
Journal of Artificial General Intelligence 4(3) 44-88, 2013 
DOI: 10.2478/jagi-2013-0006 

Submitted 2013-08-01 
Accepted 2013-11-17 

 
 

 

   This work is licensed under the Creative Commons Attribution 3.0 License. 

Causal Mathematical Logic as a guiding framework for the 

prediction of “Intelligence Signals” in brain simulations 

Felix Lanzalaco 
Mathematics, Computing and Technology, 

Open University, 

Walton Hall, Milton Keynes, UK 

FL729@MY.OPEN.AC.UK 

Sergio Pissanetzky  
Department of Computer Science, University 

of Houston, 

Clear Lake, Texas, USA 

SERGIO@SCICONTROLS.COM 

 Editors: Randal Koene, Diana Deca 

Abstract  

A recent theory of physical information based on the fundamental principles of causality and 

thermodynamics has proposed that a large number of observable life and intelligence signals can 

be described in terms of the Causal Mathematical Logic (CML), which is proposed to encode the 

natural principles of intelligence across any physical domain and substrate. We attempt to expound 

the current definition of CML, the “Action functional” as a theory in terms of its ability to possess 
a superior explanatory power for the current neuroscientific data we use to measure the 

mammalian brains “intelligence” processes at its most general biophysical level. Brain simulation 

projects define their success partly in terms of the emergence of “non-explicitly programmed” 

complex biophysical signals such as self-oscillation and spreading cortical waves.  Here we 

propose to extend the causal theory to predict and guide the understanding of these more complex 

emergent “intelligence Signals”. To achieve this we review whether causal logic is consistent 

with, can explain and predict the function of complete perceptual processes associated with 

intelligence. Primarily those are defined as the range of Event Related Potentials (ERP) which 

include their primary subcomponents; Event Related Desynchronization (ERD) and Event Related 

Synchronization (ERS). This approach is aiming for a universal and predictive logic for 

neurosimulation and AGi. The result of this investigation has produced a general “Information 

Engine” model from translation of the ERD and ERS.  The CML algorithm run in terms of action 
cost predicts ERP signal contents and is consistent with the fundamental laws of thermodynamics. 

A working substrate independent natural information logic would be a major asset. An 

information theory consistent with fundamental physics can be an AGi. It can also operate within 

genetic information space and provides a roadmap to understand the live biophysical operation of 

the phenotype.    

 

Keywords:  Causal Mathematical logic, Whole brain emulation, Brain simulation, Artificial 

General Intelligence, biological replication. 
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1. Introduction 
 

The current state of progression in the neurosciences is approaching the software engineering 

equivalent of a critical mass. We are faced with the task of integrating a large body of fragmented 

data, conflicting and incomplete models, where incomplete understanding can impact across 
entire attempts to integrate this information.  Large scale brain simulation projects and their 

various types (emulation, replications etc) aim to approach this problem in the full diversity of 

sub-disciplines by centralizing a sorting process, with some independent projects already 
processing the data for neuron types (neuromorph) and their electrophysical properties 

(Neuroelectro). Other projects cover connectomes, summary by Seung (2012).  Neuro-

transcriptomics (Hawrylycz et al., 2012), developmental transciptomes (Johnson et al., 2009) and 

many new fine scanning techniques may even bring us atomic fMRI (Staudacher et al., 2013). 
The exponential data increase from these technologies will require both the generation of new 

technology and conceptual models to deal with this information.  

      To reduce the problem difficulty high level principles, integrative or top down models can 
play a role by providing simplifications or guiding frameworks for this type of scenario. 

Examples are the work of Fuster which gave us a hierarchy of categories for the cortical feature 

extraction processes (Fuster, 2002) and for the limbic system we have derived principles of 
recurrence (Papez loop), or integrations of these two extremes such as the thalamocortical loop, 

the hippocampus, cortico- striatal and cingulated cortex (Bear, Connors and Paradiso, 2006).  

These latter sub-systems are now included in the recent version of the global workspace theory 

(GWT) model (Baars, Franklin and Zo, 2013), which is a general framework for neuroscience. 
Other recent projects outline general computational approaches to explain the structural 

mathematical qualities required for particular brain modules (and the entire brain) to generate 

conscious function (Tononi, 2008; Balduzzi and Tononi, 2008).   
       Our contribution to this process is an attempt to frame the data from high neuroscience level 

(i.e. entire general input/outputs) in terms of a pure natural mathematical approach steeped in the 

fundamental physical laws yet remain very specific to the neuroscience. Questions arise such as 
what does the integration of our highest level biophysical and neuro-structural models tell us if 

we put them together, in a rough and general manner. This was already attempted by (Lanzalaco 

and zia 2009a, 2009b) from which top down developmental structure overview appeared to 

indicate novel high level principles with structure predictions later verified (Striegel and Hurdal, 
2009; Fleury, 2011; Sandersius et al., 2011). One result of this was that the entire cortico-limbic 

structure appeared like it might possess some type of basic “information engine” attribute. 

However the model was incomplete, similar to many projects when faced with the problem of 
integrating disparate disciplines across genetics, developmental principles and the current body of 

neuroscience. To resolve this problem it seemed there would need to be a logic that works across 

these levels and substrates yet is still deep enough to be derived from basic natural principles. 

      The work of Pissanetzky (2011c) called casual logic, based on the body of work on causality 
and complexity was primarily targeted towards AGi yet appeared broad enough to cover all the 

primary neuroscience domains.  It is a logic that describes how information works as a principle 

of physics, but still works independently at the higher level of the information, when we are not 
considering physics. All such schemes based on physics cannot right now be completely verified, 

so for this reason we are open minded that it may even turn out not to be a physical theory at all 

and proceed with our own skepticism also.  Now called Causal Mathematical logic (CML) 
(Pissanetzky, 2010, 2011), this logic attempts a tie together of extremes in physics such as least 

action and entropy into a cohesive framework based on the most basic level of thermodynamics. 

It then works its way up into the more specific physics derived, make predictions and 

experimental concepts for processes of intelligence based on these fundamental principles. Some 
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which have been successful so far (Pissanetzky, 2010, 2013a, 2013b). Use of the CML approach 

appeared for the primary author as method which might clarify the brains “information engine”. 
       If the approach works, there is a simple test. Its success can then be defined by whether we 

generate useful concepts that lead to the right type of questions and predictions. Primarily this 

would be the testing of input/output processes in integrative approaches to neuroscience such as 

brain simulations. 
 

1.1 Introduction of least action and entropy in physics and information sciences 

 
In the Physical sciences the least action principle has been used to re-derive the works of Newton, 

Einstein, Maxwell and Dirac (Gray 2009; Brown 2005; Dalrymple, 2012) and the entropy 

principle more latterly being proposed as force in itself to define the electroweak and strong force 
(Freund, 2010), dark matter / energy (Chang and Li 2010) and electrostatics  (Wang, 2010; Di 

Caprio, Badiali and  Holovko, 2008;  Sheykhi and Hendi, 2010). Both least action and the law of 

maximum entropy are examples of physical extrema (Feynman in Brown 2005). Extrema are 

system states, invariant or distributed into equilibrium respectively. More specifically Wang 
(2007, 2008a, 2008b) helps relate these extremes into one physical framework by defining the 

least action principle as a case of the maximum entropy principle, so that least action can be 

stated to be a result of the mechanical equilibrium condition extended to the case of stochastic 
dynamics.  

        Least action was proposed by Jaynes (1963, 1968, 2003) as applicable to information and 

has been recruited in the physical information sciences (Lerner, 2012; Berut et al., 2012; Still et 
al., 2012; Hartonen and Annila 2012; Wissner-Gross and Freer 2013). The least action principle 

is a primary component of CML, (Pissanetzky, 2013a). CML is built by codifying the principles 

pf causality, symmetry, least-action, and the laws of Thermodynamics. The work of Pissanetzky 

expounds the application of least action and its counterpart entropy in terms of all complex 
information systems (Pissanetzky, 2010, 2011) into a current format called the “action functional” 

which proposes that much information is in a state of partial order between entropy and the 

information which is most suitable to be minimized to a least action state (Pissanetzky, 2013a).  
This conclusion arose from experiments to understand how intelligence can translate information 

across disparate domains, such as code refactoring (Pissanetzky, 2009) or deriving of 

mathematical conclusions (Pissanetzky,  2013b).  

       The other primary component in CML, the information attribute of entropy as an information 
states (or set of such states) deregulated from invariance and partial order has long been used in 

the information sciences defined as maximum entropy (Gzyl, 1995; Jaynes 1963, 1968, 2003; 

Dewar, 2009). Recent work proposes entropy has a computational function which if increased 
produces a statistical distribution of options (Wissner-Gross and Freer 2013). Self replication 

itself has been proposed to be an entropic process providing a new physics based clarity to 

Darwinism (England, 2013). CML seeks to define the entire range of both least action and 
entropic process features in terms of one theoretical information system, where increased options 

give rise to a more integrated partial order for invariants to emerge. It should be mentioned at the 

start that problems in the causal theory are not solved in the traditional spacetime used in Physics. 

They are solved in causal space, which is simply the collection of all total orders for a causal set. 
The total orders represent the symmetry of the causal set, so the causal space is also the space of 

symmetries of the causal set. This will be explained more specifically in section 2.3. 
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1.2 Strategy for this paper. 
 
This paper attempts to integrate separate disciplines of biophysical neuroscience and a basic 

mathematical approach to AGi.  Such previous attempts have resulted in a product removed from 

basic neuroscience (Tononi, 2008), so the idea here is retain clear specifics for either discipline to 

not compromise the original details. To ease the cross discipline approach, some of the 
neuroscience will be referred to in italics with explanations in a glossary at the end of the paper. 

For the AGi aspect, any math included will be kept either minimal or if there is more depth, 

explained as easily as possible for general readability. The more in depth mathematics underlying 
this approach can be found in the references within those parts of the paper.   

     The neuroscience parts are a summary of existing work which do not require a controversial 

neuroscientific paradigm, but clarification of mainstream data. Also the thermodynamic casual 
approach to the neuroscience we highlight has existing ground, in the work of (Papo, 2013) and 

(Friston, Daunizeau and Kilner, 2010;  Friston, Harrison, and Penny, 2003). There have also been 

recent questions raised on why fMRI of the brains prediction mechanisms in the limbic system 

appears to be driving us towards high entropy information (Davis, Love and Preston, 2012) with 
some degree of coding of entropic information occurring in the process (Schiffer, 2012). More 

recently (Carhart-harris et al, 2014) use causality based fMRI/MEG tools to argue that entropy is 

a primary (lower) component of consciousness. That entropy is to be found prominently 
conserved as a critical realm for the entire brain system to scale its functionality between order 

and disorder. 

       Our contribution to this puzzle is the primary original proposal for this paper will be in 
section 4. This is the thermodynamic “information engine”. An integrated view for the bulk of the 

brains primary processes, that is considered to be revealed which viewing the brains input and 

output signals in terms of the casual view where least action is the most fundamental description 

of a systems order. To get to that stage in section 4 we need to use two Sections (section 2 and 3) 
to justify the casual approach for both the extremes of least action and entropy in general terms of 

information. For each of these extremes to determine what is consistent with general principles of 

neuroscience, derived from the brains primary input and output signals.  These primary signals 
are well known in neuroscience found in the EEG as the range of event related potentials (ERP).   

      Casual approach is not so general we can assign any casual construct to any brain signal and 

propose it fits with neuroscience. The work of Pissanetzky is very specifically focussed on the 

relationship between action and entropy. On this basis of the above we require two very specific 
classes of neural operation. One set associated with action, and another associated with entropy. 

If the approach here is complete there should not be any other types of primary signal but these 

two. There may however be “partial order” type ERP sub-signals which mark the transition stages 
between these primary signals and of course sub-signal components for the primary signal types.  

