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Abstract 

Significant debate on fundamental issues remains in the subfields of cognitive science, including 
perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, 

and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the 
supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, 

systems-level model of minds cannot await theoretical convergence in each of the relevant 
subfields. Such work therefore requires the formulation of tentative hypotheses, based on current 
knowledge, that serve to connect cognitive functions into a theoretical framework for the study of 

the mind. We term such hypotheses “conceptual commitments” and describe the hypotheses 
underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our 
intention is to initiate a discussion among AGI researchers about which conceptual commitments 

are essential, or particularly useful, toward creating AGI agents. 
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1. Introduction 

Not long after its inception, artificial intelligence abandoned its original aim of reproducing 

human-level intelligence in favor of developing highly practical systems that behave intelligently 

in narrow, however important, domains. After a half century, a movement in AI research toward 
that original quest has emerged under the rubric of artificial general intelligence (Goertzel & 

Pennachin, 2007; Wang, Goertzel, & Franklin, 2008). After an initial invitational workshop in 

2006 (Goertzel & Wang, 2007), five successful AGI conferences have been held in several 

locations in Europe and the United States (de Garis & Goertzel, 2009a; de Garis & Goertzel, 

2009b), A recent one hosted over 200 researchers on Google’s main campus. The last two 
conference proceedings were published in Springer’s Lecture Notes in AI book series (Bach, 

Goertzel, & Iklé, 2012; Schmidhuber, Thorisson, & Looks, 2011). Additionally, The Journal of 

Artificial General Intelligence has published several volumes.  

A parallel movement flies under the rubric of BICA (Biologically Inspired Cognitive 

Architectures). First appearing as several AAAI symposia carrying that name (Samsonovich, 
2008), the movement has produced successful conferences of its own (Samsonovich & 
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Johannsdottir, 2011; Samsonovich, Jóhannsdóttir, Chella, & Goertzel, 2010), and has started a 

journal, Biologically Inspired Cognitive Architectures, published by Elsevier. The aims and scope 

declaration of the journal begins with the sentence, “The focus of the journal is on the integration 
of many research efforts in addressing the challenge of creating a real-life computational 

equivalent of the human mind.” Note that the “BICA challenge,” as it has come to be called, is 

quite equivalent to the goal of AGI. 

Another such parallel movement was ushered in by the First Annual Conference on 

Advances in Cognitive Systems, held in Palo Alto, California in December 2012. Its call for 
papers asserts “The purpose is to provide a venue for research on the initial goals of artificial 

intelligence and cognitive science, which aimed to explain the mind in computational terms and 

to reproduce the entire range of human cognitive abilities in computational artifacts.” A new 

online journal, also entitled Advances in Cognitive Systems, has published its second volume. 

Yet another movement in this same direction is arising in the form of an AAAI Spring 

symposium entitled “Designing Intelligent Robots: Reintegrating AI.” The Overview of its 
second incarnation (Spring 2013) includes the following lines: “AI is fragmented field: well-

developed and largely independent research communities exist for learning, planning, reasoning, 

language, perception and control. Since the challenges posted by each of these subfields are 

immense, most researchers have found it necessary to devote their careers to specializing in a 

single subfield. While immense progress has been made in each of these subfields in the last few 
decades, it remains unclear how they can be integrated to produce an intelligent robot. Unifying 

these disparate technologies will open up new avenues of research and create new application 

opportunities. Therefore, we believe that integration should be considered a valid research 

endeavor in its own right.” (Designing Intelligent Robots, 2012) 

It would seem that the quest for a generally applicable, integrated AI system capable of 
human-level intelligence is an idea whose time has come. The question is how to go about it. 

Necessary components include human-level perception, action selection, and everything in 

between. This calls for controlling our generally applicable, integrated AI agent with a systems-

level cognitive architecture capable of human-level intelligence. Many such cognitive 

architectures exist, though none, as of yet, at human-level intelligence (Samsonovich, 2010). 

Some of these architectures, for instance SOAR, ACT-R, CLARION, are decades old, while 
others are relatively new. A few have been developed specifically in response to the stated goals 

of the AGI and BICA movements. Each of these various architectures is based on conceptual 

commitments, which may have profound implications for their implementation, evaluation, and 

efficacy in controlling an agent at human-level intelligence. 

Here we argue for a particular set of conceptual commitments as being potentially useful in 
the development of such an AGI architecture. Our argument can be summarized as follows: 1) An 

AGI agent must be built upon a systems-level cognitive architecture. 2) Each AGI research group 

develops and uses its own such architecture. 3) It is at least difficult, and likely impossible, to 

compare the efficacy of such architectures without building working AGI agents which, currently, 

seems not possible. Under these conditions, how might productive discussions and collaborations 
occur among different AGI research groups? Perhaps by specifying conceptual commitments 

made by the various architectures, and trying to agree upon a common set of commitments that 

all the research groups think will have to be made in order to successfully create an AGI agent. 

As a beginning move in this direction, we lay out below a first draft of the conceptual 

commitments of our LIDA model. 

2. Conceptual Commitments 

Since the scientific study of mental phenomena began with the work of Helmholtz, Wundt and 

James in the 19th century, abundant evidence has accumulated from research efforts in the distinct 

fields of experimental psychology, cognitive neuroscience and artificial intelligence. Although 
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instances of dialogue between these fields are numerous, relatively little progress has been made 

toward a broad-based understanding of mind that incorporates findings from these separate 

avenues of study into a testable model that can explain the range of observed cognitive 
phenomena in the context of a cohesive comparative and evolutionary biology of cognition.  (The 

one exception is the work done through ACT-R, e.g., (Anderson, 2007)). Much remains to be 

explored and decided before the assembly of such a model can be accomplished with exactness, 

but we find it imperative to engage in such modeling efforts in order better to evaluate current 

knowledge, and to guide further research, particularly research into possible AGI agent 
architectures.  

To this end, we have made efforts to integrate the currently available evidence into a single 

broad, systems-level model of the mind, the LIDA model. Given the breadth of this task, several 

conceptual commitments have been taken. These are the fundamental and influential working 

hypotheses within the model, some of which are speculative and still open to significant debate. 

However, such theoretical activity guides empirical research and provides a means for comparing 
and communicating about the various cognitive architectures.  

