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1 A Working Definition of Self-Programming

Intuitively speaking, “self-programming” means the ability for a computer system to program its  
own actions. This notion is clearly related to Artificial Intelligence, and has been used by many  
researchers. Like many other high-level concepts, however, scrutiny shows that the term can be  
interpreted  in  several  different  ways.  To  make  the  discussion  concrete  and  meaningful  we  
introduce  here  a  working  definition  of  self-programming.  In  this  definition  we  increase  its  
concreteness while trying to keep the intuitive meaning of the concept. 

The  activities  of  a  computer  system usually  are  considered  to  consist  of  atomic  actions 
(which  can  also  be  called  instructions,  operations,  behavior,  or  something  else  in  different 
contexts). At any given moment the system’s primitive actions are in a finite and constant set A, 
meaning that they are distinct from each other, and can be enumerated. An action may take some  
input arguments, and produce some output arguments. The system can execute each of its actions,  
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as long as certain conditions are satisfied. When executed, an action produces certain effects in 
the system and the outside world. 

A program  refers to a structure of actions to be executed  (a) in the future (a “plan” plus 
“contingencies”), (b) currently being executed (an “activity”), or (c) already executed in the past 
(a “record” or “memory”). A program’s actions – its parts – are executable by the system, while  
data are defined as non-executable parts. A program accepts some input data, and produces some  
output data and side effects. Actions can be related to each other according to their order of  
execution, or their sharing of data or arguments. The system’s activities or behaviors can thus be  
seen as the execution of one or multiple programs. Any instantiation of any part of the system is  
in one of two states – or roles: either a data item or an action. An instance of a data item can  
become executable at a particular point in time, and vice versa. Likewise, an executable item can  
be  turned  into a  data  item,  but  again,  it  will  not  serve  both  roles  simultaneously  without  
duplication. Given a reflective programming language (such as Lisp or Python) – a programming  
language can treat its own program elements as data – a system written in it can modify its own  
source code to become a different program.

A computer system usually can be described at  different levels.  At the bottom level,  the  
executable actions, as well as the programs constructed out of the actions, are determined by the  
hardware, which can only accept a certain finite set of instructions, usually fairly small. However,  
execution  of  programs  can  be  taken  as  actions,  too.  Furthermore,  some  programs  (such  as  
compilers  and  interpreters)  translate  programs  from  one  language  into  another  language.  
Therefore, a program at one level can be data at another level (i.e., where it cannot be executed).  
Even so, for a given level (usually called a virtual machine), the action set A is still determined, 
which in turn determines what is considered as programs and data on that level. Therefore, in the  
following, “actions” and “programs” are always used with respect to a certain virtual machine.

By  self-programming we mean the production of  one or more programs created by the  
system itself, whose principles for creation were provided to the system at design time, but whose  
details were decided by the system at runtime based on its experience. In other words, the self-
generated program is determined by some factors in the interaction between the system and its  
environment. In this process, the action set  A may still be fixed, but the executed programs are  
not  predetermined  by  the  system’s  designers.  Concretely  speaking,  self-programming  is  the  
process carried out by the system that takes a set of actions and a goal as input, and produces a  
program composed of the actions as output, which is expected to satisfy the goal. 

