
Journal of Artificial General Intelligence 3(3) 74-100, 2012
DOI: 10.2478/v10229-011-0018-0

Submitted 2012-07-30
Accepted 2012-12-03

The AGINAO Self-Programming Engine

Wojciech Skaba
Aginao
Trubadurow 11
Gdansk, 80205, Poland

WOJCIECH.SKABA@AGINAO.COM

Editors:  Kristinn R. Thórisson, Eric Nivel, Ricardo Sanz

Abstract

The AGINAO is a project to create a human-level artificial general intelligence system (HL AGI) 
embodied  in  the  Aldebaran  Robotics'  NAO humanoid  robot.  The  dynamical  and  open-ended 
cognitive engine of the robot is represented by an embedded and multi-threaded control program, 
that  is  self-crafted rather  than hand-crafted,  and is  executed on a  simulated Universal  Turing 
Machine (UTM). The actual structure of the cognitive engine emerges as a result of placing the 
robot in a natural preschool-like environment and running a core start-up system that executes 
self-programming of the cognitive layer on top of the core layer. The data from the robot's sensory 
devices supplies the training samples for the machine learning methods, while the commands sent 
to  actuators  enable  testing  hypotheses  and  getting  a  feedback.  The  individual  self-created 
subroutines are supposed to reflect the patterns and concepts of the real world, while the overall 
program structure reflects the spatial  and temporal hierarchy of  the world dependencies.  This 
paper  focuses on the details  of  the self-programming approach,  limiting the discussion of the 
applied cognitive architecture to a necessary minimum.

Keywords:  artificial  general intelligence, NAO, self-programming, virtual machine, cognitive 
architecture

1. Introduction

By self-programming we mean a computer system that is characterized by at least the following  
key features:

 the  code  is  "executed"  as  a  program  on  a  (possibly  virtual)  processor  having  the  
flexibility of a UTM or a close-to-universal Turing Machine (TM)

 the ordering of the instructions of the program code, of a possibly fixed instruction set, is  
a result of an automatic process, rather than prescribed by a human designer

Many  other  terms  have  been  used  to  mean  similar  approaches  in  the  past.  Automatic  
programming—once  regarded  as  automatic  computer-program  generation—now  is  more  
understood as  generative  programming,  an  assembly  of  components  with  template  tools,  the  
process that barely meets even the second criterion (Batory, 2004). In e volutionary programming, 
the  program  structure  is  fixed,  while  the  parameters  may  evolve  (De  Jong,  2006).  Genetic  
programming involves modifications of the program code but imposes restrictions on the overall  
program structure to be represented by a tree (Koza, 1992). The  universal search and derived

   This work is licensed under the Creative Commons Attribution 3.0 License.



THE AGINAO SELF-PROGRAMMING ENGINE

methods are the closest to our understanding of self-programming, nevertheless the papers on the  
topic rarely deal with the obvious question of combinatorial explosion in an effective manner  
(Schaul  and  Schmidhuber,  2010).  Few  if  any  TM-based  attempts  find  the  underlying  self-
programming task as designing a real-time embedded system processing huge amounts of data,  
that is unknown a priori, volatile and affects the program outcome substantially. The latter to  
mean that a piece of code must be rerun multiple times to evaluate  its  usability.  We do not  
reserve, however, the right to restrict the extent of the meaning of the term self-programming,  
providing the above definition to focus attention only.

The choice of TM-based approach is obvious for one reason: it is the most universal method  
of creating a dynamic non-linear system, capable of running any algorithm, according to Church-
Turing  thesis.  The  universality  is  given  at  the  price  of  system stability,  as  the  question  of  
executing an illegal instruction, infinitely looping, accessing data out of scope, or—in general—
the halting problem arises. No system is capable of being a self-programmable from scratch.  
There must be a handcrafted core layer, and only on top of that comes the self-programming  
layer. The upper layer need not to know anything about its underlying core. It may be a simulated  
UTM running in a virtual memory, while the core is a rather restricted system, far from being  
universal, thus stable. On the other hand, however, there is no limit for a future AGI system,  
running in the upper layer, to learn its core and even rewrite itself (Schmidhuber, 2006).

1.1 Cognitive Architecture

The  AGINAO  cognitive  architecture  was  first  introduced  by  Skaba  (2011).  The  cognitive  
architecture is built around the notion of a pattern and a concept. Here, the idea of a pattern is  
intended to mean much more than a simple graphical icon; it  is any regularity that might be  
detected in the world. For example, a simple pattern is the letter T, being a purely spatial pattern, 
consisting of a horizontal  bar and a vertical  bar,  both arranged in a specific  order.  The bars  
themselves being the patterns of some lower level ingredients (pixels?), and the letter T being a  
candidate for a higher level pattern, like a word. It is an open question, however, whether the  
letter T consists of two bars, or—let's say—two horizontal half-bars and one vertical bar, or some  
completely different ingredients, or even coexisting all alternative definitions of the same pattern?

A pattern need not be spatial but may be temporal, like an output produced by a pace maker.  
It may also be a spatial-temporal, like any object moving around a visual scene. Not only episodic  
but also procedural memory is an example of a regularity, like an order of the actions to be  
executed. A regularity need not be preexistent in the environment, for it may also be envisioned  
by the cognitive system, by constructing a deliberated pattern. Possibly, the approach in which  
patterns  are  envisioned  and  evaluated  for  their  applicability  may  be  more  effective  than  an  
attempt to directly reverse-engineer the incoming data.

One of the simplest regularities one might imagine is a detector of a threshold-exceeding  
input signal. It doesn't look like a pattern at all, and it is unclear how it might be applied. In terms  
of program complexity, however, such a detector is a short piece of code, very likely to come  
forth even as a result of a random code generation. What is more, it may be applied in different  
locations  of  the  cognitive  engine  and  in  different  contexts.  We  may  expect  these  types  of  
regularities, having no clear functionality and no names, to become very common.

A patternist philosophy of mind is thoroughly discussed by Goertzel (2006). According to  
Goertzel,  the  mind  and  world  are  themselves  nothing  but  pattern—patterns  among  patterns,  
patterns within patterns. Hawkins (2006) was among the first who have focused on the temporal  
aspects of the patterns. He directed his attention to the following ideas:

75



SKABA

 most  real-world  environments  have  both  temporal  and  spatial  structure ,  and  a  single 
algorithm to discover these patterns should take both aspects into account

 better results can be achieved, if the processing is conducted simultaneously at all levels  
of the hierarchy

Even  if  a  pattern  is  a  purely  spatial  one,  we often  use  a  temporal  language  to  describe  its  
properties. For example, we would say that the letter E comes before T in word letter. The way 
we learn the letters, the way fovea saccades over a static letter, the way we learn how to write  
them, all these actions engage time.

Once the cognitive engine has created an internal representation of a pattern or regularity, we  
call it a concept. A concept may sometimes represent a fake pattern, as a result of a false belief,  
and will be discarded eventually. In most cases, a concept will be represented by a piece of code,  
a  separate  subroutine  that  may  be  launched  independently  of  the  other  concepts,  or  even  
simultaneously many instances of the same concept code, possibly processing different data. In a  
more general sense, the notion of a 'concept' could be attributed to a number of separate concepts  
acting concurrently. We wouldn't use that name, however, unless a higher level concept has been  
formed and translated to a piece of code.

Figure 1 depicts the basic scheme of a concept. Each concept has one or more inputs, and a  
single output. The inputs link from the outputs of the other concepts. The output links to the  
inputs of the other concepts. In general, a new pattern is formed out of other patterns in two steps.  
First, there are ingredients, the patterns of which a new pattern may be formed. Second, there is  
some internal processing. For example, a letter T consists of a horizontal bar pattern and a vertical  
bar pattern ingredients. It is, however, the internal processing that tells whether the ingredients are  
arranged in a proper configuration. In general, a pattern is any set of patterns in some mutual  
relation, spatial and/or temporal, while a concept is the way the cognitive system represents the  
patterns.