Our attempt to integrate evidence across disciplines at times stretches, or even breaks, 

conventions, perspectives, and assumptions that hold within the confines of a given discipline. 

Within a discipline, we often find it necessary to take positions with respect to ongoing 

controversies that many empirical researchers may find premature. However, such conceptual 
commitments are practical rather than conclusive. For instance, the hierarchical self-organization 

of brain rhythms plays an important role in our model, since (as will be elaborated below) it 

provides an elegant basis for several other model elements, including the cognitive cycle, process 

formation and selection, and a consciousness mechanism based on Global Workspace Theory 

(Baars, 1988; Baars & Franklin, 2003). Moreover, it constitutes a plausible explanation for the 
connection between brain and mind.  

Nonetheless, we stop short of asserting that the current evidence base is sufficient to make a 

conclusive claim regarding the functional role of brain rhythms. We think of our model as an 

early map of a world largely unexplored, much like the 16th century world map of Martin 

Waldseemüller. 1  While empirical researchers can and should focus on details, broad-based 

modelers must make educated guesses to integrate what is known into a global framework. To 
make an analogy with cartography, the empiricist might attempt “an accurate coastline of 

Florida” while a broad-based modeler will focus on a rough outline of the “continents” (Bach, 

2008). If new details proved inconsistent with a global map that was correct in the broad-based 

sense, it likely would not invalidate the entire map; rather, the map would need updating to 

accommodate the new data.  
In this paper we first briefly review the LIDA model and its cognitive cycle. The subsequent 

sections provide brief descriptions, with some justifications, of several conceptual commitments 

that have guided the growth of our LIDA model of cognition, both the conceptual model whose 

historical development is described in our numerous published papers (e.g., Faghihi & Franklin, 

2012; Franklin, Strain, Snaider, McCall, & Faghihi, 2012), and its underlying computational 
model as embodied in the LIDA Computational Framework (Snaider, McCall, Franklin, 2011). 

The conceptual commitments described in the sections below are presented in decreasing order of 

abstractness. Many of them can be thought of as hypotheses based either on the interpretation of 

empirical data from artificial intelligence, cognitive neuroscience or cognitive psychology, or on 

the needs of the model’s current implementation. Please note that we explicitly make no claim 

that any of the conceptual commitments described below are unique to the LIDA model. Likely, 
each can also be found elsewhere.  

A list of these conceptual commitments, numbered according to their order of appearance as 

subsections of Section 4, is presented as a preview for the reader: 1) Systems-level Modeling, 2) 

                                              
1
 See http://www.loc.gov/rr/geogmap/waldexh.html for an example. 
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Biologically Inspired, 3) Embodied (Situated) Cognition, 4) Cognitive Cycles as Cognitive 

Atoms, 5) Global Workspace Theory, 6) Learning via Consciousness, 7) Comprehensive Decay 

of Representations and Memory, 8) Profligacy in Learning, 9) Feelings as Motivators and 
Modulators of Learning, 10) Asynchrony, 11) Transient Episodic Memory, 12) Consolidation, 

13) Non-linear Dynamics Bridge to Neuroscience, 14) Theta Gamma Coupling from the 

Cognitive Cycle. 

3. The LIDA Model and its Cognitive Cycle  

The LIDA model is a systems-level, conceptual and computational model covering a large 
portion of human cognition 2 . Based primarily on Global Workspace theory, the model 

implements and fleshes out a number of psychological and neuropsychological theories (see the 

Biologically Inspired section below). The design of LIDA was also influenced by the Copycat 

model of Hofstadter and Mitchell (1995). The LIDA computational architecture is derived from 

the LIDA cognitive model. The LIDA model and its ensuing architecture are grounded in the 
LIDA cognitive cycle. Every autonomous agent, be it human, animal, or artificial, must 

frequently sample (sense) its environment and select an appropriate response (action). More 

sophisticated agents, such as humans, process (make sense of) the input from such sampling in 

order to facilitate their decision making. The agent’s “life” can be viewed as consisting of a 

continual sequence of these cognitive cycles. Each cycle constitutes a unit of sensing, attending 

and acting. A cognitive cycle can be thought of as a moment of cognition, a cognitive “moment.” 
We will now briefly describe what the LIDA model hypothesizes as the rich inner structure 

of the LIDA cognitive cycle. More detailed descriptions are available elsewhere (Baars & 

Franklin, 2003; Franklin, Baars, Ramamurthy, & Ventura, 2005). During each cognitive cycle the 

LIDA agent first makes sense of its current situation as best as it can by updating its 

representation of its current situation, both external and internal. By a competitive process, as 
specified by Global Workspace Theory, it then decides what portion of the represented situation 

is the most salient, the most in need of attention. Broadcasting this portion, the current contents of 

consciousness3, enables the agent to chose an appropriate action and execute it, completing the 

cycle.  

Thus, the LIDA cognitive cycle can be subdivided into three phases, the understanding phase, 
the attention (consciousness) phase, and the action selection phase. Figure 1 should help the 

reader follow the description. It starts in the upper left corner and proceeds roughly clockwise. 

Beginning the understanding phase, incoming stimuli activate low-level feature detectors in 

Sensory Memory. The output is sent to Perceptual Associative Memory where higher-level 

feature detectors feed in to more abstract entities such as objects, categories, actions, events, etc. 

The resulting percept moves to the Workspace where it cues both Transient Episodic Memory 
and Declarative Memory producing local associations. These local associations are combined 

with the percept to generate a Current Situational Model, the agent’s understanding of what is 

going on right now.  

Attention Codelets4 begin the attention phase by forming coalitions of selected portions of 

the Current Situational Model and moving them to the Global Workspace. A competition in the 
Global Workspace then selects the most salient, e.g., the most relevant, important, urgent, novel, 

unexpected, loud, bright, etc. coalition, whose contents become the content of consciousness. 

These conscious contents are then broadcast globally, initiating the action selection phase. The 

action selection phase of LIDA’s cognitive cycle is also a learning phase in which several 

                                              
2
 “Cognition” is used here in a unusually broad sense, so as to include perception, feelings and emotions.  

