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1. An Introduction to Whole Brain Emulation

Whole brain emulation (WBE) is a systematic approach to large-scale neuroprostheses with the
intent to replicate the functions of a specific mind in some other operating substrate. The engineering
practice of system identification can be applied in a way that makes this big problem a feasible
collection of connected smaller system identification problems to solve.

Whole brain emulation is an essential goal for neuroscience. Following Richard Feynman’s
famous 1988 Caltech chalkboard quote: “What I cannot create, I do not understand.” To create or
build a human mind we need models, a combination of building blocks with processes. When we
explain something that is observed, e.g., mental functions and behaviors, we strive to make that
predictable within constraints that satisfy our interests: We create boundaries, we measure within
those well-defined outlines, and then we use those measurements to derive model processes enabling
outcome prediction. Within the defined system outlines of our model, taking into account defined
sets of signals, we mathematically describe interactions (which may be expressed in information
theoretic terms).

Every aspect of modern science relies on creating representations of things. In each case, we
focus on the signals and the observables (or behavior) that interest us. Then, we try to interpret in
terms of functions what the system processes are doing. Where brain functions are concerned, some
cognitive prosthetic work, such as the pioneering efforts of the labs of Theodore W. Berger at the
University of Southern California, has managed to carry out these steps and produced successful
experimental results (Berger et al., 2012). Berger’s team has developed and tested an experimental
hippocampal neural prosthetic that is implemented on a bio-mimetic chip. A transfer function
was identified and used to replicate the operational properties of biological neural circuitry in a
region of the rat hippocampus known as CA3. In experiments, the prosthesis is able to reproduce
the way in which input to the region is turned into output from that region. This method of
developing neuroprostheses, with demonstrated success in rats, is presently being tested in primates
(Marmarelis et al., 2013).
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1.1 System Identification

Brain emulation strives to achieve a functional re-implementation by which it is possible to predict
an active brain state and behavior at a time t + dt (with acceptable error) if we know the state at a
slightly earlier time t. This process of discovering the functions by which an unknown system, turns
input into output is often called system identification (Ljung, 2008): Investigating the correlated
input and output, then attempt to determine which functions constitute characteristic processing. Of
the unknown system that is the brain, we know that it is composed of many physiologically similar
components, such as neurons of several types and synapses of several types. We also know that it
contains a very large collection of such components and that their arrangement is highly complex.

To carry out system identification, we need to observe a working system during its exposure to a
sufficiently complete series of input patterns. We can then describe transfer functions and expected
output with the inclusion of all relevant system behavior. When a system contains more internal
state, receives input through more channels, and produces output through more channels, we have
to make many more observations. If an entire mammalian brain is approached as a single unknown
system then we would probably have to observe its input and output throughout its entire life-span.
Even then, what we could deduce from the resulting data would be flawed and would fail to capture
much latent function. Instead, the whole brain problem needs to be broken down into smaller pieces,
into constituent sub-systems that communicate with one-another. Ideally, the result is a collection of
individually manageable system identification problems that are a good fit the tools at our disposal
with which we measure and collect data, build functional models, estimate model parameters and
ultimately devise prosthetic replacements.

The strategy involves three steps: 1.) Choose the smaller sub-systems. 2.) Find out how they
are connected and communicating. And, 3.) make measurements at each sub-system and identify
its system functions. Considering the problems and possible solutions for those three steps of the
system identification strategy allows us to work on a roadmap toward emulating functions of brain
tissue.

1.2 Four Pillars of Development

Iteratively, we can determine that “sweet spot” where a our ability to solve a collection of connected
and individually tractable system identification problems meets our ability to build new tools for
high-resolution measurements. At that point, brain emulation at the scale of a human brain is a
feasible project. We can categorize areas within a roadmap toward whole brain emulation according
to four main pillars:

1. Hypothesis testing – iteratively evaluating proofs-of-concept on our way to the sweet spot;

2. Structure – the decomposition of the system identification problem into many smaller
problems, largely by gathering so-called “connectome” data;

3. Function – characterizing each system, an area with tool-development needs that are
addressed, for example, in the BRAIN Initiative (Obama, 2013);

4. Emulation – the mathematical representations and computational platforms needed.

As the list shows, a development roadmap includes structural scanning (connectomics) as
well as new tools for functional recording that greatly improve upon tools typically available
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to neuroscientists today (Deca, 2012). Those investigative technology requirements are being
addressed in a number of ongoing projects, several of which we point out in following paragraphs.