We already know the primary components in the ERP signal, but first for a summary that the ERP 

can even be said to be the key signal that is a measure of perception, refer to section 2.2.  
       ERP signals are comprised primarily of two signals,  Event Related Desynchronization 

(ERD) and Even Related Synchronizations (ERS).  Figure 5 shows this more clearly.   ERD is 

primarily the total action set (say of a cortex) with varying sets (specific to required information 

context) of cortical columns, inhibiting one another in a non linear dynamic manner where the 
systems stationary energy becomes minimized as a result.  ERS is primarily the set of oscillations 

which bind together the brains operation into an integrated whole for the set of operations which 

require that.  This activity is primarily more linear and continuous in nature. We will go into the 
specific of these signals in more detail.  
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• Section 2 deals with ERD and summarizes the cortex as the primary source for ERD. The 

ERD processes are described in terms of the action function of neurons, concluding with 

how CML produces invariants with a similar action process.  
 

• Section 3 deals with ERS and summarizes the limbic system as primary source for ERS. 

The ERS processes are then described in terms of entropic oscillation, ideas for the 

computational contribution by such entropy and then reviews the causal modelling which 

currently exists for this.  
 

• Section 4 then integrates ERD and ERS back together into the brains primary ERP to 

describe the proposed model for this paper.  That the cortico-limbic brain structure is a 

casually predicted “information engine” cycle that operates between the extremes of ERD 
(action) and ERD (entropy). ERP is then proposed to be generally understood as 

represented by the process of partial order described by CML, as this partial order is also 

the area which lies between action and entropy.  
 

This overall view then involves justifying a view of the mammalian brain in terms of two 

integrated structures (cortex and limbic system) as being derived from the extremes of the 

physical principles, least action and entropy (respectively for each structure).  The work of 
(Lemm et al., 2009) used in figure 5 has also provided us with such a complete view of the 

primary ERD and ERS in ERP it assists in justifying a complete thermodynamic information 

engine which integrates the brains detail as a derived view of operations representing the basic 
“natural” operations of CML described above.  In summary the strategy here is we are attempting 

taking apart and putting together the brain system in terms of its thermodynamic extremes to 

propose that the partial order concept of CML has captured the full range of processes required 
for a general “information engine” based on a cortico-limbic summary of the brain.  

 

2. Causal Mathematical Logic Consistency with Neuroscience  

 
This section summarizes cortical processes in several levels. Section 2.1 in terms of least action 
function giving rise to invariance’s in cortical columns. Section 2.2 looks more in depth at the 

ERD signals and their function in intelligence.  Section 2.3 lays out how CML produces similar 

result to the existing cortical models for invariants, while showing it is based purely on first 
physical principles.  

       The block hierarchies that we will derive from CML are an application of the least action 

principle (Pissanetzky, 2013a, 2013b). These will be proposed to correspond to the invariant 

representations that are generated in the cortex as defined by (Hawkins, 2004, 2006; Hinton, 
2009).  Biophysically the activity we review as the neural correlates for invariant generation are 

very specific for this process. These are the lateral inhibitions which give rise to the sharp 

dynamics in nonlinear spreading waves. These are a known primary signal in feature extraction 
called Event Related Desynchronization (ERD). Section 2.2 justifies looking at ERD in terms of 

least action, but first section 2.1 has to provide depth that the cortical neurons involved in ERD 

can support this least action proposal. Primarily because ERD is a macroscopic signal reduction 

across the cortex which is the product of the neurons involved in signal suppression. 
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2.1 Summary of invariants, detail and hierarchy in neural systems 

 
A primary aim of computational neuroscience is to understand how the cortex is able to produce 

detailed feature extractions, with the current understanding focusing on specific architectures and 

functions of the cortical columns. The blue brain column modeling has simulated the result that 

neurons connect by a growth pattern where they are pushing into each other (Hill et al., 2012). 
This is consistent with the results from the brain on a dish experiments (DeMarse et al., 2004; 

Potter et al., 2004), and the “greedy growth” principle for neurons (Cuntz et al., 2010, 2012), 

where dendrites branch into space with optimally short wiring refining the concept of a precise 
computational law for neurons.  The area of dendritic computation has focused on the two 

primary groups of cortical ionotropic neurons. GABAA/GABAC and Glutamate AMPA/KAINATE 

as having division / multiplication scaling power laws for inhibition (Wilson et al., 2012) and 
excitation (London and Häusser 2005; Cuntz at al., 2012) respectively. The proposal is that 

dendritic self computation drives self re-enforcement in the neurons for mathematical power 

functions with a logic basis in the dendrites (London and Häusser, 2005). An optimal least action 

type wiring principle can then in principle provide the basis for the development of an efficient 
cortical hierarchical structure.  

 
Figure 1. The bottom layers of the cortical column are where the highest density of connections to the 

limbic system are located, while the upper to top layers are where the invariance’s are proposed to emerge 

by means of an intracortical hierarchy. Notice the layer 1 density where the proposed top down action from 

the glial cells are more densely located, and the sparseness of the underlying connectivity in layer 2 and 3.  

 

Current models propose  the most stable invariants are sparsely coded at the top layer of the 

cortical column, and the lower cortical layers have the highest connection density to other brain 
areas (Hawkins, 2004, 2006; Hinton, 2009). Astrocytes are most densely proliferated at these 

uppermost cortical layers and have long been proposed to have some top down enforcement 

function on the columns (Ingber 1983, 2011, 2012; Ingber and Nunez 2012; Banaclocha, 2002, 
2004, 2007;  Pereira, 2011; Pereira and Furlan, 2010).  Recent experiments implanted the more 

complex human astrocytes in rodents resulting in increases to their memory (Han et al., 2013). 
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Pre-existing data had already proposed a correlation between astrocyte to neuron ratio, cortical 

surface gyration (Eriksen and Pakkenberg, 2007) and intelligence (Sherwood et al., 2006; 
Karlsen and Pakkenberg 2011; Marino et al., 2007).  

       One idea taken from this is the astrocytes act as gain capacitors (Banaclocha, 2002, 2004, 

2007) where the invariants are located in the uppermost columns, so re-enforcing the top layer 

invariants power to suppress neurons in the lower layers.  From this we can propose the least 
action principle is at its most prominent at the brain surface, operating as a topographical sheet 

covering the brain, comprised of strong local actions which can impose the top down efficiency 

of sparse coding in the lower cortical layers. As a result over evolutionary time scales this 
invariant sheet has become the most separated from the rest of the internal system. This point is 

illustrated in figure 2. In essence, action has emerged at the top of the system in topographical 

terms. 
 

2.2 What are the cortical “life signals” we look for in brain simulation?  

 

Non linear cortical activity operates on stochastic feed forward amplification (Rodriguez et al., 
2004; Ward et al., 2006; Moss et al., 2004; Tiesinga and José, 2000; Ringach and Malone, 2007) 

that shifts dynamically from one local region to another by lateral inhibition in response to 

perturbation of its states. A cortical perturbation can be a novel input, conflicting inputs (oddball 
processes) or an unexpected requirement on attention.  The differences between cortical and 

limbic system EEG are primarily non linear and linear respectively (Nunez and Srinivasan, 1981; 

Anokhin et al., 1999; Crick and Koch, 2003). The non linear cortical activity manifest itself 
biophysically as sporadic spreading waves (Freeman and Kozma, 2010), such that the appearance 

of these waves via non explicit programming, are used by the blue brain project to demonstrate 

the success of their simulations.   

        The spreading waves are mass action attractors, scale free phenomena built from the optimal 
power law principle of neurons. We know that such physical dynamics can be described by the 

least action principle (Gray 2009; Dalyrmple 2012; Brown 2005). The combination of optimal 

wiring, with lateral inhibition by sharp dynamic competition works across local and cross 
hemisphere regions. The cortical system is so highly ordered in the power wielding invariant 

upper layers that a dynamic system of local functions evolve which can suppress other cortical 

areas and the limbic system. So cortical activity paradoxically results in reduced energy output 

when dealing with problems, which we will describe next. 
       The biophysical reading for such cortical suppression processes (in response to stimulus) are 

one of two of the most prominent signals, found in the brains ERP.  The cortical contribution to 

ERP is the previously mentioned Event related Desynchronization (ERD).  An important point 
here is that ERD reduces the resting coherent self oscillating energy from the limbic system  

(Polich, 2007;  Lemm et al., 2010), where such oscillations are ongoing and continuous stationary 

dynamics (see figure 5) that will be defined as primarily entropic in section 3.  So input in the 
form of information with a stimulus value, lowers the systems energy (Lemm et al., 2009) by 

means of the existing maximally efficient cortical hierarchy which is built on least action 

neuronal components.  

       The cortical operations are primarily fitting the probable set of local invariants most suited to 
process a response to the incoming information by means of lateral inhibition and dynamic 

attention allocation (Hawkins 2004, 2006; Hinton 2009). This activity lowers the systems energy, 

desynchronizing the resting and continuous limbic systems baseline alpha, theta, delta, mu and 
beta oscillation (Polich, 2007; Lemm et al., 2010) and so removes the baseline entropy from the 

system.  From this perspective, the cortex is “stimulation greedy” in that it builds its order by 
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increased information gain to local parts of the system which compete with each other. Refer to 

table 1 for a summary of oscillations and the known sources in the brain.  
       To justify the ERP as “intelligence signals”, the ERP primarily in the cortical ERD range are 

correlated to a wide variety of high level perceptual processes. E.g.  Stimulus identification 

(Pfefferbaum et al., 1985), response inhibition, response conflict, error monitoring, novelty 

detection, intentional deviation (Patel and Azzam  2005), inhibition of motor responses, 
overcoming stereotypical responses, conflict monitoring, maintenance of context information  

(Azizian et al., 2006), response selection timing  (Gajewski et al., 2008), detection of novelty or 

mismatch (Folstein and Van Petten, 2008) and object recognition (Vianin et al., 2002). We will 
look at the later onset ERP that occur when ERD is relaxed but to summarize the above in 

comparison to the later onset ERP’s these appear to reflect the processes of a system trying to 

increasing efficiency of the information it processes by means of decision making. 
       So if the cortex is primarily a least action, high order greedy growth system that produces 

clear decisions and builds functional extraction hierarchies where does this leave the limbic 

system which has a low neuron to white matter ratio of 6:10, interestingly the inverse of the 

cortex at 10:5 (Collins et al., 1998; Evans et al., 1996). Will the limbic system have reduced least 
action power as a result of such an inverse ratio? Also we have referred to the limbic system as 

being entropic without justification. That will be covered in section 3. First of all we will expound 

how CML produces similar results to the work of Hinton and Hawkins on the cortical columns, 
without any reference to neuroscience by minimizing of the action of casual sets. Following that 

we can move on from the cortex to highlight evidence that the limbic system can be viewed as a 

phase coupled self oscillation system which serves to increase entropy. We would ask why, and 
the answer is similar to the introduction about current work on entropy in AGi. That entropy has a 

domain of powerful processing functionality which generates a wide variety of novel probabilities 

by increasing the global network re-connections required for long range system integration. 