We can further distinguish self-programming into levels, according to the “depth” to which  
this  process  penetrates  and affects  the  system.  Level  one self-programming  capability  is  the 
ability of a system to make programs that exclusively make use of its primitive actions from  
action set  A.  Level two self-programming systems can do this, and additionally generate new  
primitives. Level three self-programming adds the ability to change the principles by which Level  
one and Level two operate, in other words, Level three self-programming systems are capable of  
what we would here call meta-programming. This would involve changing or replacing some or  
all of the programs provided to the system at design time. Of course, the generations of primitives  
and the changes of principles are also controlled by some programs. Though the process of self-
programming can be carried out in more than one level, eventually the regress will stop at a  
certain level. The more levels are involved, the more flexible the system will be, though at the  
same time it will be less stable and more complicated to be analyzed.
The concept of self-programming as explained above is related to artificial intelligence in the  
following way: As far as it is the goal of an artificial system to improve its performance on some  
task  or  set  of  tasks,  a  self-programming system should  –  in  theory  –  be  better  equipped at  
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improving its performance on a task, as it has the ability to change itself in more fundamental  
ways than a system designed in the traditional way, where it is fully specified beforehand by a  
human programmer. Nevertheless, as the self-programming needs to be guided by another (meta)  
program, the fact that a system has the ability to program itself is not a guarantee that it is in a 
better position than a traditional system. In fact, it is in a worse situation because in this case there  
are more ways in which its performance can go wrong. Without a powerful set of principles to  
guide the self-programming the system will therefore not reach its goal faster or better than any  
other  program, quite  possibly the opposite  will  happen. However,  the inherent limitations of  
hand-coding methods make traditional manual programming approaches unlikely to reach a level  
of a human-grade generally intelligent system, simply because to be able to adapt to a wide range  
of tasks, situations, and domains, a system must be able to modify itself in more fundamental  
ways than a traditional software system is capable of. Ultimately, a hand-crafted system operating  
in an environment that is prone to change in unpredictable ways from what it  was when the  
system was designed – no matter how minor – is likely to fail in unpredictable ways.

For AGI the set of relevant self-programming approaches shall be a much smaller set than  
that typically discussed in computer science, and in all likelihood strongly linked to what we  
generally think of as the architectural structure of such systems, since self-programming for AGI  
may fundamentally have to change, modify or partly duplicate, some aspect of the architecture of  
the system, for the purpose of being better equipped to perform some task or set of tasks. 

2 Existing Approaches to Self-Programming

According to the above working definition of self-programming the following AI techniques can  
be seen as approaches toward self-programming. Though their assumptions and solutions are very  
different, they all  aim at  organizing actions into a  program to  achieve a given goal,  without 
following a predetermined algorithm that is specialized at the goal.

Since each of the techniques comes with many variants,  and they can be combined,  the  
following addresses their most common forms.

[S] State-space search (example: GPS (Newell 1963). The atomic actions are state-changing  
operators, and a program is represented as a path from the initial state to a final state. Variants of  
this approach include  program search (examples: Gödel Machine (Schmidhuber 2006)): Given  
the action set A, in principle all programs formed by it can be exhaustively listed and evaluated to  
find an optimal one according to certain criteria. 

[P]  Production  system (example:  SOAR  (Laird  1987)).  Each  production  rule  specifies  the  
condition for a sequence of actions that correspond to a program. Mechanisms that produce new  
production rules, such as chunking, can be considered self-programming. 

[R]  Reinforcement  learning (example:  AIXI  (Hutter  2007)).  When  an  action  of  an  agent  
changes the state of the environment, and each state has a reward value associated, a program  
corresponds  to  a  policy in  reinforcement  learning.  When  the  state  transition  function  is  
probabilistic, this becomes a Markov decision process.

[G] Genetic programming (example: Koza’s Invention Machine (Koza et al. 2000). A program  
is formed from the system’s actions, initially randomly but subsequently via genetic operators  
over the best performers from prior solutions, possibly by using the output of some actions as  
input of some other actions. An evolution process provides a utility function that is used to select  
the best programs, and the process is repeated. 
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[I]  Inductive  logic  programming  (c.f.  Muggleton  1994).  A program is  a  statement  with  a  
procedural interpretation, which can be learned from given positive and negative examples, plus  
background knowledge. 

Besides the above fairly well-known AI approaches, we add here two less known ones that  
have recently become relevant in the context of self-programming:

[E] Evidential reasoning (example:  NARS (Wang 2006)).  A program is  a  statement  with a  
procedural  interpretation,  and  it  can  be  learned  using  multi-strategy  (ampliative)  uncertain  
reasoning. The details of this approach is described in the article by Wang in this issue.