We cannot know a-priori what are all the relevant contributors to the system processes that
interest us, nor can we describe in detail how to make accurate system predictions. However, some
units performing the input-output computation have been proposed. In both philosophy of mind and
in the history of neurophysiology, major brain areas have been regarded as generating inputs and
receiving outputs (e.g thalamic inputs going into primary sensory areas). Another type of unit in
computational neuroscience is a network of neurons. It could be that there are networks dealing, at
least for a limited period of time, with a specific function (the rabies virus is currently used to check
if this is true). Typically, the single neuron has been considered the most fundamental computational
unit in the brain, and a lot of experiments have been performed in this paradigm (based on the
assumption that a neuron computes sensory-stimulation-related inputs coming from other neurons in
the network into one single output). However, a single dendrite may act as a computational unit and
generate regenerative events. Single spines and ion channels also possess computational properties
(ion channels can act as coincidence detectors for other channels and modify their activity according
to specific cues, and spines can block or allow an input to pass through the entire dendrite). All these
units are in fact the same unit at different scales. Apart from the terminology, it is important to keep
in mind that computation is performed in the brain at different scales and that the causality of this
computation can be observed experimentally and understood as the body of evidence grows.

We can begin a formal description of mental processes, while taking care not to be overly
restrictive about the underlying mechanisms to be considered. After-all, coming up with a
satisfactory model or theory is an iterative process that is based both on conceptualization and on
data evaluation. We can make some initial assumptions based on the presence or lack of certain
evidential data at this time. For example, we might assume that the brain relies on particular
biophysical mechanisms, which should be modeled to adequately predict and replicate the processes
of the mind.

Once we have a model of processes that act on signals, and once we acknowledge that
boundaries are drawn around sub-systems in some way, then, when we focus on a specific set
of sub-systems, we can identify the boundaries between them. For example, at a large scale this
could be the boundary between the mental experiences of a person and the environment that is
stimulating those experiences (the body and surrounding world that comprise that environment). We
can also identify boundaries drawn sensibly at smaller scales, for example, experiences attended to
versus undesired/randomized/other experiences, spatially constrained sub-systems such as neurons,
temporal discretization (e.g. next-spike prediction), and so forth.

Given such boundaries and signals we can talk about an exchange of input and output. If the
sub-systems have been chosen at an adequate resolution to suit our experiential level of description
(chosen representation) then a process model can be a transfer function describing the conversion
of input to output within each sub-system. The description can include hysteresis (memory) in the
sub-system. As we learn how to interpret the conversion of input into output, our description of that
system process becomes our understanding of the system Koene (2012a).

1.3 Proof-of-Concept

The concrete success of the proposed systematic approach to brain emulation, embodied by
a successful neuroprosthesis, is evaluated with regard to experimental goals and well-define
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performance requirements, which can be expressed as experiential criteria (Koene, 2012a). One
example of such success is the experimental performance of the hippocampal prosthetic chip,
as tested in laboratory settings by Berger’s team. Another is the proof-of-concept verification
carried out in published work by Briggman, Helmstaedter, and Denk (2011), where the connectome
of a sample of retinal tissue was studied. They used the structural data obtained by electron
microscopy in the lab of Winfried Denk to derive and predict the functional operations (such
as direction selectivity) of specific retinal ganglion cells. The experimental protocol used there
resembled a proposed approach for the derivation of brain emulation functions from morphological
measurements in neuronal tissue. The publication was an important proof-of-concept, because
functional derivations were verified by comparison with functional data that had been gathered
in the same specimen through fluorescent optical microscopy.

1.4 Technology

Whole brain emulation relies on determining precisely which signals we care about and then
breaking the problem down into a collection of smaller system identification problems. A large
number of structure and function measurements need to be made at high resolution.

