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Abstract

One of the original goals of artificial intelligem¢Al) research was to create machines with very
general cognitive capabilities and a relativelyhhigvel of autonomy. It has taken the field longer
than many had expected to achieve even a fracfighi® goal; the community has focused on
building specific, targeted cognitive processessiation, and as of yet no system exists that
integrates a broad range of capabilities or presamgeneral solution to autonomous acquisition of
a large set of skills. Among the reasons for this the highly limited machine learning and
adaptation techniques available, and the inherenmtptexity of integrating numerous cognitive
and learning capabilities in a coherent architextim this paper we review selected systems and
architectures built expressly to address integratais. We highlight principles and features of
these systems that seem promising for creatingrgyéntelligent systems with some level of
autonomy, and discuss them in the context of theldpment of future cognitive architectures.
Autonomy is a key property for any system to bestaered generally intelligent, in our view; we
use this concept as an organizing principle for gammg the reviewed systems. Features that
remain largely unaddressed in present researclsglent nevertheless necessary for such efforts to
succeed, are also discussed.

Keywords: cognitive architectures, autonomy, constructivistrealtime, meta-learning

1. Introduction

Progress towards creating generally intelligent mrees has been slow since the early days of Al.
The initial goal of the field, creating general hamdike intelligence, has not been pursued
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vigorously, as the immediacy of other more prattipeoblems have sidetracked several
researchers (cf. Wang, 2006), leading many to &iadtentment with domain-specific targeted
solutions. While some may hope otherwise, we ste feason to believe that the collective work
of the field as a whole, offering isolated cogrétigbilities targeting tasks with greatly limited
scope, can somehow be fused to give rise to sysfgmssessing general intelligence (cf.
Thérisson, 2009).

The most promising work for creating machines wgémeral intelligence belongs to the area
of cognitive architectures. Although admittedly ategory of loose definition, cognitive
architectures typically deal with relatively largeftware systems that have many heterogeneous
parts and subcomponents, which operate togettsive general problems and tasks in more than
one domain. Many of these architectures are twitontrol artificial agents, both agents operating
in virtual worlds and physical robots acting in tieal world. Work within this area displays broad
diversity at all levels: underlying theoretical asgtions, inspiration, motivation, requirements,
methodology, structure, and technology. Architezsurlso target a diverse set of cognitive
functions, although learning, reasoning, planniaggd memory seem to be more common than
others.

In our view, a core issue in cognitive architecsui® the integration of cognitive processes,
not simply in the sense of having a number of dbgmiprocesses "up and running" within the
same system, but rather how a large number of dgaeous processes influence each other,
collaborate, and coordinate to create an effedtithégreater than the sum of the parts”. Since
adaptation is a critical feature of intelligenche tconglomeration needs to be plastic. Many
architectures have ignored one or more such kegcésmf cognition, including attention and
realtime operation. This is a severe limitationethinay prevent these systems from graduating to
the real-world, because retrofitting an existinghtecture with additional cognitive processes for
tight coordination and control is extremely difficuand for very large systems most likely
impossible. We feel that the importance of thidipalar issue, ignoring cognitive mechanisms or
features that are integral to human and higher-lewemal intelligence, has been greatly
underestimated in much of the research on cogratigkitectures to date.

The lack of progress towards human-level intell@Emotwithstanding, some notable
exceptions from the literature offer ideas and apghes that might lead us towards this goal more
quickly. Here we review architectures that havenbdeveloped with the explicit view to go
beyond state-of-the-art integration and coordimataf cognitive skills, making breadth of
integration itself a target. Rather than attempéingexhaustive review of all directly and remotely
relevant architectures, the systems reviewed haea Iselected based on their achieved breadth
and ability to highlight a spectrum of approachéwe selection has also been made partly with the
aim of highlighting issues that we consider key fbe development of artificial general
intelligence (AGI), but that have been largely iggwbin the Al literature.

