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Abstract 

In this paper we offer a model, drawing inspiration from human cognition and based upon the 
pipeline developed for IBM’s Watson, which solves clues in a type of word puzzle called 
syllacrostics. We briefly discuss its situation with respect to the greater field of artificial general 
intelligence (AGI) and how this process and model might be applied to other types of word 
puzzles. We present an overview of a system that has been developed to solve syllacrostics. 
 
Keywords: word puzzles, brain teaser, games, cognitive computing, cognition, pipeline, watson, 
syllacrostic 

1. Introduction 

Word puzzles are a fun pastime for people of all ages. They range in type from simple word 
searches to cryptic crosswords and can be simple or can leave even advanced human solvers 
scratching their heads. The use of a brute force approach to computing solutions to abstract  
problems in word puzzles can result in lengthy compute times and extreme overuse of memory. 
Our goal was to attempt to develop a cognitive computing system that is able to use knowledge 
and reasoning to select fewer candidate answers and to use scorers and a ranking system to 
determine which are the most relevant in order to solve the puzzle. 

We will briefly discuss the syllacrostic as a form of word puzzle, explain the game, rules, and 
types of clues that someone playing the game will likely encounter. We will then explain the 
approach which we believe a typical human player might take when playing this type of game. 
Following a brief review of the Watson pipeline and how it inspired the project, we will then 
discuss our system and how it attempts to emulate the human problem solving process, as well as 
how we used techniques and approaches present in IBM’s Watson to help improve our system.  
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2. Background 

Creativity generally, not solely in the field of artificial intelligence, is particularly prone to a high 
degree of subjectivity, not least in the criticism of the artistic merit of creative works but 
additionally regarding what “is” creativity. This latter remains the subject of intense debate and 
innumerable articles have been written for positions pro and con, and even “don’t know”. The 
general position is the highly regrettable but equally inevitable one of “I’ll know it when I see it”, 
a fearsomely latitudinarian standpoint as it admits and denies with equal measure, but it is 
currently, unfortunately, one of the few positions to take. 

One of the most prominent authors on the subject of music and creativity, David Cope, 
defines ‘creativity’ as “the association of two ideas heretofore not considered related but now 
revealed as logically connected” (Cope, 2015): this definition is, arguably, equally vague, and 
Cope himself is more than willing to admit this. Yet it cannot be denied that we are attempting to 
quantify an event that is, by another argument, equally unquantifiable. As Cope continues: 
 

Unfortunately, my definition for creativity, as all the others I’ve seen, still leaves significant 
questions unanswered. For example, many would include cooking, exercising, even skydiving as 
potentially creative activities. … But one might therefore ask whether creativity represents an 
approach to anything that involves unexpected associations between two things not previously 
considered related. 
… Of course, the same could be said for who or what can be creative—my two cats, for example, 
since I’ve certainly seem them act in very creative ways. 
… Therefore, I underscore my definition by making sure it is understood that any activity or thing 
doing that activity can be creative if it ‘associates two ideas heretofore not considered related but 
now revealed as logically connected.’ (Cope, 2015) 

 
Another slash through the Gordian knot is provided by Margaret Boden, who continues to 

assert the nature of creativity in humans as simply an aspect of “normal human intelligence” and 
something entirely capable of being duplicated by a computational system: 
 

Creativity isn’t magical. It’s an aspect of normal human intelligence, not a special faculty granted 
to a tiny élite. There are three forms: combinational, exploratory, and transformational. All three 
can be modeled by AI—in some cases, with impressive results. … Whether computers can “really” 
be creative isn’t a scientific question but a philosophical one, to which there’s no clear answer. 
(Boden, 2014) 

 
Yet, while Boden dismisses one set of issues most tidily by (correctly) deeming them a matter 

of ‘mere’ philosophy, it introduces another problem: how do we know when a computer is being 
“creative”? According to Bringsjord, we can’t: he, together with Ferrucci and Bello, argued most 
convincingly that computers cannot be genuinely creative, at least as far as literature is concerned 
(Bringsjord, Ferrucci, & Bello, 2001); that said, it is possible to engineer them to appear to be 
creative. In this paper they propose that a machine can only be truly creative if its function causes 
the generation of an artefact whose existence cannot be predicted by the designer(s) and creator(s) 
of such a machine: they term this the “Lovelace Test”. Conversely, it’s sufficient (and currently 
necessary) for a machine to “trick” the observers into believing that the machine is creative by 
making it appear creative, in a manner similar to the ‘Turing Test.’1 

Yet does it really matter if a machine is not genuinely creative but merely appears creative? 
To the untrained eye, the one unbiased by critical examination of an AI system its architecture 
and hardware infrastructure, the outcome is the same: there has been a form of creative event. The 
                                                        
1 More recently, Bringsjord argues for the position that any general intelligence (human, alien or computational) may 
be considered creative. (Bringsjord, 2015) 
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system which we know to be ‘smoke and mirrors’ is believed to be capable of functioning, and 
believed to be functioning, in a manner similar to a human. (We recognize here the approach of 
the Chinese Room. (Searle, 1980))2 We make these distinctions – between presentation and 
actuality; between what is and what appears to be – because we are engineers, philosophers, 
designers, seekers after information, and because we have not only looked behind the curtain but 
wrapped ourselves up in it, here in a realm where creativity is not wholly merely in the eyes of 
the beholders. Fundamentally, however, we believe that computers can be creative, just as 
humans can be creative; the how and why are still under active discussion. 