 

2.3 Introduction to Causal Mathematical Logic applied to least action problems 
 

 

The operations of CML when codifying least action as a mathematical construct have produced a 

similar type of invariant hierarchy and deep learning process we associate with the work of 
Hinton’s cortical column inspired deep belief networks. A simplified version of this process will 

be presented here, for more detail refer to (Pissanetzky, 2013a).  This is to emphasize certain 

features of the theory that distinguish it from other theories of Physics or AGI and apply it to 
neuroscience. The theory emerges directly from the principle of causality that effects follow their 

causes. The principle says that all systems in nature, including biological systems and the brain 

are causal. It does not say that we need to actually discover all the causes before attempting an 

analysis of the system. Causal systems are described by a collection of ordered (cause, effect) 

pairs, known as a partial order, say ω , on a certain set of elements, say S. The set with the partial 

order is known as a causal set, hence: 

 

∑ = (S,ω )        (1) 

 

Where ∑  is the causal set. We conceive of the brain as a giant causal set with say 90 billion 

elements, the neurons, and trillions of (cause, effect) pairs, the dendrites. If a dendrite connects 
from neuron a to neuron b, then the causal pair is (a,b). But this approach is also flexible so that 

casual pairs can be assigned to further findings such as logical functions in dendrites themselves.   
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An example of a causal set in mathematical notation: 

 
S = {a,b,c,d,e,f,g,h,i}       (2) 

ω  = {ap  b, a p  c, b p  d, c p  e, c p  g, d p  f, e p  h, g p  i}  (3) 

∑ = (s,ω )           (4) 

 

Where the symbol pmeans “precedes”. For example a p  b means that a is one of the causes of 
b, where a and b are some observed phenomena, say the firing of neuron a is one of the causes of 

the firing of neuron b. The causal set is the mathematical model used in the causal theory. 

Because the principle of causality is universal, then the causal set is also universal. Every system 
in nature can be mathematically described in full detail by a causal set. Irrespective of the scale, 

irrespective of the substrate. If it is a system, then it is a causal set. Procedures for constructing 

causal set models of different systems are available. A set, say {a,b,c}, has no order. We can 

write {b,c,a}, or {c,b,a}, and it is still the same set. This is called symmetry. It is symmetry 
because the same set can be represented in more than one way. The symmetry is the collection of 

all different total orders that a given causal set can be represented. 

         Causal sets always posses some symmetry, a key point, as it means that causality and 
symmetry go together, where there is causality there is also symmetry. Hence, symmetry is 

present in all systems. But this is not the same as geometric symmetry used in neuroscience. Let 

us call it causal symmetry. The principle of symmetry is the second fundamental principle of 
nature. It says that any system that has symmetry also has an invariant quantity. An invariant 

quantity is something that is certain and is conserved, something that we can observe and 

understand and measure. The principle of symmetry and the fact that causality is found 

everywhere tells us that invariants also exist everywhere, and in very large numbers. This theory 
predicts the existence of millions of recognizable signals and structures in the brain. Much of the 

effort that follows is directed towards the analysis of these invariants and their quantitative 

calculation directly from the causal set. No other known theory of Physics can achieve this, which 
is why the causal theory is proposed as necessary for complex systems like the brain that work 

across many substrates. 

        The principle of least-action is the third fundamental principle of nature. It says that the 
dynamics of a conservative dynamical system converges towards an invariant behavior, 

sometimes called an attractor. This principle tells us exactly how our invariants are to be 

calculated: we need to minimize the action first. A system becomes conservative when the action 

in the system is minimized. In causal logic this says that the causal symmetry of a causal set – the 
collection of different total orders that represent the causal set S will converge to an invariant 

behavior when the causal action is minimized. For the definition of action let t be one of the total 

orders in the collection. Number the elements of S starting from 1 and in the order they appear in 

t. So now every element of S has a number, say v(a) for element a. Next, consider the ordered 

(cause, effect) pairs in the partial order ω , say pair a p  b, and define the action of that pair as 

v(b)- nu(a). This is a positive integer number. Finally, define the action in the causal set as the 

sum of the actions of all pairs, multiplied by 2: 

 

∑= (2F v(bi) – v(ai)),       (5) 

 
Where the sum extends to all pairs (ai p bi). The quantity F is known as the action functional, and 

defines the action in the causal set under the given causal order t (recall that the numbering v is 

determined by t).   Now we have a collection of legal total orders of set S, and for each total order 
t in the collection we can apply Eq. (5) and calculate the action for that order.  So at this point we 
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have the collection of total orders and each has a number, its action, and those numbers may or 

may not be the same. In a natural system such as the brain a legal ordering would be the 
structures with the highest strength in their connections. In today’s neuroscience network strength 

and precedence of relations can occur by a variety of mechanisms and models which are beyond 

the scope of this paper.  To find the least action, select from the collection of the total orders that 

have the least value of the action. The principle of least action simply says that this selected 
subset of least-action total orders has an invariant. 

       The final step is to calculate the invariants. The general procedure involves the use of group 

theory. For more details refer to (Pissanetzky, 2013a).  Once the subset of least-action total orders 
has been obtained, the structures are easily calculated. Fig 2 shows an example of the structures 

that are obtained when these calculations are completed for the set of Eq. (1). Of course, not 

much can be said about their meaning for an example this small, but several examples published 
elsewhere do result in structures that are meaningful for us (Pissanetzky, 2010,  2013a, 2013b).  

 
(note: For disambiguation in cross discipline use in this paper,  mathematical symmetry and asymmetry 

are different from biological e.g. radial symmetry or bilateral asymmetry. See symmetry in glossary)    

 
Figure 2: (a) The original partially ordered causet with the arrows showing legal orders (in a brain 

represented by network strength). (b) Shows the operation of the functional (natural processes) on each 

ordering cycle. i.e. From L6 to L1. Each cycle partitions the partial order (while retaining the legal orders) 

into a set of relations which have minimized all the possible combinations of the original causet into a 

hierarchy of relations. This appears similar to the simplified structure of the cortical column operations 

proposed by Hawkins, with the advantage that the operations itself are derived from codifying natural 

forces. 

      The definition of the symmetry is then a partition (or splitting) of the causet, named a “block 
system” that remains invariant under transformations or associations attempted by the ordering 

cycle. This ordering operating on the causet creates (with the restrictions imposed by the 

invariants), induces associations amongst the previous blocks of the causet into a new causet that 
then minimizes the action of the previous causet.  To give an example of one cyclic operation of 

the functional operating on ω , it induces the relations of ω  into the next block system ω 2 , 

where f2 and g2 are found not to be legal, and so can be discarded, and in doing so the ω 2 is a 

minimized set ofω .  This partial order is conserved and ω 2 contributes to the discovery of L2 in 

figure 2(b). For more depth on this operation refer to (Pissanetzky, 2013a).   

 

ω      (ap  b) ( a p  c) ( b p  d) ( c p  e) ( c p  g) ( d p  f) ( e p  h) ( g p  i)  (6) 

ω 2   (a2p  b2) ( a2 p  e2) ( b2 p  c2) ( c2 p  f2) ( e2 p  g2) ( c2 p  d2)  f 2   g2  (7) 
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That is, these minimized actions, are an inferred set of conservations (attractors) derived from the 

ordering symmetry operation on the causet.  The logic has then associated elements of the causet 
so they are bound together to form the levels of a nested hierarchy of invariant partitions.  When 

the cycles reach L6 the system is minimized to “exhaustion” (Pissanetzky, 2013a) in regard to 

the domain of information it was operating on.  In a real world example, conditions for the 

domain are often changing so the operations are ongoing and increasing in complexity. As this 
scheme is derived from causality, symmetry, least-action, and the laws of Thermodynamics it is 

based on a strong theoretical foundation that the organization of information is a result of the 

functional which is aiming for a representation of natural process. 
      Obviously we do no apply this process to everything in the natural world, but only those 

systems which have attributes that allowed a convergence of the natural principles more than 

other systems.  For more detail on how the induced associations are derived refer to (Pissanetzky, 
2013a).  It is important to note, the operation of this system would generate too many possibilities 

to be simply represented here.  The primary point is that the operations itself are a result of the 

information working on itself to minimize the number of possibilities, according to natural 

physical laws, and that the proposal is that the brain represents the development of these laws in 
its entire complex structure.  

       The generation of invariants here is similar to the work of Hawkins or Hinton (Hawkins, 

2004, 2006; Hinton 2009). As we are deriving this from first principles we can direct the CML 
perspective to any aspect of the system, whether it be the genetic substrate or other aspects of its 

operation.  Emphasis above on the functional here is in defining the causets as possessing blocks 

relations which are attractors. It is based on the most difficult requirement which is to build an 
informatics theory of detail extraction as a consequence of the natural laws mentioned. If codified 

this can then cover the entire thermodynamic range of least action and entropy.   So this approach 

to causal sets, and causal set-based dynamics is by definition acyclic. So there are also methods 

for an implementation of causality to generate neural cycles such as oscillations which will be 
expounded upon in the following section. 

 

3. Defining the limbic systems oscillations as primarily entropic  

 
This section looks at the other operation mentioned, which is that entropic processes correspond 
to the set of coupled self oscillations which we know occur primarily within the limbic system of 

the brain as Event Related Synchronizations (ERS). The ERS in the brain will be proposed to 

increases entropy which helps globally “loosen” the system within the constraints (or rules) set by 

the invariants top down order. Why would we want entropy to play a prominent role in 
information processing? Disorder has negative connotations. The work of Gross-freer proposes 

that increasing disorder tunes a system to give rise to increased information options as 

combinatory possibility increases. A system which is completely invariant will enforce its 
previous states and lose flexibility by losing such combinatory options. An optimal system may 

exist in the space between order and disorder, but first we need to look at the extreme of entropy 

from the view of Causal logic and neuroscience to justify that neural oscillation is itself the 
biophysical information form of entropy.  

       A complex system tuned only to removing entropy by least action will by its own definition 

produce asymmetries of function, whether it be the block system of causets described or the 

action of neurons operating against each other by greedy growth principles and lateral inhibitions. 
The asymmetry arises as sets of least action attractors are involved in building structure during 

the process of replacing or suppressing other sets.  It follows that entropy in such a system would 

reduce the asymmetry by distributing the systems energy more evenly. For example by heating a 
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solid into a liquid, all movements have a more constant volume.  To justify the oscillations in the 

brain as entropy, we already know that systems in a state of entropy resolve into self-oscillation 
in both quantum (Nachtergaele et al., 2012;  Puttarprom et al., 2013 ; Campisi, 2008) and 

classical domains (Shapovalov, 2008; Jenkins, 2011). The self oscillation is natural consequence 

of internally directed geometrical symmetry resonating with no external rate acting on the system 

(Jenkins, 2011). The AGi proposal of gross-freer visualizes entropic forces into several animated 
scenarios, where the result of the entropy acting upon an object forces other objects within a 

closed space into a state of statistical equilibrium. The forced objects appear to have been moved 

toward the centre of the system space or moved equally around the space by an oscillation typical 
movement. However oscillation is not stated in their work and their examples have rough motion. 

An example below illustrates how entropic forcing can tend towards the smooth functions we find 

in oscillations. 

 
 
Figure 3.  (a) Solution of gaseous molecules on the left side of a barrier, to the barrier opened (b).  From top 

to bottom in the three panels the number of molecules are increased. The single molecule much like the 

Gross freer examples will move around but tend to settle around the middle of a geometrically symmetrical 

space (see original animation Sbyrnes321, 2013).  As molecules are increased this movement tends towards 

smoothness.  

 

For a more complex visualization example oscillators in space are coupled (figure 4). A 
mathematical generator has been applied to generate coupled phase oscillation on data to describe 

spatial-temporal coding in computational neuroscience (Orosz et al., 2007). As long as the inputs 

are quantized to the graphs cyclic format, the result of a change to the systems inputs is spatially 
unpredictable but in general there is a global coherence in terms of the tendency towards an  even 

symmetry in space being retained in the manner of entropic forcing. The relevance of these points 

on symmetrical oscillations tending towards the centre of the system will be expanded further, as 

it applies to the brain. First we review what we understand about the self oscillatory nature of the 
brain 
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Figure 4. Image adapted from Orosz et al., 2007. An example of coupled oscillations maintaining 

coherence under altering conditions by cyclically permuting their phases.  The cyclic graph shows the flow 

of information into the oscillator with two sets of values. The cyclic permutation gives rise to phase 

coupling for two oscillators each representing one of the two set of values.  
 