Figure 1. Basic scheme of a concept.

A question  arises  on  the  distinction  between a  concept  template  (the program code  and I/O  
structure) and its instantiation, later called a runtime for it is an executable of a concept that is  
running. It is the runtime that expresses the idea that a given concept is currently perceived or  
imagined. In some cases, new concepts are formed only if multiple runtimes (executables) of a  
certain concept coexist. A good example would be to consider a collection of natural leaves. If  
runtimes of a given leaf-concept have the property of having the same creation time (the time  
they were perceived),  they could form a concept of a tree.  If,  however,  the same number of  

76



THE AGINAO SELF-PROGRAMMING ENGINE

runtimes of the same leaf-concept is differing in the creation time, it is subject to supporting a  
concept  of  a  falling  (single)  leaf.  It  is  these considerations that  justify  the necessity  of   the  
mentioned above simultaneous processing.

Since a concept may be created out of two or more instantiations of another concept, it means  
that it is quite legal for a concept-output to link to two or more inputs of a newly created concept,  
provided  that—when  the  processing  is  conducted—the  different  inputs  are  represented  by  
different runtimes. Two different concepts may also share the same input mappings, provided  
they differ in the internal processing code, like in the above example.

Different world-patterns feature different complexity. They are arranged in hierarchies and  
according to some mutual dependencies. We would like the concepts for the simplest patterns to  
emerge  first,  then—on top  of  them—the more  sophisticated  ones.  Happily,  we  have a  good  
candidate for a measure of complexity, the Kolmogorov complexity. Instead, however, of trying  
to  measure  the  Kolmogorov  complexity  of  each  individual  pattern—a  task  in  general  case  
incomputable—we could test the individual programs in order of their complexity, taking into  
account both the program length and its execution time, the latter to matter even more. Then,  the  
patterns to be named the simple ones would be those detectable by simple program. As will be  
shown below, not all possible programs match the criteria of functioning as a concept, but some  
do. A similar approach was presented by Schmidhuber (2004).

Some  authors  doubt  if  the  presented  above  idea  of  creating  a  hierarchy  of  concepts  
representing spatial-temporal patterns would have sufficient power to eventually scale-up to an  
advanced AGI system. Skipping the discussion here, we would refer to Goertzel (2011).

1.2 NAO Humanoid Robot Embodiment

Advanced AGI system may only be achieved, if we let  
the  cognitive  engine  act  as  an  agent  in  the  natural  
environment. One possible approach is the embodiment  
of the control program in a physical humanoid robot.  
Though  many  teams  have  succeeded  in  constructing  
their own hardware platforms, a more straightforward  
approach for a cognitive scientist is the application of  
one  of  the  commercially  available  products,  like—in  
our case—the NAO from Aldebaran Robotics.

One question that immediately arises and, as so far,  
remains  unanswered  is:  do  the  NAOs  sensors  and 
actuators  meet  the  embodiment  requirements  for  
achieving a HL AGI? Taking, for example, the visual  
system into account. The robot's  camera resolution is  
1280x960 pixels, much less than that of the human eye.  
Would this restriction affect the possibility of creating  
an AGI system substantially, or would it only have a  
minor impact? One must observe, however, that there  
are people who have been blind since birth and have  
developed regular intellectual skills in the very meaning  
of  the  sense  of  general  intelligence,  with  the  only  
exception  that  they  do  not  deal  with  visual  images.  

77



SKABA

Would then vision processing be required for achieving the HL intelligence at all? We will leave  
that question unanswered.

The cognitive engine embodiment adds another requirement on the construction of the whole  
system: the necessity to connect it to the outer world. The concepts—as defined above—cannot  
be connected directly to sensors and actuators, since the inputs link from other concept’s outputs  
and the outputs may link to other concept’s inputs. The problem may be resolved by adding  
special purpose predefined atomic concepts that would act as individual sensors and actuators.  
These concepts would be indistinguishable from the regular ones by the cognitive system, with  
the only exception they would be non-removable and would be lacking some properties.

It is the atomic sensory-concepts that act as the most basic patterns for the construction of the  
more sophisticated ones, for otherwise the cognitive engine wouldn't find the ingredients for the  
construction of the first new patterns. It may be said that the cognitive system is grounded in  
atomic  sensory-concepts.  The  atomic  actuator-concepts,  on  the  other  hand,  act  as  terminal  
concepts, having no output (as a concept), and thus not participating in the construction of other  
concepts.

To make the further discussion more comprehensible, the following is a brief presentation of  
the robot's hardware. The NAO is controlled by INTEL ATOM 1.6 GHz (formerly AMD Geode)  
running  LINUX.  Robot  is  equipped  with  2  color  cameras—not  to  be  used  concurrently—
1280x960 pixels max each, 4 microphones, 2 speakers, tactile/force sensors, gyro, accelerometer,  
dozens of joints with motors and sensors controlling the head, the arms and the legs. The robot  
may be connected via WiFi or Ethernet. Since the power of the robot's CPU seems insufficient for  
the  planned  cognitive  task,  and  occasionally  up  to  90% of  the  computational  resources  are  
consumed by robot’s internal processing, all the cognitive-engine computations are performed on  
a separate host system, while the robot merely transfers sensory data and executes the commands  
received for the actuators.

2. Self-Programming Engine 

The very idea of self-programming may interfere with the reader's  beliefs  on the theoretical  
possibility of attributing a human-like creativity and intelligent activity to an inanimate machine.  
On the other hand, do we really need the self-programming at all? Why cannot we just encode the  
cognitive engine by hand? The answer is that we have already tried and failed, and the cause of  
the failure—we believe—is that the number of hypotheses (i.e. programs) to be created and tested  
is beyond the capabilities of a human programmer.

Let us consider the following thought experiment as an informal proof on the possibility of  
machine creativity. The prime (integer) factorization problem is believed to have no polynomial-
time solution, but algorithms better than brute-force search do exist. As of 2012, the  general  
number field sieve is the winner. Now imagine that a better but unknown algorithm exists, one  
possibly to be discovered as a result of an exceptional intellectual creativity. Then, the algorithm  
may also be found with the universal search, provided we have a fitness function, which is simply  
the multiplication of the divisors to check the algorithm’s correctness.

As for a generalization of the above approach to a more advanced AGI system, we encounter  
the following crucial questions:

 universal search has  exponential-time complexity and—as for the expected size of the 
AGI core—we do need a way to expedite the search

78



THE AGINAO SELF-PROGRAMMING ENGINE

 the  fitness  function  for  general  intelligence  is  unknown,  or—at  least—it  is  not  as 
straightforward as in the case of integer factorization

 it seems rather unlikely to immediately generate a complete mind with all its experiences  
and memories; we would rather focus on making a core system to be embodied in a  
robot, one that would start building the target mind from experience. What follows, no  
matter how fast our core system is, we have to test each candidate core for —let's say—
three years, until we get any reasonable results. Some authors attempted to overcome this  
limitation with a simulation world (Heljakka et al., 2007).