But for others, denied that insight—or perhaps blessed in innocence—the situation is quite 
different. Let us suppose a machine could successfully be created to search a vast corpus of 
knowledge, including mythology, fiction, poetry, all of science, whether human, natural or 
applied, using natural language in response to cryptic, indirect questions and respond correctly to 
those questions in as short a space of time as possible, and let us further suppose that a human 
whose abilities were mimicked by that machine saw it in full operation, answering those 
questions swiftly and correctly: what might that human think? In this paper we consider this type 
of question specifically in the case of the system and general architecture of IBM Watson 
(Ferrucci et al., 2010), which famously beat two of the world’s best human players of the 
television trivia quiz Jeopardy! at their own game in 2011. 

2.1 ‘Cognitive Computing’: Collaborative Intelligence 
The computer’s techniques for unraveling Jeopardy! clues sounded just like mine. That machine 
zeroes in on key words in a clue, then combs its memory (in Watson’s case, a 15-terabyte data bank 
of human knowledge) for clusters of associations with those words. It rigorously checks the top hits 
against all the contextual information it can muster: the category name; the kind of answer being 
sought; the time, place, and gender hinted at in the clue; and so on. And when it feels ‘sure’ 
enough, it decides to buzz. This is all an instant, intuitive process for a human Jeopardy! player, but 
I felt convinced that under the hood my brain was doing more or less the same thing. (Jennings, 
2011) 

 
Much has been written on the subject of IBM Watson (see e.g. (Ferrucci et al., 2010), 
(Devarakonda & Tsou, 2015; McMillan & Dwoskin, 2015; Sciales, Rubin, & Martialay, 2015), 
and not undeservedly: it is a powerful and highly flexible system. But is it creative? is it 
intelligent? Let us return briefly to Cope’s definition: “any activity or thing doing that activity can 
be creative if it ‘associates two ideas heretofore not considered related but now revealed as 
logically connected.’” Is it creative? No: it is an information retrieval system which judges 
possible answers based on the level of support for those answers in its knowledge base. Is it 
intelligent? It appears so, but that is merely the result of many hours of work on the part of its 
creators at IBM. And yet Watson – the version which won at Jeopardy! or any one of its 
numerous decedents, including “Watson MD” (McMillan & Dwoskin, 2015), (Devarakonda & 
Tsou, 2015), the version of Watson used for hydrological research at RPI as part of the Jefferson 
Project (Sciales et al., 2015), or even “Chef Watson” (Pinel, Varshney, & Bhattacharjya, 2015) – 
represents a paradigm shift in the field of AI in the manner in which it operates. ‘Cognitive 

                                                        
2 It is interesting to note that a counter-argument appears immediately following Searle’s original article. “First of all, 
it is no trivial matter to write rules to transform the ‘Chinese symbols’ of a story text into the ‘Chinese symbols’ of 
appropriate answers to questions about the story. To dismiss this programming feat as mere rule mongering is like 
downgrading a good piece of literature as something that British Museum monkeys can eventually produce. … Searle’s 
argument itself, sallying forth as it does into a symbol-laden domain that is intrinsically difficult to ‘understand’, could 
well be seen as mere symbol manipulation. His main rule is that if you see the Chinese symbols for ‘formal 
computational operations,’ then you output the Chinese symbols for ‘no understanding at all’.” (Abelson, 1980) 
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computing’, it has come to seem, is the way forward, and every day, it seems, brings new 
applications for IBM’s technological brainchild. 

Yet beneath all the hype surrounding Watson and its ilk there is indeed some substance to be 
had. The design of such systems would seem to mimic, after a limited fashion, the method of 
operation of the human cognitive process, and makes (more) possible some of the concepts 
introduced by Marvin Minsky in his concept of the “Society of Mind” (Minsky, 1988). We do not 
presume to suggest that all the issues we have touched so lightly upon here might be resolved, 
quite literally, by some deus ex machina event; we do suggest, however, that such systems might 
offer new possibilities and new insights in this most intractable and impenetrable of fields. 

Interestingly, a recent paper (S. L. Epstein, 2015) offers such a new possibility. Taking the 
position that AI has come a long way from its 1950s roots, from a focus on implementation at the 
first IJCAI in 1969 to a more anthropocentric, learning- and modeling-driven approach in current 
times. “The dramatic changes between 1969 and 2013 were driven, I believe, by our collective 
fascination with hard problems,” Epstein writes, continuing: 

To solve these problems, AI researchers developed a diverse set of representations to model 
the real world for computers. … Then, to harness these representations, AI researchers built 
inference mechanisms and search algorithms intended to manipulate that knowledge. … 
Competition, along with common and exacting evaluation metrics, allows us to see which methods 
perform best on which data. … As a result, AI’s standard for success has become the ability of one 
system, algorithm, architecture, representation or approach to outperform another. Clearly, we are 
in search of the best machine intelligence we can construct, without any regard to what people can 
do. Meanwhile, this clever problem solving has had some unanticipated results. 