How would symmetrical spaces evolve in the brain ? Such a question is beyond the scope of this 
paper but has been initially tackled (Lanzalaco and Zia 2009a). For now we concentrate on 

symmetrical signals like oscillation as these have been more clearly defined. The first life signals 

in the prenatal state are known to be oscillations (Isler et al., 2005; Uhlhaas et al., 2010). In 

neuroscience high level perceptual functions such as, consolidation, integration, consciousness 
and binding are tied to oscillation, and coupled oscillation (Buzsaki, 2006; Polich 2007; Engel et 

al., 1991; Crick and Koch, 2003).  Brain simulation projects now commonly use non-explicitly 

programmed self oscillation as a proof that their system can produce some of the causality 
associated with brain function. To specify a single oscillatory phase in the brain at the biophysical 

level the thermodynamic Hopf bifurcation is commonly recruited in models (Hoppensteadt and 

Izhikevich, 1996).  This is used because Hopf bifurcation is found as a natural chemical 

bistability in the entropy production between a steady state and an oscillatory state (Dutt, 1999). 
 

zi’=bi zi + di zi|zi|
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 +∑

=

n

j
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1

,        (8) 

 
The canonical model for a Hopf bifurcation derived system of weak coupled oscillators. z, b, d, c 

are complex numbers, i = 1,….,n and the domain is the dynamical system of neural oscillators in 

weakly connected neural networks near equilibrium. The Andronov-Hopf bifurcation is one of 

many possible bifurcations for the dynamics of each neural oscillator. It is produced here for 
several reasons. It provides us a bridge from the physics of entropy to oscillation.  Also 

Izhikevich oscillators are a basis commonly used in brain simulations and these will be expanded 

upon further in terms of dynamic casual modeling (DCM) for neural oscillation.  
       Referring to table 1. There is enough current data for all the known oscillations that a pattern 

emerges where the cortex is demarcated from the limbic system, and the limbic system can be 

proposed as a primarily continuous oscillation driven system. The lower frequencies from 0-30hz 
are primarily associated from the thalamus, hippocampus, and basal ganglia. Above 30hz the 

Gamma location is to the lower cortical areas. We also find “mirrors” of Beta and alpha in the 

cortical motor areas (mu wave). Both the Cortical Gamma and the Mu wave are sporadic, 

asymmetrical (across the hemispheres) and prone to decoherence. Cortical self oscillation is a 
sporadic sub-process of the suppressed lower cortical areas, rather than the pervading symmetric 

principle that never stops in the limbic system. Phase coupling for the cortical Gamma cycles is 

primarily driven by the limbic system and  when we find cycles in the cortex they are prone to 
decoherence and asymmetry.  

      So in summary we can propose that oscillation is primarily a limbic system product but the 

cortex possesses it also. Any exception to this view is that the hippocampus can give rise to 

higher energy oscillations frequencies, the most well know is high gamma in epilepsy. The 
hippocampus (particularly the temporal end) is a neuron dense focal integration and feedback 

point for the cortex to the limbic system. The highest density of neurons are located there, and it 

is the area where most adult neurogenesis occurs. The Casual system here does provide a method 
to understand these cortico-limbic subsystems. Most are beyond the scope of a single paper, but 

we do tackle hippocampal complexity in sections 4.6 and 4.7. 
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3.1 Defining the oscillations in terms of emerging from the brains midline. 

 
As we are stating that neural oscillation is a symmetrical collapse of energy into the centre of a 

system, this requires some justification in terms of neuroscience correlates. A large body of work 

exists for Dynamic Causal Modeling (DCM) applied successfully to brain imaging which is a 

novel basis for establishing the brains “intelligence signals” and their primary subcomponents 
(Friston, Harrison and Penny, 2003; Stephan et al., 2007; Moran et al., 2009;  Pinotsis, Moran, 

and Friston,  2012). For review see (Daunizeau, David, and Stephan, 2011). In particular this has 

been applied to the brains phase coupling and phase reset mechanisms with some establishment 
of the location of the signals as deriving from the central pacemaker of the brain in the septal 

areas. (Penny et al., 2009) which are close to the third ventricle located in between the thalamus. 

This information allows us to now explore with more detail further studies that have mapped out 
the location for the oscillations to the limbic areas, and our current ideas on their role in brain 

function. This process is necessary if we are to understand the general relationship of entropic 

structure to function concepts which are described here. 

      The self oscillations in the mammalian brain primarily derive from the central limbic system 
areas such as alpha to the third ventricle area (Brazier, 1980; Karson et al., 1988).  The septum, 

between the lateral ventricles is the pacemaker for hippocampal theta  (Ujfalussy et al., 2007; 

Sotty et al., 2003; Lawrence et al., 2006; Brazier, 1980; Wang, 2002; Kocsis and Li, 2006). 
Thalamic reticular nucleus, also at the brains centre give rise to ≤1 Hz delta rhythms (Beierlein et 

al., 2000).   Delta can be proposed as the baseline rhythm of the brain from which we know that 

these signals form the basis for binding integration via coupled oscillation (Polich 2007; 
Fiebelkorn 2013; Sauseng et al, 2008).  

       We have not included the higher frequency Gamma rhythm here, as we will expound this as 

being at the end off the ERS range when the neural oscillations tend towards geometrical 

(hemispherical) asymmetry and decoherence in the cortex (where Gamma is generated).  We do 
know that Striatal Beta and Cortical Gamma couple in ERP (Sauseng et al, 2008; Fiebelkorn, 

2013) and such Cortical to limbic coupling will be addressed in section 4.6 and 4.7. The main 

point is that Cortical cycles are less symmetric, less continuous and less global to the system. i.e. 
They are local to particular cortical areas. So these higher frequency oscillations are what would 

be expected if we look at EEG on the range of possessing less coherent properties as the 

frequency rises and their source is furthest from the centre of the brain (see table 1).  The point 

being the manner in which the brains most continuous and symmetrical self oscillation signals 
emerge from the brains centre can be proposed to reflect the previously mentioned conditions in 

which natural self oscillation tends to occur as an internal bifurcation in the centre of a 

geometrical symmetrical closed system. 
       With the limbic system having a neuron to white matter ratio of 6:10 (Collins et al., 1998; 

Evans et al., 1996), the oscillations have more facility to travel globally across the axons to at 

least the lower cortical areas where connectivity with the limbic system is most dense.  So in 
essence structurally the brain system can now be seen as comprised of the extremes of the Cortex 

which has the highest density of neurons giving rise to least action invariants on a surface sheet, 

and the white matter dominated limbic system with low density of neurons giving rise to phase 

coupled sources from the very centre of the brain (see figure 6).  To propose this general structure 
model for the brain we have to consider the role of the limbic system as an equivocal but inverted 

convolution of the cortex which occurs somehow in developmental evolution. i.e. Evolution gives 

rise to a system which generates inverted structures that can cycle between action and entropy. It 
should be mentioned now there is a common misconception the human brain is a cortex evolved 

over an assortment of older limbic system parts with lower functions.  
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       First of all the limbic system to cortex still has a volume ratio of about 1.6:1 (Collins et al., 

1998; Evans et al., 1996). Most importantly the limbic system and cortex, have always evolved 
together, yet have conserved independent developmental trajectories that obey a mathematical 

scaling and time law across mammalian species (Clancy at al., 2001). The oscillation quality of 

the limbic system is also no minor player in the neural processing as it comprises a primary bulk 

of the systems energy (Lemm et al., 2009).   
 

 
Table 1: EEG with their known anatomical origins, their participation in phase coupling and susceptibility 

to decoherence (ERD) 

 

 

3.2 What contribution do the oscillations play in intelligence? 
 

To emphasis the limbic systems power, a bulk of our processing on any given stimulus will be 

found to have important correlates in the thalamus, basal ganglia and hippocampus, with well 
known computations for each giving rise to a powerful aggregate of processes. Re-enforcement 

learning, autobiographical processing, episodic encoding and recall, sensory routing, system 

consolidation and pattern conflict resolution are easily justified as being as important as the 

cortex.  The binding qualities we derive from the limbic systems oscillations in perceptual 
processing are primarily the ERS which along with ERD compromise the other major part of the 

brains perceptual ERP intelligence signals. So ERP is composed of ERS and ERD (see figure 5).   

In ERP we find that limbic system modules phase lock together. i.e. phase-locked delta 
(thalamocortical) and theta (hippocampus) in the P300 (Polich 2007; Fiebelkorn 2013). Alpha 

(thalamus) and theta in the N1-P1 ERP signal (Klimesch et al., 2004).  

       Latterly delta and  beta (striatum) cross-frequency coupling occur (Sauseng et al, 2008) and 

are verified to have perceptual functions also (Fiebelkorn, 2013). Baars well known Global 
Workspace Theory (GWT) based on thalamocortical phase interaction has also been updated to 

accommodate these newly discovered phase locks (Baars, Franklin and Zo, 2013).  Phase locked 

Frequency (Hz) Origin Phase locking ERD 
Delta 0-4 Thalamic reticular nucleus 

(Beierlein et al., 2000) 

(polich 2007; 

Fiebelkorn 2013; 

Sauseng et al, 2008). 

No data 

Theta 4-8 Septal pacemaker 

(Ujfalussy et al., 2007; Sotty et al., 

2003; Lawrence et al., 2006; 

Brazier, 1980; Wang, 2002; Kocsis 

and Li, 2006) 

(polich 2007; 

Fiebelkorn 2013) 

No data 

Alpha 8–13 Third ventricle (Brazier, 1980; 

Karson et al., 1988) 
(Sauseng et al, 

2008;Klimesch et al., 

2004). 

No data 

Beta 12-30 Subthalamic nucleus, globus 

pallidus 
(Bevan et al.,2002; McCarthy 

2011) 

(Sauseng et al, 2008; 

Fiebelkorn, 2013 ). 

No data 

Mu 8-30  Unkown maybe a cortical model of, 
alpha-beta i.e. mu-alpha and mu-
beta  (Jones et al., 2009) 

No data (Haufe, 

2010) 

Gamma 30-100 + Lower cortical layers 
(Bartos, Vida and Jonas, 2007) 

 Modulated(Buzsáki and Wang, 

2012) 

(Sauseng et al, 2008; 

Fiebelkorn, 2013; 

Fründ, 2007) 

(Polich, 

2007, 

Edwards, 

2007)  
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cortical gamma does occur (Fründ, 2007) but this is within the cortical ERD Desynchronization 

peaks.  Oscillations as mentioned previously do occur in the cortex primarily as Gamma cycles, 
but these are asymmetrical and as sporadical as the spreading waves they appear in. They also 

become desynchronized quickly (Polich, 2007; Edwards, 2007) and are modulated by the slower 

rhythms like alpha (Buzsáki and Wang, 2012). This is in line with the previously mentioned 

concept that the cortical structure is primarily for action and not to generate the combinatory 
options and global binding integration which can occur from oscillatory computations. Some 

specific pattern features of Gamma will be expounded upon in section 4.6, 4.7 and conclusions on 

combinatrics in section 4.5.  
 

3.3 Casual modeling approaches to entropic oscillation 

 
To summarize the above, for ease of understanding we can propose that the oscillations have an 

analogy to music, where the lower frequencies from the more central areas of the brain provide 

the fundamentals to which higher frequencies that are increasingly prone to decoherence lock to, 

so phase locking would be driven from the lower frequencies with their source in the centre of the 
brain. The two primary brain structures of cortex and limbic system are not completely different. 

They do still possess aspects of each other, i.e. they both spike and oscillate, but in different 

ratios, which might reflect the almost inverted grey to white matter ratios previously mentioned 
for each structure. As mentioned this principle overall may derive from structural inversions 

which have origins in biophysical principles of development, but this is beyond the scope of this 

paper.  In terms of the framework of (Pissanetkzky, 2013a), at the centre and surface of the brain 
respectively the extremes of self-oscillative entropic coupling  and least action invariance appear 

most prominent.   