1.4.1 STRUCTURE

The most promising results in high resolution connectome data are produced through volume
microscopy in which electron microscope images are taken at successive ultra-thin layers of brain
tissue. In electron micrographs at a resolution of 5-10nm it is possible to identify individual
synapses and to reconstruct the 3D geometry of cell bodies of individual neurons with the detailed
morphology of axon and dendrite branches. Excellent results have come out of the labs of Winfried
Denk (Max Planck), Jeff Lichtman (Harvard) and Ken Hayworth (Janelia Farms). A strong interest
in connectome data led to rapid tool development between 2008 and 2011. Two teams used
Serial Block Face Scanning Electron Microscopy techniques from the lab of Winfried Denk in
combination with two-photon functional recordings and published remarkable results in pieces of
retina (Briggman, Helmstaedter, and Denk, 2011), as mentioned above, and visual cortex (Bock et
al., 2011). From 3D reconstructions they were able to identify specific neural circuit functions that
were corroborated by their functional recordings. This class of tools is well on its way to solving
one of the main requirements for whole brain emulation.

1.4.2 FUNCTION

As for the functional data needed from each small sub-system, the most promising tool development
is taking its inspiration from the brain’s own approach: detection at close range in physical
proximity to sources of interaction, namely via microscopic synaptic receptor channels. The
brain handles a tremendous quantity of information by utilizing a vast hierarchy of such receptor
connections. Similarly, to satisfy the temporal and spatial resolution requirements for in-vivo
functional characterization, investigative tool development is looking primarily at ways to take the
measurements from within.

There is a collaborative effort underway at MIT, Harvard University and Northwestern
University to create biological tools that employ DNA amplification as a means to write events
onto a molecular “ticker-tape” (Kording, 2011). These have the advantage that they readily operate
at cellular and sub-cellular resolutions, and can do so in vast numbers throughout the neural tissue.
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Synthetic DNA with a known code is duplicated over and over again through circular amplification.
This is done within the cell body of a neuron, but that cell has been modified so that spike events or
changes in membrane potential interferes with the amplification process, resulting in a rate of errors
that correlates with the activity of the cell. Functional events are thereby recorded on biological
media such as DNA. The recordings may then be retrieved from the cells in which they reside.

Another approach is to carry out functional characterization by replacing traditional recording
electrodes with micron-scale free-floating wireless probes. Researchers in labs at MIT, Harvard
University, UC Berkeley, and other locations are focusing on this approach, tackling issues such
as power delivery, communication, probe localization, recording (and stimulating), as well as bio-
compatibility. In one prototype at UC Berkeley, known as “Neural Dust”, free-floating probes
contain a Piezoelectric crystal and CMOS circuitry (Seo et al., 2013). Changes of local field
potentials in neural tissue are detected and change the resonance frequency of the crystal, which
can be queried by ultrasound. Ultrasound, as in information carrier, has the advantage that its
energy is not readily absorbed by brain tissue and therefore causes little heating. Another version,
conceived in an MIT/Harvard collaboration, investigates a CMOS probe with a possible diameter
of 8 micrometers (the size of a red blood cell) that receives power and communicates via infrared
light, employing a concept that resembles radio frequency identification (RFID).

Properly developed, technology such as wireless implantable neural probes should be inexpen-
sive, adaptable, accurate and comparatively safe to use, since their application can be less invasive
than procedures that break tissue barriers or deliver high doses of electromagnetic radiation.

2. Discussion

The brain’s own system components, synapses and neurons are sensitive to information that
is conveyed by the temporally specific occurrence of neural action potentials or spikes. That
information can be conveyed at rates up to 1 kHz, though usually much less. If this is what the
components of a brain can detect then it makes sense that neuroscience tools should be able to
record activity data each 1 ms at every neuron (Marblestone et al., 2013). Such tools should then be
able to gather the data that enables us to characterize the behavior of a neuronal circuit and to derive
functions though system identification.

