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Abstract 

This paper outlines a logical representation of certain aspects of the process of mathematical proving 
that are important from the point of view of Artificial Intelligence. Our starting-point is the concept 
of proof-event or proving, introduced by Goguen, instead of the traditional concept of mathematical 
proof. The reason behind this choice is that in contrast to the traditional static concept of 
mathematical proof, proof-events are understood as processes, which enables their use in Artificial 
Intelligence in such contexts, in which problem-solving procedures and strategies are studied. 
We represent proof-events as problem-centered spatio-temporal processes by means of the language 
of the calculus of events, which captures adequately certain temporal aspects of proof-events (i.e. 
that they have history and form sequences of proof-events evolving in time). Further, we suggest a 
“loose” semantics for the proof-events, by means of Kolmogorov’s calculus of problems. Finally, 
we expose the intented interpretations for our logical model from the fields of automated theorem-
proving and Web-based collective proving. 
 
Keywords: mathematical proof, proof-event, problem solving, agents, calculus of events, 
Kolmogorov’s calculus of problems, Polymath project, T. Gowers, J. Goguen, R. Kowalski, A.N. 
Kolmogorov. 

1. Proofs as Facts vs. Proofs as Processes 

Philosophy of mathematics during the first half of the twentieth century was largely centred on the 
concepts of mathematical proof and mathematical fact (corresponding to truth) as they were 
explicated within the major foundational programs and their associated logical semantics. From 
this standpoint, mathematical knowledge is viewed as a collection of logical systems that could 
capture in different ways certain aspects of the fundamental mathematical concepts (such as natural 
number) and the identification of the necessary mathematical principles (axioms). This tendency 
has achieved significant contributions to mathematical logic and foundational studies. 

On the other hand, studies in history of mathematics have shown that the concept of 
mathematical proof has undergone significant changes. The Greek concept of apodictic proof, as 
exemplified by geometrical demonstration in Euclid’s Elements, was replaced during the 17th-18th 
                                                        
1 Both authors contributed equally to this paper. 
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centuries by analytic proof that became the major characteristic of the European mathematical 
tradition. At the beginning of 20th century, the foundational crisis led to the fundamental distinction 
between the classical and the constructive concepts of mathematical proof and the elaboration of 
different systems of mathematics (with different associated logical semantics) that make use of 
either the one or the other concept of formal proof. This distinction made proof dependent on the 
admissible axioms or rules of inference for the proof of mathematical theorems (Vandoulakis, 
Stefaneas, 2013a). Gödel’s investigations in meta-mathematics, after the 20th century foundational 
crisis, shook down the established belief in the identification of proof with truth. During the 
subsequent years, mathematical logicians developed a great variety of formal representations of 
proofs in different formal languages. Nevertheless, many mathematicians were not willing to accept 
this kind of formalistic proof2. 

Joseph Goguen (1941-2006), proposed the concept of proof-event, designed to cover all 
particular exemplifications of proof: apodictic, dialectical, constructive, non-constructive proof, as 
well as proof steps and computer proofs. 

“Mathematicians talk of ‘proofs’ as real things. But the only things that can actually 
happen in the real world are proof-events, or provings, which are actual experiences, 
each occurring at a particular time and place, and involving particular people, who have 
particular skills as members of an appropriate mathematical community.” … 

“A proof-event minimally involves a person having the relevant background and 
interest, and some mediating physical objects, such as spoken words, gestures, hand 
written formulae, 3D models, printed words, diagrams, or formulae (we exclude private, 
purely mental proof-events…). None of these mediating signs can be a “proof” in itself, 
because it must be interpreted in order to come alive as a proof-event; we will call them 
proof objects. Proof interpretation often requires constructing intermediate proof 
objects and/or clarifying or correcting existing proof objects. The minimal case of a 
single prover is perhaps the most common, but it is difficult to study, and moreover, 
groups of two or more provers discussing proofs are surprisingly common)” (Goguen, 
2001). 

The advantage of Goguen’s definition is that proof is no longer understood as a static purely 
syntactic object, but as a social process, that takes place at a given location and time. It involves a 
public presentation of a purported solution of a particular problem before an appropriate 
mathematical community. 

Thus, proof-events are not identical with mathematical facts, corresponding to mathematical 
truths, since a proof-event may concern an incomplete proof, a false proof or even a proofless 
exposition of ideas on a particular problem. Proof-events occur at specified places and times and, 
thereby are unrepeatable occurrences. They are temporally extended, so that they are deprived of 
full identity over time by their temporal parts. On the contrary, mathematical facts or states of 
affairs are considered as universals, i.e. timelessly existing or never existing necessarily; they are 
non-locatable and non-dateable. 

On the other hand, the social group involved in a proof-event and other ordinary material things 
(handwritten formulae, 3D models, printed words, diagrams, or formulae, called proof objects by 
Goguen) have no temporal parts and are wholly present at every instant (time-slice) of a proof-

                                                        
2 Mac Lane, for instance, emphasized, “Real proof is not simply a formalized document, but a sequence of 
ideas and insights” (Mac Lane, 1997). 
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event, since they have been introduced. Consequently, proof-events, mathematical facts and things 
(proof objects) are distinct types of entity. 

Goguen’s motivation for such a novel concept of proof stems from his research in automated 
theorem proving. In his words, the concept of proof-event 

“is more inclusive and less purely formal than that of traditional mathematical logic, in 
that it involves not only formal proof methods and formal proof steps, but also involves 
motivation for the proof and its major steps, background information, and the large grain 
structure of the proof, including conflict and other narrative devices. This notion of 
proof, which draws on the sociological study of the actual practice of proving, has been 
implemented in the Kumo3 proof assistant and proof display system, … Success on this 
quest [i.e. to improve the understandability of proofs] could have a significant impact 
on mathematics education, given the impending pervasiveness of computers in schools, 
and the mounting frustration with current mathematical education practice. It could also 
make the current generation of more powerful theorem proving systems accessible to 
wider groups of users and new applications.” (Goguen, 2001). 