The “unanticipated results” to which Epstein alludes she then goes on to define as AI as being 
perceived in the mainstream media as either “flashy but failure-ridden devices” or something to 
be feared. Epstein’s paper attempts to rebuff both perceptions by positing the concept of the 
“collaborative intelligence”, a system which “partners with a person to achieve the person’s 
goals”. Epstein specifies the following requirements inherent in a “collaborative intelligence”: 

 
• It asks for help when required 
• It must be able to model the human view of the world 
• It must engage in dialogue with its human partner(s) 
• It must be able to perceive and recognize shared vocabulary and shared context 
• It can signal its internal state to the user(s), improving transparency and functioning 
• It should be aware that a human is very different from a machine 

 
One might believe, based on the above, that Epstein is describing a generally intelligent 

system, but this is not so; quite the contrary, indeed. “As envisioned here, a CI is not a general 
intelligence. Each CI would target problem areas in which it could assist people, and provide 
representations and procedures to support particular human activities.” Indeed, the seeds of this 
concept have already been planted by IBM in their Cognitive Environments Laboratory where 
numerous smaller subsystems operate synergistically around Watson to provide support to human 
operators. (IBM, 2015) One could imagine a future time in which the world is crowded with these 
single-function CI systems, each performing operations on a general pool of data, each returning 
its analyses to another CI or to a human, each doing its own task, great or small, as part of a much 
greater whole — such as understanding language, searching world knowledge, comparing it to 
available information and finding solutions to word puzzles. And, from there, from such a 
collaborative collection of CIs, it is a small step to imagine the entire supersystem as one large 
electronic “brain”, and an unplanned, unintended, organically-developed practical experiment in 
artificial general intelligence. 
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3. Towards a ‘Cognitive’ Approach 

In this section we first outline the format of a syllacrostic puzzle for those unfamiliar with the 
structure. We then briefly outline and explore our inspirations for the design of our prototype, 
‘cognitive’ syllacrostic solving program SyllaBub, which we will describe later. 

3.1 Word Puzzles and Problem-Solving 

There are numerous types of word puzzles: popular variants include word searches, crosswords, 
word placement puzzles and acrostics. Such games can be as simple as a child’s word search, 
easily solvable by both humans and computers alike, or as difficult as a highly abstruse cryptic 
crossword with no indications for Across or Down, which are hard for humans to solve and 
almost impossible for computers. They are a perennially fascinating space for AI work, 
combining as they do elements of natural language processing, exhaustive search, pattern 
matching, general problem-solving and, in some cases, planning.  

In keeping with this, there is a rich heritage of artificial intelligence solutions in this field. 
Among the most notable is PROVERB, an agent capable of solving the New York Times crossword 
(Keim et al., 1999; Littman, Keim, & Shazeer, 2002; Shazeer, Littman, & Keim, 1999). 
(Semeraro, Lops, De Gemmis, & Basile, 2012) addresses another type of word game in which a 
given word must be discovered by using associations with clue words: for instance, the clues sin, 
doctor, Newton, pie and New York would yield the answer apple. This system uses a complex 
“knowledge infusion” system, which attempts to provide the system with “a deeper understanding 
of the information it deals with.” Further, though perhaps moving away from the strict definition 
of the ‘word puzzle’ towards a more general-knowledge problem but still operating very much 
within the field of words and natural language processing, a recently developed system is capable 
of playing the popular television quiz Who Wants To Be A Millionaire? (Molino, Lops, Semeraro, 
de Gemmis, & Basile, 2015) And then, of course, there is Watson. (Murdock, 2012) 

3.2 The Syllacrostic 

In selecting a type of puzzle to address we were all too keenly aware of the scope of the problem. 
While we suggest that the general approach described in this paper might be applied to many 
different kinds of word puzzles, we felt it was important to show it could properly handle some 
specific word puzzle type. We settled, then, on attempting to solve syllacrostics as they are 
representative of many types of word puzzles but are sufficiently simple that we could rigorously 
explore the solution space and demonstrate clearly how the architecture works. 

Syllacrostics consist of a clue to a target word, plus some constraints that the answer must 
meet: the number of syllables and the number of letters. In these puzzles, a player is given two 
pieces of information: the clue itself, and a pool of usable syllables: target words must be correct 
for the clue and be derived using only syllables remaining in the pool. An example of a 
syllacrostic game and its solution (in parentheses to the right) is shown in Figure 1. 
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Figure 1 Example of a syllacrostic game and its solution. 

 
Each clue provides three different pieces of information: a word or phrase, referring to and 

indicating the correct answer; a group of blank spaces showing the number of letters in the correct 
answer, and, lastly, a number in parentheses which shows the number of syllables in the correct 
answer. The player successfully completes the puzzle by identifying the correct answer, with the 
correct number of letters and syllables (from the syllable list), for each clue. 
Two different forms of the syllacrostic puzzle exist: in one, the use of a syllable removes it from 
the pool of available syllables; in the other, syllables may be reused as desired. SyllaBub can 
solve both kinds of syllacrostic, providing the difference is made known before a solution is 
attempted. 

3.3 The Human Factor 

As much as we drew inspiration from technical sources, including IBM Watson and Ellis’s work 
on cognitive computing for game AI (Ellis, 2014), significant insight also came from informal 
observation of several human players attempt to solve syllacrostic puzzles and observing their 
methodologies. Following several short sessions in which we asked people to solve a syllacrostic 
puzzle, we recognized two discrete stages generally used by most of the human players: 
“creative” and “brute-force” candidate answer generation. These two stages formed the core of 
the model which informs this work. 

In the first stage, “creative candidate answer generation”, human players appear to take a 
broader view of the game, where creativity and intuition come into play informed by world 
knowledge. At this stage, they tend to consider a clue and generate a list of possible words that 
work as a potential solution. These are then confirmed or rejected based on the constraints of the 
puzzle (i.e. if the word has the correct number of letters and syllables and if the word can be 
constructed from the list of available syllables present in the syllable pool). A human player will 
generally do this for every clue in some sequence, solving obvious clues and leaving others for 
later. Once the human player has solved all the clues which are immediately obvious they will 
either repeat this stage until the game is complete or no solutions have been found in a certain 
number of passes, or move on to the next.  

