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Abstract 

An agent achieves its goals by interacting with its environment, cyclically choosing and executing 
suitable actions. An action execution process is a reasonable and critical part of an entire cognitive 
architecture, because the process of generating executable motor commands is not only driven by 
low-level environmental information, but is also initiated and affected by the agent’s high-level 
mental processes. This review focuses on cognitive models of action, or more specifically, of the 
action execution process, as implemented in a set of popular cognitive architectures. We examine 
the representations and procedures inside the action execution process, as well as the cooperation 
between action execution and other high-level cognitive modules. We finally conclude with some 
general observations regarding the nature of action execution. 
  
Keywords:  action execution, cognitive model, cognitive architecture 

1. Introduction 

Action plays an essential role in an autonomous agent (Franklin and Graesser, 1997): The agent 
interacts with its environment by performing actions to achieve its goals. From different fields of 
study such as psychology, neuroscience, and cognitive science, researchers have provided 
evidence and formulated hypotheses to explain how human action works. Marc Jeannerod, citing 
the work of Searle (Searle, 1983), built upon the concept that covert action representation is 
followed by overt, real execution of action. In detail, “…the conceptual content, when it exists 
(i.e., when an explicit desire to perform the action is formed), is present first. Then, at the time of 
execution, a different mechanism comes into play where the representation loses its explicit 
character and runs automatically to reach the desired goal” (Jeannerod, 2006, pp. 4-5). Jeannerod 
suggests that action representation (preparation) and action execution are two different processes. 
A similar idea of distinguishing action execution from action preparation is proposed by Milner 
and Goodale as well. In their work on the two visual systems (1992; 2008), they proposed two 
cortical systems, the ventral and dorsal streams, providing “vision for perception” and “vision for 
action” respectively. Regarding the roles of the two streams in the guidance of action, the 
perceptual mechanism in the ventral stream identifies a goal object, and helps to select an 
appropriate course of action, while the dorsal stream “is critical for the detailed specification and 
online control of the constituent movements that form the action” (Milner and Goodale, 2008, p. 
775). In our recent work (Dong and Franklin, 2014), we have proposed as well that human action 
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represents two aspects, the understandable and the executable. On the one hand, an action 
represents the behavioral result of the agent’s mental process, and thus is able to be recognized by 
the agent. On the other hand, the action involves low-level environmental information that 
enables the agent to execute the action through appropriate use of its actuators in the 
environment. Action execution transforms a goal-directed action into low-level executable 
actions. Additional studies regarding human action, especially certain neuroscientific evidence, 
can be found in recent review papers (Castiello, 2005; Grafton, 2010). 

In the field of cognitive modeling, the challenge of creating a real-life computational 
simulation of the human mind calls for efforts to develop biologically-inspired intelligent 
software agents and robots. The evidence and hypotheses mentioned above provide a basis for the 
development of a cognitive model for an agent’s action and its execution. 

Cognitive architectures are designed to be the basis for creating general, autonomous agents 
that can solve a wide variety of problems using a wide range of knowledge; they define and 
organize the primitive computational structures that store, retrieve, and process knowledge to 
pursue the agent’s goals (J. Laird, 2012). A collection of cognitive architectures have been 
reviewed in recent studies (Duch, Oentaryo, and Pasquier, 2008; Goertzel, Lian, Arel, De Garis, 
and Chen, 2010; Langley, Laird, and Rogers, 2009). Regarding actions and their execution 
processes, brief summaries have been made, such as “… a cognitive architecture must also be 
able to execute skills and actions in the environment. In some frameworks, this happens in a 
completely reactive manner, with the agent selecting one or more primitive actions on each 
decision cycle, executing them, and repeating the process on the next cycle. This approach is 
associated with closed-loop strategies for execution, since the agent can also sense the 
environment on each time step. The utilization of more complex skills supports open-loop 
execution, in which the agent calls upon a stored procedure across many cycles without checking 
the environment. However, a flexible architecture should support the entire continuum from fully 
reactive, closed-loop behavior to automatized, open-loop behavior, as can humans.” (Langley et 
al., 2009) 

Here we examine such cognitive models of actions, and especially of the action execution 
process as it is implemented in different cognitive architectures. The emphasis is placed on three 
questions: 1) What are the comprehensive representations and functional procedures of action 
execution? 2) How do action preparation/selection and action execution cooperate? and 3) What 
kind of specific designs are useful for generating actions that both achieve the agent’s motivations 
and execute appropriately using actuators in the environment? 

The cognitive model of action in different cognitive architectures might be implemented 
variously because of the model’s tasks. For example, an action implemented in a simulated chess 
match could be an abstract move, such as moving a piece one square to the left, or the low-level 
actions implemented in a simulated tennis match which are necessary for controlling the player’s 
muscles (actuators) during the game. A chess action is driven only by the agent’s internal goal; it 
is not affected by the environmental situation—except the abstract representation of the position 
of the pieces—nor does it require the maintenance of specifications for its actuators. On the other 
hand, actions in tennis are generated on the basis of both the player’s internal goals as well as the 
present environmental situation. Tennis, unlike chess, requires an action execution process that 
enables the agent to act in an uncertain and dynamic environment1. The action execution process 
is the focus of this review. 

                                                      
1. A task environment is uncertain if 1) the agent sensors do not detect all aspects that are relevant to the choice of 
action, or 2) the next state is unable to be determined by the current state and the executed action; and the environment 
is dynamic if it can change while an agent is deliberating (Russell and Norvig, 2009).  
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Even for the cognitive architectures in which action execution has been considered, the 
architecture may or may not completely implement it as a standard component. Some 
architectures implement a complete action execution process, such as ACT-R (J. Anderson, 2007) 
and LIDA (Franklin, Madl, D’Mello, and Snaider, 2014); other architectures only transform 
prepared/selected high-level actions into general low-level actions, and leave the action execution 
process to a domain-dependent external program, such as Soar (J. Laird, 2012). We review both 
types of architectures’ action execution models below. 

The next section describes a set of popular cognitive architectures with models for action 
execution. For each of these architectures, we first give a brief introduction and overview of the 
architecture’s major components and functions; then we examine its specific implementation of 
action execution. Section 3 concludes with a comparative summary of the action execution 
processes reviewed in Section 2. 

2. Action Execution Processes of Cognitive Architectures  

In this section, we review the action execution processes of different cognitive architectures in the 
ensuing subsections. In each of the subsections, after an introduction to the architecture, we 
examine the representations and procedures inside the action execution process, as well as the 
cooperation between action execution and other high-level cognitive modules. 