Using the iterative approach described here, based on rigorous system identification and a
decomposition into feasibly characterized sub-systems, a neuroprosthetic reproduction of a mind
may be created via whole brain emulation in the coming decades. Some pioneers in the field of
artificial general intelligence (AGI) have pointed out areas of overlap between AGI research and
neuroscience research that emphasize the value of an interdisciplinary perspective (Goertzel and
Pennachin, 2007). The editors of this Special Issue of the Journal of Artificial General Intelligence
generally agree with that insight. Clearly, one of the primary causes of interest in AGI has been “to
make computers that are similar to the human mind”, as Wang (2011) notes unequivocally. Although
several AGI researchers are explicitly pursuing forms of (general) intelligence that are designed
from first principles without a desire for comparability or compatibility with human intelligence,
many approaches and sources of motivation in the search for AGI do involve a strong interest in
anthropomorphic interpretations of intelligent behavior.

In past decades, research in AI has been guided by insights about the human mind from
experimental and theoretical work in psychology and cognitive science. Insights at that level were
the obvious source of information, since very little was known about the underlying mechanistic
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architecture and functionality of the brain. For a long time it has been impossible in neuroscience
to reconcile the very small with the very large. Investigation at large scale and low resolution was
congruent with cognitive science, and led to the identification of centers of the brain responsible
for different cognitive tasks through fMRI studies (e.g., Op de Beeck, Haushofer, and Kanwisher,
2008). If we accept that definitions of generality and of intelligence used in AGI can apply to human
minds, then a reproduction of the processes of a human mind via whole brain emulation is a type of
AGI (Koene, 2012b).

Modeling of thought processes is necessary for whole brain emulation and can be beneficial to
efforts in AGI, but the goals and therefore the success criteria are different: AGI is successful if
it manages to capture the general principles of a mind to the point where a machine can achieve
a desired level of performance for a spectrum of possible tasks. A neuroprosthesis or a whole
brain emulation is successful if system identification captures perceived aspects of an individual
and personal nature. Due to this difference, there will be points at which the level of investigation in
biological brains will be chosen differently to best suit each goal. Another important realization is
that both work on artificial intelligence and on WBE are mainly evaluated in terms of performance,
and neither necessarily implies a full understanding of human intelligence. That said, whole brain
emulation can provide readily accessible working mind functions that may rapidly facilitate insight
and understanding.

3. Papers in This Special Issue

There are seven articles in this special issue. The first three offer new algorithmic formulations and
approaches to implementation concerning the identification, interpretation and re-implementation
of mind functions. The fourth and fifth papers discuss technology forecasting for whole brain
emulation, and the last two papers approach the topic of whole brain emulation from the perspectives
of legal challenges and risk mitigation.

Sergio Pissanetzky and Felix Lanzalaco propose Causal Mathematical Logic (CML) as a
physical explanatory theory that links intelligence with causality and entropy in their paper “Black-
box Brain Experiments, Causal Mathematical Logic, and the Thermodynamics of Intelligence”.
The authors explain that their approach to intelligence is general, so that it may offer a formal
link between neuroscience, the emulation of brains and AGI with cross-disciplinary benefits. With
CML, Pissanetzky and Lanzalaco consider information processing requirements that must be met
to accomplish intelligent operations. Requirements include large causal space, autobiographical
memory, and a substrate supporting causal logic. They propose that CML can solve the mind-
body problem by quantitatively allowing for explanations in the form of causal associations. Their
results include experiments that were carried out using a virtual machine in order to test the
application of their intelligence theory. The authors hope to apply further simulations to the
discovery of fundamental problems to solve for whole brain emulation. Furthermore, the paper’s
valuable contributions include an emphasis on the involvement of sentient human perception in the
observation of science.

Felix Lanzalaco and Sergio Pissanetzky, in “Causal Mathematical Logic as a guiding framework
for the prediction of Intelligence Signals in brain simulation”, further expound upon CML, with a
general theory of biophysical intelligence, supposing that a large number of observable life and
intelligence signals can be described in terms of CML. The paper begins with a useful review of
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our understanding of brain systems, then leads to an intuitively pleasing integration of principles
of “least action” and “entropic life signals” to explain and predict intelligent perceptual processes
identified via event related potentials (ERP) and their constituents.