3 
Here “consciousness” refers to functional consciousness (Franklin 2003). We take no position on the need for, or 

possibility of, phenomenal consciousness. 
4
 A codelet is a small piece of code that performs a specific task in an independent way. It  could be interpreted as a 

small part of a bigger process, similar to an ant in an ant colony.  
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processes operate in parallel (see Figure 1). New entities and associations, and the reinforcement 

of old ones, occur as the conscious broadcast reaches Perceptual Associative Memory. Cognitive 

maps are created or updated in Spatial Memory. Events from the conscious broadcast are encoded 
as new memories in Transient Episodic Memory. Possible action schemes, each consisting of an 

action together with its context and expected result, and an activation measuring the likelihood of 

the result occurring if the action is taken in the context (Drescher, 1991), are learned into 

Procedural Memory from the conscious broadcast. Older schemes are reinforced. In parallel with 

all this learning, and using the conscious contents, possible action schemes are recruited from 
Procedural Memory. A copy of each such is instantiated with its variables bound, and sent to 

Action Selection (Maes, 1989), where it competes to be the behavior selected for this cognitive 

cycle. The selected behavior triggers Sensory-Motor Memory to produce a suitable algorithm for 

the execution of the behavior. Its execution completes the cognitive cycle.  

 

 
Figure 1. The LIDA Cognitive Cycle Diagram. 

The Workspace requires further explanation. Its internal structure includes the Current 

Situational Model and the Conscious Contents Queue. The Current Situational Model is where 

the structures representing the actual current internal and external events are stored. Structure 
building codelets are responsible for the creation of these structures using elements from the 

various sub-modules of the Workspace. The conscious contents queue holds the contents of the 

last several broadcasts and permits LIDA, using codelets, to understand and operate upon time 

related concepts (Snaider, McCall, & Franklin, 2009). 

4. Specific Conceptual Commitments of the LIDA Model  

In this section we provide brief descriptions, with some justifications, of over a dozen conceptual 

commitments that have steered the development of our LIDA model of cognition, both the 

conceptual model, and its underlying computational architecture. Our intention is to offer them as 
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tentative commitments to be considered for AGI architectures in general. The conceptual 

commitments described in the subsections below are presented in decreasing order of abstractness. 

Many of them can be thought of as hypotheses based either on the interpretation of empirical data 
from artificial intelligence, cognitive neuroscience or cognitive psychology, or on the needs of the 

model’s current implementation. Please note once again that we explicitly make no claim that any 

of the conceptual commitments described below are unique to the LIDA model. Likely, each can 

also be found elsewhere. Finally, at the end of each commitment’s description we will speculate 

on the possible usefulness or importance of that commitment to AGI architectures. For clarity’s 
sake, we have assessed each commitment’s importance to the LIDA model on one of four levels: 

essential, very significant, significant, and subsidiary. 

4.1 Systems-level Modeling 

 

Level of importance to the LIDA Model: Essential 

Level of importance to AGI: Essential 

 

Scientists use models, be they conceptual, mathematical, computational, to explain and to predict. 

Both explanation and prediction are more easily accomplished using specific models restricted to 

some limited function of cognition, for example, individual models of perception, memory, 
attention, learning, action selection, etc. Due to this facilitation almost all cognitive models have a 

restricted scope. 

Still, questions arise as to how these various restricted functionalities interact, or relate to 

one another. To answer such questions requires a systems-level model that accommodates an 

incoming stimulus, an outgoing action, and everything in between, that is, the entire cognitive 
system. All of the various cognitive functionalities must be modeled individually to some level. 

In addition, the model must, in principle, account for all of their interactions, both pairwise and of 

higher order.  

The need for using systems-level cognitive architectures has been championed in the past by 

several researchers. As social psychologist Kurt Lewin so succinctly pointed out, “There is 
nothing so practical as a good theory” (1951, p. 169). Artificial intelligence pioneer Allen Newell 

strongly supported the need for systems-level theories/architectures, asserting that “You can’t 

play 20 questions with nature and win” (1973). Echoing Newell in decrying the reliance on 

modeling individual laboratory tasks, memory researcher Douglas Hintzman (2011) wrote, 

“Theories that parsimoniously explain data from single tasks will never generalize to memory as 

a whole…” Hintzman’s arguments, which rest upon the need for systems-level cognitive 
architectures in memory research, carry over into the realm of intelligent agents, again calling for 

systems-level architectures. In their review article, Langley, Laird, and Rogers (2009) argue that 

“Instead of carrying out micro-studies that address only one issue at a time, we should attempt to 

unify many findings into a single theoretical framework, then proceed to test and refine that 

theory.” They are all calling for the use of a broad-based, systems-level cognitive architecture.  
We find much of value in the university metaphor used by Bullock in his cry for systems-

level neuroscience (1993). Models of the university might be based on parameters such as the 

composition, structure, or mechanisms underlying components such as typewriters, telephones 

and people, or built around principles such as, “It works by shuffling a material called paper” and 

“It works by spatiotemporal configurations of units called committees” (Bullock, 1993, p. 1). 
While indubitably valuable, such approaches provide a picture of the modeled entity that is 

neither unified nor complete. Bullock continues: 

The university is found to work by (i) interactions among partially equivalent but mostly 

nonredundant individuals, (ii) each with rich but fragmentary and filtered inputs, (iii) making 

decisions at widely different levels of consequence, which are (iv) based on those inputs but 
integrated with endogenous tendencies, (v) taking actions partly in concert, partly quite out of 
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phase with others, (vi) every individual being unique but none indispensible.  (vii) The system is 

adjustable due to a network of connectivity and shared competencies, (viii) though normally the 

individuals operate with distinct responsibilities. (Bullock, 1993, p. 2)  
Bullock speculates, based on his then 53 years of empirical study, that this high-level 

description probably applies to the brain as well as universities. We find it extremely illuminating 

as well for the study of cognition. 

Any such systems-level cognitive model must necessarily be quite complex, and so, time 

consuming to design and implement. Thus, at present, Samsonovich (2010) catalogs only about 
two-dozen such models, including our LIDA model. 

It seems to us that any AGI agent may have to be controlled by a systems-level architecture, 

making this commitment one of wide generality for AGI research. 