Thus, the introduction of the concept of proof-events was motivated by the need to provide a 
novel notion of proof that also embraces the act of proving and its major steps: the history of the 
proof, its relative background information, as well as its rhetoric and/or narrative features. This 
approach to proving was implemented for the first time in Goguen’s Kumo proof assistant and its 
proof display system and it was based on a sociological study of the actual practice of proving. 
Despite the obvious impact that this approach can have upon mathematics education, the initial 
motivation was the creation of a powerful theorem proving system accessible to as wider as possible 
group of potential users. The Kumo system in its ideal design generates a website, called a 
proofweb, for each proof attempt that it executes. Using mathematical tools, such as hidden logics 
this website interleaves proof steps with explanatory material, according to conventions inspired 
by sociolinguistic analyses of narratives. In addition, in its expanded form it was designed to supply 
additional proof “components” such as interactive Java applets or “informal parts” of proofs. 

Thus, the concept of proof-event was conceived, from the very outset, as more adequate notion 
for use in automated theorem proving and generally, in accomplishing problem solving or 
reasoning tasks, which is the heart of artificial general intelligence. 

2. Mathematical Proving as Agents’ Cooperative Activity 

Proof-events presuppose at least two agents of two different types: a prover, which can be a human 
or a machine or a combination of them (hybrid proving), and an interpreter, who generally should 
be human (person or group of experts) or a machine (or group of machines) or a combination of 
them4. The prover and the interpreter may be separated by space and time (as, for instance, in the 

                                                        
3 Kumo is a Japanese word for spider. 
4 In the case of constructive proofs, the correctness of a proof can be also checked by a computer program. 
However, such a program can find a gap in the formal working of a proof, but it is not designed for 
remedying it, i.e. for filling the gap. In addition, it is assumed that the proof checking software would have 
a core code liable to human hand checking. 
In the case of Web-based proof-events, the agents commonly are more than two, because of the “massive” 
character of Web-based proving (Stefaneas, Vandoulakis, 2012; Stefaneas, Vandoulakis, Martínez and 
Foundalis, 2012, 2014). 
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case of asynchronous Web-based proving (Stefaneas, Vandoulakis, 2012)), but they are in 
communication. A human prover may experience an insight (intention) that something in 
mathematics is true and produce an item (using some semiotic code) to communicate his 
experience. This item may be not a proof, but an outline of a proof or even a conjecture. This 
initiates a proof-event. The end of the public communication of a purported proof can be considered 
as an ending point of a proof-event. The interpreter, who gets involved in this proof-event, perceives 
and reacts to it. In general, the item produced by a prover may lead to different communication 
outcomes (Goguen, 2001; Vandoulakis, Stefaneas, 2013a, 2013b). 

Adopting the agent metaphor for studying proof-events raises both the visibility and abstraction 
level of interactions between agents, which are disregarded in the traditional mathematical-fact 
oriented approaches. An agent is an autonomous entity situated in an environment that might be a 
real physical one, like a material world inhabited by various kinds of things (objects), or a virtual, 
or a simulated one, when for instance human agents interact with physical tools and software 
entities or the Internet. An agent is equipped with past background knowledge and past learning 
experience. For example, an agent can be a coupling of a human with an expert system, a program 
that acts in a computational environment, a team of humans or combined human-agent teams, etc. 

Agents enact different roles. The type of agent – prover or interpreter – determines its role with 
respect to a specified problem.5 Enactment of a role by an agent means its engagement in proving 
activity, i.e. participation in a proof-event. The roles that agents may enact are interchangeable: an 
agent may enact the role of prover at one time and the role of interpreter at a different time of a 
proof-event6. 

Human agents act with intention and their activity is goal-oriented, depending on the type of 
agent. For example, the goal of a prover might be to solve a problem or to gain aesthetic pleasure 
from his proving activity and its outcome or both; the goal of an interpreter might be to understand 
the argumentation suggested by a prover, to check or disprove it. The goal can have sub-goals that 
can be associated with particular sub-problems or sub-tasks of the main problem. How a human 
agent decides to adopt a (proving) strategy, in order to meet a specified goal, by free choice or other 
processes, is another issue. To a human agent can be ascribed a mental state, like belief, intention, 
expectations, capabilities, etc. (Stefaneas, Vandoulakis, 2014). Different agents may have different 
capacities and resources; when their proving activity is directed towards the same-shared goal, this 
may result in a kind of increased collective capacity and enhanced effectiveness of the proving 
activity7. 

The capacity of a human to act as an agent is personal to that individual. This capacity is 
affected by the cognitive structure, which an agent has formed through his experiences, the views 
held by him and the community, eventual circumstances of the environment the agent is in, etc.  

3. Layers of Communicative Interaction between Agents 

Since agents are social entities, they are able to interact with other human or manmade agents, in 
order to achieve a goal (i.e. a proof of a problem) or help others to do that. The layers of interaction 
between (minimally) two agents are: 

1. Communication 

                                                        
5 In the case of Web-based proof-events, the agents can play different roles at different times (Stefaneas, 
Vandoulakis 2012). 
6 This is typical in Web-based proving (Stefaneas, Vandoulakis, 2012). 
7 This collective agency capacity is characteristic to Web proof-events (Stefaneas, Vandoulakis, 2012). 
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2. Understanding 
3. Interpretation 
4. Validation 
Each layer presupposes its preceding one, but not vice versa. Each higher layer adds more 

features. 
Communication. The environment provides the surrounding conditions for agents to exist and 

communicate and serves as a means of communication for agents. The means of communication 
include written text (manuscripts, printed or electronic texts, letters, shorthand notes, etc.) in 
(ordinary or formal) language or any other semiotic code of communication (signs, formulae etc.). 
The environment provides also conditions for oral communication (lectures, etc.), visual (non-
verbal) communication (diagrams, movies, Java applets, etc.), as well as communication through 
practices. 

The communication process takes place between a prover and an interpreter (or, at least, an 
intended interpreter) which both participate in a proof-event, although they may act in different 
geographical locations, be surrounded by different environments at different times and belong to 
different mathematical cultures. However, they must share a common interpersonal space, for 
communication to be possible. There are different ways to communicate mathematical ideas or 
proof insights and different proofs can be devised for some problem by different mathematicians, 
belonging to different cultures and times. This is a sign that the initial intentions and the items that 
are proposed as proofs of these intentions have inter-subjective character. 

The prover conveys a mental construction, encoded in some semiotic code (in a text, in the 
semiotic sense), whereas the (potential) interpreter must perceive this “text” as a possible proof, so 
to respond and undertake the task of decoding it. The prover expects that the interpreter will be 
persuaded that the transmitted construction is actually a proof. His confidence about that stems 
from the prover’s personal firm belief that he was not betrayed by his own intuition. This induces 
an ethical aspect in the relation of the prover with the interpreter and before the academic 
community, in general (Bazhanov, 2011). 