2.1 4D/RCS 

The review content of 4D/RCS mentioned here is mainly in response to a paper by Albus and 
Barbera (2005). We cite the paper for this whole subsection, unless other explicit citations or 
quotations are mentioned. 

Real-time Control System (RCS) is a cognitive architecture designed to enable multiple 
levels of intelligent behaviors, achieved by a multi-layered hierarchy of sensory-interactive 
intelligent control process nodes. The most recent version, 4D/RCS, embeds the 4-D approach 
(Dickmanns, 1992, 2000), a machine vision technology, within the RCS control architecture.  

Each node in the architecture contains sensory processing (SP), world modeling (WM), value 
judgment (VJ), behavior generation (BG), and a knowledge database (KD) (Albus and Barbera, 
2005). A SP process receives input from sensors; SP and WM processes cooperate to filter, 
attribute, and classify the input data as a perception process; WM processes create and update the 
recognized states of the world in the KD; a BG process accepts tasks and plans, and executes 
behaviors to accomplish those tasks; a VJ process evaluates the results of tentative plans, and 
saves evaluation results in the KD. 

Process nodes act hierarchically. The BG processes form a command tree: each input task is 
decomposed into a plan consisting of subtasks for subordinate BG processes. Information 
maintained in the KD is shared between WM processes in nodes above, below, and at the same 
level within the same sub tree. Sensory data flow up the SP hierarchy typically forms a graph; and 
these data are populated by the WM in the KD at each level. 

A WM predicts what will change in the world as the result of an action, and what will stay 
the same, giving its solution to the frame problem. Specifically, the location and direction of 
motion of objects in the world are represented in an image or map, and a simple comparison 
between one frame and the next distinguishes what changes from what does not in a dynamic 
environment.  
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A BG process receives tasks from a supervising BG process as input. The receiving BG 
process has a planner that decomposes each task into a set of coordinated plans for subordinate 
BG processes. During this period, tentative plans are proposed by the BG planner; the VJ 
evaluates the probable results of those plans as predicted by the WM; and a plan selector in the 
BG planner will choose the plan with the greatest value as the current plan. “For each subordinate 
there is an executor that issues commands, monitors progress, and compensates for errors 
between desired plans and observed results. The Executors use feedback to react quickly to 
emergency conditions with reflexive actions. Predictive capabilities provided by the WM may 
enable the executors to generate pre-emptive behavior” (Albus and Barbera, 2005). 

In each node, the content of the selected current plan is moved from the planner into an 
“executor plan buffer” that initiates and guides the upcoming execution. This buffer is an 
interface between the planner and executor processes, and also the interface between deliberative 
and reactive processes. 

At the top level of the architecture, the task is defined by the agent’s goal that is established 
typically by a human operator outside of the agent2. At each successive level in the hierarchy, 
tasks from the level above are decomposed into subtasks that are sent to the subordinate levels 
below. Finally at the bottom level, decomposed task commands are sent to actuators to generate 
movements. 

In each node of 4D/RCS, the execution is driven by a selected plan so as to reflect the 
requirements of the agent’s goal in a bottom-up fashion that is reactive to the sensory input. Thus, 
at the lower levels of the architecture, the process nodes generate goal-directed reactive 
behaviors, while at the higher levels, the process nodes enable decision-making and deliberative 
behaviors. 4D/RCS has implemented both the action preparation/selection and the action 
execution processes hierarchically; it allows a more gradual, and thus smoother, transformation 
from the agent’s motivations, represented by a top-level task, to low-level actions that are directly 
applied to the agent’s actuators. 

2.2 ACT-R 

Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture, a theory for 
simulating and understanding human cognition based on numerous facts derived from 
psychological experiments (Budiu, 2013).  ACT-R consists of two types of modules: memory 
modules and perceptual-motor modules. Action preparation (selection) and action execution are 
implemented in ACT-R by using these two types of modules separately. An agent’s motivation is 
achieved by choosing a proper action in memory modules, and the action is appropriately 
executed in the motor modules. 

There are two types of memory modules in ACT-R: declarative memory and production 
memory. Declarative memory, represented in structures called chunks, maintains knowledge that 
people are aware of, and can share with others through a set of buffers. Procedural memory, 
encoded in production rules, represents knowledge outside of their awareness that is expressed in 
their behavior rules (ACT-R 6.0 Tutorial, 2012). A production rule is a condition-action pair. The 
condition specifies a pattern of chunks that must be in declarative memory’s buffers for the 
production to apply; a production fires if its condition matches the chunks in the buffers. The 
action specifies some actions, all of which are to be taken when the production fires (ACT-R 6.0 
Tutorial, 2012). “[A] critical cycle in ACT-R is one in which the buffers hold representations 

                                                      
2. A 4D/RCS agent is not autonomous because its original goal is not driven by its own motivation or agenda but 
comes from outside, created by a supervisor, such as its operator. 
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determined by the external world and internal modules, patterns in these buffers are recognized, a 
production fires, and the buffers are then updated for another cycle” (J. R. Anderson et al., 2004). 

ACT-R’s perceptual-motor modules provide an elementary cognitive layer by which to 
couple the environment with the high-level cognition layer, including declarative memory and 
production memory (Byrne and Anderson, 2001). Perceptual-motor modules embedded in ACT-
R 6.0 was heavily influenced by Kieras and Meyer’s EPIC system (1996). Their major difference 
is that, only one production rule fires each time in ACT-R, while EPIC allows multiple rules fire, 
a parallel cognitive processing. 

The motor module in ACT-R 6.0 is developed based on EPIC’s manual motor processor 
(module). It is designed for modeling a simulated hand to operate a virtual keyboard and mouse 
(Bothell, n.d.). The motor module “receives commands from the production system that specify a 
movement style (e.g., PUNCH, as in punch a key) and the parameters necessary to execute that 
movement (e.g., LEFT hand and INDEX finger)” (Byrne and Anderson, 2001). The movement is 
generated through three phases: preparation, initiation, and execution. Below we describe each 
phase in turn. 

In the preparation phase, the motor module builds a list of “features” which guide the actual 
movement; the features include the movement’s style and parameters. For an example, in the 
movement of “punch the key below the left index finger”, three features of PUNCH, LEFT, and 
INDEX are involved in the preparation. (Byrne and Anderson, 2001). The amount of time that 
preparation takes depends on the number of features that need to be prepared—the more that need 
to be prepared, the longer it takes.  