2.1 Foundations of the Computational Model

Taking into account the discussed above assumptions and restrictions, the following basic model  
of computation has been proposed:

 at  the  lowest  level,  there  is  a  simulated  Turing  Machine,  later  also  called  a  virtual  
machine  (VM),  with  a  predefined  and  fixed  (though  customizable)  instruction  set,  
capable of running a  virtually  unlimited number of concurrent threads.  A  single VM 
model is shared by all concepts.

 out  of  the  VM  instructions,  in  a  fully  automatic  process  called  heuristic-search  in  
program-space, the basic building blocks of the cognitive engine are composed, the tiny  
programs  named  codelets,  ones  that—accompanied  with  I/O  structure  and  other  
information—become  the  concepts.  The  codelets  must  be  big  enough  to  match  the  
minimum criteria of a concept structure, and small enough to be manageable. The former  
to mean that the code to match our assumed concept structure must at least read some  
input, do some internal processing and generate an output. The latter to mean that, as the  
codelets are created by a heuristic-search on top of a random generation of the codelets,  
the longer pieces of code are less likely to perform any reasonable task.

 the generated concepts are stored as a  repository of executable programs arranged in a  
hierarchy of dependencies, with atomic sensory concepts at the bottom of the hierarchy,  
atomic actuator concepts as the terminals, and self-generated concepts on many layers in  
between. Figure 2 depicts a sample hierarchy. Both the creation and the arrangement of  
the concepts are results of a fully automatic process that will be discussed in detail later.  
For the time being, it  is important to notice that the concept network is not a neural  
network, but a list of potentially executable programs and unidirectional connections. At  
any  time,  multiple  executables  (runtimes)  of  the  same  concept,  possibly  processing  
different data, may coexist. The connections specify the order of execution and the data  
flow. The hierarchy of the concepts is a dynamic and open-ended structure. A concept as  
a  whole,  or  an  individual  link  between  pre-existing  concepts,  may  be  added  to  or  
removed from the hierarchy at any time. A concept/link removal may occasionally cause  
an avalanche of removals of many descendent concepts and connections, a phenomenon  
that is observed on experiments. Any input may be connected to many concepts. The last  
input link of a concept that is removed invalidates the concept and causes the concept  
deletion and all the aforementioned consequences.

79



SKABA

Figure 2. Sample hierarchy of concepts.

 the execution is conducted as follows. At any time, a concept may have its runtime copy  
(possibly one of many concurrent but independent) executed by the VM in operational  
memory  as  a  single  thread.  Once  the  execution  is  completed  (TERMINATED),  the 
runtime refers to its concept structure to get a list of the descendents, to determine where  
to pass the result to, and effectively which concept(s) to launch runtimes as the next. For  
each selected descendent, a new independent runtime thread is created. At the same time,  
the  output  from  the  completed  execution  becomes  the  input  of  all  the  launched  
descendent threads. It is also very likely that any launching of new threads is abandoned  
for many reasons discussed below, e.g., lack of computational resources.

 the selection of the descendents to pass the execution to is dependent on the probabilities  
computed from the values of all  possible  next  actions,  computed with a  TD-learning 
algorithm. Thus, with each completed execution, the reinforcement-learning (RL) update  
is performed.

 not only  a selection of the next action from a pool of the available ones, but also an  
addition of a new action—namely creation of a new outgoing link—may be performed in 
the  TERMINATED state.  Unlike  common  convention,  we  would  use  here  the  name  
exploration for adding a new link-action, and the name exploitation for passing execution 
to any of the pre-existing descendents, not only the most greedy ones. In fact, we do not  
even refer to the distinction between greedy and non-greedy. The exploration step is  
usually preceded by a construction of a new concept or selection of an existing one. Once  
the creation/selection is completed, the new link is added. If the new concept contains  
more than one input, the other inputs may be connected to the outputs of other concepts.

80



THE AGINAO SELF-PROGRAMMING ENGINE

Figure 2. Sample hierarchy of concepts.

A thread may also be launched by an atomic sensory-concepts. Since atomic concepts do not  
perform  any  internal  processing,  but  look  like  regular  concepts,  an  atomic  sensory-concept  
runtime  is  created  directly  in  the  TERMINATED state,  signaling  execution  completion,  and  
delivering an output value representing the value of a related sensor. In case of the visual system,  
there is a single atomic-concept representing a pixel that is shared by all pixels, with the output  
consisting of (row,col) coordinates and color in (Y,U,V) space. It is quite likely that 100.000+  
independent visual pixel threads are launched within one second, ones differing not only with  
(row,col,Y,U,V) parameters but also with the creation real-time.

A hidden mechanism decides when a sensory concept thread is launched. In case of the visual  
system, for example, a runtime is created when the difference between the former and the current  
value of the pixel's luminance (Y) exceeds a predefined threshold. In fact, the sensory threads are  
the very first ever to arise and the ones that keep the whole cognitive engine running.

One  might  notice  that  a  computational  model,  as  presented  above,  might  very  quickly  
encounter the combinatorial explosion problem. If every thread is capable of launching a number  
of new threads, and the total number of concepts capable of launching threads is growing in time,  
we would very quickly run out of the computational resources. To deal with that problem, each  
thread is assigned a priority, a computational-resources limit and expiration time, differing from  
thread  to  thread,  according  to  some  rules  that  are  discussed  in  the  section  on  Artificial  
Economics. Once a thread is created, it is placed in a priority queue first, awaiting for being  
serviced by the scheduler, unless the expiration time passes first,  in which case the thread is  
discarded as if it has never existed. Once executed, it may consume the VM resources (clock  
units) only until the assigned resources limit, for otherwise it would be discarded. This feature is a  
protection  against  infinitely  looping  and  favors  faster  programs,  as  having  more  chances  to  
complete execution within the assigned resources. If computation is completed, the thread may  
launch new threads, or create new concepts, but only within the limits of the remaining resources,  
and provided the expiration time has not passed.

Figure 3. Runtime life cycle.

81



SKABA

2.2 Runtime Life Cycle

A runtime, during its life cycle, may be in one of the seven distinct states, named: PENDING, 
CREATED, EXECUTED, SLEEP, TERMINATED, EXITED  and DISCARD.  Figure  3 
shows  the  states  and  the  possible  transitions  between  them.  Some  runtimes,  like  the  
aforementioned sensory threads, are governed by slightly different rules.

 the first possible state is the  PENDING state, the case when a thread has already been  
created, but for some reasons is yet not ready for execution. The most common case  it 
occurs is  when a multi-input concept runtime was requested,  but one or more of the  
inputs  are  still  missing.  According  to  experimental  statistics,  70%  of  the  PENDING 
runtimes are discarded before transiting to the next state, due to passing the expiration  
time.  A  PENDING state,  if  discarded,  does  not  transit  to  a  "discarded"  state,  but  is  
discarded immediately, for there is no DISCARDED state, but only an imperative request  
state DISCARD.

 the CREATED runtime is one that is ready for execution but awaiting in the priority queue  
for being serviced. In case of a single input concept, a runtime is created directly in the  
CREATED state, skipping the PENDING state, for a new thread may only be requested if  
at least one input is available, and a single-input-concept runtime need not be pending for  
any other input(s). A CREATED runtime may also timeout. The collection of runtimes on  
top of the priority queue may be said to reflect the attentional focus of the whole system.

 the EXECUTED state is the state of running the code on the VM. The EXECUTED runtime 
may also be discarded before the execution completes.  The most common cases are:  
running out of resources or an attempt to execute an illegal instruction, like accessing  
data out of scope.

 a running  code  may  go  a-SLEEP,  if  the  temporal-delay  instruction  (WAIT)  is 
encountered. These instructions are very important for managing the temporal patterns.  
Since  minimal  gaps  between  real  world  events  are  counted  in  tens  of  milliseconds,  
compared to instruction execution times counted in nanoseconds, instead of looping for  
quite a long time and consuming the VM resources, a thread is suspended and placed in a  
temporal priority-queue. Once the designated delay-time passes,  unless the expiration  
time has passed first, the execution is resumed. Effectively, a SLEEP-ing thread is in an  
idle state and does not utilize the VM processor.

 the execution  may finish  in  EXITED or  TERMINATED state,  the former  a  result  of  
encountering the EXIT instruction, the latter a result of encountering the RET instruction 
(see Appendix A for reference). The EXITED state means a successful termination with a  
negative  outcome,  and  may  occur—for  example—in  case  like  the  discussed  above 
problem of detecting the letter  T, if a horizontal and a vertical bars (as inputs) are not  
properly arranged. Effectively, any further processing of the thread, like passing data to  
other concepts, is discarded. The state, however, is not regarded as a runtime error.

 the TERMINATED state denotes a successful completion of the execution and a positive  
outcome, especially a detection of the underlying pattern, and a possibility of launching  
new  threads  (exploitation)  and  adding  new  concepts  (exploration).  As  has  been  
mentioned before, the sensory concepts are created directly in this state.