4.2 Biologically Inspired 

 

Level of importance to the LIDA Model: Very significant 

Level of importance to AGI: Undetermined 

 

Many computational models, from artificial neural networks (ANNs) to the large-scale brain 

simulation of (Izhikevich & Edelman, 2008) can claim some degree of biological inspiration. 
Such models vary greatly not just in this degree, but also in purpose.  ANNs have a wide range of 

applications, but stake no claim as a comprehensive model of brains or even of neurons. On the 

other hand, while large-scale brain simulations model a broad spectrum of neural phenomena, 

they do not seek to explain cognition. A commitment to biological inspiration in AGI entails the 

belief that the principles organizing biological minds can be useful to a complete understanding 
of cognition. However, such a commitment does not imply a particular degree of commitment to 

modeling specific biological implementations of the cognitive processes themselves. 

Not all of the few dozen broad, systems-level cognitive models intend to be biologically 

inspired. For most of those that do, the claim goes unargued. For a few, such as ACT-R and 

CLARION, such a claim may be justified by the replication of data from experiments with 
humans and other animals (e.g., Gunzelmann, Gluck, Van Dongen, O’Connor, & Dinges, 2005; 

Sun & Naveh, 2004). Moreover, ACT-R bases its architecture of buffers and modules directly on 

the gross functional anatomy of the human brain, and has been successful in replicating data from 

fMRI studies (Anderson et al., 2004). With the development of the LIDA Computational 

Framework (Snaider, McCall, & Franklin, 2011), our LIDA model has begun to spawn such 

replications (Faghihi, McCall, & Franklin, 2012; Madl, Baars, & Franklin, 2011; Madl & 
Franklin, 2012). More are forthcoming. In addition, the model implements and fleshes out central 

ideas from a number of psychological and neuropsychological theories. These include Global 

Workspace Theory (Baars, 1988, 2002), situated (embodied) cognition (Glenberg & Robertson, 

2000; Varela, Thompson, & Rosch, 1991), perceptual symbol systems (Barsalou, 1999a), 

working memory (Baddeley & Hitch, 1974), memory by affordances  (Glenberg, 1997), long-term 
working memory (Ericsson & Kintsch, 1995), transient episodic memory (Conway, 2002), and 

Sloman’s H-CogAff cognitive framework (1999).  

Biological inspiration is not only espoused by LIDA to validate it as a model of biological 

minds. Biological minds represent the sole examples of the sort of robust, flexible, systems-level 

control architectures needed to achieve human-level intelligence. Often copying after a known 
biological example is a good strategy. As such it appears fruitful to study and incorporate the 

functionalities of biological minds that make them successful.   

One argument against biological inspiration maintains that since biological flight did not 

prove to be a good model for mechanical flight in the genesis of modern aviation, biological 

inspiration might prove to be a waste of time for the design of other systems (Sukthankar, 2000), 
perhaps even AGI. However, biological and mechanical flight fulfill two highly divergent sets of 
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modeling constraints, including very different speeds, weight loads, fuel ranges, and material 

strengths; an organic vs. a petroleum-based power source; the motivation for diversity vs. 

uniformity in production; and a biological vs. a commercial or military mandate. Certainly 
biological and computational cognition will also possess differing constraints. We strongly 

suggest that the study of the neurocognitive strategies fulfilling biological constraints will deepen 

our understanding of how cognition relates to its boundary conditions in general. Such an 

understanding should prove quite valuable to implementing cognition in a computational domain. 

Even if one finds this argument unconvincing given the current lack of theoretical consensus, and 
the need for further empirical validation of competing hypotheses, our approach will surely 

provide a valuable contribution toward achieving an artificial general intelligence. 

It certainly seems possible to us that an AGI agent can be successfully developed using an 

architecture that is not biologically inspired. Thus, in our view, no claim can be made as yet as to 

the general utility or level of importance of this particular commitment to AGI research. 

4.3 Embodied (Situated) Cognition  
 

Level of importance to the LIDA Model: Significant 

Level of importance to AGI: Undetermined 

 
Embodied cognition argues that all aspects of cognition are shaped by the body (in particular the 

brain), and its interaction with the environment (situatedness) through incoming stimuli and 

outgoing motor actions (de Vega, Glenberg, & Graesser, 2008). We interpret the concept of 

embodiment broadly as a structural coupling between an autonomous agent and its environment 

(Franklin 1997), providing a criterion for embodiment in agents that interact with non-physical 
environments. 

The LIDA model complies with this position by abjuring the use of amodal symbols, and 

depending on perceptual symbols instead (Barsalou, 1999). Though labels appear in the diagrams 

used to describe the conceptual LIDA model, they are only for the use of external human 

observers, and play no role in LIDA’s internal dynamics. LIDA does not employ symbolic 
mechanisms, but, rather, abstract concepts would be learned from several examples (experiences) 

in a situated and embodied way. Though seemingly more difficult to implement, this approach is 

more consistent with our biologically motivated assumption (Barsalou, 2008). Older architectures, 

such as SOAR and ACT-R, typically employ symbolic mechanisms. 

As with several of our commitments, there is still much controversy. Some might argue that 

we do not go far enough to claim a commitment to embodiment. For example, we do not insist on 
a robotic implementation (Franklin, 1997), while others certainly would (Pfeifer & Bongard, 

2006). Still others are critical of the whole embodied cognition movement itself (Daum, 

Sommerville, & Prinz, 2009; Longo, 2009). In actuality, we do not reject the physical symbol 

system hypothesis (PSSH) of SOAR and ACT-R, feeling that PSSH is not truly in conflict with 

embodied cognition. In short, perceptual symbols a la Barsalou (1999b) work as well within a 
physical symbol system as do amodal symbols. Certainly, the symbols in SOAR and ACT-R 

implementations to date have been almost exclusively amodal, contributing to a misunderstanding 

of PSSH, but such a restriction has been pragmatic rather than axiomatic. Nonetheless, 

representations in LIDA will possess references to the sensory and perceptual primitives that 

invoked them, in keeping with the concept of embodiment as we interpret it. 
Though firmly committed to embodiment for LIDA, we are hesitant to claim its necessity for 

all AGI architectures. It seems possible that successful AGI agents may be controlled by 

symbolic architectures. 
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4.4 Cognitive Cycles as Cognitive Atoms 

 

Level of importance to the LIDA Model: Essential 

Level of importance to AGI: Undetermined 

 

Every autonomous agent, human, animal, or artificial, must frequently sample (sense) its 

environment and select an appropriate response (action). Sophisticated agents, such as humans, 
process (make sense of) the input from such sampling in order to facilitate their action selection. 