The motor module maintains a history of the last set of features that it prepared. The actual 
number of features that need to be prepared depends upon two things: the complexity of the 
movement to be made and the difference between that movement and the previous movement. On 
one end of the scale, the motor module is simply repeating the previous movement, then all the 
relevant features will already be prepared and do not require preparation. On the other end, a 
request could specify a movement that requires the preparation of full features because which 
have not been made in previous movements. 

By default, the first 50ms after the preparation is movement initiation (Bothell, n.d.). After 
that, the movement may be executed if the motor module is not already executing a movement 
(Byrne and Anderson, 2001). “If a movement is currently being executed, then the newly 
prepared movement will be queued and will not be executed until the current movement and all 
other movements in the queue have been executed” (Byrne and Anderson, 2001). 

In ACT-R, “[t]he world with which a model interacts is called the device. The device defines 
the operations which the perceptual modules can use for gathering information and the operators 
available to the motor modules for manipulating the device.” (Bothell, n.d.). The executed 
movement sent out from the ACT-R motor module is passed to the related device module in order 
to carry out the execution in the real world. 

There is typically no direct communication between the perceptual and motor modules in 
ACT-R3. The data passed to the motor module always comes from the high-level declarative or 
production memory. This is almost the only significant conceptual difference between LIDA’s 
SMS (see Section 2.9) and ACT-R’s motor module. 

                                                      
3. There is only very limited direct connectivity between perceptual and motor modules. Spatial information in 
particular is communicated directly. 
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2.3 BECCA 

This subsection heavily relies on a paper by Rohrer (2012). We cite it for the whole subsection 
unless we explicitly cite or quote otherwise.  

A Brain-Emulating Cognition and Control Architecture (BECCA) is developed to address the 
problem of natural world interaction (NWI). NWI is the set of all tasks by which an agent pursues 
its goal in an unstructured physical environment. BECCA consists of an automatic feature creator 
and a model-based reinforcement learner to capture structure in the environment and to maximize 
rewards respectively.  BECCA issues action commands to a world module and receives back a 
reward signal and observations in the form of sensory input and basic features. The world module 
is not the part of the standard BECCA architecture. Rather, it maintains simulations of the world, 
agent embodiment, actuators, and so on (see details later in this section). 

The feature creator identifies patterns in the input. Sensory inputs are formed into groups 
based on how often they are co-active, and patterns within each group are identified as features 
and added to a feature space. The creator also maps the input into that feature space at each time 
step; the strongest feature voted by the projected input is activated. Features can be built 
hierarchically into higher-level features. Low-level features progressively activate high-level 
features, and the final set of activated features is passed to the reinforcement learner as a feature 
simulation. 

In the reinforcement learner, a feature activity vector maintains the recent incoming feature 
simulations. A salience filter selects a single feature from the vector for attention4, and the 
working memory maintains a brief history of attended features.  

The reinforcement learner forms a model of the world and uses that model to select actions 
that will maximize the amount of reward. “The model consists of a list of feature-space 
transitions in the form of cause-effect pairs, each with an associated count and reward value. At 
each time step, the previous working memory is compared to the list of causes and the attended 
feature is compared to the list of effects. If a similar pair exists within the model, its count is 
incremented, and its reward value is adjusted toward the current reward. If there isn’t a 
sufficiently similar pair, the previous working memory and attended feature are added as a new 
cause-effect pair” (Rohrer, 2012). In this way, the model is formed and updated. “The count 
associated with each transition establishes its frequency of observation, and the reward value 
represents the expected reward associated with making that transition” (Rohrer, 2012). 

In the feature space, a transition represents a path segment that, when linked to other 
segments, may take a BECCA agent to its desired state from the current one. To predict the likely 
effect of a transition, the agent ranks the expected transition by 1) the matching strength between 
the current state and the cause of the transition, and 2) the count of the transition, and selects the 
transition with the highest rank.  

Many effects are conditional on the actions selected by the agent. If an expected transition 
has both high similarity to the current state and high reward, and involves an agent’s action on it, 
that action will be selected and executed. 

There are two types of action selection in BECCA, deliberative and reactive. Their major 
difference regards the content of the current state that is used in the prediction of transitions and 
in the action selection. In deliberative action selection, only the working memory (the recently 
attended features) is used to seed predictions and action selections from the model, while the 
entire feature activity vector is used in reactive action selection. The final selected action results 

                                                      
4. From the viewpoint of LIDA (see Section 2.9), this selection acts as the beginning of an agent’s consciousness, and 
the most salient feature is the consciousness content. 
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from a nonlinear sum of the actions selected by the two selection modes. The deliberative action 
is also fed back to the working memory so that the action’s effect can be recorded as part of the 
previous working memory content when the model is trained on the following time step. 

A world module maintains 1) the environment—the simulation of the real world with which 
humans interact; 2) the physical embodiment of the agent—the virtual actuators and sensors of 
the hardware and the mechanisms that couple them; 3) preprocessing between sensors/actuators 
and the BECCA agent; and 4) a reward calculator providing reward value to the model of 
reinforcement learner5. From the viewpoint of action, a preprocessing step occurs between the 
selected action and the actuators; this step may include the incorporation of coordinated multi-
actuator motions, fixed motion primitives, and heuristic goal pursuit subroutines. 

An action processing mechanism unique to BECCA is its two-step action selection process: 
1) Certain transitions, cause-effect pairs, are predicted (selected), and 2) an action is selected 
from the predicted transitions if the effect of the transition with the highest expectation relies on 
that action. These three components, cause, action, and effect, may be represented and organized 
differently in other architecture. For examples, in many other architectures such as ACT-R and 
Soar (see Section 2.10), a production rule is used to represent a condition-action pair, 
corresponding to cause and action in BECCA; while in LIDA (see Section 2.9), all of three 
components are encapsulated together: a data structure called a scheme includes context, action, 
and result, corresponding to BECCA’s cause, action, and effect respectively. 

Another issue is that the action execution process is outside the standard BECCA 
architecture. The commands for controlling actuators are not generated by the BECCA agent, but 
rather by the preprocessing of a world module. Also, the world module maintains the domain 
knowledge; this allows the BECCA agent to remain unchanged between many different domains 
(tasks). A similar strategy is implemented in Soar as well: its operator application doesn’t really 
perform the action on actuators but an external program is always necessary to handle the final 
execution (performance). In contrast, some architectures do involve the action execution process 
in their architecture, such as ACT-R and LIDA. 