82



THE AGINAO SELF-PROGRAMMING ENGINE

 in some cases, a runtime is destined to be discarded, but for some reason must remain in  
the operational memory, in which case it is marked as DISCARD state. This is basically 
the implementation question, for the physical threads may be locked and some operations  
must be postponed until unlocking.

2.3 Main Execution Loop

Figure 4 presents a detailed diagram of the main execution loop of the cognitive engine:

Figure 4. Main execution loop.

It cannot be said which is the first stage on the depicted above Ouroboros-like loop. At the very  
first start-up of the cognitive engine, the atomic-sensory threads are created: a separate thread for  
each  sensory-event,  e.g.,  for  each  visual  pixel  at  any  change  of  its  luminosity  exceeding  a  
predefined threshold. The threshold level—on the other hand—is varying too, in order to adjust  
the flow of the sensory data to the current system load and the momentary volatility of the input.

All sensory threads are created in the TERMINATED state and the processing starts in a stage  
depicted as the rightmost Terminated runtime of the execution loop. From then on, the operation  
of the cognitive engine is continuous,  not excluding the initiation of new sensory-threads.  It  
cannot be said which threads are dominant, since up to a few millions threads are created within  
each second and—excluding the waiting time in the priority queue—each thread lives for no  
more than a couple of tens of nanoseconds. A virtual flow of information processing is composed  
out of tiny threads, ones that [potentially] spawn multiple other threads each, with no any obvious  
path to be drawn from the roots to the leaves.

83



SKABA

We will  start  the presentation of the main execution loop from the top-most  Terminated  
runtime stage (runtime in TERMINATED state). First, the reinforcement-learning values, related  
to the terminated execution, are updated. It must be highlighted, however, that—what is updated
—is the values assigned to the action-links of the parent predecessor concept(s), not the concept  
underlying the terminated runtime.

In the next stage,  the output links of the runtime-underlying concept (the concept which  
program code is executed as runtime) are removed, provided some conditions are met, like in  
case when the value of an action goes below some level, possibly not below an absolute level, but  
a level relative to the values of other competing actions. The other possible cause of removal is  
the case when another concept, the one the link points to, has been deleted, and the link—now  
connecting to nowhere—is no longer valid. The concept could have been deleted because it was a  
multi-input  concept  and one of  the other  input-links was removed,  due to  a  cause  currently  
unknown  and  unimportant.  If  a  concept  is  missing  one  of  its  inputs,  it  is  deleted  and,  
consequently, all the links pointing to the deleted concept are removed. Referring to the former  
paragraph, should the RL value-updates motivate the action-link removal—one from the parent  
concept to the current runtime-underlying concept—the link removal would not be performed in  
the  current  execution  loop,  but  rather  the  next  time the  parent  concept  encounters  the  link-
removal stage; the reason being that the removal decision is not a standalone one, but dependent  
on the values of the competing actions—a task too computationally intensive to be executed each  
time the RL values are updated.

In the next stage of the loop, either a new concept is built from scratch (see section 3), or a  
new concept as a copy of another concept selected from the hierarchy is created, or a concept in  
the hierarchy is selected without being copied. Following, new link(s) to the created/selected  
concept are added. One or more input(s) of the newly created/selected concept will be connected  
to the output of the runtime-underlying concept of the execution loop under consideration, but not  
necessarily to all of them. If some inputs of the created concept do still have missing links, the  
creation process will be now suspended. Unlike in the discussed above case of a concept deleted  
due to input-link removal, a newly created concept is protected against being deleted in such case.  
It is suspended in a pending status (not to be confused with the PENDING state of a runtime) until 
being completed, or until the concept expiration-time passes (not to be confused with expiration-
time  of  a  runtime).  The  exploration  process,  as  discussed  here,  is  a  relatively  rare  event,  
compared to a more common exploitation (like 1/1000 on average and decreasing), while its  
frequency is inversely proportional to the combined value of all concept-actions (for a given  
concept).

A special type of a concept copied from the hierarchy is a copy from a pool of actuator-
concepts (the templates). One or more copies of each actuator-concept may be integrated into the  
concept hierarchy. Unlike the templates, the copies may be deleted. Should more runtimes related  
to the same actuator be executed concurrently, the conflicts are resolved.

In the next stage of the main execution loop, the new threads are launched, selected with a  
probability proportional to the values of the action-links. The process may be repeated until all  
the TERMINATED thread resources are exhausted. It is this stage where the main execution loop  
spawns new threads and eventually aborts.

The discussed earlier priority-queue awaiting, and a possible discarding of a thread due to  
timeout, is not depicted on the diagram. Once the runtime processing is started, it may finish in  
one of  the three possible  ways.  First,  the runtime may be discarded and the execution  loop  
aborted, as a result of not reaching the TERMINATED state. Second, not only the runtime will be  
discarded, but also the runtime-underlying concept will be removed. This is usually a result of  

84



THE AGINAO SELF-PROGRAMMING ENGINE

repeatedly executing an illegal instruction. Third, the thread will continue creating new concepts,  
new links and new threads, until the thread resources are exhausted.

Once a newly created concept is completed, it is automatically integrated into the hierarchy of  
the concepts, for all its inputs are connected to the outputs of the concepts that have already been  
in the hierarchy. One may ask: why the concepts are constructed only out of the input candidate-
ingredients (concepts) that have an active (TERMINATED)runtime at the time of creation? Why  
cannot a new concept be created out of any randomly selected concepts from the hierarchy? The  
answer  is,  it  can.  Focusing  on  active  concepts  only,  however,  biases  the  search  towards  the  
concepts that happen to coexist as runtime, i.e., are more likely to detect a repeatable pattern.

3. Virtual Machine and Heuristic Search

The exploration step and the concept creation procedure involves a construction of a codelet  
program that is later executed on the virtual machine. This section discusses the details of the  
implemented virtual machine, instruction set and the heuristic process of program construction.

The decision to simulate a virtual Turing Machine in software, rather than directly execute the  
machine code of the host processor, is justified by the three following observations:

 a virtual machine with a conceived internal structure and instruction set facilitates greater  
flexibility of design, for the structure of the VM need not be fixed , and the instruction set 
may be customized. Changes in the VM design, however, are not supposed to be a result  
of an automatic process, nor to be very common.

 a VM enables full control over the resources consumption, especially , the code execution 
times. It also solves the problem of exception handling, should the processor execute an  
illegal instruction.

 though the speed of execution of the machine code directly would be higher than that of a  
virtual simulation, both machines—according to the definition of Turing equivalence—
differ only by a constant multiplicative factor. What matters in our challenge, however, is  
exponential rather than multiplicative reduction of the processing time.

3.1 VM Design and Internal Data Format

Figure 5 depicts the internal structure of the VM processor and a typical setting of a 2-input  
concept. Instead of using a simple deterministic single-tape TM machine with a simple transition  
function, consisting of a short alphabet and a few states, or even an ultimate reduced instruction  
set computer (URISC), we've applied an architecture resembling those of the microprocessors of  
early 1980s, that could be defined as a sophisticated deterministic multi-tape TM. The point being  
that programs created of very simple instruction sets are human-unreadable and relatively long if  
supposed to display any functionality, hence not very likely to be created as reliable by chance.

The basic internal data type (word) is integer (int), which in current implementation is a 16-
bit  integer  (int16_t).  The VM may be  said  to  be a  16-bit  processor.  There are  two  int 
registers (accumulator and index), and two binary flags (zero and minus). There is also a local  
static memory with a fixed size. The number of inputs, the output size and the local-memory size  
are randomly set for each concept individually.

85



SKABA

Figure 5. VM internal structure.

Before continuing the presentation of the VM, we have to specify the data format the concepts—
or  more  precisely  the  runtimes—communicate.  There  is  a  uniform data-format,  a  vector  of  
integers (int) of known size (length). The size is stored in cell number 0. This format is similar  
to Pascal convention. Figure 6 presents a sample visual pixel encoding.

Figure 6. Sample visual pixel vector encoding.