Syllable List 
AN AP BLE CAR CES DEN DER DRIV ER FRIC GAR HU IM IST KIN MOR NA NENT 
NI OR PA PER POS PREG RA RI SA SI TE TEN TI TILE TION TRY TUS TY VAL VER 
 
1. Heat generating force _ _ _ _ _ _ _ _ (2) (Friction) 
2. Traveling show _ _ _ _ _ _ _ _ (3)   (Carnival) 
3. Relatives _ _ _ _ _ _ _ _ _ (3)   (Ancestry) 
4. Solidity _ _ _ _ _ _ _ (3) (Density) 
5. Golf club _ _ _ _ _ _ (2)   (Driver) 
6. Comedian _ _ _ _ _ _ _ _ (3)   (Humorist) 
7. Invincible _ _ _ _ _ _ _ _ _ _ (4) (Impregnable) 
8. School for young children _ _ _ _ _ _ _ _ _ _ _ _ (4) (Kindergarten) 
9. Rear _ _ _ _ _ _ _ _ _ (4)  (Posterior) 
10. Equipment _ _ _ _ _ _ _ _ _ (4) (Apparatus) 
11. Having Many Skills _ _ _ _ _ _ _ _ _ (3)   (Versatile) 
12. Relates to the topic _ _ _ _ _ _ _ _ _ (3) (Pertinent) 
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In this second stage the human player will generally attempt to solve the remaining candidate 
answers by “brute force”: that is, taking likely combinations of available syllables and fitting 
them together in an attempt to create a rational-sounding word. This stage is often entered when 
three or fewer clues remain, or when the player “blanks on”, or is unable to immediately recall, a 
particular word despite ‘knowing that they know it’. Often, the derivation of a word through brute 
force is sufficient to recall it to the player’s memory as the correct answer. Finally, after entering 
the second stage for the first time and solving a clue, human players often begin to alternate 
between the two stages, solving a clue and then looking at the syllable box to see if any new 
words have become obvious. 

SyllaBub reflects the basic ideas of the above processes well, designed as it is upon the linear 
flow model and world knowledge-based evaluation approach used by ‘cognitive computing’ 
systems such as IBM Watson. 

3.4 ‘Cognitive Computing’ 

The Watson system is a “deep question-answering”, or “DeepQA”, system developed by IBM 
initially as a tool to play the popular television quiz Jeopardy! in 2011. Since that time, Watson 
has been adapted to fill several roles, including the fields of medicine (Devarakonda & Tsou, 
2015), law (Ashley & Walker, 2013) and also haute cuisine (Pinel et al., 2015). While the 
platform has been updated and the software amended to support the different fields of operation, 
Watson’s overall design and method of operation have remained the same. It was this design that 
served as the basis for SyllaBub. 
 Watson is a software architecture which performs content analysis and evidence-based 
reasoning by unifying several different algorithms for the purposes of answering questions. It 
operates in several stages, as shown in Figure 2. The process begins in the Question Analysis 
phase: here, the query is examined to draw inferences about the answer, such as the type of entity 
being sought (person, place, object, etc.) and any information about that entity provided by the 
question. All of the data, including the query itself, then form input queries to the Primary Search, 
which walks a knowledge base to generate a set of candidate answers. Candidates are then scored 
independently of each other, initially without reference to the context of the question: Context-
Independent Scoring includes the type relevance of the candidate and whether the candidate 
exists or existed in an appropriate time period. The Soft Filtering stage eliminates any obviously 
irrelevant or incorrect candidate answers from the pool. 

To determine the accuracy of each candidate answer  Watson performs an evaluation on the 
candidates by inserting each of them into the question in the place of the subject (i.e. replacing 
“who” or “this”) and creating a valid declarative statement, then comparing that statement against 
the documents retrieved during the Primary Search phase. (It is thus important to note that 
Watson does not score a candidate answer so much as score the evidence which supports that 
answer.) Lastly, all of the candidates are combined into one pool for ranking and evaluation using 
its trained machine learning component. At this point Watson selects the candidate with the 
highest score as its chosen answer to the question. (For more full information on DeepQA, and 
Watson in particular, we refer readers particularly to (Ferrucci et al., 2010) and (Murdock, 
2012).) 
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Key to Watson’s success, and a major factor in our research, is its use of world knowledge to 
approach problems, and its use of multiple individual scorers to evaluate that knowledge in 
various ways before being combined into a single final response. Analysis of the Watson 
cognitive computing architecture has shown that it functions well when there are many data 
sources upon which to base a hypothesis and from which to draw candidates. Our work was 
motivated to see if a similar architecture would perform in situations with limited data and an 
extremely small scope: in other words, can Watson “scale down” to simpler problems? 

4. SyllaBub, a Cognitive Computing-Inspired Syllacrostic Solver 

Drawing on inspiration from the sources described above, we developed a prototype system, to 
solve syllacrostic puzzles, SyllaBub. In this section we describe the architecture of SyllaBub 
together with some of its functional details. 

4.1 Operational Pipeline 

SyllaBub has two phases of operation which repeat themselves as required as new information 
about the game becomes available; an overview of this process may be seen in Figure 3. 

The first stage uses a form of “creative” candidate answer generation. The specifics of the 
candidate answer generation process for this stage will be explained in Section 4.2. We then 
constrain the candidate answers based on the information acquired from the clue. Attributes such 
as letter count, syllable count, and whether or not the syllables are available, are all taken into 
account. At this point, SyllaBub takes the remaining candidates and scores them based on several 
factors (see Section 4.4) before it ranks the candidates based on the scores and selects the one 
with the highest rank and score as the solution. This process is repeated for all clues until 
“creative” candidate answer generation has been attempted for each clue. It should be noted that 
this phase may result in incorrect solutions or no solutions at all. If there are clues that remain 
unanswered or that were answered incorrectly, the system moves on to the second stage. 