2.4 CERA-CRANIUM 

We cite a paper (Arrabales, Ledezma, and Sanchis, 2009) for this entire subsection of CERA-
CRANIUM. Other citations or quotations will be explicitly noted in the text. 

The Conscious and Emotional Reasoning Architecture (CERA) is a cognitive architecture 
structured in layers, providing a flexible framework with which to integrate different cognitive 
models of consciousness. CERA offers a basic hypothesis that conscious contents emerge as a 
result of competition and collaboration between specialized processors (functions). The Cognitive 
Robotics Architecture Neurologically Inspired Underlying Manager (CRANIUM) provides 
services through which CERA can execute thousands of asynchronous but coordinated concurrent 
processes. 

CERA is structured in four layers, which are as follows: 
 
1) The sensory-motor services layer comprises a set of communication services that provide 

a uniform access interface for the agent’s physical sensors and actuators. 
 

                                                      
5. A BECCA agent is not autonomous because its action decision is not driven by an agenda or motivation inside but 
by artificial rewards created outside of the agent. 
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2) The physical layer is responsible for the low-level representations and preparations of the 
agent’s sensors and actuators. Actuator commands are finally regulated at this level. 

 
3) The mission-specific layer maintains complex perceptions and behaviors that are 

combined from and decomposed to the single sensory-motor content. Complex behaviors 
represent the agent’s missions; one mission typically involves several goals. 

 
4) The core layer includes a set of modules that perform higher cognitive functions. CERA 

is designed to allow customized core modules, such as attention, preconscious 
management, memory management, and self-coordination. 

 
A CRANIUM workspace implements a set of specialized processors and a shared access 

working memory for the processors. Each of these processors is designed to perform a specific 
function, cooperating and competing with other functions. A CERA agent has two hierarchically 
arranged CRANIUM workspaces. The low-level workspace is located in the CERA physical 
layer and the high-level is located in the CERA mission specific layer. Based on the two 
CRANIUM workspaces, the perception flows are organized bottom-up in packages called single 
percepts, complex percepts, and mission percepts. Meanwhile in the same workspaces, a top-
down action6 flow includes mission behaviors, simple behaviors, and single actions; behaviors are 
iteratively decomposed until a sequence of atomic actions is obtained. 

The core layer’s operations are problem domain dependent. The operations are directed by 
the problem’s interests, meta-goals, instead of mission-specific goals coming from lower layers. 
Meta-goals shape the overall resulting behaviors. At any given time, a number of possible 
behaviors are generated in the CRANIUM workspaces; however, only those behaviors that are 
directed to the same locations as the represented meta-goals are likely to be selected and finally 
executed. 

There are three types of processors related to the action process implemented in the 
CRANIUM workspaces. 

 
1) Action planners transform the input behavior into the corresponding sequence of atomic 

actions that are submitted for eventual execution, so as to achieve the behavior’s 
missions. 
 

2) Action preprocessors prepare the atomic actions generated from action planners. Action 
preprocessors build so-called “single action constructs” to provide specific contextual 
data for actions. “Proprioceptive sensory data is also included in order to adapt actions to 
the current position of the actuators” (Arrabales et al., 2009). 
 

3) Reactive processors are typically located in the CERA physical layer. They provide a 
quick response to stimuli that are considered harmful or highly undesired for the agent. 
These processors build simple behaviors to diminish or prevent negative consequences 
when unsafe or undesired situations are detected, without the participation of upper 
cognitive processes. 

 

                                                      
6. The term “action” is an abstract concept; it refers to a class of action-kind concepts organized in different levels, 
including mission behaviors, simple behaviors, and single actions. 
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In summary, the CERA-CRANIUM action process supports both action selection—the 
selection between behaviors driven by the domain independent meta-goals—and the action 
execution—the decomposition from a behavior to a sequence of atomic actions, implemented by 
the action planners and the final execution preparation in the physical layer. CERA-CRANIUM 
also establishes the interface between the agent and its environment in the sensory-motor services 
layer, providing the agent with the necessary environmental specifications. 

2.5 CLARION 

CLARION stands for Connectionist Learning with Adaptive Rule Induction ON-line. The 
purpose of this architecture is to capture all the essential cognitive processes within an individual 
cognitive agent (Sun, 2003, 2006). CLARION consists of a number of subsystems, including the 
action-centered subsystem (the ACS), the non-action-centered subsystem (the NACS), the 
motivational subsystem (the MS), and the metacognitive subsystem (the MCS). The ACS 
implements the action decision making of an individual cognitive agent (Sun, 2003). The MS 
motivates an agent to choose its actions by means of the rewards or gains which the agent seeks 
to maximize. The MS influences the working of the ACS by providing the context in which the 
goal and the rewards of the ACS are set (Sun, 2006). 

The ACS consists of two levels of representation: the top level for explicit and the bottom 
level for implicit knowledge. The implicit knowledge generally does not have associated 
semantic labels, and is less accessible. Accessibility refers to the direct and immediate availability 
of mental content to the major operations that act on it. The bottom level is a direct mapping from 
perceptual information to actions, implemented in backpropagation neural networks7 involving 
distributed representations, whose representational units in the hidden layer are capable of 
accomplishing tasks, but are generally not individually meaningful (Sun, 2003).  Furthermore, the 
backpropagation neural network in the ACS has the potential for multiple instances, and a 
selection process is proposed for the backpropagation neural network. In contrast, the explicit 
knowledge is more accessible, manipulable, and has conceptual meaning (Sun, 2006). At the top 
level, a number of explicit action rules are stored, which are usually in the following form: 
current-state-condition  action (Sun, 2003). An agent can select an action in a given state by 
choosing an applicable rule. The output of a rule is an action recommendation, which is similar to 
the output from the bottom level (Sun, 2003). 

The two levels implemented in CLARION’s ACS operate independently: each of them makes 
action decisions based on the current state in parallel. The action sent out from both top and 
bottom levels are all performable. The final output action of the ACS is a combination of the 
output actions from the top and bottom levels. On the other hand, CLARION also models an 
interaction between the top and bottom levels, as well as between explicit and implicit 
knowledge. The input state or the output action to the bottom level is structured using a number 
of input or action dimensions; each of the dimensions has a number of possible values. At 
CLARION’s top level, an action rule’s condition or action is represented as a –high-level node 
which is connected to all the specified dimensional values of the inputs or actions at the bottom 
level (Sun, 2003).  