The “text” usually consists of signs of the natural language, signs of some mathematical 
language, possibly graphs, charts, abbreviations, etc.; it has the form of narrative structure, 
organized in a complex hierarchical order8. Moreover, the “text” is formulated by the prover in 
some specific style, incorporating various communication functions. The style can be personal for 
a prover or for the school he belongs (for instance, the well-known Bourbaki style of mathematical 
exposition) or for a whole tradition (for instance, the Euclidean style of the Elements, or the Neo-
Pythagorean style of Nicomachus’ Arithmetic (Vandoulakis, 1998, 2009, 2010). It may be also 
mimicry of the style of a renowned authority9. The style is a meta-code that determines the selection 
of a particular code and the combination of blending principles to produce the “text” by the prover 
(Stefaneas, Vandoulakis, 2014). 

Understanding. Understanding a mathematical “text” (i.e. a suggested item that is supposed 
to be a proof) does not come simply from reading the “text”. The meaning that the prover may 
ascribe to the “text” (the intended meaning) is generally different from the perceived meaning that 
the interpreter may ascribe to the same “text”. Moreover, the prover and the interpreter may follow 
different kinds of (“local”) logic in their reasoning. Understanding is achieved when the (structure 
of) meanings perceived by the interpreter corresponds to the intended (structure of) meanings of 
the prover, i.e. when a mapping, called semiotic morphism (or “translation” or “representation”) 
                                                        
8 For further details, see (Stefaneas, Vandoulakis, 2014). 
9 This is characteristic, for instance for the Principles of Mathematical Analysis (McGraw-Hill, 1953) by 
Walter Rudin (1921-2010), who strives to mimic Bourbaki’s style. 
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(Goguen, 1999a, 256; 2003), can be established from the semiotic space of the prover into the 
semiotic space of the interpreter. Thus, understanding is attained at a higher level than the “local” 
logics of the agents. 

A semiotic space is an algebraic many-sorted structure – organized in layers - with an arbitrary 
number of domains; the sorts play the role of names that signify objects for the different domains. 
Signs of a certain sort are represented by terms of that sort; they may be whole words, sentences or 
paragraphs in natural language, as well as complex entities of arbitrary nature (figures, graphs, etc.) 
that are treated as single objects (Goguen, 1999a, 2003; Stefaneas, Vandoulakis, 2014). A semiotic 
space serves as the “context” of the signs. It may include conventional meanings of the signs, 
information on their importance and use, meanings rooted in a stable (individual or 
disciplinary/academic) tradition, etc., which are important for the determination of the meaning of 
the signs and their possible communicational functions. Signs and semiotic space constitute the 
code in which mathematical information is encoded by a prover. An interpreter, who shares a code, 
or logic different from that of the prover, may fail or have difficulties in understanding the prover’s 
code. 

Goguen’s theory of semiotic spaces is grounded on Gilles Fauconnier and Mark Turner’s 
theory of conceptual spaces (Fauconnier, Turner 2008), according to which cognition takes place 
by mind’s subconscious integration or blending of various conceptual spaces, consisting of 
elements and relation instances between them, and resulting in the creation of a new blended space 
out of parts of the initial spaces. However, Goguen substitutes the conceptual spaces of cognitive 
linguistics with his own concept of semiotic spaces, because 

“Whereas conceptual spaces are good for concepts, they are inadequate for structure” 
(Goguen, Harell 2004a, 2010, 299). 

“Whereas conceptual spaces are good for studying meaning in natural language, they 
are not adequate for user interface design and other applications where structure is 
important” (Goguen 2003). 

Thus, besides elements and relations, Goguen requires from a space to have multi-argument 
constructors, sorts, levels, priorities, or axioms. Accordingly, conceptual blending of conceptual 
spaces is substituted by structural blending or structural integration of semiotic spaces, which uses 
algebraic semiotics to describe complex structures of signs and blends of such structures. This 
enables developing computational accounts of blending, which have been developed in algebraic 
theory and algebraic semiotics. Furthermore, semiotic morphisms are not just mappings between 
space entities, but mappings between structures comprising entities with internal states. Thus, in 
structural blending, the emergence of cross-space mappings becomes more complex, because more 
than one blend is possible for a given system of spaces and morphisms. 

In proving we need to take also into account the structure of the proof, not just the relation of 
concepts upon which a proof might rely. There are at least two perspectives that one might take 
into account in proving. The perspective of the prover, whose function is to “construct” a proof, 
and the perspective of the interpreter, whose function is to understand the structure of a purported 
proof, understand the principles of its “construction” and, in this way, to get engaged in the process 
of testing and validating it. Although understanding of a “text” by an interpreter is a prerequisite to 
its interpretation, this does not guarantee yet the truth of the proof.  

Interpretation. This is the determination of the definition or meaning of signs, which are fixed 
by the language or communication code used for the presentation or transmission of a proof or what 
is thought of to be a proof. The communication code contains symbols and rules for the combination 
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(syntax), interpretation (semantics) and application (pragmatics) of those symbols that have been 
agreed upon to use or have to be decoded. 

Interpretation is an active process, during which the interpreter may amend the initial proof by 
adding new concepts (definitions) by filling possible gaps in the proof, etc. In some sense, 
interpretation is a reconstruction of meaning or conscious reproduction of the information content 
conveyed by the “text”. During this process, the interpreter may choose even a new, different code 
to express the meaning of the prover’s “text”. However, he does not usually transfer the stylistic 
characteristics of the source “text”, but focuses on the correct explication and reformulation of its 
meaning. The meta-code specifics serve communicative purposes and may facilitate (or hinder) 
understanding the meaning of the prover’s “text”, but are not necessarily preserved during 
interpretation. Interpretation is generally articulated in a blend of styles contemporary to the 
interpreter, including possibly also elements of the style of the prover. 