To illustrate what we consider to be a system thiills the main goals of AGI, we use a
hypothetical example featuring an autonomous eattmm robot. The challenges presented to an
artificial system, which is expected to surviveheitit human designer intervention when plunged
into settings as diverse as the Amazon forest laadraters of Mars, illustrates the kind of system
we are targeting. Add to that the requirement thatsystem's designer was only roughly aware of
which environments the system's intelligence wddsle to deal with beforehand. The cognitive
architectures selected are reviewed and evaluaaithst this hypothetical example, giving us a
forward-thinking focus by highlighting features andpabilities that are missing from all the
reviewed architectures. The review starts with Ynairprime example of the constructionist
approach to Al that was chosen for its focus oritilma and perception-action coordination,
followed by the well-known systems ACT-R, and SoBine latter is one of the most mature
cognitive architectures currently under developmbnt one that has mostly ignored perception
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and action throughout its long history, somethingich it shares with the majority of Al
architectures in existence. We then review twoddmised architectures, NARS and OSCAR,
followed by AKIRA, a biologically inspired conneotiist architecture, and then CLARION,
which, like AKIRA, mixes symbolic and sub-symbolicocessing. LIDA is next, a system with
many types of learning mechanisms and learnabéntah. Finally we review lkon Flux, an
architecture that departs rather radically from tal other approaches, specifically targeting
autonomy and self-growth. However, since autonosng key concept driving our analysis, we
begin with an overview of this concept in the canhtE AGI.

2. Autonomy and AGI

A number of definitions exist for the concept oft@anomy. One of the oldest of these comes from
ancient Greece and refers to “one who gives onéseilf own law" . In modern language the line
between autonomy and automation has a tendencgttblgrred, with the former often used to
refer to a system’s ability to operate without exéd (human) control. A washing machine, after
started by a human operator, is clearly automedin fthat point on. A car capable of driving itself
from Boston to San Francisco without a human operatight also be viewed as "automatic"
rather than "autonomous". The meaning of autonomyveryday language seems to require
something above and beyond even fairly sophisticateomation.

In our view, autonomous systems automatically perftasksin someenvironmentwith
unforeseen variations occurring in both, througmedype of automatic learning and adaptation
that improves the system's performance with respecits high-level goals. Learning and
adaptation in this context refer to the abilityao$ystem, when facing situations with some degree
of similarity to those already experienced, to ¢stesitly alter its responses based on what worked
in the past, and improve the system’s responsds that over time they become incrementally
better in respect to the active goals or utilitpdtion(s). This view is faithful to the ancient @ke
definition of autonomy and maps well to the evegydese of the term. While not a formal
definition, this view provides the necessary lird¢vileen autonomy and intelligence, one that is
sufficient for our purposes and includes learniaga integral part. More importantly, this allows
us to start exploring the interesting an relativellyexplored intersection of autonomy and
intelligence.

Of course, comparing the autonomous capabilitiemdically different systems is a non-
trivial problem, with no generally accepted metHody at present. Some work has been done on
creating autonomy metrics, with the Autonomy Levéts Unmanned Systems (ALFUS)
framework among the most prominent (Huang et @032 2005). ALFUS is not specifically
geared towards Al systems and is of limited usennd@mparing cognitive architectures, partly
because it does not address learning aside frometgion as potential future work by its authors
(Huang et al., 2004). As discussed below, the qunofautonomy with regards to Al systems is
vastly multi-dimensional, making it problematic ¢oeate simple, low dimensional and useful
autonomy metrics. In an abstract sense, one systenbe considered more autonomous than
another if it performs a greater number of highemplexity tasks, operates in more complex
environments, and, in particular, is better abl@riprove its own performance, adapt to changes,
and react to its environmehtt would be highly desirable to have concrete sdtsasks and

1 http://dictionary.reference.com/browse/autonomy

2 While the complexities of defining the conceptaotonomy for natural systems goes even further,
in that reliance on various support during iniiabwth (e.g. parents, social context, etc.) is obsiy

relevant to this discussion in the case of aninzaid, ultimately relevant in the larger contexttu present
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environments for comparing levels of autonomy. Hesve in the case of existing cognitive
architectures, this is not possible as each awthite has been demonstrated with specific, largely
non-overlapping tasks, and none of the architestisrget at a level where a solid common ground
or principles can be used as a basis for comparisthile it would be highly beneficial to have a
benchmark or common test problem for cognitive igeckures to facilitate such comparison, to
our knowledge no appropriate benchmark of reaserabkurity exists:

As a backdrop for our architecture evaluation, aersthe following example of a system
that embodies several important aspects of autorfomy

Let us imagine an exploration robot that can bdaje, without special preparation, into
virtually any environment, and move between thertheuit serious problems. The various
environments the robot may encounter can vary fogmitly in dynamics and complexity;
they can be highly invariable like the surface adrslor the Sahara desert and dynamic like
the Amazon jungle and the vast depths of the odé&@nassume the robot is equipped with
a number of actuators and sensors and is designgthyisically withstand the ambient
environmental conditions of these environmentshds some general pre-programmed
knowledge, but is not given mission-specific knadge prior to deployment, only high-
level goals related to exploration, and neithendt its creators know beforehand which
environment(s) may be chosen or how they may chaftge deployment. For the purposes
of this example, missions are assumed to be timstmined but otherwise open-ended.
The robot has the goal of exploration, which tratesd into learning about the environment,
through observation and action.