Figure 2 The Watson DeepQA pipeline (E. A. Epstein et al., 2012) 
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The second stage instead uses brute force candidate answer generation. If the syllacrostic is 
one where syllables can be reused, this stage and subsequent stages are skipped as there is no 
additional information that is revealed for each clue. In this stage, we consider all of the 
remaining syllables that were not removed by use in previously solved clues and attempt to 
generate words by exhaustively combining these syllables. This generates a significant number of 
candidates that are constrained by the same attributes as in the previous stage, but additionally by 
the validity of the word in the English language. At this point we are left with a set of candidate 
answers that are now potential solutions to the clue. These solutions are then scored by the same 
scorers used in the previous stage. The candidates are then ranked and the clue with the highest 
score is selected. This stage can also result in incorrect solutions or no solutions. If this is the 
case, the system will return to the first stage. 

This new repetition of the first stage takes whatever new information was extracted from the 
second stage and returns to the clues that are still unanswered or were answered incorrectly. This 
process is repeated until a pass of all the clues is completed and no new information is uncovered. 
If at any point SyllaBub correctly solves all of the clues the system halts and the outcome is 
reported.3 

4.2 Notation 

During the development of SyllaBub we developed a simple notation to describe the various 
components of the syllacrostic game and the various subcomponents of the solution system, as 
given below. This notation will be used in the sections discussing the operation of SyllaBub. 
 

● Θ A syllacrostic puzzle represented as a set;  Θ = {Ψ, Ω, Φ, Χ} 
● Ψ The set of all clues in puzzle Θ;    Ψ = { Ψ1, Ψ2,…, Ψn } 
● Ω The set of all answers in puzzle Θ;   Ω = { Ω1, Ω2,…, Ωn } 
● Φ The set of all available syllables in puzzle Θ; Φ = { Φ1, Φ2,…, Φn } 
● Χ The set of all unavailable syllables in puzzle Θ; Χ = { Χ1, Χ2,…, Χn } 
 
● ψ A single clue, represented as the triple <clue text, number of letters, number of   
  syllables>;      ψ = Ψi (for i in {1, …, n})  

                                                        
3 Electronic versions of most puzzle games, including syllacrostics, generally provide immediate right/wrong feedback 
to a user during play. We used this approach as the validation of the cognitive computing architecture was not 
dependent on at which point such feedback was provided to the system. 

Figure 3 SyllaBub conceptual architecture 
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● ψ[text]  The text associated with a specific ψ 
● ψ[letters] The number of letters associated with a specific ψ  
● ψ[syllables] The number of syllables associated with a specific ψ 

● ω The correct answer to a clue ψ;   ω = Ωi (for i in {1, …, n}) 
● φ A single available syllable;    φ = Φi (for i in {1, …, n}) 
● χ A single unavailable syllable;    χ = Χi (for i in {1, …, n}) 

 
The function of SyllaBub may be described using the following terms: 

 
● δ A single candidate answer for clue ψ 
● Δ The set of all δ for clue ψ; δ = Δn 
● γ The set of scores for candidate answer δ 
● Γ The set of all γ for all candidate answers; γ = Γn 
● γi The value returned by a particular scorer 
● τ A single scorer that can be applied to any δ 
● Τ The set of all scorers that can be applied to any δ; τ = Τn 

 
The following constraints apply to the above definitions: 
 

● For any δ = Δn and any γ = Γn, γ contains the set of scores for δ. 
● Τi(Δn) = Γ"# ≡ τ(δ) = γi 

4.3 Candidate Answer Generation 

As mentioned earlier, in an attempt to emulate the human problem-solving approach SyllaBub 
uses subsystems to generate possible answers to clues, which we examine here in more detail. 

4.3.1 “CREATIVE” CANDIDATE ANSWER GENERATION 

The “creative” candidate answer generation process has two phases: a clue analysis phase, in 
which important keywords are selected from each ψ[text], and a candidate generation phase, 
using the keywords obtained from clue analysis. 

We parse the contents of ψ[text] using the NLTK part of speech (POS) tagger, which uses the 
Penn State Treebank Tagset (Bird, Loper, & Klein, 2009). For the purposes of SyllaBub, we 
define keywords as words that are not tagged as “DT”, “TO”, “CC”, “RP”, “PRP” or “PRP$”. 
These tags correspond to the following parts-of-speech: “DT” or a determiner, “TO” or the word 
“to”, “CC” or a coordinating conjunction, “RP” or a particle, “PRP” or a personal pronoun, and 
“PRP$” or a possessive pronoun.  

After selecting these keywords SyllaBub continues by attempting to find as many synonyms 
for these words as possible using the WordNet API (Princeton University, 2010) and the 
Altervista (Altervista, n.d.) online thesaurus service. WordNet is queried for synonyms and 
antonyms, as well as synonyms of those synonyms.  

Subsequently, this process performs a reverse dictionary lookup using the online Datamuse 
API (Datamuse, n.d.), which takes a word’s definition as a string and returns a number of words 
that might fit the given definition. ψ[text] is passed to the API in its entirety and any responses 
captured. 