Interpretation by means of a new code may also enhance understanding and contribute to the 
validation of the outcome. This seems essential in the case of computer proofs, where the prover is 
non-human agent. For instance, William McCune proved Herbert Ellis Robbins’ (1915-2001) 
conjecture, that is, the thesis that all Robbins algebras are Boolean (McCune 1997) in 1996, using 
the so-called Equational Prover, that is an automated theorem proving program for first-order 
equational logic. Before the computer-generated proof, many mathematicians had attempted to give 
a proof, beginning with Edward Vermilye Huntington (1874-1952) (Huntington 1933a, 1933b), 
Alfred Tarski (1901-1983) (Henkin, Monk and Tarski 1971), S. Winker (Winker, 1990, 1992) and 
others, but in vain. Further, McCune’s proof was successfully verified by another automated 
theorem-prover for first-order and equational logic, called “Otter”. Nevertheless, the proof 
remained unintelligible by a human agent. The form of reasoning used by the Equational Prover 
was beyond human understanding and interpretation. The computer proof became acceptable from 
the mathematical community, only when Louis H. Kauffman “translated”, i.e. interpreted the 
computer proof into a new diagrammatic language of nested box algebra (Kauffman, 1990, 2001), 
that is, when he used a new, more appropriate and intelligible code for the representation of the 
proof. 

Validation. A proving is complete when the agents involved in a proof-event conclude that 
they have understood the proof and agree that a proof has actually been given, i.e. that the proof is 
a fact. However, there are cases of computer-generated proofs that the validation of the proof by 
humans is not practically possible, since no human or group of humans is capable to check a huge 
number of proof steps10. What can be considered as validation in such a case is the validation of the 
correctness of the theorem-prover itself (as a program). Validation of the program can guarantee 
that all possible proofs generated by this software tool have been “validated”. One way or the other, 
either by human or by automated means, the final output of the validation marks the termination of 
the proof-event at this particular time. The truth of the proof is ultimately declared by the relevant 
mathematical community, which is recognized as competent to check the proof. Accordingly, the 
mathematical community is the ultimate (collective) truth-maker of a purported proof. Thus, 
validation is a social process that involves the collective mind of the mathematical community. The 
case of a “proof” that is understood by only one agent is not acceptable, because it contradicts the 
intersubjective nature of mathematical proof.  

The process of validation is always finite in time: the mathematical community within a finite 
(although, possibly very long) time interval will conclude on a proof, either in positive or in 
                                                        
10 Examples of such proofs are, for instance the famous four-color theorem or Herbert Ellis Robbins’ 
(1915-2001) conjecture, that is, the thesis that all Robbins algebras are Boolean (see (Vandoulakis, 
Stefaneas 2013a) for more details). 
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negative. The validation process may involve the outcomes of other proof-events, crosschecking, 
applications to similar problems, etc. Once the outcome of a proof-event is confirmed, it is further 
considered irrefutable and reliable by the appropriate group of the academic community and is 
integrated into the mathematical heritage. 

4. The Temporal Extension of Mathematical Proof-events 

Each proof-event has temporal extension and, thereby a history: it has a starting point i.e. a point 
that the proof-event is initiated by the statement of a problem or idea or conjecture, and a 
termination point, i.e. a point that the proof-event is considered ultimately completed and validated. 
Thus, proof-events have temporal extension. A proof-event that has duration can be decomposed 
into an instantaneous proof-event that starts it, followed by a state of continuous change, followed 
by an instantaneous proof-event that ends it. 

What is posed to be proved, i.e. the initial problem or idea, emerges often out of history, during 
the unfolding of sequences of proof-events. Thus, the initial intention or insight of a proof bears a 
historical meaning that can also mark the significance of a proof and affect its historical impact. 
For instance, the announcement of the famous Hilbert’s problems11 is a ground-breaking proof-
event that took place on 8 August 1900 in the Sorbonne, at the Paris Conference of the International 
Congress of Mathematicians. The problems Hilbert posed before the international community of 
the mathematicians varied in nature and precision of formulation. They had emerged in the course 
of unfolding of different sequences of proof-events in a variety of areas (foundations of 
mathematics, algebra, number theory, geometry, topology, algebraic geometry, Lie groups, real 
and complex analysis, differential equations, mathematical physics, probability theory and calculus 
of variations). All the twenty-three problems announced were unsolved at that time – they were 
simply conjectures. Yet, they mark the starting point of new sequences of proof-events. Sixteen 
problems are solved today, i.e. the sequences of proof-events they initiated are completed. Two of 
them were ill stated as mathematical problems, so that they could not be checked and validated or 
refuted and thereby they cannot be considered as proof-events at all. Three of them are partially 
solved, i.e. the sequences of proof-events they initiated are incomplete, but have completed sub-
sequences of proof-events (representing solutions for particular cases). Two of them remain 
unsolved today, that is the sequences of proof-events they initiated is still incomplete. 

Moreover, the semiotic code chosen by the prover to communicate his intention or idea has 
also historical nature. One code can be more suitable for the communication of an intention, while 
another can be proved less suitable. In the course of a sequence of proof-events, the initial code 
used for the formulation of a problem may be abandoned and replaced by another code, more 
suitable for proving specific proof parts or for the final proof. For instance, Fermat’s conjecture 
that no three positive integers a, b, and c can satisfy the equation n n na b c+ = , for any integer n 
greater than two, that marks the starting point of a sequence of proof-events, was formulated in the 
language (code) of Diophantine analysis. However, its solution needs a more appropriate and 
powerful language (code) to be expressed: the language of algebraic geometry. During the 358 
years that this sequence of proof-events was evolving, the rhetoric of the proof-events concerning 
this problem underwent changes several times and every time the problem was “translated” into 
the new language adopted at that time (Aczel, 1997; Kleiner, 2000; Singh, 1998). 

                                                        
11 Hilbert’s lecture appeared in the Göttinger Nachrichten, 1900, pp. 253-297, and in the Archiv der 
Mathematik und Physik, 3d ser., vol. 1 (1901), pp. 44-63 and 213-237, See also (Demidov, 1966, 2001). 
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Proof-events that occur at specified places and times and involve the same group are 
unrepeatable occurrences, and in this sense, are unique. However, it may happen that two proof-
events have the same starting point, in the sense, that they start from the same or logically 
equivalent problems and the same termination point, i.e. they are completed by the same or logically 
equivalent validated solutions, although the concepts and methods used to achieve these solutions 
may differ substantially. These proof-events express independent outputs, which may take place in 
different places, but in the same time or almost the same time (independent synchronous proof-
events) or in different times (independent asynchronous proof-events), when, for example, a prover 
re-discovers a mathematical fact, without being aware that this fact has been already established by 
another prover in the past. The latter case raises the vital question of historical priority of the proof, 
which is decided again by the relevant mathematical community on the ground of the comparison 
of the proving outcomes. 