Immediately upon deployment, the robot thus firtdslf in unfamiliar situations in which it
has little or no knowledge of how to operate. Aldk of adaption and reactiveness are
critical requirements as the environment may contaimerous threats which must be
handled in light of the robot's persistent goakofvival. Specific actuators may function
better than others in certain environments, for ngpl@ when moving around or
manipulating objects, and this must be learnechbyrdbot as quickly as possible. Resource
management is a core problem, as the robot's res®ware limited. Resources include
energy, processing capacity, and time: Time isordy a resource in terms of the fixed
mission duration, but at lower levels as well sire@tain situations, especially ones
involving threats, have inherent deadlines on actibhe resource management scheme
must be highly dynamic as unexpected events tlatine action (or inaction) can occur at
any time.

Let's look at some key features that the robottsdnmust possess. As the environments
are highly complex and dynamic, fixed-depth protesef all sensory data that is available, or
generated directly from the environment's raw igpigt out of the question. Given that the robot's
processing capacity is limited and the environngrit(formation rich, the robot must implement
some kind of attention in order to select whichsgep data to process and how deeply. To
successfully orient its attention, the robot mustehsome expectations with regards to upcoming
events, to steer its exploration and focus of #tian To generate expectations, prediction
capabilities are necessary. The robot must cowgdsaning capability with prediction, if only
because it will face situations involving irrevdiity, for which trial-and-error approaches are
infeasible. Reasoning is also needed since itlikain that all of the relevant causal chains ie th
environment are directly observable, calling foference as the only alternative to “fill in the
blanks". Filling in the blanks means creating medel the environment that can be used for

work, we will leave such considerations outsidegbepe of the present article.

3 The recently proposed “Toy Box Problem* presents sinch possibility (Johnston 2010).

4 We acknowledge that our choice for the exampletwriginal, but there is a good reason why exjpiona
robots are popular examples in Al literature.
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reasoning and predicting. The robot also has ipgctve capabilities that allow it to evaluate and
reason about itself and improve its internal, dngstexternal, operation, potentially involving the
generation of improved methods for learning.

Four main themes essential to the system's opereéin be extracted from this example:
Realtime, resource management, learning, and reataihg. These themes were chosen because
we believe they are a good set of indicators ferlével of autonomy of a given system. We are
not suggesting that other functions, such as memueyception, reasoning and planning, are
unimportant. We assume these functions to be nagess well, warranting their thorough
investigation when further researching the relaiop between autonomy and intelligence in the
context of cognitive architectures. While autonomgn be envisioned without meta-learning,
introspection and meta-learning provide the sysiétin ways to change its own internal workings
in a directed fashion, giving rise to self-growthdaenabling significantly higher levels of
autonomy. The following sections discuss each @$¢ithemes in turn.

2.1 Realtime

Realtime system operation is used here to refédreggeneral time management mechanisms of a
system, referring not to CPU time or some pre-aefiamall constant, but to system performance
with respect to the actual passage of time in tmagning environment and the speed of events in
that world. When we consider systems solving ong@iroblems in real-world environments that
march to their own clock, realtime operation iseatcal theme for autonomy in this sense, and a
critical principle for any embodied system that st in synchronization with its surroundings.
Factoring time directly into operation control igpeerequisite to effective resource management
and action scheduling. Factors of importance ireldde granularity of processing, which
determines how much uninterruptible processing sy&tem performs between accepting new
information. Reactiveness is closely linked wittsthroperty and defines how dynamic the system
is with regards to being preempted, accepting médarmation as well as the efficiency of the
sense-act pathway. Another important aspect isetimporal planning horizon — the ability of the
system to execute longer-term tasks and genergecttions into the future. Finally, the uptime
of the system indicates whether it is built for stamt operation or requires scheduled or
unexpected off-line time.