Leslie G Seymour contributes an insightful proposal for the transformation of LifeLog derived
persona specifications into a canonical representation of the neocortex architecture of the human
brain, in his paper “Declarative Consciousness for Reconstruction”. For a first iteration, the method
is described with a good degree of detail and includes a description for the application of incremental
compilation technology. The incremental procedure maintains an IT model of the neocortex, which
is updated every time novel stimuli are obtained from the ongoing LifeLog. Seymour hopes that the
approach can lead to an understanding of the semantic allocation of neocortical capacity.

Daniel Eth, Juan-Carlos Foust and Brandon Whale investigate the plausibility of WBE being
developed in the next 50 years (by 2063) in their paper “The Prospects of Whole Brain Emulation
within the next Half-Century”. The authors carry out a multi-faceted review of requirements for
WBE, and they attempt to integrate a number of aspects that were previously not adequately
addressed in the literature. Subsequently, they deliver an analysis in terms of possible scenarios
and driving forces. Four essential requirements were identified, namely brain scans, translation
from scan to model, running the dynamic models, and simulating an environment and body. Among
factors that introduced the most uncertainty in the development of WBE, the authors pointed out the
need to develop advanced probes that can acquire high-resolution neural data in-vivo, as well as the
effect of cooperative versus competitive cultures around WBE. The paper makes a good argument
for upper and lower bounds on scale-separability among brain mechanisms. Eth et al conclude with
four scenarios based on the uncertainties, and they suggest a scenario in which WBE is realized and
the technology is applied to moderately cooperative ends.

Jeff Alstott, in “Will we hit a wall? Forecasting Bottlenecks to Whole Brain Emulation Devel-
opment”, proposes that a rigorous forecast of the entire technology graph for WBE development
is a prerequisite for any forecast of the development of WBE. In the process, we may identify
bottlenecks and address them. Alstott points out that most existing forecasts for WBE only
consider a fraction of the technology network, mainly studying available computational capacity.
Traditionally, such forecasts take an estimate of required capacity and use Moore’s law to project
when that may be reached. There are more pressing hurdles for WBE, and overcoming those
will determine the time-line of progress towards accomplishing whole brain emulation. His paper
introduces a framework for describing technology development through technology networks and
includes a simple model that illustrates the impact of bottlenecks on forecast accuracy.

Kamil Muzyka considers the legal implications of granting personhood rights to artificial
intelligences or emulated human entities in his paper “The outline of personhood law regarding
artificial intelligences and emulated human entities”. He makes the observation that present-day
personhood relies largely on being the offspring of (two) human (genetic material) donors. The
paper includes a proposal for a status of “legal adolescence” to be applied in a situation of multiple
”selves” (copies) that would allow them to develop into differentiated persons.

Peter Eckersley and Anders Sandberg, in “Is Brain Emulation Dangerous?”, assess AGI risks
with a focus on human brain emulations, and they discuss the possible fragility of emulation
autonomy. They take a good first look at issues of risk surrounding the development of whole
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brain emulation, though some aspects introduced by iterative, gradual and piece-wise scientific
development exceeded the scope of the paper. Their main conclusion points out that the degree of
risk posed by brain emulation probably depends on the order of accomplishments in the research
trajectory: Brain emulation may pose fewer risks to society if it is accomplished sooner, because
less powerful computers would lead to a more gradual technology impact. Similarly, brain scans
produced before a full neuroscientific understanding is reached may result in a larger available initial
population of emulations with a better balance of influences when the emulations appear. Eckersley
and Sandberg emphasize the connection between WBE risks and the attacker-defender balance of
power in computer security challenges. If the allocation of processing power can be regulated
then WBE is safer, if processing power can be easily stolen then WBE can more easily lead to
destabilizing developments. The authors compare arguments for and against ‘open’ technology
development for WBE and conclude that initial study suggests an open methodology is good policy.
Their core conjecture: It is advisable to address neuroscience and microscopy requirements for
WBE quickly, in order to reduce the likelihood that emulations appear suddenly and dramatically if
there is a surplus of computational capacity.

The work presented in the seven papers covers a broad spectrum of issues surrounding
whole brain emulation and the rise of novel forms of intelligence, most of which have not yet
been adequately addressed in the research literature. Consequently, these articles will contribute
significantly to research in whole brain emulation and to cross-disciplinary efforts.
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