The agent’s “life” can be viewed as consisting of a continual cascading sequence of these 

cognitive cycles. The LIDA model suggests that basic human and animal cognition can be 

usefully viewed as functioning by means of cognitive cycles whose internal structure fleshes out 

the composition of the action-perception cycles of the psychologists (Neisser, 1976) and the 
neuroscientists (Cutsuridis, Hussain, & Taylor, 2011; Dijkstra, Schöner, & Gielen, 1994; 

Freeman, 2002; Fuster, 2002; 2004). Such cognitive cycles comprise continual interactions 

between conscious contents, the various memory systems, and action selection.  

While these cycles overlap, their various modules asynchronously producing parallel effects, 

they must preserve the seriality of consciousness. Each LIDA agent’s cycle consists of three 

phases, a perceiving and understanding phase, an attending and consciousness phase, and an 
action selection and learning phase. There is not a sharp boundary between the perceiving and 

understanding phase and the attending and consciousness phase. Coalitions can be forming during 

the understanding process. The conscious broadcast is, however, a relatively sharp boundary.  

A cognitive cycle can be thought of as a cognitive “moment,” lasting roughly 300-500ms in 

humans (Madl, et al., 2011). Higher-level cognitive processes are composed of many of these 
cognitive cycles, each a cognitive building block. Figure 1 depicts a flow diagram of much of the 

internal structure and processing of LIDA’s cognitive cycle. Note that while memories appear as 

separate boxes, this should not be taken as suggesting that there are sharp boundaries between 

memory modules; in fact, memories may use or “point back to” other memories, e.g. an episodic 

memory could reference a Perceptual Associative Memory (Fuster, 2006; Fuster & Bressler, 
2012). Additionally, while arrows are depicted passing information between modules, the LIDA 

model is not committed to copying representations in the computational sense. Some believe that 

pointers, which refer back to a source, are used in brains in the place of copying (Fuster, 2006; 

Fuster & Bressler, 2012). The lack of such a commitment may differentiate LIDA from most 

other such systems-level cognitive architectures. 

Moreover, while many, and perhaps all cognitive architectures are based on a computational 
cycle of some kind, LIDA has no system clock to which its cycle is lock-stepped. Thus LIDA’s 

cognitive cycle is not explicitly hard-wired but rather emerges from constraints on its many 

component processes, which operate in parallel (see Asynchrony, below).  

While this emergent cognitive cycle commitment is central to the LIDA model, we hesitate 

to propose it as important for AGI research in general, since to our knowledge no other systems-
level cognitive architecture makes such a commitment.  

4.5 Global Workspace Theory 

 

Level of importance to the LIDA Model: Essential 
Level of importance to AGI: Very significant 

 

Global Workspace Theory (GWT) views the nervous system as a distributed parallel system with 

many different specialized processes (Baars, 1988, 2002). Coalitions of these processes enable an 

agent to make sense of the sensory data coming from the current environmental situation. Other 
coalitions, incorporating the results of the processing of sensory data, compete for attention in 
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what Baars calls the “Global Workspace.” The contents of the winning coalition are broadcast to 

all other processes. The contents of this broadcast are proposed to be phenomenally conscious. 

This conscious broadcast serves to recruit other, unconscious processes to be used to select an 
action in response to the current situation, and to facilitate the various modes of learning (see the 

following section and the memory systems in Figure 1). GWT is therefore a theory of how 

consciousness functions within cognition (Figure 2) (Baars & Franklin, 2003; Franklin, et al., 

2005). There is considerable empirical support for GWT from neuroscience studies (Baars, 2002), 

and other researchers have employed it in their architectures (Connor & Shanahan, 2010; Sergent 
& Dehaene, 2004; Shanahan, 2006; Wallace, 2005). It has also attracted much attention as the 

primary exemplar of what the philosophers call access consciousness (Baars, 2002; Block, 2007; 

Dennett, 2005; Dennis & Schutter, 2004). Of course, there are other theories of consciousness 

(e.g., Augustenborg, 2010; Edelman & Tononi, 2000; Sun & Franklin, 2007; Taylor, 2011; 

Tononi, 2008), but none to our knowledge , other than GWT, explicitly serve as the basis of 

a systems-level cognitive architecture. 

While the commitment to GWT is certainly central to our LIDA model, we consider only the 

functional aspect, and not the specific implementation, to be crucial to AGI research. This 
functionality includes filtering the agent’s current situation for the most salient portion to be used 

to select the next action (see Figure 2). 

4.6 Learning via Consciousness 

 

Level of importance to the LIDA Model: Essential 

Level of importance to AGI: Significant 

 

A second major function of consciousness in cognition, at least functional consciousness as 

implemented in the global broadcast of GWT3, is the enabling of learning, the encoding of 
knowledge about the past for use in the present. The conscious broadcast selects the most salient 

portion of the current situation to be learned by the various memory systems. GWT supports the 

Conscious Learning Hypothesis: significant learning takes place via the interaction of 

consciousness with the various memory systems (Baars & Franklin, 2003; Franklin, et al., 2005). 

That is, all memory systems rely on conscious cognition for their updating, either in the course of 

a single cycle or over multiple cycles (see above for a discussion of cognitive cycles). Note that 
learning as used here does not refer to Hebbian learning or other forms of neural plasticity, rather 

it refers to the Conscious Learning Hypothesis, a theory of cognitive, not neural, learning. 

Nonetheless, this does not preclude that learning may be implemented via Hebbian mechanisms. 

Priming, of course, can occur unconsciously (Boltea & Goschke, 2008; Eimer & Schlagecken, 

2003), but is of such limited scope and brief duration as not to be considered significant learning. 
Both implicit learning (Cleeremans, Destrebecqz, & Boyer, 1998; Jimenez, 2003) and latent 

learning (Campanella & Rovee‐ Collier, 2005; Chamizo & Mackintosh, 1989; Franks et al., 

2007) require subjects to be awake and alert, and thus presumably conscious. 

Data flow according to GWT can be visualized as having an hourglass shape with sensory 

data coming in the left and flowing through the leftmost cone (please see Figure 2). The 

bottleneck at the center represents the limited capacity global workspace acting as an attentional 
(relevance) filter before the broadcasting of conscious contents throughout the brain, represented 

by the rightmost cone. GWT is therefore a theory of how consciousness functions within 

cognition, first as a filter and then as a recruiter and a modulator of learning.  
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Figure 2. Global Workspace Theory within the Action-Perception cycle. 