A concept may have one of more inputs, which are always read-only vectors, because a single  
output of  the preceding concept  may be connected to  many inputs,  concurrently,  and a  race  
condition could occur. On the other hand, there is no reason to modify the input(s). The concept  
setting does not restrict the maximum size of the input(s), which—on the other hand—are known  
at runtime. This property enables, for example, sending a full 5-word pixel vector to a concept  
processing only the first 2 words (row and column). The internal code has to check that the input  
vector has the size of at least 2.

Output vector, on the other hand, has a concept-predefined maximum size. The actual size  
may be smaller and will be stored in the output’s size-field. Output vector is a read/write area  
(from the point of view of a given concept), for it will not be forwarded until the processing is  
TERMINATED, i.e., until the output becomes an input of other concept(s).

Unlike the values of the input and output vectors, which are runtime-specific, the local static  
memory is a concept-specific read/write area, i.e., shared among all runtimes of a concept. This  
feature resembles a static variable of a C++ function and is initialized to zero at concept creation.  

86



THE AGINAO SELF-PROGRAMMING ENGINE

The static  memory need not  have the size field,  for  the size is  fixed  and stored in  concept  
encoding. Local static memory is intended to function as a sort of long-term memory.

Figure 7 present a C++ function equivalent of a concept, where N is the number of inputs:

Figure 7. Concept structure C++ equivalent.

3.2 Sample programs

Appendix  A lists  the  instruction-set  of  the  VM for  reference.  Figures  8  shows  two  sample  
programs (for an operational example see section: Experimental Results). The line numbers in the  
first column of each program are counted in bytes.

The first sample program sets the index register to value "2", then stores the value of the third  
(idx=2) data field of the first input in the accumulator. Next, the value of the accumulator is  
stored on position 0 of the output, which sets the output size to 1, and the program returns.

The second program moves the value of the first cell of the first input (not the size field but  
the first data field) to the accumulator, and adds to it the first cell of the second input. The result  
is appended to the output. If the result of addition is zero, in which case the Z flag is set, the  
program loops and jumps to  the addition again.  Otherwise returns.  It  is  quite likely that the  
program could execute an illegal instruction here, since its outcome depends on the unknown  
input data. Most likely, the program would exceed the maximum output size, by appending too  
many words. In some cases (e.g. var2[00]=0), it would also loop infinitely, and would be aborted  
due to exhaustion of the resources.

Figure 8. Sample programs.

3.3 Heuristic-Search in Program-Space

As one might have noticed, the cognitive engine is attempting to build a reliable system by  
continuously  improving  the  concept  network,  the  process  that  consists  of  three  concurrently  
executed phases:

 in  the  first  phase,  the  candidate  concepts  are  constructed  out  of  the  machine  code  
instructions, in a process called heuristic-search in program-space. A randomly generated 
program,  even if  contains  4-6  instructions  only,  is  not  very  likely  to  meet  even  the  

87



SKABA

simplest  criteria  for  being  a  valid  one.  Tricky  heuristics  may  improve  the  process  
significantly, i.e., increase the probability of getting a usable codelet.

 once a codelet matches the criteria of the first  phase, it is still prone to runtime fatal-
errors that are not detectable in the first phase, due to behavior dependent on the input  
data.  This  case is  well  visible  in  the  second of  the  samples  shown in figure 8.  If  a  
program frequently encounters fatal errors, the concept will be permanently removed, no  
matter how would it behave in the third phase.

 the third phase is the time when the concepts are evaluated , based on their individual 
properties and on their conformity to the overall picture. The reinforcement-learning rules  
and other tools are applied. 

This section focuses on the search in the space of programs and discusses some of the applied  
heuristics. Readers not interested in the details of codelets' construction may skip this section.  
The  presentation  of  the  heuristics,  however,  is  important  for  the  discussion  of  the  risk  of  
combinatorial explosion and the overall system performance.

The program generator (PG) selects instructions by random, according to some predefined  
probability  distribution  that  favors  instructions  that  are  more  likely  to  be  useful.  Then  the  
heuristics impose constraints that must be met. There are many obvious constraints that come to  
ones mind immediately. For example, if a jump instruction is to be inserted in the constructed  
program, the destination line number should not point to itself, for such a code is completely  
useless. A more challenging constraint demands that a flag setting instruction must precede a  
conditional instruction. Likewise, at least one of the program branches must set the output, for  
otherwise one would get a concept that cannot be used as input of another concept. 

The list below presents a selection of total 30+ currently applied heuristics, some being quite  
tricky. Since typical programs do not exceed 8 instructions, the listed below constraints seem to  
be quite restrictive:

 only a small subset of the instructions listed in Appendix A would make sense as the first  
instruction on the program entry (0000). Arithmetic operations, flag settings and jumps  
are then useless, unless some data has been initialized first. Likewise, the last instruction  
of the program must be RET, unless RET has already been used elsewhere, in which case  
the only possible alternative is an unconditional JMP backwards or EXIT.

 the A and IDX registers must not be used before being initialized first. A counterpart rule  
says  that,  if  a  register  was  set,  it  must  be  utilized  further  in  the  program code,  for  
otherwise the setting would be meaningless.

 flags set  intentionally must be utilized before the current flag-setting is overwritten by  
another flag-setting. The FLAGS and CMP instructions set flags intentionally, while ADD, 
SUB, INC and other instructions set flags only as a side effect, the setting that may be  
exploited  or  not.  In  consequence,  it  means  that—after  intentional  flag  setting—a  
conditional  instruction  must  be  inserted  before  any flag  setting,  not  only  intentional,  
follows.

 forbidden are the following jumps: to itself, to the next instruction after jump, to the  
program entry, any conditional jump backwards that is not followed by flag setting before  

88



THE AGINAO SELF-PROGRAMMING ENGINE

the jump, a jump forward behind a RET instruction that is not to the instruction next after  
the RET, unless other forward jump has already used that line number.

 more challenging rules govern the branching programs. The program generator maintains  
a  status  word  for  each  branch.  Statuses  do  split  and  join.  The  mentioned  above  
requirement for the utilization of a set register is fulfilled, if at least one of the branches  
utilizes that register. On the other hand, the output vector must be set in each branch  
ending with a RET.

The PG frequently constructs exactly the same programs as the ones created in the past, which is  
intentional, for different concepts may contain the same code used in different contexts. A non-
uniform distribution of the program generation output, however, is not welcomed. It is not the  
task of PG, but higher level phases, to decide which code would be more common eventually. To  
overcome this problem, a technique called hash-pooling has been applied.

First, an array of counters count[N] is initialized to 0 (N=214 in current implementation). 
Each time a  new program  p is  created,  an index (h=hash(p)mod N) is  computed, where 
hash() is a non-cryptographic hash function. Let T be the total number of programs released so  
far. If count[h]>2*(T/N), the program generation must be repeated. Otherwise, both T and 
count[h] are  incremented  by  1,  and  the  created  program  is  released.  Consequently,  no  
programs outputted by the PG are more frequent than twice the average.

Estimates have shown that, for the programs size limit of 7 instructions, the heuristic rules  
reduce the program search space from more than 10 20 to as little as 108, which is a substantial 
improvement over a purely random process. Though the heuristics slightly reduce the universality  
of the virtual machine, the resulting acceleration of the search in the programs space seems to be  
a substantial improvement over a pure universal search.

4. Evaluating the Concepts 

The  following  discussion  of  reinforcement-learning  and  binary  space  partitioning  is  an  
abbreviated version of a more detailed presentation by Skaba (2012).

When a runtime execution is completed, the next action must be selected. Initially, the list of  
action-links is null. The list is filled-in during a process called exploration, discussed earlier. The  
space of all possible next actions is virtually unlimited. At any given time, however, the limit is  
set. Currently, the experimentally established limit is 50. In a continuous process of adding and  
removing the action-links, the number of actions that could ever be tested is also unlimited.