The results of these searches are stored in Δ. Note that it is neither guaranteed nor expected 
that any δ ∈ Δ will be unique. 
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4.3.2 “BRUTE FORCE” CANDIDATE ANSWER GENERATION 

This subsystem uses the contents of Φ to iteratively form candidates δ using an exhaustive 
combinatorial search and returns all of the potential permutations of φ ∈ Φ. It terminates when 
letter_count(δ) ≥ ψ[letters]. 

4.4 Candidate Answer Constraining 

The constraints applied to all δ are largely similar in both phases of the pipeline: 
 

• if δ is an empty string, discard δ 
• if letter_count(δ) ≠ ψ[letters], discard δ 
• if syllable_count(δ) ≠ ψ[syllables], discard δ 
• if a syllable δ ∉ Φ, discard δ 

 
An additional constraint is added for all δ generated in the “brute force” phase: that a 

WordNet definition can be found for such words. Any δ which fails this test is discarded. This 
serves to eliminate the number of nonsense words passed to the scoring system. 

4.5 Candidate Answer Scoring 

The scoring process for all δ is the same regardless of the candidate answer generation phase 
which generated it. Each δ is processed by five discrete scorers τ, as follows: 
 

• Τwn, which uses WordNet 
• Τdm, the DataMuse scorer 
• Τav, which generates a score based on the Altervista response 
• Τapp, the appearance scorer  
• Τpos, the part-of-speech scorer 

 
The first two scorers are known collectively as “the ‘black box’ scorers” as they use scores 

generated by external systems, while the others are based on custom processes we designed. 

4.5.1 THE “BLACK BOX” SCORERS 

We use WordNet to generate the “path similarity” score. This value is calculated remotely by the 
WordNet server, and is based on the ‘fitness’ of a δ within a framework of hypernym and 
hyponym relationships determined by comparing δ with all words in ψ[text]. WordNet returns a 
normalized value such that Τwn(δ) = 0 ≤ γwn ≤ 1. 

The value of the Datamuse scorer is also determined remotely. It represents how closely a 
passed definition correlates with a given response. The value returned, γdm, is a real number with 
an arbitrary range; these values are then normalized based on ∑γdm, γ ∈ Γ. 

4.5.2 ALTERVISTA SCORER 

This scorer is very simple and determines if a δ was generated using the Altervista thesaurus 
service: Τav(δ) = 1 if so, else Τav(δ) = 0. This scorer was introduced to add additional weight to 
any δ received from and track how δ were being generated. 
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4.5.3 APPEARANCE SCORER 

The function of this scorer is to weight any δ based on the number of times it has appeared as a 
candidate in Δ. This is useful because, although it is not always so, it is generally seen that the 
more times a word appears in a search the more likely it is to be the correct answer. Once γapp is 
calculated for all δ, the values are normalized based on the maximum appearance score in Γ. The 
equation that governs the score returned by this scorer is presented in Equation 1; n(δ) is the 
number of occurrences of δ in Δ. 
 

γ%&& =
n δ

max Γ-.//	…	2.//
 

 
Equation 1 Candidate appearance score 

4.5.4 PART OF SPEECH SCORER 

The final custom scorer, γpos, uses the part of speech (POS) of a word. It consists of two 
components. In the first, all of the words in ψ[text] are tagged using the NLTK parser. The POS 
of δ is compared to the POS of each word ψ[text], and Τpos(δ) is incremented by the proportion of 
the particular POS in ψ[text]. In the second, the scorer attempts to match the clue to a set of 
predetermined clue skeletons where the expected POS is already known; for example, a clue 
skeleton would be “To *” or “*ly”, where “*” is a wildcard. In this instance, we can assume that 
correct δ is a verb or adverb, respectively, based on the structure ψ[text]. For any ψ[text] that 
matches these skeletons to the POS of δ, Τpos(δ) is incremented by 1.0. 

As an example, consider the clue ψ with ψ[text] = “Tall flowery plant”. This clue consists of 
a phrase of two adjectives and a noun. Given δ is a noun, Τpos(δ) would initially yield γpos = 0.333 
as the POS of δ matched the POS of one of the three words in ψ[text]. ψ[text] would then be 
examined further to determine if it matched any of the predefined clue skeletons. If there was a 
match, then the score would be increased by 1.0 for every match. The score would then be 
normalized following the calculation of γpos for all δ. 

4.5.5 FINAL SCORE CALCULATION 

Once all scores have been calculated for all δ, the scores are normalized between zero and one, 
summed and averaged across Γ. This score, which we will call Final(δ), is the deciding score to 
be computed for a δ. This is done for all δ, and at the end of the process all δ are ranked, and the δ 
with the highest Final(δ) is selected as the solution. This δ is then returned to the syllacrostic 
game for validation. The equation for calculating final scores is shown in Equation 2.  
  

𝐹𝑖𝑛𝑎𝑙(δ) = 	
γ2:

2;0
𝑚

	(0 ≤ γ2 ≤ 1) 
 

Equation 2 Final score 

5. Results and Discussion 

In this section we present SyllaBub’s performance in terms of accuracy and time and then outline 
some of its strengths and weaknesses. Results were obtained using a system with an Intel Core i5-
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3360M 2.80 GHz processor and 8 GB of RAM. All tests were performed with minimal additional 
system load. The test battery used a bank of 374 clues across 32 distinct games drawn from 
various different sources. SyllaBub was programmed in Python. 

5.1 Accuracy and Performance 

The current version of SyllaBub answers questions with an accuracy of 95.187%. A breakdown 
of this value is presented in Table 1. The “creative” candidate answering process solves roughly 
80% of the clues that are presented SyllaBub; of the remaining clues, 14.706% are solved by the 
brute force candidate answering process, while only a relatively small number remain 
unanswered.  
 