Frequent published assertions about “unconscious learning” might make our Conscious 

Learning Hypothesis appear untenable. However, closer examination reveals that all such refer to 

either priming or implicit learning. Subliminal priming can occur when a stimulus is presented for 

too short a time for conscious awareness to occur, and followed by some masking stimulus. The 
priming stimulus, though unconscious, can affect subsequent decisions (Eimer & Schlagecken, 

2003; Silverta, Delplanquea, Bouwalerha, Verpoorta, & Sequeira, 2004; Tulving & Schacter, 

1990; Yang, Xu, Du, Shi, & Fang, 2011). This kind of masked priming effect involves too little 

content over too short a time period for us to be comfortable referring to it as  learning.  

Implicit learning is often misleadingly defined as learning that takes place without intention 
or awareness (Jimenez, 2003). In each instance of implicit learning, the learning subject must be 

conscious during the learning experience. Typically some skill is learned (for example, 

recognizing well-formed sequences of letters) while some underlying enabling pattern (the rule 

by which well-formed sequences are constructed) remains implicit (Cleeremans, et al., 1998; 

Jimenez, 2003; Reber, 1967; Sun, Slusarz, & Terry, 2005). Implicit learning is, indeed, learning, 
but it does not occur in the absence of consciousness. We refer to such learning as “consciously-

mediated” (Franklin & Baars, 2010; Franklin, et al., 2012). 

We do contend that commitments to learning will be critical to any AGI agent, since not all 

eventually needed recognitions, knowledge, skills, etc. can be built in. However, we make no 

such contention about LIDA’s particular mechanisms of learning. 

4.7 Comprehensive Decay of Representations and Memory 
 

Level of importance to the LIDA Model: Significant 

Level of importance to AGI: Undetermined 

 
Essentially, every representational entity in the LIDA model has a numeric activation value, 

which may have different meanings for different entities. To be clear, modules are not considered 

representational entities though they may contain instantiated representations and memory. 

Entities in one of the long-term memories typically have both a base-level activation measuring 

the past usefulness of the entity, and a current activation that measures its current relevance.  In 
LIDA, all activations decay. Decay rates vary with the type of entity and with the type of 

activation. The decay rate of a given entity will often decay in an inverse exponential relationship 

to its activation. If the activation of an entity decays sufficiently, that entity (memory trace) is 

removed from the LIDA memory module. On the other hand, due to the exponential decay, 

saturated entities may decay so slowly as to seem permanent.  
Many human memory researchers are happy with the idea of memory traces decaying away 

(Cansino, 2009; Sims & Gray, 2004). Others believe that long-term memory traces never decay 

away, but rather are unable to be reached due to retrieval failure (cue-dependent forgetting) 

(Armstrong & Mewhort, 1995; Bjork & Bjork, 1988; Miller & Matzel, 2006; Shiffrin, 1970).  
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In addition to decay, representations in LIDA can change as a result of interference by later 

cognitive activities. Memory loss due to interference is not controversial among human memory 

researchers (Brainerd & Dempster, 1995; Chandler, 1991). Neither is the concept of seemingly 
permanent long-term episodic memory storage (Craik, Routh, Broadbent, & Craik, 1983; 

Stickgold & Walker, 2005). 

Again our commitment to decay in LIDA is a fairly signif icant one, but we make no such 

claim to its general usefulness or importance to AGI research. It may not even happen uniformly 

in humans. 

4.8 Profligacy in Learning 

 

Level of importance to the LIDA Model: Subsidiary 

Level of importance to AGI: Undetermined 
 

As noted in the section on learning via consciousness above, learning occurs in a profligate 

manner during each of LIDA’s cognitive cycles as a result of the conscious broadcast. In Figure 1, 

the solid lines depict opportunities for this multimodal learning to occur in each of the long-term 

memory systems using the contents of the conscious broadcast. Such learning can be 

instructionalist, the learning of new entities, or selectionist, the reinforcement of existing entities 
by modifying their base-level activation. Thus learning can occur at roughly five to ten times a 

second in each of the modalities (Madl, et al., 2011). We refer to this process as profligate 

learning, the rapid learning of everything that comes to consciousness. Of course, most of what is 

so learned rapidly decays away (see the previous section). Recall that long-term memories are, in 

fact, only potentially long-term. Given sufficient reinforcement, a particular memory may acquire 
enough base-level activation that its decay rate essentially drops to zero. In AI, such common 

profligate learning algorithms are often referred to by the term generate and test5 (e.g., Kaelbling, 

1994), or in common language, trial and error.  

Though learning via generate and test has certainly proved itself useful to AI research, we 

see no reason to claim that profligate learning must be equally useful to AGI research. 

4.9 Feelings as Motivators and Modulators of Learning 

 

Level of importance to the LIDA Model: Very Significant 

Level of importance to AGI: Significant 
 

The LIDA model employs artificial feelings and emotions that allow for flexible and 

sophisticated action selection, and for the modulation of learning (Franklin & Ramamurthy, 2006). 

Feelings in humans include hunger, thirst, various sorts of pain, hot or cold, the urge to urinate, 

tiredness, depression, etc. Implemented biologically as somatic markers (Damasio, 2008), 

feelings typically attach to response options and therefore bias the agent’s choice of action.  
Emotions, such as fear, anger, joy, sadness, shame, embarrassment, resentment, regret, guilt, 

etc., are taken to be feelings with cognitive content (Johnston, 1999; Panksepp, 2005). One 

cannot simply feel shame, but shame at having done something—the cognitive content. Feelings, 

including emotions, are nature’s means of implementing motivations for actions in humans and 

other animals. Feelings and emotions give us the ability to make an almost immediate assessment 
of situations (Roseman & Smith, 2001; Smith & Kirby, 2001). They allow us to determine 

whether a given state of the world is beneficial or detrimental.  

                                              
5
 Learning is generated each time content comes to consciousness, and its usefulness is continually tested 

by decay as time passes. 



FRANKLIN ET AL. 
 

 13 

Feelings are represented in the LIDA Model as particular kinds of nodes in its Perceptual 

Associative Memory and elsewhere. Each feeling node constitutes its own identity; for example, 

distress at not enough oxygen is represented by one node, relief at taking a breath by another. 
Each feeling node has its own valence, always positive or always negative. The current activation 

of the node measures its arousal. Those feeling nodes with sufficient activations, along with their 

incoming links and object nodes, become part of the current percept and are passed to the 

Workspace. 