By action ai assigned to a given concept A we mean a link to a program to be executed that is  
stored in the next concept  C,  the one  ai points to,  not the program stored in  A.  Should two 
different concepts A and B contain actions ai and bj linking to the same input of  the same concept  
C, they would execute the same program (stored in  C), but would have their own independent 
descriptions to be updated. In case of a multi-input concept, an action is executed only if all the  
inputs are available. In that case, a selection of an action reflects only the intension to execute an  
action, not its actual execution. Very likely, the action will never be executed, which is the case  
when a  thread created by a  TERMINATED runtime has timed-out  before all  the inputs  were  
available.

The exploration probability is computed from the following equation:

89



SKABA

P Exploration ∝
Q const

Qconst∑
i

Q i

where Qi is the current value of action ai and Qconst is a predefined constant. With the increasing  
number of actions assigned to a concept and increasing value of those actions, the probability of  
exploration decreases. If, however, an exploration step is requested, and the number of actions  
assigned to a concept is equal to the mentioned above maximum limit, one of the actions—the  
one with the lowest value—will be replaced by the new action. Once a new action is added, its  
value is set to zero, and a temporary credit is assigned, in order that action is not removed until a  
more relevant value is established.

Likewise, the probability of selecting action ai (the exploitation) is governed by the equation:

P a i =
Qi

∑
j

Q j

4.1 Reinforcement Learning

The value Qi,t at time t is updated with the following TD-learning rule:

Qi,t =Q i,t+α [r i,t+1 +γ V i,t+1−Qi,t ]

where  r i,t+1  is the immediate reward at  time  t+1,  α is  the learning rate,  γ is the discount 
factor, and  V i,t+1 is the mean value of all the actions of the concept the action  a i  points to, 
computed from the equation:

V t=
∑

j
p j,t Q j,t

∑
j

p j,t

where p j,t is the probability discussed in the next section.

4.2 Binary Space Partitioning

What matters in the listed above TD-learning update rule is the immediate reward ri,t+1 that must 
be  computed  after  the  action  execution  has  been  completed.  Leaving  the  discussion  on  the  
selection of the global fitness-function for later, we have to implement a sort of inductive bias that  
would let us evaluate concepts on the concept level, for the expected and the experimentally  
observed size of the concept hierarchy is to large to enable effective global-fitness propagation  
from the terminals to the roots.

The term intrinsic motivation was borrowed by the cognitive scientists from the psychology,  
to mean that an agent is engaged in an activity for its own sake, possibly for fun, rather than to  
fulfill some external drives. Closely related to it is the term  intrinsic reward that controls the 
intrinsic motivation (Oudeyer and Kaplan, 2008).

Skipping  the  discussion  on  the  relations  between  psychology  and  cognitive  sciences,  an  
information theory based approach is presented, that computes intrinsic reward and uses it as  
immediate reward for TD-learning. The proposed measure of intrinsic reward is based on the  

90



THE AGINAO SELF-PROGRAMMING ENGINE

notion of self-information (Cover and Thomas, 1991) associated with the execution of a codelet,  
i.e.,  the  amount  of  information  provided by  an  event  of  a  successful  (i.e.  pattern  matching)  
program execution. The resulting intrinsic reward is an averaged value of self-information gain.

Figure 9. Partitioning of the state-space.

Figure 9 depicts the notion of binary space-partitioning. The input to a concept is a state space. It  
doesn't  matter  whether  there is  one or  more inputs.  All  possible  values of  the  input  vectors  
constitute a multidimensional state space. The vectors of the state space are marked as crossed  
circles. A hyperplane, depicted as a line, divides the vectors to positive and negative examples.

Now imagine that N>0  observed vectors consist of N pos  positive examples and N neg  
negative examples, where N=N pos +N neg . Then, the probability of getting a positive example  
may be calculated from the equation:

p=
N pos

N pos +N neg

In case we are lucky to encounter a positive example, we will gain the self-information (in bits)  
given by the equation:

b=−log2 p

while, on average, we will be getting a reward:

r=−p log2 p

Since the input space is discrete, the defined above value of probability changes with every new  
example. While the total number N increases, the rate of changes decreases.

Self-information may also be defined as a special case of Kullback-Leibler distance from a  
Kronecker delta representing the matching pattern to the probability distribution. 

91



SKABA

This approach has an interesting additive property, as well. If two concepts with probabilities  
p  and q  are executed in sequence, then the information gain is:

−log2 p−log2 q

The result we get is what would be expected, for if we integrate the codes of the two codelets, one  
partitioning the input space with probability p, the other with probability q, then we get the self-
information measure of:

log 2 pq =−log 2 p−log 2q

Binary  space  partitioning  is  implemented  by  distinguishing  two  types  of  code  execution  
termination: RET and EXIT, the first standing for a positive example, the second for a negative.  
Program generator  restricts the usage of  EXIT to  cases  where conditional  branching occurs,  
while RET is always mandatory, like in the example shown on figure 10.

Figure 10. Machine code implementation of space partitioning.

An alternative definition of the meaning of a pattern may be concluded from the above. A pattern  
is any entity that is detectable by a space-partitioning conditional-jump of a codelet, that depends  
on the input only (not on the internal state), and effectively separates patterns from non-patterns.  
If a conditional jump is executed independently of the input data, the space is not partitioned at  
all. On the other hand, however, programs missing any  EXIT instruction are legal and useful 
(RET is mandatory), too. We call them non-rewarding concepts. An example of a useful non-
rewarding concept would be a program truncating input data, like a conversion of a color pixel  
into a grey-scale pixel.

Figure 11 shows the  diagram for  the  −p log2 p  function,  which looks  like  a  distorted 
binary entropy function. It assumes 0.0 on both extremes. If one gets positive examples only, the  
concept is not rewarding at all. On the other extreme, if one gets positive examples rarely, they  
are individually most rewarding, but they are so rare, that—on average—the concept becomes  
marginally rewarding.

92



THE AGINAO SELF-PROGRAMMING ENGINE

Figure 11. –p log2 p

This property may be illustrated with the following example.  Imagine,  we are expecting our  
cognitive engine to recognize all letters of the Latin alphabet. In one of possible approaches, we  
would  expect  the  emergence  of  25  individual  concepts,  each  detecting  the  individual  letters  
independently. Each of them would have rather low average reward, for the probabilities of the  
occurrence of each individual letter are rather low. We would also have to execute all of the  
concepts concurrently, consuming substantial computational resources.

An alternative approach would be based on, for example, checking whether the observed  
letter has some useful property (a feature), like contains a vertical bar. Some 14 Latin letters do  
have this property. Consequently, such a concept would divide the space of possible outcomes  
into two nearly equal groups, yielding high average reward. The process would be continued,  
involving other features. What follows, if two or more alternative approaches have evolved (as a  
result of self-programming) the cognitive engine would prefer the one that partitions the space  
more  uniformly.  The risk  of  expecting  a  very  unique  pattern  is  high  and consequently  very  
expensive. 

4.3 Ultimate Goals and Sensory Feedback

There was little discussion on the global fitness function, so far, and no mention on how the  
actuators are evaluated and how the changes to the environment caused by the actuators, and the  
expected feedback from the sensory, is used to guide the learning process. These topics are a  
subject of the current study and experimentation. One of the implemented approaches is presented  
below.

The  actuator-concepts—by  definition—cannot  be  evaluated  with  the  space  partitioning  
approach,  for  they  do  not  really  partition  the  input  space,  and  their  implementation  is  not  
expressed in the code of the virtual machine. On the other hand, however, they act as terminal  
states and their values could potentially influence the learning process substantially.

The value A of an actuator-concept could replace the V in the TD-learning rule (there is no  
space partitioning and no immediate reward) as follows:

Qi,t =Q i,t+α [γAi,t+1−Qi,t ]

93



SKABA

First, however, we have to introduce the notion of  average reward per time step (Sutton and 
Barto, 1998), here computed from real-time steps rather than discrete-time steps of MDP:

Rt =Rt +Rt 0
e−ρ t−t0 

where Rt is the computed average reward at current real time  t ,  Rt 0 is the average reward 
computed at time t0 in the past (the last time it was updated),  r t  is immediate reward at the 
current time t , ρ is a positive constant to control the rate of decay (to be set experimentally).  
The average reward is computed as a single value shared by all processes of the cognitive engine,  
updated every time an immediate reward is received. Following the computation of the average  
reward,  the  paradigm  of  maximizing  the  average  reward  as  the  global  fitness  function  is  
proposed. 