[A] Autocatalysis (example: Ikon Flux (Nivel 2007)). In this context the architecture is in large  
part  comprised of a large collection of models, acting as hierarchically organized controllers,  
executed through a contextually-informed, continuous auto-catalytic process.  New models are  
produced automatically, based on experience, their quality evaluated in light of this experience,  
and  improvements produced as a result. Self-programming occurs at two levels: The lower one is  
concerned with performance in a set of domains, making models of how best to achieve goals in  
the external world at any point in time, the higher level is concerned with the operation of the  
lower  one,  implementing  integrated  cognitive  control  and  meta-learning  capabilities.  
Semantically  closed  auto-catalytic  processes  maintain  the  system’s  growth  after  they  are  
deployed. 

There  are  also  some  related  techniques,  which  are  not  considered  as  self-programming,  
according to our working definition:

 Machine  learning in  general.  Though  any  learning  inevitably  changes  the  system’s  
behaviors,  it  is  not  considered  as  self-programming  if  the  process  does  not  directly  
address how to form executable programs from a given set of actions. For example, a  
learning  mechanism may change  some parameters  in  a  program,  and in  a  sense  the  
program is not the same anymore. However, this process does not compose a program  
from actions. To take an example, the learning algorithm C4.5 produces a program for  
classifying, and potentially acting on, a set of observed inputs. But as C4.5 is neither  
semantically nor operationally closed with respect to its execution environment: it cannot  
automatically adapt to changes in its environment that produce input that goes outside of  
the hard limited boundaries of what the human programmer set it up to operate on. 

 Automatic programming is the technique to generate executable code from high-level  
specification. In essence, although the specification is more abstract than the resulting  
executable code, the full operational scope of the system is contained in the specification.  
It  is  not  considered  as  self-programming  because  the  program  must  match  the  
specification, so the process in question is in principle like compiling or interpreting a  
program in a high-level language into a low-level one, rather than composing a program  
from actions. Model-driven development is a paradigmatic example of this approach to  
program construction (Balmelli 2006).

 Reactive systems (example: subsumption (Brooks 1986)). Each behavior of the robot is  
triggered  by  the specified  condition  of  the  behavior,  and  a  program is  the  emergent  
behavior sequence triggered by the environment. Since such a system does not generate  
reusable programs, it is not considered as self-programming here.

4



APPROACHES AND ASSUMPTIONS OF SELF-PROGRAMMING

3 Major design decisions and their assumptions

Now we can compare the approaches of self-programming in their major assumptions, and the  
arguments behind these decisions. Especially, we will see which assumptions can be satisfied in  
the context of AGI.

3.1. How does the system represent each basic action?
a) As an operator that transforms a state to another state, either deterministically or  

probably, and goal as state to be reached [R, S]
b) As a function that maps some input arguments to some output arguments [G]
c) As a realizable statement with preconditions and consequences [A, E, I, P]
Relevant assumptions: Is the knowledge about an action complete and certain? Is the  
action set discrete and finite?

3.2. Can a program be used as an action in other programs?
a) Yes, programs can be built recursively [A, E, G, I]
b) No, a program can only contain basic actions [R, S, P]
Relevant  assumptions:  Do  the  programs  and  actions  form  a  hierarchy?  Can  these  
recursions have closed loops?

3.3. How does the system represent goals?
a) As states to be reached [S]
b) As values to be optimized [G, R]
c) As statements to be realized [E, P, A]
d) As functions to be approximated [I]
Relevant assumptions: Is the knowledge about goals complete? Is the knowledge about  
goals certain? Can all the goals be reached with a concrete action set?

3.4. Are there derived goals?
a) Yes, and they are logically dependent to the original goals [I, S, P]
b) Yes, and they may become logically independent to the original goals [A, E]
c) No, all goals are given or innate [G, R]
Relevant  assumptions:  Are  the  goals  constant  or  variable?  Are  the  goals  externally  
imposed or internally generated?