The overall algorithm of CLARION’s action decision making consists of a structure that goes 
from perception to actions, and ties them together through the top and bottom levels of the ACS’s 

                                                      
7. Learning of implicit knowledge (the backpropagation network) transpires at the bottom level. “In this learning 
setting, there is no need for external teachers providing desired input/output mappings. This (implicit) learning method 
may be cognitively justified” (Sun, 2006). 
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cognitive processes as follows: “Observing the current state of the world, the two levels of 
processes within the ACS (implicit and explicit) make their separate decisions in accordance with 
their own knowledge, and their outcomes are somehow ‘combined’. Thus, a final selection of an 
action is made and the action is then performed” (Sun, 2003). This decision making mechanism 
covers both action selection (preparation) and action execution. The top level of the mechanism 
provides the agent’s internal goal for action execution, and the bottom level provides real-time 
environmental information. Note that the specifics of the agent’s actuators are not involved in the 
representation of output actions (motor commands). This means the output performable actions of 
CLARION are independent of the motors of the robot’s actuators; this is different than the 
executable motor commands mentioned in the introduction. 

Additionally, learning has been applied in CLARION’s ACS in three distinct ways: 1) the 
learning of implicit knowledge at the bottom level; 2) bottom-up learning, or learning explicit 
knowledge at the top level by utilizing implicit knowledge acquired in the bottom level; and 3) 
top-down learning, the assimilation at the bottom level of explicit knowledge from the top level 
(which must have previously been established through bottom-up learning) (Sun, 2003). 

2.6 EPIC 

This review of EPIC mainly relies on an EPIC overview paper (Kieras and Meyer, 1997). We cite 
the paper for this entire subsection, unless explicit citations or quotations are claimed in the text. 

Executive Process-Interactive Control (EPIC) is a cognitive architecture created for modeling 
human task performance. EPIC has three processing modules: 1) sensory processors, 2) motor 
processors, and 3) a cognitive processor that represents a general procedure as a set of production 
rules to perform a complex multimodal task. During the execution of a procedure, EPIC specifies 
both the production-rule programming for the cognitive processor as well as the relevant 
perceptual and motor processing parameters. 

Specifically, there are visual and auditory processors that accept multimodal stimuli as 
perceptual input. This input is stored in the corresponding working memory located in the 
cognitive processor.  

The motor processors produce a variety of simulated movements for the hands, eyes, and 
vocal organs. From the cognitive processor, an action’s command is sent to a motor processor 
that consists of the movement type (name) and certain parameters.  

There are two steps for a complete movement: a preparation and an execution. In the 
preparation, the motor processor transforms the movement type (name) into a set of movement 
features and generates them. “The time to generate the features depends on how many features 
can be reused from the previous movements (repeated movements can be initiated sooner), and 
how many features have been generated in advance” (Kieras and Meyer, 1997). The ensuing 
execution step begins with an initiation phase, followed by the actual physical movement. In 
addition to reusing the features remaining from previously executed movements, the movement 
features may be prepared in advance. “If the task permits the movement to be anticipated, the 
cognitive processor can command the motor processor to prepare the movement in advance by 
generating all of the required features and saving them in motor  memory” (Kieras and Meyer, 
1997). 

Rather than the voluntary movements produced by various motor processors, as mentioned 
above, the oculomotor processor may produce the involuntary (reflexive) eye movements, either 
saccades or small smooth adjustments in response to the visual situation. 
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In the cognitive processor, there is a set of production rules that specify which actions are 
performed in certain situations to accomplish a task. The format for a rule is <rule-name> IF 
<condition> THEN <action>. The rule condition will test the contents of the production system 
working memory. The rule action will then add or remove information from the working 
memory, or send a command to the motor processors. Motor working memory stores information 
about the current state of the motor processors. 

The cognitive processor operates cyclically. During each cycle, the contents of working 
memory are first updated with the perceptual input information and the previous cycle’s 
modifications; then the contents of the production system working memory are updated based on 
the rules that fire, and the action commands of the firing rules are sent to the motor processors. A 
unique feature of EPIC is that it will fire all rules in which conditions match the contents of 
working memory and will execute all of the corresponding actions; in other words, the EPIC 
cognitive processor allows parallel cognitive processing. 

The EPIC model builder should provide 1) the task environment, either physical or simulated, 
which includes the characteristics of relevant objects external to an EPIC agent, 2) a set of tasks 
which specify the environmental events, 3) task-specific sensory data encodings (representations), 
and 4) the task procedures represented as production-rules. 

In summary, regarding the action process in EPIC, action selection and action execution have 
been implemented by production rules firing in the cognitive processor, and movement 
preparation and execution in the motor processors separately. 

2.7 GLAIR 

We cite a paper (Shapiro and Bona, 2010) for this subsection, unless other citations or quotations 
are explicitly mentioned in the text. 

Grounded Layered Architecture with Integrated Reasoning (GLAIR) is a multi-layered 
cognitive architecture for embodied agents. In GLAIR, the highest layer is the Knowledge Layer 
(KL), which contains the agent’s beliefs, and performs reasoning and selects acts. The middle 
layer is the Perceptuo-Motor Layer (PML), which grounds the KL symbols in perceptual 
structures and primitive actions. The lowest layer is the Sensori-Actuator Layer (SAL), which 
contains the controllers of the sensors and actuators of the hardware or software agent.  

The KL contains the beliefs of the agent; with respect to action, it includes 1) plans for 
carrying out complex acts and for achieving goals, 2) beliefs about the preconditions and effects 
of acts, and 3) policies about when, and under what circumstances, acts should be performed. 

The PML is responsible for the communication between the KL and the SAL by three top-
down sub layers: the PMLa, the PMLb, and the PMLc. The PMLa grounds the KL symbols, 
providing primitive actions; the PMLc abstracts the sensors and actuators into basic behavioral 
repertoire of the robot. The PMLb translates and communicates between the PMLa and the 
PMLc. 

GLAIR agents execute a sense-reason-act cycle. The original focus of the GLAIR design is 
on reasoning, but not problem solving or goal-achievement such as ACT-R. Its basic driver is 
based on reasoning: either thinking about some perceptual input, or answering some question. If 
the input (typically a natural language utterance) is a statement or a question, the GLAIR agent 
will output the proposition of the statement or the answer to the question respectively. A later 
added acting component allows a GLAIR agent to obey a command, to perform an act and to 
achieve a goal. When the input is a command, the agent will perform the indicated act, 
implementing an action process that is the focus of this review. 
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An act consists of an action and one or more arguments. For an example, “the term find (Bill) 
denotes the act of finding Bill (by looking around in a room for him), composed of the action find 
and the object Bill” (Shapiro and Bona, 2010). Acts may be classified as either external, mental, 
or control. External acts affect the outside world. Mental acts affect the agent’s beliefs and 
policies. Control acts are the control structures used to support ground computational processes 
such as inference operations so as to maintain the GLAIR acting system. 