 Number  % 

Clues solved by the “creative” candidate answer generation process 301 80.481 

Clues solved by the brute force candidate answer generation process 55 14.706 

Clues unsolved by either technique 18 4.813 

Total clues solved 356 95.187 
Table 1 Accuracy of the system across all games 

 
SyllaBub is able to complete all 374 clues across 32 games in 804.228 seconds, with an 

average clue and game solution time of 2.15s and 25.132s respectively. Additional information is 
included in Table 2. The vast majority of the time is spent in the “creative” candidate answer 
process: this is expected, as this process makes multiple requests from the internet, adding 
significant amounts of latency. Additional time spent outside the two candidate answering 
processes is predominantly spent on file access and required system ‘housekeeping’ operations.  
 

Process Time (s) Time (%) 

Time spent in the “creative” candidate answer generation process 772.05 95.999 

Time spent in the brute force candidate answer generation process 30.078 3.740 

Other 2.099 0.261 

Total 804.228  
Table 2 Time usage of the system across all games 

5.2 Strengths and Weaknesses 

SyllaBub performs well on the majority of clues presented to it, and is particularly good at 
finding solutions to one-word clues. This may seem counter-intuitive, as it might appear less 
information is available to find the correct answer: but since there is only one word typically 
means that the answer is a synonym, meaning that the answer can be achieved by a fairly 
straightforward lookup. 
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The most difficult clues to answer are those where the clue is a more cryptic phrase. For 
example, the clue ‘Bring on the germs’ might have the answer ‘contaminate’: this type of clue, 
for which a degree of lateral thinking is required, is very difficult for SyllaBub to answer since, 
while there is a connection between the clue and the answer which may be evident to a human, 
this connection is not easily revealed by standard lexical analysis techniques. 
Currently SyllaBub’s most common reason for getting a clue incorrect is not that it selects the 
incorrect response but because the correct response is not made available by the candidate answer 
generation subsystem. While the brute force candidate answer generation is able to find some 
otherwise undiscoverable answers, SyllaBub still generally fails on certain answers requiring 
proper nouns and or those that require multiple word phrases. 

5.3 Machine Learning 

SyllaBub currently weighs all values returned from the different scorers equally in the final 
merging and ranking phase. Although we explored the use of a simple machine learning model, it 
was removed from the final model as the systems already in place provided sufficient distinction 
between the correct answer and the incorrect answers. While a more complicated game or 
problem would almost certainly benefit from the addition of a machine learning component, due 
to the effectiveness of the system as in its current form, the amount of overhead introduced with 
the addition of this component outweighed its benefit. Additonally, it was noted that the 
introduction of machine learning reduced SyllaBub’s overall accuracy by 5–10%: this could be 
because of insufficient training data. This might also seem to suggest that there is a minimum 
complexity of problem for which a machine-learning component can make meaningful 
discriminations. 

5.4 Further Improvements 

We outline below several ideas which will be implemented in future versions of SyllaBub. 

5.4.1 ADDITIONAL SOURCES 

SyllaBub’s current largest issue is not that it selects the wrong answer but rather that it is unaware 
of the correct answer. Providing it with additional sources (thesauruses, encyclopedias, etc.) 
would increase overall accuracy, although at the cost of considerably increased processing time; 
the impact of this could be managed by a degree of offline preprocessing of common data as was 
used extensively in the IBM Watson Jeopardy! player. 

5.4.2 IMPROVED SCORING ALGORITHMS 

Refinement of already existing scorers and the addition of new scorers would almost certainly 
improve the system’s performance. This could include scorers capable of addressing some of the 
more cryptic clues, with the intention of solving them in the initial “creative” phase and without 
having to resort to the “brute force” subsystem. An example of such a clue, which we 
encountered during testing, was “Bring on the germs,” for which the answer was “Contaminate”: 
such clues require a degree of lateral thinking and are difficult for SyllaBub to solve. 
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5.4.3 BACKTRACKING FOR CONFLICT RESOLUTION 

As it stands, the current version of SyllaBub has the distinct advantage of being told, when it has 
made its selection of which of the candidate answers it prefers, whether or not that clue is correct. 
This gives SyllaBub a significant boost to performance: it does not have to backtrack once it has 
solved a clue as it can be certain that it has used the correct syllables. An extended system could 
use a decision tree to store attempted solutions to a clue as a node in the tree, with each decision 
weighted by the scores of the candidate answers. Conflict resolution would initially be predicated 
on the respective scores of the conflicting candidates, with the candidate with the highest 
probability (based on natural language models of probability and a persistent knowledge base) 
would be retained in this iteration. 

This approach would also mitigate the problem of SyllaBub choosing incorrect syllables to 
construct a word. For example, a candidate answer might be “sovereign”: while the correct 
sequence of syllables (as defined by the game) might be “[‘SOV’, ‘ER’, ‘EIGN’]”, the solver may 
choose to select the incorrect sequence “[‘SO’, ‘VER’, ‘EIGN’]”. This results in incorrect 
constraints and decisions later on in the pipeline and consequently incorrectly solved clues. This 
problem could be solved by simply entering the distinct syllable structure as a new potential node 
to be explored in a decision tree. 

5.4.4 PUZZLE VARIATIONS 

More complex variants of the syllacrostic require that an acrostic passphrase constructed from the 
first and last letters in the correct answers be used to confirm a solution. While we investigated 
such a scorer, we decided to focus primarily on deriving the correct answers using the clues as 
obtaining the correct answers would necessarily entail obtaining the correct acrostics. 