3.5. Can the system learn new knowledge about actions and goals?
a) Yes, and the learning process normally converges [G, I, R]
b) Yes, and the learning process may not converge [A, E, P]
c) No, all the knowledge are given or innate [S]
Relevant assumptions: Are the goals constant or variable? Are the actions constant or  
variable?

3.6. How much resources are demanded?
a) Unlimited time and/or space [I, R, S, P]
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b) Limited time and space [A, E, G]
Relevant  assumption:  Are  the  resources  used  an  attribute  of  the  problem,  or  of  the  
solution?

3.7. When is the quality of a program evaluated?
a) After execution, according to its actual contribution [G]
b) Before execution, according to its definition or historical record [I, S, P]
c) Both of the above [A, E, R]
Relevant assumption: Are adaptation and prediction necessary?

4 Discussion

For real-world applications of self-programming systems, all these questions are relevant to any  
AGI-aspiring system. None of the concepts are Boolean in nature: They represent dimensions  
along  which  a  system can  be  moved  far,  or  only  a  short  distance.  Therefore  it  is  may  be  
inappropriate to say that they are “necessary” for AGI, one should rather adopt the stance that  
they enable the “G” in “AGI” to a greater or lesser extent. But at the present stage, the most  
important questions in our opinion may be 3.5, 3.6, and, eventually, 3.2.

The assumption about the use of resources – 3.6 – separates systems that take time as a key  
operating  principle  of  the  system,  as  opposed  to  systems  where  time  of  goal  attainment  is  
irrelevant. If we are considering technologies for self-programming to be used in the construction  
of  AGI  systems,  the  temporal  performance  is  a  critical  aspect.  While  temporal  behavior  of  
computer-based  systems  has  usually  been  considered  a  non-functional  requirement,  the  late  
resolution  of  a  problem may  be  as  useless  as  a  wrong  solution,  rendering  the  system non-
functional. 

The assumption about the system being able to learn new knowledge about actions and goals  
– 3.5 – is critical for AGI systems due to the inherent uncertainties in real-world problem solving.  
Initial  specification of action sets and the connections between actions and goals will  not be  
enough to  cope  with  open-ended problems  and environments  as  is  expected  from true  AGI  
systems.  The  system shall  be  able  to  learn  how  the  surrounding  world  behaves  and,  more  
importantly, how its own actions change world states. The causal connections between actions  
and goals may be a non-static set of non-static relations. 

The assumption about the possibility of using a program as an action in other programs – 3.2  
– may become critical not only in terms of the constructive flexibility of the system but in terms  
of the intrinsic robustness it may demonstrate (Hansen 2007).  General intelligence systems will  
be  characterized  not  only  for  the  application  of  sound reasoning  methods  but  also  for  their  
capability of achieving results that take into account their own capabilities and limitations. AGI  
systems shall be self-aware concerning their use and limitations of resources – both time and  
space as already mentioned – to be able to properly solve the problems in the finite conditions of  
their operational environment. Additionally they must be self-aware concerning the applicability  
of the knowledge they have at any specific moment and its suitability for the problem at hand.  
Metacognitive competences will be shown to be critical in the realization of AGI systems that can  
cope with their intrinsic knowledge mismatches and uncertainties – a condition that we believe  
every AGI-aspiring system must deal with to achieve the “G” in “AGI”. 
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The limitations of the many and varied techniques for realizing cognitive architectures come  
from their assumptions, and how these assumptions are valid in specific system implementations  
and problem-solving episodes. Systems like NARS, for instance, that make an assumption that  
resources are insufficient at all times (few systems do that at present), have a head-start on self-
programming, as the acquisition, organization, and use new knowledge are assumed from the  
outset to be managed by the system itself, after its design is complete.  Adding such mechanisms  
to an architecture that was not designed with these assumptions is not likely to succeed, as argued  
by many (c.f. Thórisson 2012, Garlan et al. 1995). 