      With self-oscillation as a principle of entropy, then the limbic system of the brain would have 

to be defined as inducing physically symmetrical global entropy into the system (as ERS) and that 
its own structure has emerged from the basic principles of thermodynamics.  Conceptually this is 

not difficult, as information enters the system in its raw form it has high entropy and as it makes it 

way through to the final cortical layers it is pruned into its highest order form. Coupled self-
oscillations are proposed as a product of the entropic principle re-distributing information 

resources equally across as much of the entire system. This is in contrast to the cortical activity 

where the invariants are sparsely coded at the topmost layers furthest away from the reach of 

wide reaching global oscillations which might influence a reduction of the local ordering. 
       The current focus of CML has been on the hardest problem of how to find least action paths 

in amongst seemingly random data with equivalence to current deep learning systems based on 

the cortical system for generating invariants.  A casual modeling system for the phase coupling is 
usually a sub-application in neuroscience. It is often as overlooked in computational modeling as 

the concept of entropy is to AGi.  This is because these entropic facets of the system appear 

apposed to the generation of the clear type of functions that have previously been of higher 
scientific priority, such as understanding feature extraction in neuroscience and producing 

modeling functions in Ai.    

        To approach how we can model the limbic systems oscillatory nature, causal sets are finite 

and they have a finite number of states. A dynamical system evolves by changing states, but at 
some point it will run out of new states and return to one of the states it has already been in, 

causing a cycle where the same dynamics repeats indefinitely (if undisturbed) with a certain 

period. In general this oscillation is not harmonic, and there can be many different superposed 
periods, giving rise to complex waves and oscillations that can be observed in EEG.  Specifically 

when it comes to the periodic aspect in a proposed entropy oscillation or sets of such oscillations 

in coupled forms, the causal set is both data and algorithm.  
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       If we define the sets as a harmonic oscillator, causal sets can be periodic and represent any 

locking of periodic phases if necessary.  Taking the initial/final states say I, F of a dynamical 
system, and any rules that represent trajectories from I to F, then when I = F, the causal set is said 

to be periodic and it lends itself to the emergence of harmonics.  Because of Fourier theorem, 

there exists a unique one-one bijective correspondence between causal sets and their Fourier 

spectra.  If the conditions emerge for a causal set to be a perfect harmonic, or a perfect second 
harmonic, and so on, the corresponding spectra will emerge and this will be generated as rules 

within the sets.  The critical point is that Fourier spectra satisfy superposition, so any periodicity 

in causal sets will have to as well. However a harmonic oscillator theorem is yet to be proved in 
CML or neuroscience. It is  only mentioned so we can describe the most extreme case of locked 

oscillations.  For a less extreme example of a causal framework locking phases more suited to 

neuroscience, we look here at Dynamic Casual Modelling (DCM) where the sets for the 
oscillators are finite and its phase can be reset.  Eq. (9) below (Penny et al., 2009)  has already 

been derived from the phases we looked at in ERP by recruiting weakly coupled Izhikevich 

oscillators (8) . 

 

φ ki = fi +∑
=

Nr

j 1

τ ij(φ ki -φ kj+ umcimcosφ i)      (9) 

ki  and kj are phases in the ith and jth regions on the kth trial.  fi is intrinsic frequency of the ith 

oscillator. This provides the rate of change of phase, equivalent to the instantaneous frequency. 

The term umcimcosφ I  has been added here as a means to model the phase locking in coupled 

ERD oscillations. When cim  is sufficiently large the coupled cycle is limited and resets as the 

dynamics are forced around limit cycles.  

        So we propose in light of the justification for such oscillators as entropic forces that casual 

modeling is also capable of specifying the entire range of processes from least action in CML Eq. 
(5) to entropic coupling causal modeling correlates in neuroscience Eq. (9). Further work can 

attempt to integrate the least action functional with the output of an entropic phase cycle for the 

purpose of attempting an integrated neuroscience inspired approach to the entire range of 

thermodynamic extremes of information. Primarily because CML has not been previously applied 
to phase locks and it would be required to be consistent with these.  

       It would be predicted that when this is attempted phase locking the stream of data entering 

and exiting the action functional in this manner can provide some of the self directed integration 
features sought after in computational neuroscience, and the trade-off will be we keep re-

introducing entropy and reduce the systems action efficiency.   Within the conceptual limits of the 

work done so far we now proceed with the primary proposal for this paper.  An integration model 
derived from the application of the casual approach to the current neuroscience information.  This 

has involved generating data from the action functional to make predictions about ERD in neural 

signals as well as predictions on the role of entropy with its correlates as phase cycles (ERS). 

 

4. Putting order and disorder together. The CML framework predicts the brains 

primary structures are a complete thermodynamic “information engine” 
 

To summarize where we are, the mammalian brains primary computations emerge from two 
systems, cortex and limbic system which it has been useful to analyze as separate systems. 

However such separation is purely for the purpose of studying the system, but in reality cannot be 

this clear as the limbic system attempts to reach into every part of the system and the cortex then 

tries to exert top down control over this process. This view is assisted by evidence that both 
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Cortex and limbic system have their own developmental timelines trajectory known to be 

separately defined by a systematic variation which works across mammalian species (Clancy et 
al., 2001). The point being that even in neurodevelopment one of these systems has some 

definable separation from the other.  

       Based on the justifications in the previous sections it is proposed that each structure 

(primarily) possess the extreme properties of least action (cortex) and entropy (limbic system) 
respectively increasing towards their most separate locations. i.e Least action at the uppermost 

cortical sheet layers, and highest entropy principles from the self oscillating midline limbic 

structures. The final conclusions in this section will put together the proposed “information 
engine” derived from this perspective more clearly, and propose this is a general principle for 

mammalian intelligence with a clear thermodynamic basis (figure 6). First we must justify some 

more of the existing general work carried out in understanding the entire input-output of the 
cortico-limbic brain system.  Note we have missed out the cerebellum and brainstem in this 

approach for the reasons pointed out by Tononi (2008), in that the system is most emergent, 

developed and functional in the cortico-limbic domains.  

        On that note there already exists previous proposal for a dual process model for a core brain 
or AGi system to operate based on demarcating the system into the two extremes of functional 

specialization and integration (Tononi and Sporns, 2003; Tononi, 2008;  Balduzzi and Tononi, 

2008). The authors do frame some of their calculations on the concept of maximum entropy, but 
did not extend it as we are doing here. Here we apply such a dual process more completely to 

thermodynamics and the ERP signals of the brain. More specifically the functional specialization 

will be the equivalent of least action (ERD) and the integration to entropic coupling (ERS). The 
formulization for the system viewed in this approach (equation, 10) also relies upon the dual 

process definitions of Tononi and colleagues. 

 

4.1 ERP as markers of intelligence processes 

 

As reviewed previously, ERP are the primary signal we can detect that is associated with both 

information and the complex processing of information.  Lie detection technology looks to ERP, 
because the ERP can tell us if precise information or sets of information are recognized and 

processed by the brain (Farwell and Smith, 2001). The timeline for the ERP signals begin 

primarily in the cortical ERD range of up to 300ms. These have a wide variety of perceptual 

intelligence processes (See section 2.2). In lower times below 300ms the signals represent single 
sensory modalities associated with cortical processes. Above 300ms it is less clear if the limbic 

system dominates. We know these later ERP’s do seem to indicate less specialization and 

increased multi-modal global synchrony assisted integration. Known post P300 processes are 
general context updating, perception stabilization, maintenance in working memory, syntax 

processing and generation of expectancies that are associated with conscious awareness (Melloni 

et al., 2007).  We can see from figure 5, that the primarily cortical ERD action is reducing after 
300ms, so less cortical activity then is also consistent. That we have a problem in defining clear 

decision functions to later ERP might reflect the increased entropy in the signals. 

 

4.2 Event related potentials; the brains “intelligence signals”, as the integration of action 

(ERD) and entropy (ERS) 

 

ERP are then proposed as the primary biophysical emergent “live intelligence signals” when we 
look at the brain in terms of its input and output operating over the systems internal resting or 

stationary state over time (see figure 5). The work of Papo (2013) proposes we should focus our 

models of cognition on what happens to the brain in terms of these signals and the physical 
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principles they represent over time in thermodynamic principles. Authors in the DCM field also 

attempt a causal definition to specific brain locations in terms of suppression of energy in the 
cortical  areas (Garrido, 2008) and free energy principles (Friston et al., 2010). We extend this 

further by integrating together the general conceptual framework of causality and principles of 

physical brain structure outlined so we can derive a general thermodynamic model that represents 

the complete generalities of physics and the full complexity of the system. Not so general that 
anything can become anything else.  

       We are very specifically looking at the two extremes of the primary biophysical signals, 

previously described in terms of least action (ERD) and entropy (ERS). Note when we discuss the 
term “energy” in the following text the “energy” is the form of sets of complex information or 

processes acting upon them. i.e. For the reasons mentioned previously the ERD and ERS are both 

complex computational processes, yet still emerge clearly enough to demarcate overall systems 
energy at the same time (see figure 5).  

 

ERP are composed primarily of the two signals discussed previously that have their origins in the 

cortex and limbic system (ERD, and ERS respectively).  For the definition in a thermodynamic 
timeframe, we now look at how ERD and ERS have been found to operate on a continuum 

whereby both are activated following input stimulus to the systems resting state (lemm et al., 

2009). After stimulus to the resting state, ERD and ERS occur in the following sequence with a 
midline integration of both ERD and ERS occurring at 300ms (figure 5). 

 

1. ERD (Event Related Desynchronization) comprised primarily of evoked cortical activity.  Non 
linear - cortical spreading waves initially increases up to about 300ms, then falls off suppressed 

by ERS to restart at about 750ms.  

 

2. ERS (Event Related Synchronization) comprised primarily of several phase coupled linear 
limbic system oscillations, starts at around 300ms, then falls of suppressed by ERS at about 

750ms. 

 
3. The range of the brains perceptual ERP’s (P100-P600) which are comprised of both stationary 

activity and varying combination of the evoked ERD and ERS signals, see  timeline in figure 5. 
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Figure 5. Diagram above modified from (lemm et al., 2009) where known ERP (P number represents 

milliseconds) signals are added as well as our interpretation of the data in terms of the entire systems 

energy as least action and entropy. The energy of the system at the midline represents the brains resting 

state before a stimulus. Which is initially desynchronized (ERD)  by cortical activity to a more efficient and 

lower energy state by the lateral inhibition of local cortical invariants. The suppression of baseline 

synchrony gives rise to a rebound in global synchrony from the limbic system (ERS), increasing the entire 
systems entropy before falling back to the resting balance between order and entropy (partial order). 

 

This fresh integration of ERD/ERS into an elegantly cohesive timeline after stimulus to the 

systems baseline oscillations could be a full thermodynamic operation of the brains input and 
output, where the energy is now minimized after stimulus. The systems initial stationary state is 

in a partial transition between lowered energy processes (least action) and the higher energy of 

entropic self-oscillations. After stimulus, if processing is required the range of ERP’s associated 

with higher perception (P100-P600) occur.   
      There is a natural connection between action and entropy. We know that entropy is connected 

with uncertainty. Action, in turn, is connected with the flow of energy responsible for the 

dynamics of the system. The two quantities are intimately related. When the energy is high we 
say that the system is “hot”. There is a great deal of energy moving around and shaking the 

system and causing it to react in many unpredictable and uncertain ways. This situation happens 

when “hot” and hence highly entropic information obtained by our senses first arrives in the 

brain. It consists of bits and pieces, whatever the eyes and ears and touch can capture, all 
scrambled without much organization or meaning. The collection of total orders includes all kinds 

of behaviors. But then, when we select the least-action total orders, we are in fact causing the 

excess energy and entropy in the brain to flow back to the environment. The system “quiets 
down” by losing its energy and entropy, and hence its uncertainty. It reaches the quietest of its 

states, known as a conservative or resting state, with action at minima. 

 

4.3 When is the critical phase transition between least action (ERD) and entropic oscillation 

(ERS) ? 
 