GLAIR acts may also be classified as primitive, defined, or composite. Primitive acts are the 
basic acts predefined in the PMLa. Composite acts consist of primitive acts. A defined act is the 
abstracted identifier of a plan; if a GLAIR agent is to perform a defined act, it “deduces it” to a 
plan and performs it. Such a plan is an act, which can be either a primitive, composite, or defined. 
It is assumed that a plan is “closer” to primitive acts than a defined act. A defined act may have 
different plans depending on circumstances. The use of conditional plans has allowed a GLAIR 
agent to select among alternative procedures to perform. 

The procedure for performing an act consists of several steps: 
 
1) To attempt to achieve the preconditions of the act and, if it is a defined act, to prepare a 

set of candidate plans that can be used to perform the act. 
 

2) If the act is a defined act, only its most suitable plan is tried, after which the agent will 
automatically consider it successful. 

 
3) Effects of the act are derived before the act is performed; and after that, the agent will 

consider all the effects of the act to hold. 
 

In GLAIR, the act is represented in the same formalism as other declarative knowledge such 
as the agent’s beliefs. However, the declarative knowledge and the act are maintained by the KL 
and the PMLa layers separately. In this way, the declarative and procedure knowledge are 
represented with the same formalism but operated in different levels. 

The PMLa layer grounds the KL by providing primitive actions, transforming high-level 
actions to low-level. Although the actions maintained in PMLa are primitive, they are 
independent of the implementation of the agent’s body. It is the PMLc layer which directly 
abstracts the actuators8 of the robot into the basic behavioral repertoire of the robot body. The 
primitive actions in the PMLa are translated to these basic behavioral repertoires—the basic 
execution units of GLAIR—through PMLb. 

Two steps occur during the process of action execution: 1) actions are initially selected in the 
KL driven by reasoning results and translated into their primitive format in the PMLa layer; and 
2) the primitive actions are translated to actuator-dependent basic behavioral repertoires in PMLc 
through PMLb, and then those basic units are sent to SAL for execution. 

2.8 ICARUS 

We cite a paper (Langley and Choi, 2006) for this entire subsection. Other citations or quotations 
will be notated explicitly. 

ICARUS is a cognitive architecture for physical agents that has been influenced by results 
from cognitive psychology. ICARUS’s most basic mechanism, conceptual inference, operates by 

                                                      
8. In the original paper (Shapiro and Bona, 2010), the authors use the term “effectors” instead of “actuators” as we do 
here. 
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matching long-term conceptual structures against short-term perceptual data and beliefs. Based on 
the inference, ICARUS operates processes for goal selection and skill execution. 

In order to perceive the states of the external environment, ICARUS incorporates a perceptual 
buffer (short-term memory) that describes aspects of the environment. The element stored in this 
memory responds to a particular object, and characterizes the object’s specifications at the current 
time step. ICARUS also includes a conceptual memory, which contains long-term structures that 
are the classifications of the environmental state. During each cycle of conceptual inference, 
objects are perceived first into the perceptual buffer, where they begin to match against long-term 
conceptual classifications. The system updates its belief memory based on the results of this 
matching. The elements in the belief memory describe relations among objects. ICARUS repeats 
this inference process, updating its beliefs about the environment over time. 

In order to take action in the environment, ICARUS has a performance mechanism that 
concerns goals the agent wants to achieve, skills the agent can execute to reach them, and 
intentions about which skills to pursue. 

Specifically, ICARUS includes a goal memory that contains a list of agent’s objectives. The 
goal is a set of concept instances that the agent wants to achieve, and the goal memory takes the 
same form as belief memory. An agent needs to select only one goal at a time among multiple 
elements in goal memory. On each time, it chooses the goal with the highest priority that is not 
yet achieved. 

ICARUS has a long-term skill memory that contains skills it can execute in the environment 
and use to accomplish goals. Each skill has a head and a body. The head states the skill’s 
objective, and the body specifies the necessary perceptual data and beliefs of a skill. Multiple 
skills may have the same head; they provide different ways to achieve the same goal under 
different conditions. Once the agent has chosen a goal, it selects a skill to achieve the goal based 
on a matching between the skill body’s specifications and the agent’s current perceptual data and 
beliefs9. 

The skills are organized hierarchically. “Primitive skills” refers to actions that the agent can 
execute directly in the environment, while non-primitive skills are goals/sub-goals that the agent 
might seek to achieve. Primitive skills correspond to the executable motor commands mentioned 
in the introduction. During the execution of a non-primitive skill, the agent must find a path 
downward from its goal to one or more terminal primitive skills in the hierarchy. Once the agent 
has selected a skill path for execution, it invokes the actions referred to the primitive skill or skills 
in the path. 

If the applicable skill is not found, an impasse appears, and the agent invokes its problem 
solver for achieving the goal. The agent decomposes the goal into sub-goals iteratively until find 
the skills for achieving them. The skills applicable for all sub-goals are finally selected and then 
executed to achieve the goal. A new skill is learned for the goal by structuring the applicable 
skills for those sub-goals. The similar impasse resolving mechanism has been implemented in 
Soar (Section 2.10) as well. 

2.9 LIDA 

For historical reasons LIDA stands for Learning Intelligent Distribution Agent. The LIDA Model 
(Franklin et al., 2014) is a conceptual, systems-level model of human mental processes, used to 

                                                      
9. In LIDA (see Section 2.9), a similar matching occurs in the process of recruiting schemes. Schemes are selected 
based on a matching between the agent’s conscious contents, the most salient current situation, and the scheme’s 
context and result contents. 
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develop biologically-inspired intelligent software agents and robots. It implements and fleshes out 
a number of psychological and neuropsychological theories, but is primarily based on Global 
Workspace Theory (Baars, 1988, 2002).  

The LIDA model is grounded in the LIDA cognitive cycle. Each cognitive cycle consists of 
three phases: 1) the LIDA agent first senses the environment, recognizes objects, and builds its 
understanding of the current situation; 2) by a competitive process, as specified by Global 
Workspace Theory (Baars, 1988), it then decides what portion of the represented situation should 
be attended to, and broadcast to the rest of the system; 3) finally, the broadcast portion of the 
situation supplies information allowing the agent to choose an appropriate action to execute, and 
modulates learning (Franklin et al., 2014). The simulated human mind can be viewed as 
functioning via a continual, overlapping sequence of these cycles. 