With respect  to  AGI-aspiration,  there are  other  capabilities  –  besides the  capability  of  a  
system  to  autonomously  manage  acquisition,  organization,  and  use  of  knowledge  –  that  
determines how far it can hope to go. We already mentioned the ability of a system to inspect its  
own operation: To be grounded in a domain or world a system must be able to represent itself –  
its own capabilities and limitations – to assess its own ability to achieve goals. Why this is critical  
becomes clear when we think about how a system generates sub-goals; effective generation of  
sub-goals can only be done in light of what the system is capable of doing, as constrained by its  
capabilities.  And since sub-goaling is a necessary capability of a  system to increase its  own  
knowledge, modeling of self is also a prerequisite (Sanz et al. 2009). 

Another capability that can bring an AGI-aspiring system forward in the AGI direction is the  
capacity to improve its own mental capacities. To be able to do so requires the system to observe,  
model, and understand its own internal operation. Essentially this is the machine equivalent of  
what  psychology  calls  “cognitive  growth.”  Cognitive  growth  has  been  proposed  as  a  key  
capability for building system that can attain high levels of autonomy (Thórisson and Helgason  
2012). In some sense AGI-aspiration must revolve around increased levels of autonomy, and  
ultimately the autonomy of a cognitive system depends on its  cognitive powers, provided its  
embodiment can provide some minimal level of protection – or buffer (Heylighen and Joslyn  
2001) – from the environment. 

Cognitive growth is not possible without some form of architectural programming, and for  
systems capable of doing so autonomously this is a clear case of self-programming. As discussed  
by Thórisson (2012), architectural programming cannot be done without an understanding of the  
operational semantics of the architectural components, blocks, or instructions, that are being used  
for  the  programming.  However,  for  a  system  that  must,  to  a  significant  extent,  acquire  its  
knowledge autonomously – that is, without the hand of a human programmer – the operational  
semantics  of  the  building  blocks  must  be  inferred  by  the  system,  from  their  observed  and  
theoreticized  operation  in  the  world.  If  the  blocks  are  very  coarse-grain  they  automatically  
encompass  complex  internal  structure,  making self-inspection  and  self-modeling  increasingly  
more  difficult  the  more  coarse-grain  they  are.  To  enable  significant  knowledge  acquisition,  
therefore, the building blocks of an AGI architecture must be fine-grain – fine enough to provide  
a very basic, grounded operational semantics at the lowest level, amenable to self-inspection and  
self-modeling.  The  more  fine-grain  they  are,  the  more  likely  it  is  that  their  semantics  are  
transparent enough for the system to be modeled automatically.  Combining many small  such  
blocks into larger  structures,  or  programs,  can implement  complex (coarse-grain) operational  
units without making them black-box. In any case, the system needs a root ontology concerning  
the basic types of building blocks; automatic modeling needs a core predefined set of primitive  
concepts.  AGI system are  likely  to  be  better  off  concerning  their  own growth  potential  and  
flexibility the smaller the set of primitives and the simpler the components themselves, assuming  
sufficient  computation  is  available  for  the  system  to  operate  at  necessary  speeds  in  its  
environment, other factors being equal.
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Systems that make it their target to grow by principles of automatic knowledge acquisition,  
cognitive growth, using self-programming, are constructivist AI systems (Thórisson 2012). Any 
successful constructivist system, as we use the term, will contain a significant amount of self-
generated code – most likely more than several hundred-times more than what was provided at  
the outset by its designers. To see why this is a logical necessity, consider the fact that any system  
capable of improving fundamental cognitive functions, such as e.g. knowledge acquisition, must  
essentially re-program the original knowledge acquisition code created by the system’s designers  
to  do  so.  Inevitably  constructivist  systems  must  rely  heavily  on  self-organization  as  a  key  
principle of operation. 