Independent outputs of proof-events occur very often in history of mathematics. We mention 
here: the discovery of the non-Euclidean geometry by Nikolai I. Lobachevsky (1792-1856) and 
János Bolyai (1802-1860); the method of coordinates by René Descartes (1596-1650) and Pierre 
de Fermat (1601 or 1607-1665); the invention of logarithms by John Napier (1550-1617) and Jost 
Bürgi (1552-1632); the theory of elliptic functions by Niels Henrik Abel (1802-1829) and Carl 
Gustav Jacobi (1804-1851); the discovery of the topological theory of dimension by Pavel S. 
Urysohn (1898- 1924) and Karl Menger (1902-1985), that was commemorated in the term Menger-
Urysohn dimension. The pairs of outputs listed above are independent outcomes of distinct 
sequences of proof-events that were evolving in different places and involved different provers. In 
this sense, each proof-event of the pair is unique. They can be considered identical only in the sense 
that the outcomes of the corresponding sequences of proof-events can be proved logically 
equivalent. 

Therefore, two proof-events that have the same “initial” (i.e. the same problem or logically 
equivalent problems) and “terminal” points (i.e. the same outcome or logically equivalent 
outcomes) can be considered as equivalent. 

5. On the Problem of Change in Mathematical Proving 

The concept of proof-event, instead of mathematical fact, is adequate to study the concept of change 
in mathematical knowledge. It was Thomas S. Kuhn’s concept of scientific revolution that 
awakened the interest in the concept of change in scientific knowledge. The theory of proof-events 
provides a logical framework to study change in mathematical knowledge, because it incorporates 
the intuitive idea that any change (including change in mathematics) must be due to some cause. 

First, change can be defined as an ordered pair of proof-events 1 2,e e〈 〉  that happen in two 

(generally, distinct) semiotic spaces 1 2,S S . Further, the concept of trajectory expresses the 
advancement of the state of a proof-event, caused by some action (e.g., solving activity)12, through 
space as a function of time. Then, the question of change in mathematical knowledge can be 
examined in terms of the concept of continuity or discontinuity of a trajectory joining two distinct 
proof-events in the corresponding semiotic spaces. 

Intuitively speaking, continuous change can be understood as “smooth” advancement of the 
state of a proof-event. During continuous change, validated outcomes of proof-events that hold in 

                                                        
12 Actions can be causes of which events are effects (Davidson, 1967). 
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time 1t  in a semiotic space 1S , hold also in subsequent time 2t  in a semiotic space 2S  (but not vice 
versa). On the contrary, discontinuous change represents an abrupt change or jump. Outcomes of 
proof-events that hold in time 1t  in a semiotic space 1S , may not hold in subsequent time 2t  in a 

semiotic space 2S . This does not mean, however, that the initial outcomes of a proof-event cease 

to hold in the original semiotic space 1S . The resulting semiotic space 2S  co-exists on a par with 

semiotic space 1S . Such changes are caused by radical changes, for instance in the system of 
axioms adopted for the solution of a problem or in a transformation of semantic assumptions, which 
may affect radically the structure of the underlying semiotic space, giving rise to a bifurcation of 
semiotic spaces.  

In other words, continuous change is a truth-preserving transformation with respect to semiotic 
spaces, whereas in discontinuous change, truth is not necessarily preserved in the emerging 
semiotic space or is preserved for a modified analogue of the initial problem. For instance, the 
Heine-Borel theorem holds true in the world of classical mathematics, but in the world of 
intuitionistic mathematics holds true a modified analogue in terms of the intuitionistic concept of 
“pointspecies”, whereas in the world of constructive mathematics of Markov’s school this theorem 
does not hold true (Vandoulakis, 2015, 151). 

Continuous change may involve significant transformations in a sequence of proof-events: 
conceptual transformations, introduction of new concepts or a new code, devise of innovative 
approaches, application of new methods, etc. In such cases, there is always a trajectory that joins 
any point (proof-event) of the sequence before the change with a point (proof-event) after the 
change (but not vice versa), in spite of the extent of transformations that took place. 

On the contrary, discontinuous change involves radical transformation in axiomatics or 
semantics and, thereby in the associated underlying ontology: different kinds of mathematical 
entities are considered as existing before and after the point of discontinuity. In this case, there is 
no trajectory that may join any two points (proof-events). Proof-events before and after a 
discontinuous change belong to different mathematical systems, or “worlds” or “paradigms” in 
Kuhn’s terminology; they might be “incommensurable”. For instance, a non-constructive proof of 
existence, i.e. a proof that involves reductio ad absurdum, may be understood by a classical 
mathematician, but it is not “understandable” by a constructivist (Vandoulakis, 2015, 145-151). 
The fact that a theorem does not hold true in some version of constructive mathematics that was 
developed at a later time than classical mathematics does not imply, however, that the truth of that 
theorem has been disproved or rejected in classical mathematics. The phraseology that the 
intuitionists use when they talk about “rejection” of a classical theorem is grounded on their belief 
that intuitionistic mathematics is the only acceptable one. 

We clarify these concepts with examples from the history of mathematics. A notable figure, 
who marks a turning point in the development of algebra, is François Viète. In his In artem 
analyticem isagoge (1591) he exposes the foundations of a new science, designed to “leave no 
problem unsolved” (nullum non problema solvere) (Klein, 1968, 344). The fundamental 
transformations he introduced concern (Bashmakova, Smirnova, 2000): 

a) The concepts: He divided algebra into two parts: the first part, called logistica speciosa, 
concerns general magnitudes, whereas the second (logistica numerosa), concerns numbers. 
Before Viète, the mathematicians were confined to numbers only. 

b) The code: before Viète, literal notation was restricted to the unknown and its powers 
(introduced by Diophantus and the mathematicians of the 15-16th centuries); he also 
introduces literal notation for parameters. 
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Under these transformations, the (validated) outcomes of proof-events, established earlier (e.g. 
by Arabic mathematicians) remain valid. No outcome was dropped or invalidated. 

However, this is not the case, with the appearance of non-Euclidean geometries, or non-
classical mathematics (i.e. intuitionistic mathematics and the various versions of constructive 
mathematics), or non-standard (non-Archimedean) analysis. Validated outcomes of proof-events 
in Euclidean geometry, classical mathematics or (standard) analysis may not hold in their “non-
standard” counterparts. In particular, the theorems and proofs of Euclidean geometry that depend 
upon the axiom of parallelism are not preserved in non-Euclidean geometries. The theorems and 
proofs of classical mathematics that depend upon the principle of excluded middle are not preserved 
in the varieties of constructive mathematics. Theorems and proofs that depend upon the 
Archimedean axiom are not preserved also in non-standard analysis. Therefore, the appearance of 
non-standard mathematical systems marks an essential point of discontinuity. 