We can now put the following question: what is the impact of executing a given actuator  
concept on the overall average reward. For example, a movement of the robot's arm may cross the  
robot's visual field, or not. It will result in observing/detecting a pattern in the former case, and  
will not in the latter case. We can use the following rule to evaluate the actuator-concept:

Ai,t =Ai,t +α [δ Rt−Rt 0
−Χ i,t0

]

where t  is the real-time of Ai,t update, t0 <t is the real-time when the actuator-concept runtime  
was executed, α is the learning rate, δ>0 is a normalization coefficient, Χ i,to

0  is the cost of 
executing the actuator-concept runtime at time t0 and expressed in the same units as the reward.  
The value of  Rt−Rt 0

 may be negative. Even if  Rt−Rt 0
=0 , the value of Ai,t will decrease. 

Should the value of an actuator-concept go below a predefined threshold, it would be deleted. A  
deletion of a given copy of actuator-concept does not exclude a successful application of other  
independent copy of actuator-concepts of the same template, possibly located in other locations of  
the concept hierarchy and executed with different values of the input parameters. 

The actuator-concept value update algorithm works as follows. Once the actuator-concept  
runtime is executed, the current value Rt 0

is recorded, and the thread goes a-SLEEP, until time 
t  passes, when the value of Ai,t is updated. A question arises, what time gap t−t0  to select for 

the expected feedback from the sensory? For a physical robot we can expect the delays to be  
counted in tens or hundreds of milliseconds rather than nanoseconds. Since the time gap is quite  
large, the  δ coefficient must be implemented as a function rather than a constant, to take into  
account the fact that multiple concurrently executed actuator-concepts may influence the average  
reward, and only a fraction of the average-reward volatility may be attributed to a given actuator-
concept.

4.4 Artificial Economics

The  idea  of  agent-based  computational  economics  was  applied  in  studies  on  AGI  before  
(Goertzel,  2007).  This  section  presents  a  brief  presentation  of  how  the  notion  of  artificial  
economics and complex adaptive system was implemented to control the learning process of the  
AGINAO cognitive engine.

At the foundation of our approach there is an assumption that the operation of the cognitive  
engine must be performed within the available computational resources, the temporal resources  

94



THE AGINAO SELF-PROGRAMMING ENGINE

especially,  for  the  space  (memory)  restrictions  do  not  matter  so  much.  The  concepts  act  as  
interacting  adaptive  agents,  collaborating  and/or  competing,  fighting  for  the  computational  
resources and yielding the reward. A sample codelet, even if computing a function properly, will  
be discarded, if is too computationally expensive, or if not given an opportunity to estimate its  
cost, or if just useless for any other reason.

Every thread is assigned a limit of resources that decreases with every instruction executed on  
the  virtual  machine,  and  with  any  exploration/exploitation  step.  Should  the  resources  be  
exhausted, the thread will be discarded, no matter what state it was in. 

Once a pattern is detected, the thread is rewarded with extra resources that are proportional to  
the current self-information gain. Resources and rewards are expressed in the same units, subject  
to a normalization coefficient. A thread rewarded with more resources is capable of breeding  
more offspring (exploitation steps) and evolving more species (exploration steps).

Every  thread  is  assigned  a  priority  too,  a  positive  number  used  to  control  the  order  of  
execution of the threads. The priority of a thread is set once at the time of thread creation and  
remains constant throughout thread's lifetime. In the current implementation, the priority is set as  
proportional to the value of the exploited action.

At every time, there is an overabundance of the threads awaiting in the priority queue, a  
phenomenon that could quickly lead to exponential growth. For that reason, a thread is assigned  
an  expiration-time limit,  too.  Unlike  the  resources,  that  are  not  consumed while  a  thread  is  
awaiting in the priority queue, the expiration-time is a real-time value that sets a deadline that is  
independent of any other processing, and eventually results in discarding the threads with the  
lowest priority.

Repetitive failures of attempts to execute a runtime will eventually cause a removal of the  
runtime-underlying concept, as well. Similar rules govern the expiration-times of the concepts  
and lead to concept deletion, should a concept rarely or never be executed as runtime.

A sort of equilibrium is maintained in the system. If, for example, the system load is low, the  
threads with lower absolute priority have greater chance to be executed. The system load depends  
on many factors, especially the flow of data coming from the sensory. Should the visual field be  
highly  volatile,  the  cognitive  engine would  spend a  lot  of  resources  for  sensory  processing.  
Otherwise, the attentional focus would be directed towards tasks less dependent on the sensory.  
The exact design of the rules of economics is the question of current intensive study.

4.5 Concept Integration

An idea that has not been implemented yet is named concept integration (not to be confused with 
the integration of a concept into the hierarchy). Should two concepts be linked, provided some  
conditions are met, a new concept may be created based on the code of the linked concepts. The  
original concepts remain undisturbed. One may observe that this is a method of creating pieces of  
code much larger  than what  might  be expected from the program-generator  of  the heuristic-
search. An integrated concept may even be further integrated with other concepts, a process that  
leads to creation of programs virtually unlimited in size, yet useful. This process could possibly  
lead to converting the whole concept network to a single huge single concept program, though  
theoretically possible, doesn't seem to be useful in our case. 
Should two concepts be integrated, we get two alternative methods or doing the same thing—one  
via the original (two) separate concepts, the other via the newly created concept. The RL that  
follows would determine whether either of the processing paths would be deleted.

95



SKABA

Figure 12 presents how the integration could be used for creating a single-concept detector of  
the letter E, should the detection already be implemented with multiple concepts. A reader may  
notice that this example goes against the idea of partitioning the space uniformly, rather than  
uniquely. The truth is that it is the cognitive engine that decides which case is better. On the other  
hand, the integration may be very profitable for joining the non-rewarding concepts.

Figure 12. Concept integration.

5. Experimental results

Figures 13 shows a dump of the debugger that presents the operation of the virtual machine. In  
the upper part of the figure, the whole program is printed. Below, the two input vectors are shown  
that happen to be single-word strings with the same value (0008). The string size field is not  
depicted. In the lower part, the instructions are printed in the order as they were executed. To the  
right, the registers and their consecutive values are shown, each row for the value of the registers  
BEFORE the instruction in the same row was executed (see Figure 5 for reference). The registers  
are initialized to the default values, as show in row 1.

96



THE AGINAO SELF-PROGRAMMING ENGINE

Figure 13. Program execution debugger dump.

The execution goes as follows. First, the value of var1[0] (0008) is moved to the accumulator.  
The result may be visible in the second row of the registers. The CMP instruction compares the 
value  of  the  accumulator  with  var2[0].  Since  the  values  are  equal,  the  ZERO flag  is  set 
(MINUS flag is set too, but doesn't change), which is shown in row 3. Next, the value of the  
accumulator is outputted. The output, which was empty before, now is set to a single-word string  
with value 0008. Again, the size of the output is not depicted, as it may be concluded from the  
printout. The conditional jump is not executed, since the ZERO flag is set. Following, the  RET 
instruction is performed, instead of the  EXIT instruction, which would be executed should the  
ZERO flag be not set. The resulting output-string is the string of the last row. The MEM and IDX 
registers are not affected throughout the execution.

Figure 14. Excerpt from the concept hierarchy.

97



SKABA

Figure 14 shows an excerpt from the evolved concept-hierarchy that presents what cognitive  
structures are created. Two concepts, #352 and #15295, are depicted (two selected of possibly  
hundreds of thousands). For each concept, there is the code of the program that is followed by  
header information and by a list of actions (links) to other concepts.