These feeling nodes play a major role in contributing activation to those coalitions that 
contain them, thereby increasing the coalition’s likelihood of selection in the Global Workspace. 

Any feeling nodes that belong to the winning coalition become part of the conscious broadcast, 

the contents of consciousness.  

Any feeling node in the conscious broadcast that also occurs in the context of a scheme in 

Procedural Memory adds to the current activation of that scheme, increasing the likelihood that it 

will be instantiated into the action selection mechanism. It is here that feelings play an additional 
role as implementation of motivation by adding to the likelihood of a particular action being 

selected.  

Learning is both a function of attention and of feelings. Feelings in the conscious broadcast 

modulate learning. Up to a point, the more intense a feeling node’s activation, also known as its 

affect, the greater the learning. Beyond the optimal point, more affect begins to interfere with 
learning (Yerkes & Dodson, 1908). 

While some form of quite flexible motivation will be a critical commitment to any AGI 

agent, there may well be ways to bring this about other than by feelings and emotions.  

4.10 Asynchrony 

 

Level of importance to the LIDA Model: Very significant 

Level of importance to AGI: Undetermined 

 

The LIDA cognitive cycle diagram above (Figure 1) consists of modules, represented by labeled 
boxes, and their associated processes, represented by labeled arrows. The modules mostly store 

memories of some kind or another, either (potentially) long-term or shorter term. The process 

operating on the Global Workspace waits for an appropriate global trigger before broadcasting 

the current contents of consciousness (black arrows in the diagram), thus assuring the seriality 

and coherence of consciousness. Baars’ recent notion of a dynamic Global Workspace (dGW) 

(Baars, Franklin, & Ramsøy, 2013) suggests that conscious contents arise from a winner-take-
all binding coalition among competing and cooperating signal streams emanating from a selected 

region of the cortico-thalamic core. A winning coalition can ignite a ~100ms global broadcast to 

widely distributed receiving networks (Gaillard et al., 2009). This suggestion does not contradict 

the existence of such global triggers in brains.  

All of the other processes of the LIDA model operate asynchronously in response to their 
local conditions. Thus multiple processes may be active simultaneously throughout the LIDA 

architecture, giving rise to overlapping cognitive cycles running in parallel. In other words, a 

cognitive cycle does not need to finish before another begins—in fact, it typically won’t. These 

cycles are an emergent property of the architecture. In neither brains, nor in the computational 

implementations of LIDA-based agents, are cognitive cycles explicitly evolved, or built into the 
architecture. This may differ in other cognitive architectures. 

Though LIDA, and brains, work well without a system clock, we see no reason to expect this 

must be true of AGI agents in general. 
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4.11 Transient Episodic Memory 

 

Level of importance to the LIDA Model: Very Significant 

Level of importance to AGI: Significant 

 

Following Conway (2001), the LIDA model hypothesizes that humans have a content-addressable, 

associative, transient episodic memory with a decay rate measured in hours or a day. In our 
theory, a conscious event is stored in transient episodic memory following a broadcast from the 

Global Workspace. Although this is a minority opinion in the psychological literature, we justify 

the need for it as follows. We note that such a transient episodic memory will be needed by any 

agent who must keep track of repetitive similar events whose important features differ slightly 

from event to event, for example, where in a parking garage an automobile is parked daily. Such 
events cannot be successfully tracked by long-term episodic memory that is subject to 

interference. 

In spite of this commitment being ignored by most human memory researchers, we suspect 

that an AGI agent will be confronted with repetitive similar events with important features 

differing only slightly from event to event. Thus this will be a significant commitment for AGI 

research. 

4.12 Consolidation  

 

Level of importance to the LIDA Model: Subsidiary 

Level of importance to AGI: Subsidiary 
 

A corollary to the hypothesis of the previous section says that conscious contents can only be 

encoded (consolidated) in long-term Declarative Memory via Transient Episodic Memory (see 

Figure 1). Though still somewhat controversial, there is much evidence for consolidation (Born & 

Wagner, 2006; Graves, Heller, Pack, & Abel, 2003; McGaugh, 2000; Nadel, Hupbach, Gomez, & 
Newman-Smith, 2012; Remondes & Schuman, 2004; Stickgold & Walker, 2005; Wamsley, 

Tucker, Payne, Benavides, & Stickgold, 2010; Wiedemann, 2007; Zhang, 2009). 

A commitment to some way of producing long-term episodic memory will surely be needed 

by AGI agents, but this need not happen via consolidation. 

4.13 Non-linear Dynamics Bridge to Neuroscience 
 

Level of importance to the LIDA Model: Very Significant 

Level of importance to AGI: Undetermined 

 
The LIDA model is a model of mind, not of the underlying brain. LIDA is a biologically inspired 

model, which incorporates the useful, functional aspects of the brain into the model, e.g. Global 

Workspace Theory, while, hopefully, avoiding those features idiosyncratic to the brain. In 

addition, such a model of mind should be consistent with the only known existing 

implementations of highly sophisticated minds; namely those generated by biological brains. 

Thus, the model needs to avail itself of existing neuroscientific evidence in order to account for 
the observed connection between minds and brains. 

We propose that non-linear, self-organizing dynamics constitutes a bridge or mapping, in 

principle, between the mind’s cognitive representations and the neural dynamics that underlie 

them. For example, Fuster’s cognits (2006) are proposed to represent cognitive entities neurally. 

The brain dynamically integrates the activity of its perceptual oscillators with the activity of its 
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higher-order neural oscillators6 (Barham, 1996; Freeman, 2003) so as to subserve the application 

of memory, deliberation, and goals to the present state of the environment and brain. In keeping 

with Global Workspace Theory, a subset of this integrated oscillatory activity is selected (see 
Asynchrony above) for broadcast. This broadcast then drives action selection and several forms 

of learning, and the selected actions activate oscillators that control the organism’s action 

execution. Furthermore, we propose timing relationships in the form of phase-coupling between 

oscillators as a key characteristic of cognition’s neurophysiological “structure” (Strain, Franklin, 

Heck, & Baars, in preparation). 
This commitment is to a particular explanation of the relationship between LIDA and 

neuroscience. It need play no role in AGI research in general. 

