.
63: 129–138.

Singla, P.; and Domingos, P. 2008. Lifted first-order belief propagation. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, 1094-1099.

Sun, R. 2006. The CLARION cognitive architecture: Extending cognitive modeling to social
simulation In Cognition and Multi-Agent Interaction ed. R. Sun. New York, NY: Cambridge
University Press.

Sun, R.; and Wilson, N. 2010. Motivational processes within the perception-action cycle.
Perception-Action Cycle: Models, Architectures, and Hardware. New York, NY: Springer.

Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press.

Swartout, W. 2010. Lessons learned from virtual humans. AI Magazine. 31: 9-20.
Tambe, M.; and Rosenbloom, P. S. 1994. Investigating production system representations for

non-combinatorial match. Artificial Intelligence. 68: 155-199.
Turney, P. D.; and Pantel, P. 2010. From frequency to meaning: Vector space models of

semantics. Journal of Artificial Intelligence Research. 37: 141-188.
Ustun, V; and Rosenbloom, P. S. 2015. Towards adaptive, interactive virtual humans in Sigma. In

Proceedings of the 15th International Conference on Intelligent Virtual Agents, 98-108.
Ustun, V.; Rosenbloom, P. S.; Kim, J.; and Li, L. 2015. Building high fidelity human behavior

models in the Sigma cognitive architecture. In Proceedings of the 2015 Winter Simulation
Conference, 3124-3125.

Ustun, V.; Rosenbloom, P. S.; Sagae, K.; and Demski, A. 2014. Distributed vector
representations of words in the Sigma cognitive architecture. In Proceedings of the 7th Annual
Conference on Artificial General Intelligence, 196-207.

Veloso, M. M.; and Carbonell, J. G. 1993. Derivational analogy in Prodigy: Automating case
acquisition, storage, and utilization. Machine Learning. 10: 249–278.

Veness, J.; Ng, K. S.; Hutter, M.; Uther, W.; Silver, D. 2011. A Monte-Carlo AIXI
approximation. Journal of Artificial Intelligence Research. 40: 95-142

Vere, S. and Bickmore, T. 1990. A Basic Agent. Computational Intelligence. 6: 41-60.

THE SIGMA COGNITIVE ARCHICTECTURE AND SYSTEM

103

Wang, P. 2007. The logic of intelligence. In Artificial General Intelligence eds. B. Goertzel and
C. Pennachin. New York, NY: Springer.

Whiten, A. ed. 1991. Natural Theories of Mind. Oxford: Basil Blackwell.