Consequently, discontinuous change is related with possible proliferation of mathematical 
systems or worlds. These systems or worlds are co-existing “paradigms” (if we use Kuhn’s 
terminology), in contrast to Kuhn’s theory, where a paradigm shift invalidates the earlier paradigm. 
The feature of proliferation of mathematical worlds characterize discontinuous change in 
mathematics, but not necessarily in the physical sciences. 

6. Towards a logical representation of mathematical proving 

We outlined above an informal theory of mathematical proving, based not on the concepts on 
mathematical fact and truth, but on the concept of proof-event, i.e. proof-process, in order to capture 
essential aspects of the process of mathematical problem-solving activity that are not considered 
within traditional philosophies of mathematics, but are important for Artificial Intelligence, which 
focuses on problem-solving and reasoning procedures. This theory cannot possibly be represented 
by means of a unifying model, because of the variety of its aspects. For instance, the communicative 
aspects of a mathematical text, such as the mathematical style, need specific models. In this paper, 
we confine ourselves to represent certain features of the temporal extension of mathematical proof-
events in terms of the calculus of events. The latter was first formalized by Robert Kowalski and 
Marek Sergot (1986) and was further extended by Murray Shanahan and Rob Miller (1999). 

Using the language of event calculus, we can speak about proof-events and their sequences. 
The calculus of proof-events requires a many-sorted predicate logic with equality, with sorts for 

• Individual physical objects (humans, chairs, tables, etc.). 
• Real numbers, to represent (chronological) time and variable quantities. 
• Time-dependent properties, such as states and activities. 
• Time-independent propositions, called problems (specified by certain (time-dependent) 

conditions)13. 
• Variable quantities. 
• Types of proof-events, whose instantiations mark the beginning and end of time-dependent 

properties. 
The fundamental concepts are the proof-events and the fluents. 

                                                        
13 Following A.N. Kolmogorov (1932), we do not define what a problem is. Certainly, the way we 
understand problems is far from unequivocally definite and general. Thus, a problem may be the starting 
point of different sequences of proof-events. Nevertheless, a problem remains fixed, unless it is terminated. 
The conditions of the problem may change, when it is realized that they are inadequate for the solution of 
the given problem. 
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Proof-events e take place in space and time (proving instances/ occurrences); they refer to a 
fixed problem (proposition), specified by certain conditions (predicates). A proof-event e has the 
following internal structure: 

 ( , ),e present Intention Problem t« , 
which means that an intention (insight or idea or proof sketch, or mathematical argument, etc.) is 
linguistically articulated for a (time-independent) problem (formulated in the form of a 
mathematical proposition, specified by certain conditions) at time t, which conventionally denotes 
the time that the communication (presentation) has been completed14. In this case, we say that the 
presented output (semiotic “text”) is an exemplification or an instance of a proof-event with respect 
to the particular fixed problem. 

Fluents f are sequences of proof-events (proving instances) 1,2,3,{ }n ne =  evolving in time that 
refer to a fixed problem. A fluent is a function that may be interpreted in a model as a set of time 
points 1,2,3,{ }n nt = , conventionally denoting the time when the communication output is available. 
Hence, fluents, like proof-events, have “initial” and “terminal” points, i.e. they are extended 
spatially and temporally. 

Thus, the underlying ontology (the types of entities over which quantification is admissible) 
contains (types of) proof-events, fluents and time points. 

The value of a proof-event (outcome of a proving instance) expresses the subjective conviction 
of the community of agents participating in the proof-event in the truth of the outcome; it can be 
estimated as the subjective (Bayesian) probability of the community participating in the proof-event 
in the truth of the proving outcome. Frequentist probability is not applicable in this case, because 
communication of a purported proof is neither an experiment that is repeated under the same 
conditions, nor a hypothesis that has to be tested. On the contrary, Bayesian probability is suitable 
because it represents a state of knowledge or a state of belief. A purported proof is viewed by the 
relevant community as a hypothesis (whose truth or falsity is uncertain until its validation) to which 
is assigned a probability. 

The value of a fluent is subject to change over time, depending on the value of the individual 
proof-events; it is equal to the value of the proof-event ie  at time it . 

The basic temporal predicates for modelling continuous change are: 
( , )Happens e t , which means that a proof-event e occurs at time t. 
( , , )Initiates e f t , which means that if a proof-event e occurs at time t, then the fluent f 

(sequence of proof-events) remains active after t, which is the starting time-point of a sequence of 
proof-events. This does not mean that the proving outcome is (recognized as) valid or true at time 
t. 

( , , )Terminates e f t , which means that if a proof-event e occurs at time t, then the fluent f 
(sequence of proof-events) will be inactive after t, which is the termination (time point) of the 
sequence of proof-events. The termination of a sequence of proof-events may be caused by the 
proof of falsity of the problem (failure under the specified conditions), or the undecidability of the 
problem (failure to construct an algorithm that leads always to a correct yes-or-no answer). 
                                                        
14 Following Kowalski, we assume that “the event calculus is actually neutral with respect to whether 
events are instantaneous or have duration” (Kowalski 1992, 122). In some cases, the starting time-point of a 
proof-event is difficult to be identified or agreed, whereas the termination time-point is associated with the 
availability of the output of communication. The philosophical questions underpinning the choice between 
the options “time as ‘flow’ or duration” and “time as ‘instants’ or time-points” is beyond the scope of the 
present paper. 
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Oblivion of the problem by the mathematical community cannot be considered as termination point 
for a sequence of proof-events. 

Two proof-events (fluents, respectively) are called (logically) equivalent if and only if they 
have the same “initial” (refer to logically equivalent problems) and “terminal” points (logically 
equivalent outcomes). 

Temporal binary predicates can be defined over the set of proof-events to express their possible 
relative order, i.e. such concepts as “precedes”, “follows”, “begins before”, “ends before”, etc. in 
terms of time order. Proof-events may occur concurrently, whenever 1 1( , )Happens e t  and 

2 2( , )Happens e t , where 1 2e e≠  and 1 2t t= . They may be overlapping at t, whenever 1 1( , )Happens e t  
and 2 2( , )Happens e t , where 1 2e e≠  and 1 2, , (( ) ( )t t t t t t t t tʹ ʹ́ ʹ ʹ́∃ = + ∧ = + . 