4.14 Theta Gamma Coupling from the Cognitive Cycle 

 

Level of importance to the LIDA Model: Significant 

Level of importance to AGI: Undetermined 

 

This conceptual assumption is about the relationship of the LIDA model to the underlying 

empirical neuroscience evidence. Cross-frequency-coupling (CFC), in which high-frequency 

(gamma) activity organizes within low-frequency (theta) response patterns, is implicated in a 
variety of cognitive contexts (Canolty & Knight, 2010), including declarative memory (Nyhus & 

Curran, 2010; Osipova et al., 2006; Sederberg, Kahana, Howard, Donner, & Madsen, 2003), 

working memory (Sauseng, Griesmayr, Freunberger, & Klimesch, 2010; Tort, Komorowski, 

Manns, Kopell, & Eichenbaum, 2009), attention (Sauseng, Klimesch, Gruber, & Birbaumer, 

2008), and perceptual organization (Doesburg, Green, McDonald, & Ward, 2009). More 
specifically, cross-frequency coupling was detected as a strong correlation between theta phase 

and gamma power (Canolty et al., 2006).  

Within the LIDA model, individual cognitive cycles run their course in roughly 300-500ms. 

Several such cognitive cycles, perhaps three, can cascade or overlap as long as the quasi-seriality 

of consciousness is preserved. Thus, such cascading cognitive cycles would be expected to occur 
at a theta band rate of 5-8hz. But within each cognitive cycle one finds a bevy of modules and 

processes contributing to the activity of the cycle (see Figure 1), always varying with the current 

situation or task. An attractive conjecture from the LIDA Model is that this internal activity of 

cognitive cycles gives rise to gamma frequency amplitude modulations during the course of a 

theta cycle corresponding to a cognitive cycle (Strain, et al., in preparation). If so, the observed 

phenomenon of theta-gamma coupling on some underlying cell assembly, that is, the modulating 
of each theta cycle by gamma frequency amplitude variations, could be interpreted as 

corresponding to the activity of a LIDA process correlated with that cell assembly. Variations in 

theta phase would correspond to variations in cognitive cycle lengths and in the details of the 

overlap during the cascading of cognitive cycles. 

This commitment concerns only the relationship between LIDA’s emergent cognitive cycle 
and the emergent theta-gamma cycles in brains. It may well have no role at all to play in AGI 

research in general. 

                                              
6
 From Barham (1996), we construe “oscillator” as referring broadly to the activity pattern of any fluctuating entity that 

has a measurable physical energy. Examples range from the low-energy activity of sensory receptors, neurons and 

neural ensembles, to high-energy patterns such as the variation of a predator population, the presence or absence of a 

physical obstacle, or even weather patterns and solar cycles. In this scheme, an organism’s low-energy oscillators allow 

it  to respond to the activity of high-energy environmental oscillators before becoming “thermodynamically coupled” to 

them (Barham, 1996). 
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5. Summary and Conclusions 

We have approached the problem of artificial general intelligence by integrating existing models 

and evidence into the broad-based LIDA model comprising the known cognitive principles of 
perception, memory, understanding, attention, consciousness, action selection and execution. In 

order to accomplish this, we have taken tentative theoretical stances in each of these subfields, 

many of which would be controversial if asserted dogmatically. As a rule, our stances do not 

represent staunchly held positions in the various debates, so much as operational commitments 

that enable the broad modeling necessary to artificial general intelligence research. If any one of 
our tentative commitments were to prove false, it would likely alter our model significantly. 

To summarize, the research philosophy for the LIDA model is strongly defined by an 

adherence to systems-level modeling of multiple aspects of cognition within a single unified 

model. LIDA is biologically inspired, using biology as a guide as well as a restriction on its 

functionality. It adheres to embodied (situated) cognition, using grounded modal representations. 
LIDA views cognitive cycles as cognitive atoms, suggesting high-order processes are built out of 

simpler action-perception cycles. Nonetheless, there are no serial timekeepers defining such 

cycles; rather the seriality emerges from a bevy of asynchronous processes. LIDA is strongly 

coupled with Global Workspace Theory, which suggests the need for a filter on the agent’s 

representation of the current situation selecting the most salient portion to be used to select the 

next action. Additionally, learning is hypothesized to primarily occur via this consciousness 
selection. Since consciousness moments appear to be frequent (every 100ms), then learning is 

profligate, which should be offset by comprehensive decay of representations and memory, 

leaving only the most frequent and salient representations. In order to have an autonomous agent 

with an agenda, LIDA, sticking with biological inspiration, calls upon feelings as motivators and 

modulators of learning. LIDA requires Transient Episodic Memory, for repetitive similar events 
whose important features differ slightly from event to event. A corollary to this suggests that 

long-term Declarative Memory should be produced via the consolidation of Transient 

Episodic Memory. Finally, LIDA grounds itself to neuroscience in two ways: 1) It proposes a 

non-linear dynamics bridge between mental representations and the neural dynamics that underlie 

them, and 2) it suggests theta gamma coupling from the cognitive cycle. 
As mentioned, the cognitive-cycle-as-cognitive-atom-hypothesis and the Global Workspace 

Theory of consciousness are two firmly held commitments in the LIDA Model. LIDA’s modules 

contain distributed asynchronous processes with a quasi-seriality imposed by periodic conscious 

broadcasts according to GWT. This seriality defines a cycle. Asynchrony predicts that one such 

cycle may begin before the previous one is completed, making empirical detection and 

measurement of such cycles an extremely difficult methodological problem. However, the model 
itself offers a computational platform, the recently completed LIDA Computational Framework 

(Snaider, McCall, & Franklin, 2011) on which to test the Model’s numerous hypotheses. 

Implementations of a model of mind should replicate data from experimental psychology, and/or 

produce reasoning, learning, and behavior comparable to that of biological organisms including 

humans. Ongoing research will reinforce validated assumptions and mandate changes to those 
producing results inconsistent with empirical data. 

The authors state these commitments here hoping to generate discussion of these, as well as 

the commitments of other cognitive modelers, as a means of furthering research in artificial 

general intelligence. It would seem that a consensus as to commitments might well lead to a 

greater similarity of AGI architectures, with the possibility of inter-usability of their modules. 
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