2.2 Learning

Learning is the general capability of a systemmipriove its performance over time. Various kinds
of learning result from various kinds of systemhagecture and implementation; and, although a
system can essentially only learn from its expegerthere may be restrictions on what kinds of
experience can be learned from. For example, amystight only be able to learn from the direct
results of its own recent or immediate actions.yAtesm may not be capable of learning large
variations on particular patterns because of tloetsbmings in its available learning mechanisms.
Learning may also be based on observations oftiiecement, possibly including the system’s
imitation based on the observation of actions the¢ exhibited by other entities in the
environment. Instructions, verbal or otherwise, aiso be a form of indirect experience that the
system can learn from. The interplay of these faaletermines the learning styles of a system.
To implement the varioukinds of learningone or more methods might be employed
within a system, such as numerous types of reiefoent learning and logical inference.
Integration of new knowledge with existing knowledmay be handled in a number of ways,
affecting how the system manages conflicting knogte and to what degree existing unrelated
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and related knowledge remains intact as new proekdnd declarative skills are learned.
Thelearning rateof a system is an important characteristic, whipbcifies how much exposure
to the environment is required to acquire releMamdwledge or skills, and to what level of
reliability. The capacity for knowledgés another important factor that affects how loagd in
what form, knowledge is retained. Finally, an aspdccapacity for knowledge is how, or even
whether, the system manages situations where d¢gpaciexceeded, which is one part of a
system's resource management capabilities.

2.3 Resource Management

For systems operating in complex environments, @gndata can be expected to be overly
abundant at all times. Such a system will ofterev@n constantly, encounter situations that drive
it into states of limited resources, as data isegetied faster than the system can process. Some
form of resource management strategy is requiredieal with information overload in an
organized manner. As information overload affectsyatem's ability to react to dynamic
environments in a timely manner, resource managemenhanisms therefore play a central role
in its performance. Such mechanisms often havetscate relationship with a system's operation
since they must decide what is important in lightctive goals (i.e. solve the relevance problem)
as well as which goals are important and should beuactive, including goals that pertain to what
kinds of information must be sought out and thaitchvishould be avoided.

In systems with flexible goal management, thoughste given to how the performance
of the resource management mechanism is affecteahhbipcreasing number of simultaneously
active goals. Here, a key consideration is whigiesyof resources are under the control of the
resource management mechanism. Traditionally, timesede computation and memory, but time
may be treated as a resource as well, and thesaldaviewed from multiple levels of detail and
operation. Generally speaking, the most importahtgf resource management is prioritization,
which applies to potentially all data containedhiitthe system, including its goals and tasks.

2.4 Meta-learning

Meta-learning refers to the capabilities of a syste make changes to itself, both in respect to
how it learns and how it controls its own inner Wogs, and resulting in the improvement of its
own performance. It is given special treatment meteonly because it may have a profound effect
on the operation of any system that employs it, &lsb because it is seldom included in
implemented cognitive architectures, and propofaishow to achieve effective and practical
meta-learning for it remain scarce. Conceptuallgtariearning and introspective capabilities can
provide a system with ways to change its own irgkemorkings and thus induce self-growth.
Meta-learning, essentially the ability of learnitoglearn, suggests non-linear learning rates and
requires some form of self-reconfiguration. Impletmey reliable and effective introspective
capabilities call for powerful transversal self-eaion methods. The factors that define a
system's meta-learning capabilities include théesy's available introspection methods, methods
used for self-evaluation, and the learning stylggpsrted in the modification of its own operation,
in addition to the operation of the meta-learningtmeds themselves.

Meta-learning represents a viable path towardseniggvels of autonomy for any system;
robust meta-learning mechanisms hold promise oilfiity and adaptive powers well beyond
what would be possible without them.
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2.5 Synthesis

Figure 1 shows a diagram that combines the elements disdwszsove in light of autonomy (i.e.

learning, meta-learning, resource management,eaitime). The diagram is a visualization of our
autonomy comparison framework. This framework i$ imbended to provide hard metrics for
autonomy of systems, but rather to provide a bfsishe otherwise difficult comparison of

autonomy levels between systems.
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Figure 1: Autonomy comparison framework focusingramtal capabilities. Embodiment is not part of phesent
framework, but is included here for contextual ctetemness.

Having presented the spectrum of issues relevamtitootion of autonomy, we now turn to a
discussion of architectures that highlights morgodnant aspects in view of advancing the
capabilities of cognitive systems.