Taking constructivist AI as the primary development methodology is thus arguably the first  
step towards creating systems that  go significantly beyond what  can be achieved by manual  
construction by human programmers, due to both the complexity barriers for sophisticated AGI  
systems,  and  also  due  to  the  conceptual  limitations  of  human  designers  and  programmers.  
However, there are several challenges when employing a constructivist approach. Constructivist  
AI may confront a problem of combinatorial explosion in relation with the many dimensions of  
the AGI design space. The constructivist approach requires self-programming. Self-programming  
can be viewed as the automatic selection of certain points of the system design space to tackle the  
problems  and  goals  posed  to  the  system.  The  problem  of  going  from  goals  to  the  system  
structures – the programs – that are able to attain the goals, is a problem that is generally ill-
posed. 

5 Papers in This Special Issue

There are four articles in this special issue. Three of them address fundamental issues in self-
programming and their relation to developing AGI, while one of them – by Frank van der Velde –  
presents a neurally-based architecture for learning linguistic constructions. He argues that in situ  
grounded representations can provide an important basis for AGI development, and presents a  
blackboard-based  architecture  for  grounded  compositional  representations  created  from  
experience.  With  clear  relevance  to  cognitive  processes  for  understanding  any  situated  
experience,  whether  they  involve  language  or  not,  van  der  Velde  argues  that  linguistic  
competence  must  be  part  of  any  high-level  self-organizing  cognitive  architecture.  While  not  
convinced that language capabilities are necessarily a prerequisite for achieving AGI, we do agree  
with him that language is an important part of the AGI puzzle, and most certainly an important  
capability for AGIs that are intended to interact with humans. 

Sergio Pissanetsky’s work is based on the underlying assumption that causal inference is a  
natural principle for the design of AGI. To this end, he presents work on what he calls a natural  
logic, which has resulted from his research on the self-organizing properties in canonical matrices  
under minimization of a certain functional. The logic generates its own semantics and presents a  
new type of inference,  based on minimizing an action functional.  Arguing that since human  
coders  create  algorithms  inferred  from their  own experience,  self-programming  must  be  the  
mechanization of inferring algorithms from experience. 

Wojciech  Skaba  has  developed  a  cognitive  architecture  based  on  self-programming  
principles,  called  AGINAO. His  paper  describes  the principles  behind  the self-programming,  
which is based on creating concept networks where the nodes are patterns discovered by the  
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system.  Assuming  only  the  computation  power  provided  by  a  single,  present-day  desktop  
personal computer, an implementation of the system is still in the development stage. 

Pei Wang presents work on an architecture envisioned to solve problems without algorithms.  
His  NARS  non-axiomatic  reasoning  system,  which  has  been  under  development  for  over  a  
decade, assumes that AGIs will always have insufficient computational resources and knowledge  
for perfect problem solving. This fundamental principle has significant effects on the design of a  
cognitive architecture, especially in terms of what can be given to the system at design time, but  
also on operational constraints and bootstrapping of such systems. 

Like Skaba and Pissanetzky, Wang’s motivation for looking at self-programming stems from  
a need for AGIs to acquire their own knowledge, as human programmers are unlikely to be able  
to think of – and encode at design time – everything that the system should know during its  
lifetime.  NARS  uses  logic  as  the  foundational  mechanism of  knowledge  representation  and  
acquisition. 

While the work presented by the four authors covers quite a breadth of topics and addresses  
issues of importance, it can be safely said that the research community has only barely begun to  
address issues related to the self-programming needs of AGIs. Similarly, significantly more work  
– especially  systems integration – is  needed before we can have clear grasp of  the potential  
represented by the ideas presented here, not to mention allowing their use in actual implemented  
systems deployed in the real world, solving real-world problems. We are nevertheless convinced  
ideas present in these four articles will prove to be important in future efforts to develop AGI, and  
it will be interesting to see where the proposed research paths lead in the coming years. 
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