The dual aspects of action are represented in the LIDA Model as the distinct processes of 
action selection and action execution. Specifically, the sensory data retrieved in LIDA influences 
the action process at two “levels”. At one level, sensory data is filtered through the understanding 
and attention phases, and then helps recruit appropriate actions in the action selection process; the 
selected result is used to initiate certain processes operating in the concomitant action execution 
process, ultimately generating executable low-level actions. At the other level, the sensory data is 
sent through a dorsal stream channel10 directly to the action execution process for assisting the 
execution. 

In LIDA’s action selection process, one or more schemes are recruited first based on the most 
salient current situation—a scheme is a data structure representing the procedure knowledge 
stored in LIDA’s Procedural Memory. It is comprised of three components: a context, an action11, 
and a result. With some reliability, the result is expected to occur when the action is taken in its 
context—and then, the schemes’ context and result components are bound with additional 
information of the current situation, so that the recruited schemes are instantiated into behaviors. 
A behavior has a data structure similar to a scheme, but the components of context and result 
have been instantiated with concrete values. Finally, a behavior is selected based on the agent’s 
motivation and its understanding of the current situation.  

The process of action execution has been recently added to LIDA, modeled by the Sensory 
Motor System (SMS) (Dong and Franklin, 2014). Two other LIDA modules, Action Selection 
and Sensory Memory, provide relevant information—a selected behavior and the sensory data 
through a dorsal stream channel, respectively–as inputs to the SMS. The SMS sends out motor 
commands to an agent’s actuators to execute its selected action in the environment. Within the 
SMS, three data structure types have been proposed—the motor command (MC), the motor plan 
(MP), and the motor plan template (MPT)—and three types of processes have been modeled: 
online control, specification, and MPT selection.  

A motor command (MC) is applied to an agent’s actuator. Every MC has two components: a 
motor name, and a command value. The motor name indicates which motor of an actuator the 
MC specifically controls, while the command value of a MC encodes the extent of the command 
applied to the motor. 

An MP acts like a MC generator that generates MCs based on the sensory data transmitted 
via the dorsal stream. An MP is implemented based on the principles of the subsumption 

                                                      
10. In LIDA, the dorsal stream channel directly passes sensory data from the sensory memory to the action execution 
process. 
11. In this context, the term “action” refers to a component of a scheme. This differs from the general usage, such as in 
the phrase “action execution”. In this paper, we use “action” in the general sense, while “action of a scheme” refers to a 
particular component of that scheme. 



A REVIEW FOR ACTION EXECUTION 

 

61 

architecture (Brooks, 1991), a reactive structure. In the subsumption architecture, 1) the sensory 
data is linked to directly thus determining the selection of motor commands that drive the 
actuators; 2) it decomposes a robot’s control architecture into a set of task-achieving behaviors; 
and 3) it does not maintain any internal model of the world12, and is without any explicit 
representations. The MP generates motor commands as the output of the SMS to the environment 
(using actuators), while environmental data directly influence the generation process through the 
dorsal stream channel from Sensory Memory. These cyclically occurring processes are called the 
online control process of the SMS. 

An MPT is an abstract MP that resides in an agent’s long-term memory (Sensory Motor 
Memory in LIDA). It has a set of motor commands (MCs) that are not yet bound with the 
command values, whereas after a specification process, the motor commands are bound with 
specific values, instantiating the MPT into a concrete MP. Both sensory data from the dorsal 
stream and the selected behavior determine the specification process (Dong and Franklin, 2014). 
MPTs and MPs have very similar structures, so they are designed with nearly the same data 
structure. Their major differences are 1) an MPT is persistently stored in a long-term memory, 
while an MP is short-term, and created anew each time it is used; and 2) typically an MP’s 
command values have been specified, while those of an MPT have not. 

As the SMS’s initial process, A MPT selection acts to select and initiate a MPT by an 
incoming selected behavior before the MPT is specified into a concrete motor plan. MPT 
selection chooses one MPT from the set of those associated with the selected behavior. It 
connects action selection to action execution. Currently this selection is built in by the agent 
designer (Dong and Franklin, 2014). 

2.10 Soar 

Soar is a cognitive architecture in pursuit of general intelligent agents (J. E. Laird, 2008). “The 
design of Soar is based on the hypothesis that all deliberate goal-oriented behavior can be cast as 
the selection and application of operators to a state. A state is a representation of the current 
problem-solving situation; an operator transforms a state (makes changes to the representation); 
and a goal is a desired outcome of the problem-solving activity” (J. E. Laird, Congdon, Coulter, 
Derbinsky, and Xu, 2012). 

Soar has separate memories for descriptions of its current situation and its long-term 
knowledge. It represents the current situation in its working memory, which is Soar’s short-term 
memory and maintains the sensory data, results of intermediate inferences, active goals, and 
active operators (J. E. Laird et al., 2012). The long-term knowledge specifies how to respond to 
different situations in the working memory so as to solve a specific problem.  

All of Soar’s long-term knowledge is organized around the functions of operator selection 
and operator application, which are organized as a processing cycle as described below (J. E. 
Laird, 2008; J. E. Laird et al., 2012). 

 
1) Elaboration. Knowledge with which to compute entailments of short-term memory, 

creating new descriptions of the current situation that can affect operator selection and 
application indirectly. 
 

                                                      
12. Although no central world state is one of the essences of the subsumption architecture, implicit understanding and 
expectation of the environment has been built into the architecture by its layered structure. 
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2) Operator Proposal. Knowledge with which to propose operators that are appropriate to 
the current situation based on features of the situation tested in the condition of the 
production rules. 
 

3) Operator Comparison (Evaluation). Knowledge of how to compare candidate operators, 
to create preferences for some proposed operators based on the current situation and goal. 
 

4) Operator Selection. Knowledge with which to select an operator based on the 
comparisons. “If the preferences are insufficient for making a decision, an impasse arises 
and Soar automatically creates a substate in which the goal is to resolve that impasse. … 
The impasses and resulting substates provide a mechanism for Soar to deliberately 
perform any of the functions (elaboration, proposal, evaluation, application) that are 
performed automatically/reactively with rules.” (J. E. Laird, 2008) 
 

5) Operator Application. Knowledge of how the actions of an operator are performed on the 
environment, to modify the state. 