Expounding the DCM work on P300 and system energy (Garrido, 2008) it is proposed here the 
P300 represents the critical phase transition point between cortex (least action) and limbic system 

(entropic). The limbic / cortical integration cycle, here is proposed as sensory input leads to 

cortical propagation, or wave expansion (Xu et al., 2007), followed by desynchronization or 
decoherence of the baseline partially ordered state.  The baseline of partial order is proposed as 

the most prominent aspect of the brains energy to which it returns to, as the highest density of 

connections exist in integration areas between the previously mentioned extremes of the cortex 

(surface) and limbic system (centre). i.e In the lower cortical layers, the cingulate, basal ganglia, 
and hippocampus.  
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Figure 6. A structural cortico-limbic “information engine” model in terms of the thermodynamic principles derived 
from CML, using the ERD/ERS cycle translated from figure 5 with the previous justification to specific brain 
structures. The concept is that of a cycle ready to push or pull on baseline system states. The cortex surface which 
reacts to inputs minimizes the systems energy by desynchronization as it enforces invariants by the least action 
principle which are the systems rules. The limbic system generates global coherence into the information by entropic 
oscillations which integrate the system into linear time as coupled phases operating in the partial ordered system.  
Entropy structure are symmetrical from the brain centre (thalamus, septal areas), Ordered structures are asymmetrical 
surface sheets split across corpus callosum (functional asymmetry).  Please note that each of the primary structures 

“tends towards” the extremes, the bulk of the brain in between the central midline and cortical surface sheet are 

transition (or partial ordered) states between least action and entropy.  

 

To recap the importance of ERP signals, the P300 generation is entirely cortical, covering much 
of its area and involved in a wide range of perceptual selection processes such as object 

recognition and onset of conscious access (Polich, 2007). Maximal efficiency for the entire set of 

relevant cortical categories has to be acquired by 300ms, before the suppressed oscillations from 
the limbic system restart cross-frequency oscillation coupling. The coupling proposed to give rise 

to the previously mentioned multi-modal integration functions, that de-localize spreading cortical 

activity. Interestingly as the systems energy becomes maximally entropic in terms of self 
oscillation after 600ms (Figure 5) we are unable to pick out any clearly defined processes in 

response to a stimulus. In the absence of processing activity it can only be guessed that the 

increase in global synchrony is giving rise to a globally cyclic “system reset” of fresh combinatric 

options with a resting phase which is maximal at 750ms, before dropping the system back to a 
baseline state between order and disorder. Brandt (1997) proposed from experimental data that 

ERS system reset could be required in a non linear system (like the cortex) in response to a 

perturbation such as viewing a flashing light. In systems terms these twin peaks of ERD – ERS do 
appear conceptually similar to the chaos/regularity transitions which occur when harmonically 

oscillating linear systems are exposed to non linear amplifications (Bolotin, 1995).  
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      From this perspective of using CML principles as a guide to the brain, ERP then represents 

the integration of these two extremes of ERD and ERS in the key emergent biophysical signals of 
mammalian intelligence.  To summarize the lower ERP’s below P300 represent more cortical 

process, but after 600ms there is too much phase coupled entropy to clearly define any process in 

the system.  The first thoughts from viewing the system in this manner are that revealing the 

biophysical correlates of such entropic vs action principles integrated together in high level brain 
function bridges the evolutionary gap between simple physics to complex physical information 

sets. That is that the physical principles have remained consistently conserved to become ever 

clearer throughout evolution and complexity in brain structure and function.  If this view is 
correct it raises several issues. Is this the optimal “blueprint” of a natural information engine ? If 

it is it generates an AGi problem. Because the engines operation requires a particular physical 

structure to operate an AGi may have to be built with such structures. All the math for example 
that we have used here, and referred to elsewhere, is still not a physical construct. It is a product 

which runs in our own information engine. We can use mathematics to understand and describe 

the plan for such a system, but at some stage the system will have to be one that is producing such 

physically thermodynamic information operations. 
     Simple analogies have their problems, but they do however make things easier to understand 

as long as we understand their limits, so on the basis of caution we proceed with comparing the 

approach here to a more familiar engine concept. Or more specifically a variable piston, 
compression variant. If we entertain the topological distribution for entropy phase cycles and 

cortical columns as hierarchical pistons with the most action at the surface, it is not hard to see 

the analogy to a variable piston engine.  Except that there are millions of pistons (mini-columns) 
in a sparse coding hierarchy dominated by macro-columns and their known functional 

specifications in wider areas.  So within each piston a lot of information can be pushed around. 

An engine also requires a balancing shaft at the centre which distributes the energy load by 

synchronizing all these pistons and so this is then locking phase cycles as in ERS.  
      However the problem is far more complex. For example if the axis for the engine runs along 

the temporal poles to the hippocampus, and the split hemispheres say, represents how a flat or V 

engine gains power by spreading its piston load across poles, we then do not have a clear analogy 
for the complexity of hippocampus layout to any known regular engine. Perhaps the hippocampus 

has both gearing and engine integrated, which we can tackle later as a specific implementation of 

CML. However taking into account the topological complexity of other known brain topologies 

mentioned in table 2 (in section 4.6) the analogy clearly here has its limits as information requires 
coding which is not a problem for such simple energy systems.  

       Currently there are both studies and real world systems which bolster the view for ideal 

physical topologies which reflect aspects of the proposal here. For example stacked linear matrix 
systems for parallel computing (Sardar, Tewari  and Babu, 2011) have some analogy to the 

regularity in axon bundles (Weeden et al., 2012). Toroidal topologies (Jin et al., 2010) with 3d 

similarity to the cingulate bundles have a scale free optimal aspect for both information 
integration and isolation. More recent computational analysis of the ideal geometrical topology 

for understanding neural synchronization proposes that an ideal system (in simple form) will self 

organize a greater degree of connectivity in the centre of the system and more importantly this 

structural identity is retained under transformation when the system complexity is increased to 
resemble finer aspects of a more conventional neural network (Mi et al., 2013). Overall though 

we are still far from designing or identifying a particular set of universal topological principles 

which produces the complex structure of the brain and can apply to other generally optimal 
information systems. There may be many such configurations yet undiscovered, and so this is 

stated as a limitation of this proposed general model. 
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4.4 Definition of the system as an integrated summation of functions. 
 

We now finalize by formalizing the above in general form then check if the predictions so far are 

verified or not by the data from the output of the CML functional. In figure 6, the limbic systems 
ERS spread out symmetric oscillations in reaction to the cortex pull on information, which had 

moved the system into the set of asymmetrical attractor states we equate with cortical functional 

asymmetry across the temporal lobes (see figure 6). (note these are the neuroscience definitions 

of symmetry/asymmetry).  When information does not require to be acted on the system returns to 
a baseline state, which now possesses a refreshed partial order and minimized action in the 

system. The effect of the minimization is maximal compression as sparse coding of invariants in 

the upper layers. The engines cycle at its least action extreme is then an information compressor 
that operates via lateral inhibition which can operate across the hemispheres. This coding system 

is still as unknown as the current understanding of functional asymmetry, although we shall touch 

on some current ideas for coding aspects in section 4.6 and 4.7.  The ERS part of the cycle 
operates to allow a global refresh for integration of information across as much of the system as it 

can reach.  Details for viewing the brain in terms of integration and functional specialization have 

already been started to be defined by Tononi and colleagues. Here we will describe the system 

more generally in thermodynamic information terms pertaining to the ERP components. 
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A change dUγ  in the total information energy product of the system is the sum of changes in 

terms of the global entropic increase in energy and the decrease in energy by minimization of 

action. In information terms energy is defined as the probability distribution P of the information 

in regard to its domain.  As the sets for the domain are too complex to define with current 
knowledge, here we resort to using the definitions of Tononi (2008) where there is a probability 

distribution derived from the product of independent information (here defined by ERD) and the 

probability distribution of the averaged sum of integrated information (here defined by ERS).   

       Integrated information is the set of extensive information distributed across the system. 
Parameters, {ai} are the set consisting of the number of intensive ERD processes, defined by their 

independence, and reflect that the least action principles of the grey matter are independent of 

system size (Zhang and Sejnowski, 2000).  Set, {AJ}, are the set consisting of the number of 
extensive ERD processes and reflect that the entropic principles of the white matter are dependent 

of system size and scale to fill the volume of the system (Zhang and Sejnowski, 2000).  Because 

the set of all global cycles is limited as in Eq. (9) ο  is simple representation of the limit value for 

the phase locking of the oscillations. i.e. this was proposed as umcimcosφ I   by the DCM model 

in Eq. (9). Rs= ( )∂∆ ,,,, µβα  is the initial resting state, the combination set of any given 

continuous synchronous resting states alpha, beta, delta, mu, theta (the systems previous state 

returned to equilibrium, see figure 5).  The range of continuous oscillations is included because a 
typical system is not in the ideal alpha resting state in the ERP experiments of (Lemm at al., 

2009), and there may be many types of resting states consisting of various summations of these 

oscillations yet to be clarified.  

       To summarize, a solution has been proposed by a physical information theory which explains 
how entropy and least action unify spreading waves and oscillation in terms of partially ordered 
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sets, and to propose that event related potentials occur as partially ordered states, which under the 

action of the “information engine” proposed give rise to another set of partially ordered states 
after ERD has minimized the systems action. In terms of CML, Limbic ERS is the equivalent of 

the DCM limit cycles operating on a causet. The cycles are present and (see section 3.3) have 

enough global entropic reach in the system to generate new global associations to be induced 

amongst the previous blocks of the causet.  The outcome of the process is still a partial order 
where ERS is the system refresh that generates a new causet with more predictive detail. A 

domain specific probability distribution is then ready to perform the equivalent of cortical ERD 

on current information if required.  The function of the ERD is to minimize the action of the 
previous causet and increase the detailed relevance of its feature extraction functions.   

 

4.5 Application of CML to predicting ERD/ERS cycles 

 

After the systemization occurred to build the integrated model above, a data set was derived from 

the functional operating on the combinations of a set with 12 elements and ordered pairs. The plot 

shows it reaches maximum entropy (the combinatorial peak) in what appears like a Gaussian 
distribution with a right skew towards least action.  The combinatorial peak occurs when there are 

the least rules to favour configuration of one order over another. The neuroscience prediction was 

that as the system increases its complexity least action takes place as the equivalent of the ERD 
cortical processes, outlined in section 2. These high level invariants requires sub processes that 

partition the data. We know already that the action functional partitions the data into such sub-

process. i.e. each differential equation when working on the Euler problem (Pissanetzky, 2013b). 
The other prediction is that the ERS entropy as outlined in section 3 would be equivalent to the 

entropic product of CML. However, the data in figure 7, did then not fit as predicted, in fact 

figure 5, which proposed itself as a general model for ERD/ERS seemed to show that the entropy 

ERS is occurring after the least action processes, which was not consistent with this hypothesis. 

 
Figure 7. The data was derived using minimization of action by the action functional. Action vs entropy is 

correlated to a normalized power law with the entropy distribution pushed out of the least action range 

towards most action as a right skew. 

 

Not even inverting the process of the action functional could explain the disparity. On reviewing 

(lemm at al., 2009) however, it seems their general framework did not include the oscillations 

primarily associated with high level perception in the generation of the P300. Specifically 
hippocampal theta and delta (polich, 2007).  Reviewing older data we did find the theta and delta 

(ERS) appear to be present before the time of the ERD dip contradicting the general model 

proposed by Lemm and colleagues, (Başar-Eroglu et al., 1992; Yordanova and Kolev, 1997). This 
is because in the Lemm model, it is alpha which is primarily suppressed (Aftanas et al., 2001). 