6. From SyllaBub to AGI 

Concepts in the brains of humans acquired the property that they could get rolled together with 
other concepts into larger packets, and any such larger packet could then become a new concept in 
its own right. In other words, concepts could nest inside each other hierarchically, and such nesting 
could go on to arbitrary degrees. (Hofstadter, 2008) 

It is fair to say that a syllacrostic is not a particularly complex puzzle; it is equally fair to say that 
it could be solved, with a certain minimum of fuss and effort, by a simple combinatoric 
algorithm. So by extension a fair question might be: why go to the time and trouble of building a 
‘cognitive computing’ version at all? 

SyllaBub was built as a conceptual prototype to explore the applicability of the ‘cognitive 
computing’ approach: that is, using a modular, largely linear, highly extensible architecture 
conceptualized upon a hypothetical model of a small subset of human mental processes which 
uses world knowledge as a primary input source and answer confirmation. (The final part, the 
ability to tune its behavior to improve its performance or accuracy, was omitted for reasons 
discussed above.) By extension, the same principles which can be used to solve the syllacrostic 
can be used to solve other problems in the domain of word puzzles: almost all of them beyond the 
simplest or most mechanically-based require world knowledge to complete, understanding of the 
input clue in some form or other, and the ability to process and manipulate data to find possible 
answers and, ideally, learn from its successes and failures to improve its performance. 

Considering briefly a more extreme example of word puzzle, the cryptic crossword, we can 
see the principles of the humble syllacrostic nestling within it, the requirement for world 
knowledge and understanding of that knowledge, and the ability to derive the information 
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required to solve a clue. But that is not all. Cryptic crosswords are notoriously abstract and 
complex, and require considerable additional information to solve, including: 

 
a) literal data contained represented by the text of the clue itself 
b) meta-information about the type of clue (e.g. anagram, word fragment) provided by a 

word or phrase in the clue 
c) recognising cultural references indicated by a ‘theme’ or ‘setting’ for the puzzle (e.g. 

summer, Christmas, poetry) 
d) experience of the Setter’s habits, idioms, thought processes, and, in certain cases, current 

circumstances 
 
For example, the clue “Swap large numbers in protest from Lincolnshire town: no wind farm! (3, 
2, 5)” requires the following chain of deduction: 
 
a) NIMBY (“Not In My Back Yard”) protests against renewable energy sources 
b) Louth, a town in Lincolnshire, UK where protests were under way 
c) L is 50 and M is 1,000 in Roman numerals 
d) ‘Swap’ is a meta-instruction to the reader 
 
Thus “NIMBY LOUTH (swapping M/1000 for L/50) became NIL BY MOUTH to someone with 
cancer of the oesophagus in a Cambridge hospital.” (Stephenson, 2013) 

It would not be true or fair to suggest that a system whose sole purpose is to solve clues to 
cryptic crosswords is a general intelligence, but it is fair to say that it is considerably closer to 
being one. Perhaps a system which is capable of generating cryptic crosswords, not merely 
solving them, might be a step closer still, requiring as it would some form of creative ability and 
the insight into the mind of the opponent – that is, the solvers of the crosswords it sets – which 
permits it to make its puzzles sufficiently challenging but still capable of being solved. If nothing 
else we would expect that a system which could generate cryptic crosswords would be able to 
solve them. In an ideal world it would be able to solve any type of crossword or word puzzle it 
might encounter by recognizing familiar components in unfamiliar combinations and generating, 
through some form of reasoning or quasi-intuitive process, a method of solving that unfamiliar 
problem based on its own sets of abilities. This, surely, is the basis of general intelligence in any 
form: the ability to of an agent (artificial or natural) to adapt as necessary to the requirements of 
the changing situation based on its own analysis of the situation, tuning its reaction to and 
interaction with the external situation based on its degree of success.4 

7. Future Work 

SyllaBub was an interesting project but ultimately self-limiting in scope. We have been begun 
working on a system which can solve a more advanced type of crossword puzzle, acrostic 
crosswords. In this type of crossword there are two grids: one is for answers to ‘straight’ (non-
cryptic) clues, while the other is for a quotation which is built up from the letters in the clue grid; 
additionally, the name of the quotation’s author is usually given by reading down the column of 
first letters of clues. This type of crossword makes much greater use of world knowledge, and 
appears to require much more complex and interesting reasoning and inference techniques. 

                                                        
4 For a more complete discussion of this area, see e.g., (Meehl & Sellars, 1956), (Searle, 1980), (Nikolić, 2015). 
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We are also interested in how well the Watson-type architecture might be suited to other 
AGI-related tasks. Beyond merely extending the current system as we have suggested, a more 
ambitious use of such an architecture could be to play other, more general types of games, 
particularly those whose search space is extremely large. This might be, for example, because of 
the combinatorial complexity of the game’s mechanics, or because there exists a high degree of 
imperfect information in the game (or both). Such a cognitive computing-based game AI system 
would be novel and extremely interesting to develop, and is another focus of our future work.5 

8. Conclusion 

‘Cognitive computing’ is rapidly becoming a significant force in the field of computer science, 
with IBM’s Watson system very much its vanguard. In this paper we have presented SyllaBub, an 
agent capable of solving simple word puzzles, designed using the ‘cognitive computing’ pattern 
and using a human-inspired model to perform its tasks. We believe that such small systems have 
real significance to the larger field of artificial general intelligence, representative as they are of 
the many types of low-level problem-solving of which an AGI must be capable. 
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