 
Four of the above functions require retrieving long-term knowledge that is relevant to the 

current situation: Elaborating, Operator Proposal, Operator Comparison, and Operator 
Application. These functions are driven by the knowledge represented as production rules (J. E. 
Laird et al., 2012). A production rule has a set of conditions and a set of actions. The production’s 
actions are performed if its conditions match working memory; that is, the production fires (J. E. 
Laird et al., 2012). The other function, Operator Selection, is performed by Soar's decision 
procedure, which is a fixed procedure that makes a decision upon the knowledge that has been 
retrieved (J. E. Laird et al., 2012). 

An operator contains preconditions and actions; its action differs from a production rule’s 
action. The operator action is an output for the agent to its internal or external environment, while 
actions of a production rule generally either create preferences for operator selection, or 
create/remove working memory elements (J. E. Laird et al., 2012). 

When Soar interacts with the environment, it must make use of a mechanism that allow it to 
effect changes in that environment; the mechanism provided in Soar is called output functions (J. 
E. Laird et al., 2012). During the operator application process, Soar productions could respond to 
an operator by creating a structure on the output link, a substructure which represents motor 
commands for manipulating output. Then, an output function would look for specific motor 
command in this output link and translate this into the format required by the external program 
that controls the agent’s actuators (J. E. Laird et al., 2012). “[In the external program,] functions 
that execute motor commands in the environment use the values on the output links to determine 
when and how they should execute an action” (J. E. Laird et al., 2012). This means that it is the 
Soar’s external program, not its output functions, that specifies how to execute the action in detail 
(when and how). 

In the case of Soar’s output, motor commands, which cannot be directly performed 
(executed) on the external world, an external program is always necessary to handle the final 
“real” execution (performance) for Soar. Soar does not cover the representation of environmental 
information related to action. This allows it to maintain generality with a clear standard, without 
the necessity of considering every possible domain that the Soar agent might live in. Note the 
term “motor commands” in Soar expresses completely different concepts than in other 
architectures, such as LIDA, although it is used to represent the final output data in both cases. In 
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LIDA, motor commands are executable, while in Soar they are not. By saying that motor 
commands are “executable”, we mean that these commands 1) are able to be applied to the 
agent’s actuators directly, and 2) are maintained in an order appropriate to both the agent’s 
internal goal and the current environment’s dynamics. 

3. Conclusions 

We realize that the action execution processes implemented in the above cognitive architectures 
have many similar representations and procedures though they use different structures. We 
conclude with some general observations regarding the nature of these representations and 
procedures, followed by a summary. 

3.1 Inside Action Execution 

Each cognitive architecture having a representation at an explicit level of knowledge, typically 
also needs a process that transforms high-level knowledge into motor-level commands; that is, 
action execution. For example, a task (sub task) is transformed into task commands in 4D/RCS, a 
production rule’s action into movements in ACT-R and EPIC, a behavior into atomic actions in 
CERA-CRANIUM, an act into basic behavioral repertoires (the basic execution units) in GLAIR, 
a non-primitive skill into primitive skills in ICARUS, and a behavior into a sequence of motor 
commands in LIDA. Some other architectures, such as BECCA and Soar, prepare the actions for 
external programs to finish the action execution. These architectures accomplish only the initial 
phase of the action execution process. CLARION has a unique action decision mechanism in its 
two levels of representation. As we have discussed in Section 2.5, this mechanism covers both 
action selection (preparation) and action execution (performance), though its action performance 
does not maintain the specifics of the actuators within the representations of the output actions. 

3.2 The Cooperation between Action Selection and Execution 

A goal-directed action resulting from action selection concomitantly initiates the initial action 
execution process. This process may be implemented in two different ways. One possibility is to 
decompose the selected goal-directed action into primitive actions, in which case the action’s data 
structure is gradually broken down from high-level to low-level without qualitative changes, such 
as tasks in 4D/RCS, behaviors and atomic actions in CERA-CRANIUM, actions in CLARION, 
skills in ICARUS, and operators in Soar. The other option is to map the selected goal-directed 
action to another type of action representation—the action’s data structure has been qualitatively 
changed—that enables the generation of the ensuing low-level actions, such as a production rule’s 
action mapping to a movement style in ACT-R and EPIC, a transition mapping to an action in 
BECCA, and a behavior mapping to a Motor Plan Template (MPT) in LIDA. GLAIR combines 
the natures of these two options: it first decomposes acts into primitive ones, and then translates 
them into actuator-dependent basic behavioral repertoires. 

3.3 Environmental Information for Action Execution 

During the action execution process, additional environmental information is usually supplied to 
specify and adjust the final command values for execution. For example, in both ACT-R and 
EPIC, a preparation phase operates during the action execution process to build and specify a list 
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of “features”; the features include the movement’s style—the name of a low-level action’s 
identifier—and the values of its parameters. In CERA-CRANIUM’s action execution, action 
preprocessors provide specific contextual data for preparing atomic actions. In LIDA, the sensory 
data sensed through its dorsal stream channel is sent directly to the action execution process, so 
that a Motor Plan Template (MPT) is instantiated into a Motor Plan (MP) that generates the final 
motor commands. 

This additional information might be directly sensed from the environment through sensory 
processes; in this case, a direct communication between the perceptual and motor modules is 
implemented to assist the action execution. For example, in CLARION’s bottom level, perceptual 
information directly maps to actions, and in LIDA, sensory data may be sent to the motor system 
directly through a dorsal stream channel. On the other hand, this environmental information 
might come from high-level cognitive modules that store the current state of the environment. For 
example in ACT-R, the data passed to the motor module comes from high-level declarative or 
production memory. 

3.4 Summary 

Based on the above review, we can identify certain common characteristics for action execution. 
It provides an elementary cognitive layer by which a cognitive architecture couples the 
environment with its high-level cognitive modules, including action selection. Action execution 
finalizes an agent’s intention, so that it generates a cognitive architecture’s output. Action 
execution involves domain specifications—including environmental specifications and those of 
the agent’s actuators—sufficient to enable execution to be actuated in the environment. However, 
it does not contain so much abstract knowledge, which is the province of high-level cognitive 
modules.  

On the other hand, action execution may vary in concrete implementations, with respect to its 
representations, procedures, and the means of cooperation with high-level cognitive modules. 
Also, action execution itself may or may not be considered a standard module of a cognitive 
architecture, so that architectures may differ in their degree of completion. 
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