This is not surprising as Alpha ERS has sensory input peaks which occur earlier briefly in the 

pre-processing to shorter ERP such as N1-P1 (Polich, 2007).   The work of (Kawamata et al., 
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2007) now illustrates more clearly the theta ERP and ERD peaks in regard to the P300, and so the 

ERS precedes action.  These are now as CML has predicted (see figure 8). 
 

 
Figure 8 –In the diagram above (Kawamata et al., 2007) the hippocampal theta oscillation is re-drawn. The 

the readings taking during decision making under the condition of the video game tetris from the central 

cortical areas.  The dashed lines indicate reduced oddball processing (less decisions over conflicting 

information). ERS justified previously to be defined as entropy, peaks before the onset of the decisions, and 

ERD (justified previously as action) drops more sharply (so less action) when increased decisions are 

required. i.e. The global coherence of the system becomes quiet. 

 

Further data in (Kawamata et al., 2007) suggest that the theta ERS/ERD restarts in a cycle (like 
figure 5) when there is less pressure for decisions. Its seems to suggest both that entropy is 

continuously being re-introduced into the system, which may be to increase the number of 

combinatric options as described by gross-freer, and so cycles of entropy are a neural principle.  
The function of the entropy could be to globally re-introduce the system to refreshed options, or 

the various integration aspects mentioned previously that occur when ERS onset occurs. As we 

can see from figure 7 entropy is always pushed out the reach of the least action, because the 

invariants have only a single direction and so the combinatric direction for phase coupling cannot 
exist there.  This is also proposed to be similar to the more complex sets of operation in the brain. 

i.e. why ERS (entropy oscillation) is suppressed with latency before decisions from ERD (action) 

in figure 8. From this view the brain is both a cost minimizing system and an entropically binding 
system. It increases cost to enable global integration and re-generate variation as combinatory 

options.    

       As the brain system is highly cyclic, a future prediction for CML when adapted more 
rigorously for neuroscience is that the bias for the action functional to minimize action cost as the 

priority is de-regulated by inverting the operations of the action functional  by the addition of a 

limit cycle phase oscillator which binds together coupled phases.  Perhaps a simplified version of 

that used in the DCM Eq.9. Although it was mentioned in section 3 CML could self-discover 
principles of phase cycling, the theoretical question has not been solved as to whether those 

cycles would take over control of the action functional,  invert its function then release it within 

such a limit cycle without then submitting the entire action functional to mathematical 
decoherence. For now we have set out the starting principles and such problems can be tackled in 

later projects. 
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4.6 Dealing with more complex implementations in brain structures 

 

To summarize, the approach given here is a general model which seeks to establish its case by 
consistency with the largest sets of signals and provide a general approach to a structural 

information engine by location of the generalized sources for entropy (ERS) and action (ERD)  at 

extremes in the centre and surface of the brain. 
        Because the mammalian brain system is complex just this simplification alone takes a paper. 

The model still has to be consistent with more specific complex implementations where both 

cortical and subcortical areas integrate cohesively at various scales or it is not a model.  The First 
problem here is that neuroscience is still working towards finalizing understanding 

(understanding as in general theory) of the brains complex high level sub-systems (sub-system as 

in sub-ordinate to an entire set of system principles). Some basic descriptions for the medium 

scale have emerged to work with (see table 2).  
 

Table 2.  Outlining some prominent brain modules and their functions. 

 

 
 

  

 

 
 

 

 

Each of the parts is themselves complex to describe, such that a simplification with a biophysical 
based principle extraction scheme could not be brief, at least not in the initial approach to justify 

what would be hoped to be a simplified description. Justification is required for prioritizing.  Why 

are cingulate processes more important to describe than why mu waves appears to be a “mirror” 
of the beta and alpha wave (Jones et al., 2009). Or why are hippocampal ripples or precession 

more important to describe than the alpha coherence which arises from the thalamus ? A partial 

justification for prioritizing the hippocampus is that is has complexity at multiple scales. Highest 

neuron density at the temporal lobes (Thompson et al., 2003), highest frequency and most 
complex oscillations, (Buzsáki  and Silva  2012; Chance, 2012 ), highest neurogenesis (Bear et 

al., 2006),  increased wiring complexity, morphology and cellular signal complexity (Bear et al., 

2006).  And of course the more dramatic deficit to memory, consciousness and encoding when 
disrupted (Bear et al., 2006). This is still not a deep theory reason to prioritize it, but for now 

there is so much going on in the hippocampus as a key hub of the brain that aspects of its signal 

complexity should at least be covered as a special case and from there determine if its complexity 
tells us more about the proposed engines operation.  

         We have previously considered the level of ERP as marker of intelligence processes. i.e. for 

example oddball resolution of conflicts at P300. Here information coming into the system has to 

be processed against information within the system at the same time. Decisions have to be made 
whether to allocate attention (resources) to incoming data for storage in (Short Term Memory) 

STM and then any required buffering to Long term memory (LTM). At the same time pattern 

recall is required. So the system has to associate these two primary information streams.  It 

System definition Primary function 

Hippocampus - Cortical Encoding, recall 

Striatum – Cortical Action selection 

Cingulate Information resolution 

Thalamocortical loop Input filtering 

Cortical columns Feature extraction and attention 
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appears like the hippocampus is the region to juggle both the set of encoding and retrieval 

processes without a conflict of overlaying patterns (Koene,  2001).  
        Further to this recent work by Buskazi and Peyrache (2013) proposes the hippocampus as 

the key hub for many outstanding signal mysteries, such as sharp wave ripples (SPW-Rs). These 

are proposed in terms of a coupling to decoupling model from septal to temporal ends of the 

hippocampus. Previous septal – temporal models also propose to resolve how long term time and 
information chunking operates along this axis (Lytton and Lipton, 1999). We will conceive of this 

decoupling in terms of a “gearing mechanism” for the information engine proposed here. First of 

all we need to address that the  hippocampus can integrate both pattern completion and separation 
processes (Edmund, 2013).  So we have defined the pattern processes for CML based on these 

extremes. 

 
1.  Complete sync -  entropy oscillations (ERS).   The system has regular phase locked sequential 

loops for iteration and completes its pattern. This process is most marked with Alpha-Beta phase 

locked oscillation for the striatum (Sauseng et al, 2008; Fiebelkorn, 2013). 

 
2.  Complete decoupling of sync – least action (ERD). The cortex has sparse compression which 

gives rise to feature extraction.  Decoherence of cortical gamma is the most prominent feature of 

ERD (Polich, 2007;  Edwards, 2007).   
 

3.  Integration of 1 and 2 in the hippocampus.   Both locking and decoupling of theta and gamma 

respectively (Polich 2007; Fiebelkorn 2013; Buzsáki and Peyrache 2013; Jensen and Lisman, 
1996b). i.e. The hippocampus can both complete and separate patterns simultaneously.  

 

4.7 A “gearing” model for the information engine ? 

 
Referring to figure 5, we can see that the proposed entropy function of oscillations demands a 

clear energy input, and we know that the lower frequency oscillations (delta to alpha) have well 

known long range network reach which allows them to remain coherent through much of the 
system. As the cortical system only suppresses energy in reaction to relevant stimulus (ERD) the 

systems energy can be distributed in a more internally equalized manner (ERS) when ERD is not 

present.  As the frequencies in ERS rises coherence drops (table 1) and ERS decouples in a 

transition to the lower energy states of ERD. Buzsaki proposes that the neocortex and 
hippocampus is a hub where ERS cross frequency coupling can break down and the decoupling 

indication signal is the extremely high frequency SPW-Rs (Buzsáki and Peyrache, 2013). So as 

highlighted in table 1, as we move towards more cortical  (temporal) processes  the phase locking 
is disrupted as we are moving to the brains surface.  Note that there would also be predicted to be 

gear decoupling in the action selection cycle of the striatal-cortical loop but for the reasons stated 

we are focusing on the hippocampus. 
       We know the role of the hippocampus is key in high level perception (Polich, 2007). 

The proposal here is that the hippocampus has a gearing mechanism, except the number of gears 

is as high as the number of phase timings which can integrate and decouple.  Such a number has 

been defined for STM as correlated to the theta - gamma interaction intitally as 7 +/- 2 ( Jensen 
and Lisman, 1996a) and more latterly as 2 items per hemisphere  (Buschman et al., 2011). To 

bolster the gearing concept as present in critical transition areas between the cortex and limbic 

system, hippocampal place cells are also proposed as speed-controlled oscillators (Geisler et al., 
2007). That is their rate increases with coding requirements.  As we outlined previously higher 

oscillations give rise to ERD and decoherence (decoupling of phase lock). So how does ERD and 

ERS translate to encoding and recall ? Both encoding and recall within the hippocampus queue 
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up numerous buffers and molecularly intricate sub systems (Koene, 2001). Specifically 

multiplexing between gamma and theta (Jensen et al., 1996) has been used to to resolve overlay 
conflicts for short term memory.  

       The hippocampus ability to deal with contradictory processes is proposed to outline the 

implementation of a transition state between entropy and action with cortical gamma phase 

(ERD) for action. i.e. Action primarily encodes information. The Gamma phase appears to be 
more involved in truncating, compressing and encoding information into varying discrete chunks 

(Koene, 2001). By contrast the origins for theta oscillation (ERS) are at the septal end of the 

hippocampus (see table 1) where Lytton and Lipton (1999) propose that recall processing is more 
prominent. Jensen and Lisman, (1996b) also favor place recall as a theta dominated process and 

place encoding as a Gamma orientated process.  To complicate matters slightly encoding – 

retrieval bias is also proposed as having asymmetry across the entire hemispheres (Habib et al., 
2003). This model called “Hemispheric asymmetries of memory” (HERA) does have numerous 

inconsistencies (Owen, 2003) and also conflicts with lytton and Lipton (1999).  However we will 

proceed on the presumption these problems might be resolved in future because to also include 

such larger general encode-retrieval models might prove useful for a CML approach,  and it 
seems the problem is these models did not address the complexities for specific time locations in 

the memory buffer que (i.e. Long term memory, early Long term potentiation, etc).   

       The well known Inter-theta precession found in place firing (Chance, 2012), but also with 
sub correlates in the ventral striatum (Malhotra et al., 2012), can conceptually provide a scheme 

to resolve the conflict that can arise between simultaneous encoding/decoding.  Multiple sites in 

the hippocampus produce inverted cycles of the same phase, with one cycle dealing with the 
encoding and one with the inputs from the recall (Koene, 2011).  From the model proposed here 

such precession is still an inter-frequency phase lock, because the place length remains linear 

(Jensen and lisman, 1996b).   To be self consistent with CML all such phase locks have to be 

indicated as entropic in nature as outlined in this paper.  Also figure 7 in results shows how CML 
was found to predict that combinatory options increase with entropy and that this graph has some 

consistency with increases in oscillation locking (see figure 8). To be more function specific for 

the hippocampus phase lock facilitates the interleaving of multiple processes such as encode-
decode which would conflict otherwise (Koene, 2001).  

       At some point we may have hardware options to select the most optimal substrate 

independent platform for differing biophysical aspects of neural simulation/emulation for these 

neuro-computational aspects to be scaled with similar brain like efficiencies.  So it is worth 
mentioning interleaving is a term derived from digital computing where as convolution is an 

analogue option. Current tools are arriving for us to analyze brain networks to unravel which (or 

both) of these aspects are more prominent in particular circuits (Mochizuk and Shinomoto, 2013). 
In general we equate interleaving here with combinatorial options, but mention that both 

interleaving (Burnett and Coffman, Jr., 1973) and the process of convolution have combinatory 

basis in previous computer science (Askey, 1975).   
       In summary we have attempted to determine consistency with some prominent aspects of the 

hippocampus but cannot tackle all neuroscience specific implementations of CML in this paper. 