The aim of the use the language of event calculus in describing proof-events is to model the 
evolution of the sequences of proof-events in terms of fluents, defining the value of each fluent 
after an arbitrary proof-event (proving instance) has been performed. Thus, the common principles 
or axioms of the calculus of events that relate the above predicates together, can serve to model the 
evolution of a fluent in terms of the value of each fluent after the occurrence of an arbitrary proof-
event.15  

A fluent began to be “active” or “perspective” after time t, if and only if it was active in the 
past, and has not become inactive in the meantime, i.e. 

( , ) ( , ) ( , , )ActiveAt f t Happens e t Initiates e f t∧É . 
If there is a terminating proof-event between 1t  and 2t , this is expressed by the predicate 

1 2( , , )Clipped t f t , i.e. 

[ ]1 2 1 2( , , ) , ( , ) ( ) ( , , )Clipped t f t e t Happens e t t t t Terminates e f t∃ ∧ ≤ < ∧É . 
If a proof-event e has taken place at time 1t , prior to 2t  that has initiated the fluent f, which has 

not been terminated at a time between 1t  and 2t , then the fluent f (sequence of proof-events) 
remains active at time 2t : 

1 1 1 2 1 2 2( , ) ( , , ) ( ) ( , , ) ( , )Happens e t Initiates e f t t t Clipped t f t ActiveAt f t∧ ∧ < ∧¬ → . 
Continuous change requires the predicate for trajectory: 1 1 2 2( , , , )Trajectory f t f t  which means 

that if the fluent (sequence of proof-events) 1f  is active during the interval 1 2( , )t t , then the fluent 

2f   will be active at time 2t . 
In addition to the above general principles, it is necessary to introduce axioms specific to the 

mathematical domain under consideration. These axioms would define which proof-events could 
be proved to be equivalent, which ones are known to be true or false (validated) and, thereby make 
the corresponding fluents true or false, respectively. 

7. On The Semantics of Agents’ Proving 

We have argued (Vandoulakis, Stefaneas 2014) that that the logic of agents participating in a proof-
event can be expressed in terms of Andrey N. Kolmogorov’s (1903–1987) calculus of problems 
(Kolmogorov, 1932), initially conceived as interpretation of Luitzen Egbertus Jan Brouwer’s 
(1881–1966) intuitionistic logic of propositions, anticipating Arend Heyting’s (1898–1980) 
semantics for intuitionistic logic (Heyting 1956). 

                                                        
15 Various alternative axiomatizations have been suggested by Miller and Shanahan (1999). 
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• Proving of the problem (intuition) “A & B” means proving of the problem (intuition) A and 
proving of the problem (intuition) B. 

• Proving of the problem (intuition) “A or B” means proving of the problem (intuition) A or 
proving of the problem (intuition) B. 

• Proving of the problem (intuition) “A implies B” means “reduction” of the problem 
(intuition) B to the problem (intuition) A. 

• Proving of the problem (intuition) “not A” means that the assumption of a solution of the 
problem (intuition) A implies an absurdity. 

• Proving of problem (intuition) “for all , ( )x A x ” means proving intuition A for any 
(arbitrary) object from the domain of x. 

• Proving of problem (intuition) “there exists an , ( )x A x ” means proving problem (intuition) 
A for an indicated (given) object c from the domain of x. 

In this way, Kolmogorov interpreted intuitionistic logic of propositions as logic of problem 
solving. Problems cannot be asserted; they cannot be, like propositions, true or false. Kolmogorov 
explains his motivation in a letter to Heyting dated 12-X-[19]31 (Kolmogorov 1988): 

“Each ‘proposition’ in your framework belongs, in my view, to one of two sorts: 

(a) p expresses hope that in prescribed circumstances, a certain experiment will always 
produce a specified result. … 

(b) p expresses the intention to find a construction. … 

I prefer to keep the name proposition (Aussage) only for propositions of type (a) and to 
call “propositions” of type (b) simply problems (Aufgaben). 

Although Kolmogorov conjectured that his calculus of problems coincides with intuitionistic 
propositional logic, Heyting originally admitted that Kolmogorov’s interpretation goes beyond the 
intuitionistic premises (Heyting 1955, 17)16. 

The semantics of provings in terms of Kolmogorov’s calculus of problems is parallel to the 
concept of proof as “fulfillment of intentions”, in the sense of Husserl’s theory of intentionality, 
suggested by Heyting (1931) or the notion of proof as “realizations of expectations” suggested by 
the contemporary philosopher of mathematics Richard L. Tieszen (1989, 1992, 2000, 2005). In all 
these approaches, proof is understood not as completed abstract object, but as a sequence of acts 
that could be conducted in time. In Tieszen’s words 

“To say that proof is a “process” in which an intention comes to be fulfilled is to say 
that it is a process of carrying out a sequence of acts in time in which we come to see 
an object or in which other determinations relevant to the given intention are made” 
(Tieszen, 1992, 25). 

Thus, Kolmogorov’s calculus of problems is suitable for the interpretation of agents’ proving 
activity (proof-events), because it is not based on the notion of ‘truth’, but relies on the concepts of 
‘problem’ and ‘solution to a problem’, i.e. the ‘process’ or construction of proof (which is 
understood as ‘mental’ construction, by Brouwer). Likewise, the truth of a purported proof in a 
proof-event is not given beforehand; instead, proof-events are defined in terms of the concepts of 
‘problem’ and ‘purported solution to a problem’ (‘intention’). Kolmogorov’s calculus of problems 

                                                        
16 Later Heyting came to regard Kolmogorov’s calculus of problems as essentially the same with his own 
interpretation of intuitionistic logic (Heyting 1958). 
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provides the desired semantics for the calculus of proof-events, i.e. of proofs as processes. This is 
a ‘loose’ semantics, in the sense that Kolmogorov’s calculus of problems serves as informal 
explanation of intuitionistic logic and itself requires formalization17. Moreover, Kolmogorov’s 
interpretation 

“is very close to programming. “a is a method [of solving the problem (doing the task) 
A]” can be read as “a is a program … which meets the specification A”. In Kolmogorov's 
interpretation, the word problem refers to something to be done and the word program 
to how to do it.” [Martin-Löf 1984, 4]. 