From the header we can read that the concept #0000352 is at level [003] (sensory concepts  
are at level 0) and there are <2> inputs connecting from concepts: #000024 at level [002] and  
#000007 at level [001]. The level of a concept is defined as the highest level of the inputs plus 1.  
The list of next possible actions (one row per action) contains the concept number the link points  
to, followed by the number of the input the output is connected to. Letter 'o' means that a link is  
obsolete (invalid, to be removed), letter 't' denotes a link to an actuator-concept. The 'q:' column  
denotes the value of the link. One of the links (#0015295) points to the concepts shown below.

Summary

This paper presented the details of the AGINAO self-programming engine, leaving away a more  
detailed discussion on the theory of mind underlying the project. The driving force of the task is  
an assumption that  the NAO robot  would be controlled within the limits  of a  contemporary  
(2012) desktop PC. The operation of the cognitive engine is conducted concurrently on many  
levels of the hierarchy, starting from the construction of simple random codelets consisting of  
instructions of a virtual machine, then sorted-out by a heuristic-search engine, then evaluated at  
runtime, and finally integrated into a hierarchy of dependencies. The structure of the concept-
network is dynamic and open-ended. The model is tested on a physical NAO robot placed in a  
natural  environment,  in  real  time and concurrently with the process  of building the concept-
hierarchy. The learning is driven by a paradigm of maximizing the average reward per time step,  
that  is  measured with a purely information-theory based notion of self-information computed  
from binary space-partitioning.

Appendix A. Instruction Set

The VM instruction set consists of 65 unique codes, not taking into account the parameter fields.  
The list below is given for reference only, it is incomplete, and it is not intended to be a detailed  
documentation.  Some  instructions,  like  temporal  instructions,  will  not  be  found  in  typical  
microprocessors. The  A stands for accumulator in mnemonic code notation,  var0 stands for 
output,  var1... varN for N inputs. This section assumes some reader's knowledge of the  
mnemonic notation and typical processor's instructions.

 MOV A,IDX;  MOV IDX,A;  ADD A,IDX;  SUB A,IDX;  CMP A,IDX;  the 
first argument is a destination register, excluding  CMP. The  ADD, SUB and CMP set 
flags. Similar rules apply to other instructions, respectively.

 XCHG A,IDX; exchange the contents of the registers. No flags are set.

 MOVI A,int;  ADDI A,int;  SUBI A,int;  CMPI A,int;
MOVI IDX,int; ADDI IDX,int; SUBI IDX,int; CMPI IDX,int;  the 
int is an integer, encoded inline as the parameter field next to the instruction code.

 MOVX A,varN[IDX];  ADDX A,varN[IDX];  SUBX A,varN[IDX]; 
CMPX A,varN[IDX]; these instructions operate on the accumulator and the field of  

98



THE AGINAO SELF-PROGRAMMING ENGINE

the varN vector pointed to by the current value of the IDX register. The result is stored 
in the accumulator. The flags are set. These instructions have a single inline encoded  
parameter, the value of N.

 MOV A,varN[int];  ADD A,varN[int];  SUB A,varN[int]; 
CMP A,varN[int]; first parameter is N, second parameter is the vector index, now  
encoded inline.

 APPEND,A; SAVI [int],A; SAVX [IDX],A; SAV [int],int; when the 
program execution is started, the size of the output (var0) is set to 0. APPEND appends 
the value of A to the current output and increases its current size by 1. SAVI and SAVX 
store A at position encoded as inline parameter or as current value of IDX, respectively. 
The SAV stores the value of the second inline parameter, rather than the accumulatoer.

 ADDSAVI [int],A;  ADDSAVX [idx],A;  ADDSAV [int],int; same  as 
above, but the value is added to the current value, rather than stored.

 MEMMOVI A,[int];  MEMMOVX A,[IDX];  MEMSAVI [IDX],A;  MEMSAVX 
[IDX],A; MEMSAV [int],int; same as above, but refers to local static memory.

 INC A; DEC A; INC IDX; DEC IDX; add/sub 1 and set flags.

 NEG A; Negation A = -A.

 DELAY A,varN; this  is  a  temporal  instruction  that  computes  the  difference  (in  
milliseconds) between the time of creation of the executed runtime and the creation time  
of the runtime pointed-to by variable N, and stores the result in A.

 WAIT A; suspend execution for the number of milliseconds given in  A and transit to 
SLEEP state.

 SIZE A,varN; SIZE IDX,varN; store the value of the size field of the variable  
N in the destination register.

 FLAGS A; FLAGS IDX; FLAGS varN[IDX]; FLAGS varN[int]; set flags, 
according to the value of a register or a vector field.

 RET; EXIT; EXITZ; EXITNZ; EXITM.  return  control  to  the  calling  parent  
process, possibly the main execution loop. The difference between the return and the exit  
is  discussed  below.  The  three  latter  instructions  exit  conditionally,  according  to  flag  
setting.

 CALL; launch another concept as a subroutine. Not yet implemented.

 JMP ln; JZ ln; JNZ ln; JM ln; the  ln stands for the line number of the  
program code and is encoded as the first parameter. The first jump is unconditional, the  
other are conditional (jump on zero, jump on non-zero, jump on minus).

References

Batory,  D.  2004.  Program Comprehension  in  Generative  Programming:  A History  of  Grand  
Challenges. Proceedings of 12th International Workshop on Program Comprehension.

99



SKABA

Cover. T. M. and Thomas, J. A. (1991). Elements of Information Theory. John Wiley & Sons, Inc.

De Jong, K. A. (2006). Evolutionary Computation - A Unified Approach. MIT Press, pp. 26, 109.

Goertzel, B. (2006). The Hidden Pattern: A Patternist Philosophy of Mind . BrownWalker Press.
 
Goertzel, B. (2007). Virtual Easter Egg Hunting.  Proceedings of the AGI Workshop 2006. IOS 

Press. p. 217.

Goertzel,  B.  (2011).  Itamar  Arel  on  the  Path  to  Artificial  General  Intelligence.  Available  
electronically  at  http://hplusmagazine.com/2011/02/04/itamar-arel-on-the-path-to-artificial-
general-intelligence

Hawkins,  J.;  and  George,  D.  (2006).  Hierarchical  temporal  memory:  concepts,  theory,  and  
terminology.  Available  electronically  at  http://www.numenta.com/htm-
overview/education/Numenta_HTM_Concepts.pdf

Heljakka,  A.;  Goertzel,  B.;  Silva,  W.;  Goertzel,  I.;  and Pennachin,  C. (2007).  Reinforcement  
Learning of Simple Behaviors in a Simulation World Using Probabilistic Logic. In Advances in  
Artificial General Intelligence, IOS Press.

Koza, J. R., 1992. Genetic Programming. MIT Press, p. 79.

Oudeyer, P.-Y. and Kaplan, F. (2008). How can we define intrinsic motivation? Proceedings of  
the 8th International Conference on Epigenetic Robotic.

Schaul,  T.  and  Schmidhuber,  J.  (2010).  Towards  Practical  Universal  Search.  Proceedings  of  
Artificial General Intelligence 2010. Atlantis Press.

Schmidhuber, J. (2006). Godel Machines: Self-Referential Universal Problem Solvers Making  
Provably  Optimal  Self-Improvements.  Available  electronically  at  
http://www.idsia.ch/~juergen/gmweb3/gmweb3.html

Schmidhuber,  J.  (2004).  Optimal  Ordered  Problem  Solver.  Machine  Learning,  54,  211–254. 
Kluwer Academic Publishers.

Skaba, W. (2011). Heuristic Search in Program Space for the AGINAO Cognitive Architecture.  
AGI  2011  Self-Programming  Workshop.  Available  electronically  at
http://www.iiim.is/wp/wp-content/uploads/2011/05/skaba-agisp-2011.pdf

Skaba,  W.  (2012).  Binary  Space  Partitioning  as  Intrinsic  Reward.  Proceedings  of  Artificial  
General Intelligence 2012. LNAI 7716, Springer-Verlag.

Sutton R. S. and Barto A. G. (1998). Reinforcement Learning. MIT Press.

100