3. Cognitive Architectures

In this section, we review selected cognitive dethiures and evaluate them in light of the
previously introduced autonomy comparison framewanll exploration robot example, using the
four themes of realtime, learning, meta-learningd aesource management to organize the
discussion. This review has the goal of highlightsome critical issues in architectural design that
bears on the issue of autonomy — it is thus noatéempt to provide a complete overview of
cognitive architectures or doing a feature-by-featoaomparison of recent architectural work.
However, since autonomy is in fact a central isgueognitive architectures, whether researchers
explicitly address it or not, the paper bears @mégdance to such review papers (e.g. Langley
2009). Rather than discussing the potential ofi@der cognitive architecture methodologies —
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Subsumption (cf. Brooks, 1986), production-systepproach (cf. Andersen et al., 1995), BDI
(cf. Rao & Georgeff, 1995), CDM (cf. Thérisson &t 2004), BOD (cf. Bryson, 2004), schema-
based approaches (cf. Roy, 2005; Pezzulo, 2008), -etwe focus on actual implemented
architectures, with the benefit of a more direanparisons to the architectural needs generated by
our exploration robot challenge. Our selectionrehéectures is a representative sample intended
to highlight the key areas and topics in the autonepace discussed above — we do not attempt to
present an exhaustive and complete overview otiegisrchitectures (for such a review see e.g.
Samsonovich, 2010), even though related architestare referenced when appropriate.

We start at the robotics end with Ymir (Thériss®899), which aims to bridge the basics
of subsumption (Brooks, 1986) and related behavimed approaches with those relying more
heavily on explicit representation, while retaining strong focus on perception-action
coordination. Subsequently, we move to more trawliti cognitively-focused architectures such as
ACT-R (Anderson, 1996, 2003), Soar (Laird, 2008 &IARS (Wang, 1995), which mostly leave
out perception, action, and planning to focus prilpeon logic and inference. We end the
overview with a discussion of CLARION (Sun, 200djich distinguishes itself by addressing the
fusion of symbolic and sub-symbolic information amétacognition, and the rather unique Ikon
Flux architecture (Nivel, 2006), which carves ouagéegory of its own.

3.1 Ymir

The Ymir cognitive architecture was created witke tjoal of endowing artificial agents with
human-like communicative and manipulation capaéditin the form of embodied multimodal
task-oriented dialog skills (Thérisson, 1996, 1998rsions of Ymir have been implemented for
the Cognitive Map architecture running on the ASIvtot (cf. Ng-Thow-Hing et al., 2009) and
dialogue systems with human-like adaptive cap#slifcf. Jonsdottir & Thérisson, 2008). Ymir-
based agents can carry on realtime face-to-faggaiction where users communicate with the
agent in a natural fashion, without artificial prodls (i.e. as if communicating with another
human). A complete and multi-level perception-ctigniaction control loop is implemented, with
higher-level cognitive functions affecting low-ldvperception, and vice versa, in a layered
feedback-loop model. Lower layers in Ymir deal dilg with perceptual information and operate
at faster time scales than higher layers, in whicine advanced cognitive functions occur.

The architecture contains three “horizontal” layeReactive, Process Control, Content,
and one “vertical” layer, the Action Schedulerttimerfaces between cognitive processes and the
agents' body, essentially managing it like a resmuEach layer has a set of processing elements,
including perceptual modules, where uni-modal gears focus on a specific modality, while
multimodal integrators fuse data from different ralities, and deciders make decisions based on
available data. Information sharing between modudesl layers is accomplished using
blackboards. The Reactive Layer performs the initiacessing of perceptual data and handles the
low-level reactions it produces. The Process Contayer handles the flow of dialog and
performs processing relevant to turn taking. Thet€at Layer contains knowledge bases that
have the ability to receive perceptual and integtale data from modules in their own layer and
the layer below, producing output in the form opiterelevant behavior requests and control
messages to internal modules. In the Alpha impleatiem (Thérisson, 1996, 1999) one
knowledge base was dedicated to general dialog ledge, while others were topic-specific. The
Action Scheduler accepts behavior requests fronsethiree layers and is responsible for
translating those to low-level motor movements. this end, a behavior lexicon containing
specifications of supported behaviors is used aodiges a clear separation between behavioral
intent and execution. Action scheduling in multimbdlialogue is a complex problem, highly
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dependent on time and context, as execution ofl@mepus behaviors must be allowed, and some
of these may conflict. An anytime scheduling schameviding adequate rather than optimal
response is adopted. Long, incremental behavicuesemps are a regular part of operation, but
interruption of these can also be allowed at amg i