Consequently, not only the calculus of proof-events, but also Kolmogorov’s semantics in terms 
of calculus of problems are adequate formalization tools that enable developing computational 
accounts of the process of proving. Unfortunately, Kumo had also limited impact on automated 
theorem proving 

8. Intended Interpretations 

As we have already mentioned, the concept of proof-event was motivated by Goguen’s research in 
automated theorem proving, as implemented in his Tatami distributed cooperative proving project 
that consists of the Kumo proof assistant and its proof display system (Goguen 1999b). The Kumo 
system generates a website, called a proofweb, which is a data structure for each proof attempt that 
it executes. A proofweb integrates browsing, execution, animation, and informal explanation with 
formal proofs. The proofwebs are essentially instances of proof-events, insofar as they are actually 
communication outputs of proof attempts. 

Another project of distributed cooperative proving was initiated by Timothy Gowers [G], a 
Fields Medal-winner Cambridge mathematician, in 2009. He called on the community in his blog 
to find a new, more intelligible, solution of a special case of the density Hales-Jewett theorem 
[DHJ] (Hales and Jewett 1963). This marks the beginning of a proof-event, i.e. the system starts 
from the state ,G DHJ〈 〉 . Each agent iA , who joined the system, had to use the comment function 
of Gowers’s’ blog to communicate insights, ideas, approaches, pieces of proof, etc. (whenever 
acted as prover), or to comment, correct, or reject ideas proposed by other agents (whenever acted 
as interpreter). Each attempt has the features of a brainstorming session and represents by itself a 
proof-event in a sequence of proof-events. The evolution of the sequence in time is represented in 
the “history” kept by the medium (the blog)18. The attempts (proof-events) were developed in time 
along two main sequences of proof-events in the respective blogs of Gowers and Terence Tao, 
another winner of the Fields Medal. Both sequences produced outputs that were finally evaluated 
as actual proofs of the problem and were published under the pseudonym “Polymath” (2009, 2010a, 
2010b), which denotes a collective author19. 

The Polymath project was the first real experiment of collective Web-based proving carried 
out by agents of varied knowledge background and expertise skills, who worked as a goal-directed 
system. A blog was used to create an interest-based community of agents, whose exchange and 

                                                        
17 Kleene realizability (Kleene 1945) and Medvedev’s finite problems (Medvedev 1962) are considered as 
such formalizations. 
18 See the Polymath project’s timeline: http://michaelnielsen.org/polymath1/index.php?title=Timeline. 
19 Because of its collective nature, the final outcome of a Web-based proof-event cannot be credited to its 
initiator or the supervising agent. 
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cross-fertilization of ideas amplified collective creative thinking that led to a fast solution of the 
problem.20 

Proceeding from an analysis of the aforementioned instances of Web-based proof-events and 
the role that collaboration plays in creative thinking, we invented a mental experiment for the study 
of collective problem solving, discovery and creativity, using also, for the first time, ideas from 
cognitive architectures [Stefaneas et al 2015]. In this imaginary model, a proof-event is initiated by 
the posting by an agent A of a single task: to prove the Pythagorean Theorem (PT). Thus, the system 
starts from the state ,A PT〈 〉 , where A is the supervisor of the task PT. The supervising agent can 
define conditions, denoted as ( 1,2,3,4)iPT i =  that a proving of PT is required to fulfil. An agent 

iA , interested to undertake the role of a prover for one of the iPT , is admitted to join the system. 
Thereby, the system switches to a new state with four agents 

1 1 2 2 3 3 41 4, , , , , , ,A PT A PT A PT A PT〈 〉 〈 〉 〈 〉 〈 〉 , supervised by the initial agent A. In the course of 
proving, new subtasks are posed, which generate subsequences of proof-events, aiming at fulfilling 
particular tasks. These subtasks might appear out of communication disturbances (certain points in 
a suggested purported proof can be evaluated as unintelligible or unconvincing) or stylistic 
preferences (use of a particular code, etc.). Thus, the proving activity of the agents depends on their 
knowledge background, creative abilities, and proof-stylistic preferences – what could be defined 
as “agent’s profile”. The agents at the highest level of the hierarchy generally possess a higher level 
of expertise. 

A system like that described above keeps track of the whole “history”, evolving in time, of the 
collective, non-linear process of discovery of a proof, including the procedures of checking, 
acceptance or rejection by individual agents or the community of the agents. 

9. Conclusions 

In this paper, we exposed the essentials of a logical model for the practice of mathematical proving, 
that takes into account certain aspects that are important in Artificial Intelligence and allow the 
development of computational approaches. Proceeding from the concept of proof-event or proving, 
introduced by Goguen in connection with the Kumo project, as problem-centered spatio-temporal 
processes, where the agents enact different roles (of the prover and/or the interpreter), we 
examined the levels of communicative interaction among agents. These interactions form an 
ascending hierarchy: communication, understanding, interpretation, validation. 

Further, we described certain essential aspects of the spatio-temporal nature of proof-events, 
i.e. that proof-events have history and form sequences of proof-events evolving in time, which are 
required to be captured by our proposed model. We also described the problem of change in 
mathematical proving in terms of proof-events. This topic is important, because radical 
transformations of the underlying assumptions regarding a problem might take place in the course 
of a sequence of proof-events that may lead not only to the “enrichment” of the underlying semiotic 
space, but also to the creation of a new independent semiotic space, within which the proof-search 
procedure could deliver a valid output. 

Our logical representation of proof-events is modeled upon Kowalski’s calculus of events, 
which provides the necessary conceptual arsenal to represent proof-events, sequences of proof-

                                                        
20 See (Stefaneas, Vandoulakis 2012) for a more detailed account of the Kumo and the Polymath projects 
as Web-based proof-events. 
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events (fluents), and other relevant temporal predicates. The semantics for proof-events can be 
provided by Kolmogorov’s calculus of problems, which is essentially the first-ever stated logic of 
problems, conceived as informal interpretation of Brouwer’s intuitionistic logic of propositions. In 
contrast to the traditional concept of proposition as bearer of truth-value, Kolmogorov’s concept 
of problem (Aufgabe), like proof-event, is not a bearer of any truth-value from the outset. On the 
other hand, Kolmogorov’s logic of problems admits computational accounts of the proving process. 

Finally, we exposed the intented interpretations for our logical model from the fields of 
automated theorem-proving (Kumo system) and Web-based collective proving (Polymath). 
Moreover, in the formulation of certain aspects of our model, we take into account the conclusions 
drawn from a mental experiment, described in [Stefaneas et al 2015], in order to explore the 
specifics of collective problem solving, discovery and creativity, using also ideas from cognitive 
architectures. 
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