Some recent works have attempted to integrate the striatum with hippocampus (Yin and Troger, 

2011).  CML would predict some type of signal decoupling for action selection which allows the 
cortex to select which striatal loop option to pick and also some coherence for action selection 

mechanism to couple with the proposed hippocampal gearing is a predicted possibility based on 

recent findings (Yin and Troger, 2011). In general the primary principle is we propose that the 
gearing operates when we find oscillation decoupling, and the mechanism for this decoupling is a 

dynamically stepped increase in oscillation rate, with higher rates eventually leading to loss of 

coherent synchronization (table 1). 
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Conclusions and Outlook 

 
CML appears promising in that it helps to make sense of the brains morphology in a manner that 

may clarify its highest level functions as a highly evolved and conserved for “push/pull 
thermodynamic information engine”.  Our previous position led us to conclude the brains 

morphology revealed no principles except ad hoc growth. With this model it is proposed these 

structures are a physical expression of the fundamentals laws of causality and thermodynamics in 

terms of least action, entropy and partial order.  
       The model itself is not as controversial at it seems, because it does not require rethinking the 

function of morphology to work.  The data for the ERD/ERS cycle in the generation of the ERP 

was already present, as was the data for the locations and mechanisms in the two primary brain 
structures which produce the ERD and ERS extremes in the information cycle. This all stands on 

its own, without a controversial model of morphology, but the morphology can help with the 

neurodevelopment, internal structure and evolutionary side of the system. Without a general 
physical theory of intelligence and information there had been no previous method to bring all 

this high level information and the associated systems together into one cohesive framework. The 

system here appears to work also for more specific integrative parts of the internal system 

(hippocampus, thalamocortical loop, cingulate, basal ganglia).  The models for these are intricate 
and partly incomplete so would take another paper and like the body of neuroscience so far, 

would be yet more parts that are hard to understand without a complete general description.    

      In terms of applications one of the key questions in brain simulation, replication and whole 
brain emulation (WBE) in particular are what is required in the brain to retain a functional copy 

and what can be discarded or farmed out to a different type of substrate. The framework 

presented here is used to approach some general simulation/emulation issues regarding the big 
picture.  For WBE the biggest picture concern is will a WBE system produce a “live intelligence” 

capable of accessing previous information and processing it as the brain previously did. CML 

tries to tackle the system generally and informs us that when we make decisions on what to retain 

for the WBE signals understanding we may need to consider general principles of the system to 
simplify ground up details.  This route into the system treads a different path to the regular 

detailed route. i.e. The dendrites and synapses had a partial role when put in context with glial 

cells, developmental principles, matter ratios and their principles, evolutionary frameworks, 
macroscopic brain structure and highly integrated aspects of brain signals. Of course this does not 

mean we need to acquire all this information for a final emulation/simulation just that its 

important to be active in as many aspects of neuroscience as possible till we understand what is 

most relevant about the entire systems operation. 
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      A general model has to explain every part of the system or it is not general model. It has been 

outlined how cortical invariants seem consistent with least action and the limbic systems self 
oscillation for entropy and that partial order is the transition state between these extremes. These 

extremes appear to be tied to locations in the brain which accords with deeper physical principles 

and the signal predictions so far have been verified in a general manner by the CML algorithm.   

Currently brain simulation struggles to understand the physical principles which give rise to the 
basic components in signals of intelligence, never mind the entire picture of the integration of 

such signals.  With high level intelligence processes represented in the ERP as biophysically live 

input - output processes, the test of brain simulations will naturally move (without a CML model) 
from trying to elicit the current basic signals so the range of ERP’s emerge without being 

explicitly programmed. We propose here that general theories which provide an explanatory 

model for ERP well in advance of simulation type projects are helping us move towards a more 
complete general view for the brain’s understanding.   

 

Limitations 
 

CML is a new concept and its AGi verification is still underway. The question remains whether it 

has been so general that any perspective of the natural world could have been shoe-horned into 
causality and so is the basis circular ?  In any case even if so, the casual schemes are still helping 

researchers to format complex data into a manageable means. This aids putting together known 

first principles schemes like least action and entropy into manageable sets and physical theories. 

We bear in mind that there have been many frameworks which attempt to define the general 
process of the brain in an over-confident manner, so we restrict this to a tentative thermodynamic 

principle for the cortico-limbic process in terms of “information energy”, which will hopefully 

undergo falsifications as we uncover complete principles for ERP.  
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Glossary of terms: Words in italics refer to other glossary terms 

 

Alpha: The 8-13 hz EEG oscillations primarily associated with the thalamus activity 

 
Alpha-beta. The range of oscillations in the alpha to beta range, 8-30 hz. Used to assist with the 

classification of Mu (8-30hz) in terms of mu-alpha (8-13hz) and mu-beta (12-30hz).  

 
AMPA/KAINATE: One of the two primary classes of cortical neurons, these are the excitatory 

neurons. 
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Astrocytes: Cortical Glial cells (support cells that outnumber neurons) that are primarily the 

most dense at the uppermost cortical layers. Previously considered just support cells, newer 
research suggest a role in computation function. Maybe gain capacitors for cortical columns. 

 

Autobiographical processing: The brain processes which string together episodes into a 

sequence, that may for example tell a story. 

 

Basal ganglia: A subcortical structure of various linked parts associated with a variety of 

functions, including voluntary motor control, procedural learning relating to routine behaviors or 
re-enforcement "habits" cognitive, emotional functions and action selection. 

 

Beta: The 12-30hz EEG oscillations found in the striatum to cortex activity. 
 

Central pacemaker: Areas in the centre of the  brain which are thought to be the source clock 

for a wider range of neural oscillations. 

 
Cingulate: Is the part of the cortex which wrap around the limbic system and is so highly 

integrated with it, and separate from the corpus callosum some propose it is part of the limbic 

system.  Its function seems to be to integrate and resolve conflictions between cortex and limbic 
system. 

 

Cortical surface gyration:  The folds of the cortex. As neuron to glia ratio increases the 
gyrations increase. Increased gyration is thought to be linked to intelligence.  

 

Corticolimbic: A reference to the cortex and limbic system in terms of its integrated function. 

 
Delta: The 0-4hz EEG oscillation. Primarily subcortical, but also found in the cortex to thalamus 

cycle. 

 
Dynamic attention allocation : Frontal cortex, executive control can suppress various signals in 

other areas of the brain to allow focus on other stimulus, which could originate as Spreading 

waves arising from lateral inhibition. 

 

Dynamic Causal Modeling: The aim of dynamic causal modeling (DCM) is to infer the causal 

architecture of coupled or distributed dynamical neural systems. It is a Bayesian model 

comparison procedure that rests on comparing models of how data were generated 

 

Episodic encoding and recall: Episodes are memories which are a set of associations that cover 

many sensory modalities. e.g. The experience of being in a particular location with somebody. 

 

Event Related Potential, ERP : is the brains EKG equivalent for the heart.  It is where we look 

when we measure the brains perceptual operation at its highest and most integrated level. 

 
Event related Desynchronization (ERD):  This is the lowering of the brains ongoing stationary 

resting state energy. Mostly found as cortical lateral inhibition.  

 

GABAA/GABAC :  One of the two primary classes of cortical neurons, these are the inhibitory 

neurons. 
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Gamma rhythm: The 30hz upwards oscillations generated in the cortex. Tend towards 

decoherence. 
 

Glutamate: The primary excitatory neurotransmitter in the cortex. 

 

Globus pallidus:  The globus pallidus is a major component of the basal ganglia core along with 
the striatum  

 

“Greedy growth” principle: A mathematical term now used for neurons to describe each 
neurons dendrite growth in terms of a mathematical power law 

 

Grey to white matter ratios: (or the inverse). The ratio of grey to white matter either in 
individual brain areas, modules or the entire system. 

 

Hippocampus:  Primary roles is the consolidation of information from short-term 

memory to long-term memory, recall and spatial navigation. 

 

Hippocampal theta: The 4-8hz EEG  oscillations primarily associated with hippocampal 

activity.  

 

Hopf bifurcation:  A local bifurcation in which a fixed point of a dynamical system loses 

stability as a pair of complex conjugate eigenvalues of the linearization around the fixed point 
cross the imaginary axis of the complex plane.  

 

Invariants: Both mathematical and computational neuroscience invariants have roughly the same 

general equivalence. 
 

Lateral inhibition :  an excited neuron or set of neurons such as cortical columns can reduce the 

activity of its neighbours. This can even extend to transcallosal inhibition across the two cortical 
hemispheres. 

 

Limbic system.  The set of subcortical structures which are separate from the brainstem and 

cerebellum. 
 

Mu wave: EEG oscillation in the range 8-30 hz. It mirrors the alpha to beta range but has no 

known subcortical source, so maybe a cortical model of the alpha-beta range. 
 

N1-P1 signal: An ERP composite signal associated with visual recognition in the time range of 

100ms.  There are also other types of N signal.. N just means the signal has a negative energy 
deviation to baseline, while P is positive. 1 is just an abbreviation so it could be called N100 on 

its own, just as P3 would also be P300 

 

Non linear cortical activity: A reference to the manner in which most cortical activity is 
considered to be primarily non linear dynamical in nature. 

 

Non explicit programming: For example programming all the neuronal components into a brain 
simulation wiring them together and seeing if ERS arises without programming that. But there are 

various levels of this. i.e. CML is first principle based, so if ERS/ERD arose from its program this 

would be considered a more pure example. 
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P100-P300 or P600 etc:  These are the various positive event related potentials with their onset 
time (see N1-P1 signal for more clarification) 

 

P300:  Most well known ERP component occurring at 300ms as it is clearest in decision making 

and onset of conscious access. All ERP numbers describe the milliseconds of their onset after 
stimulus 

 

Phase coupling - coupled oscillation: Neural oscillations of various frequencies in the brain are 
found to lock together for a wide variety of neural sub processes, coding, recall and high level 

perceptual functions.  

 
Phase-locked delta:  the timing of spikes in the delta wave becomes phase coupled  to the 

activity of other oscillations, such as alpha. 

 

Phase reset: Neural oscillations may reset another set of neural activities, such as one set of 
oscillations, restarting the phase of another when coupled. 

 

Re-enforcement learning: The brain processes associated with learning and repeating routines 
and habits.  

 

Sensory routing: Allocation of inputs to outputs, mostly associated with thalamus function. 
 

Septal areas: the region of the cerebral hemisphere, forming the medial wall of the lateral 

ventricle's frontal horn 

 
Spreading waves: There are many terms for this in neurodynamics, but basically it is mass 

attractor activity that is non linear dynamic in nature. Sporadic bursts across cortical areas that 

spread across columns, or even larger macroscopic areas.  

 

Stationary dynamics - stationary resting state. The brain has continuous oscillations such as 

alpha, delta, beta and mu even when it is not processing information. i.e. just sitting doing 

nothing. 
 

Striatum:  The major input station of the basal ganglia system. 

 
Subthalamic nucleus: The subthalamic nucleus is a small lens-shaped nucleus in the brain where 

it is, from a functional point of view, part of the basal ganglia system 

 
Symmetry: For disambiguation in cross discipline use in this paper,  mathematical symmetry and 

asymmetry are different from biological e.g. radial symmetry or bilateral asymmetry. This is 

clarified as here we attempt to use CML to predict brain signals and structures that are using the 

biological definitions. So if we mention such terms in a neuroscience context it will not be 
mathematical. An example is we may say an alpha wave emerges with symmetrical spread over a 

symmetrical structure like the thalamus, but if we were to describe the computations the use of 

the term symmetry would not automatically infer a mathematical invariance. 
 

System consolidation: The ability of the brain to filter out irrelevant information over longer 

term time periods.  
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Thalamic reticular nucleus: A sheet of inhibitory neurons which surround the thalamus. 

 

Thalamus: The brain module where nearly all incoming information passes through.  

 

Thalamocortical: Refers to the interaction between thalamus and cortex which is usually an 
ongoing loop driven by locked Delta, Gamma and Alpha oscillations. 

 

Third ventricle: The brain ventricle most central to the brain, in between the thalamus. 

 
 