Compared to subsumption-based architectures, Ymatufes greater flexibility in
expansion, as the methodology developed for itstcoction provides development methods that
go well beyond object-oriented programming prinegpby helping to build complex, coordinated
systems (Thorisson et al., 2004). Ymir's levelovallchanges and additions that, unlike
subsumption systems, do not require significantdesign of related structures. Ymir-based
cognitive levels can be expanded to include as nkaoywledge bases as needed, and while these
are fairly non-integrated at the higher cognitievels, the Ymir framework provides clear
principles for system expansion at all levels, kslinany other comparable architectures.

Like behavior-based architectures commonly exemegliby the subsumption approach,
Ymir-based systems address the issue of time heatiroe is handled in an explicit fashion
within the system, with time-stamps on every piefedata received and produced. Ymir
implements a mixture of continuous and discretetrobrand decision-making. The layered
architecture of Ymir, with layers operating at difnt time scales, reflects the task performance of
human cognition in that different tasks requirefatént amounts of time, depending on their
complexity among other factors, before actionsgaeerated. The architecture has been shown to
give rise to some human-like qualities in impleneeingystems (Thdrisson, 1996).

The Process Control and Content layers have thigyabi influence processing in lower
layers by turning modules on and off, enabling ridmttom-up/top-down control within the
system, as well as controlling the flow of inforimatto and from modules; the typical module in
an Ymir system is smaller than a standard subsomtivel. The simultaneously bottom-up and
top-down control in Ymir gives rise to a crude atien mechanism in which things can be ignored
by the system by turning off specific modules thaiduce or consume particular types of data.
However, these mechanisms for attention are intplicthe architectural construction, and are
therefore fairly rigid. Learning for attentional ofe@nisms has not been demonstrated in Ymir
systems to date.

Recent Ymir-based systems have been outfitted wdthforcement learning modules
(Jonsdottir & Thorisson, 2008). Like many of itsegecessors, e.g. Maes' task network (Maes,
1989) and Brook's subsumption architecture (Brodl&86, 1991), Ymir-based systems are
completely static at the module level as modulesthe connection potential in their architecture
are manually specified a priori; they do not chatigamselves during operation, and the system
does not grow or self-reconfigure. This has bedarmed to as a constructionist approach to
building Al architectures (Thérisson, 2009). Beatlsey rest on the need to program the entire
system by hand, all constructionist architecturgmificantly stress the limits of human
programmers, as interactions and side effects eaexgponentially more complex with increased
architectural size. Although introspective capaieii could possibly be integrated into an Ymir
system, it is not clear that this would be a fuligxercise, as the introspection mechanisms would
either be working with "building blocks" that amotcoarse-grained or, alternatively, would have
to be able to write C++ or Lisp code at a reasgnabfficient level, on par with human coders,
something that clearly no automatic system to tiate been able to achieve. Constructionist Al
architectures are thus developed by hand, throuigkiples comparable to the planning of urban
design and the architecture of buildings. Theséitctures generally do not have system-wide
learning, their learning, if any, is rigid and lted, special-purpose. The same can be said for othe
features such as system-wide attention, runtimastoless, and introspection in general; these are
lacking or of limited scope, and thus construcomiuilt cognitive architectures are doomed to
have limited self-reconfiguration abilities (Th&w, 2009).

9
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While Ymir represents one of the more advanced el@snof a constructionist Al
architecture, it inherits limitations from oldetaskical Al systems. With regard to our autonomy
comparison framework, and artificial general ingglhce in the larger picture, such classical Al
systems are essentially “sophisticated thermosta/ing limited ability to learn if at all, and
addressing targeted domains and tasks.

Realtime Yes. Core design goal, time handled in explicibfas.

Resource Yes. Crude resource management and attention inepiter by dynamically

management turning on/off modules; these mechanisms must bpgred manually and remajn
static at runtime.

Learning Not architecturally integrated, but has been deitmates] in add-on modules.

Meta-learning Not supported.

Table 1 Overview of the Ymir architecture in light of ourtanomy dimensions.

3.2 ACT-R

ACT-R® is a cognitive architecture that implements a thed human cognition that is heavily
inspired by biology and cognitive psychology. Thehéecture is largely designed as a production
system in which rules are activated when their gmditions are met; human cognition emerges
out of interaction between numerous declarative magdedural knowledge elements (Anderson,
1996, 1997, 2003). Declarative knowledge is represkby data structures calledunks,which
encode relations and properties of objects. Proeédunowledge is represented pyoduction
rules which may be activated when their preconditioresraet to produce actions. The existence
of a specific goal is one example of a precondjtiehile the generation of a sub-goal is an
example of produced action. Working memory is impmated with data structures calledffers
into which chunks and rules are retrieved basethenresults of a special activation process that
essentially determines which of them are importamtight of the situation the system may find
itself at any moment. While chunks and productioles are symbolic constructs, the activation
process is sub-symbolic in nature so that ACT-R lsarconsidered a hybrid architecture. The
architecture operates in atomic processing cydbgsstarting each cycle with the activation
process. This is a parallel process that adjustsatttivation of chunks and production rules
according to their, Bayesian method calculatedbaiodity of usefulness in the current situation.
Higher activation values translate into increaseobability that the item in question will be
retrieved from working memory and then processdulis] the activation process can be said to
guide the operation and performance of the system.

The perceptual module of the system implementsitadieal functionality, effectively
filtering sensory data which is processed by thetesy. However, this selection is not influenced
by the availability of resources, which is probldiméor realtime operation.

Learning is performed on two levels: The activatiwocess adapts to the system’s experience, and
thus to the environment's, statistical structurhjlevnew chunks and production rules can also be
learned. New chunks are created upon the complefigoals and introduction of new percepts,
while new production rules can be created by comgiexisting ones.

As a predecessor to Soar, one of the best-knovatimgicognitive architectures, ACT-R
is historically significant. The architectures atgficiently similar so that they can be discussed
simultaneously in terms of the autonomy framewor&spnted above, as will be done in the
following section on Soar. It should be noted, hesvethat a key difference is ACT-R's goal of

5 Review based on ACT-R 5.0.
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targeting human cognition and its limitations, dhdt one of its intended and realized uses is to
explain and predict human performance on variosisstavhich are goals not shared by Soar. It is
therefore limited by design, and cannot rely omgiples considered non-biological or on any
performance dimension on which an artificial sysfeasibly could exceed human capabilities.

Realtime Not addressed, time does not influence control meisims.

Resource Not supported. Availability of resources does mdiuience control mechanisms|—

management system decides what is important and processesutittonsideration to
resources or time. Crude attention demonstratpeiiceptual modules as
filtering.

Learning Yes. Adaptive sub-symbolic activation, addressiegantic and procedural
knowledge.

Meta-learning Not supported.

Table 2 Overview of the ACT-R architecture in light of @utonomy dimensions.

3.3 Soar

Soar is one of the most mature cognitive architestaurrently in development, and has been used
by many researchers worldwide during its roughlyy8@r life span (Laird, 2008). During this
time it has also been revised and extended in @auof ways; we will limit our discussion here
to the latest version as this represents its ptesate of the art.

The main operating principle of Soar is its decisigcle: When a problem is presented to
the system, it searches its memory for knowleddevaat to related goals or rewards. If
insufficient information is found it generates d<syoal to split the problem into smaller ones, but
if no solutions are found then this recursive pssceontinues. When a solution has been created,
the system may compress the solution into a confpattthat can be applied directly, and store it
until a later time, if the same problem should becaintered, in a process calleldunking The
pipelined decision cycle determines the temporahglarity of the system by defining the update
frequency for accepting new sensory data.

The architecture consists of heterogeneous compoiigat interact during each decision
cycle. These ar@orking memonand three types of long-term memosgmanti¢procedural,and
episodic Working memory is where information related te firesent is stored, with its contents
being supplied by sensors or copied from other nmgrstructures based on relevancy to the
present situation. Working memory also contains amivation mechanism indicating the
relevancy and usefulness of working memory elemeisn used in conjunction with episodic
memory. Production rules are matched and firedhencbntents of working memory during the
decision cycle, implementing both an associativenorg mechanism because rules can fetch data
from long-term memory into working memory, and antselection which rules propose, evaluate,
and apply to operators). One of the most recenitiadd to the Soar architecture is sub-symbolic
processing used for visual capabilities, where syhbolic and symbolic processing is bridged
with a form of feature detection.

In Soar, operators are the building blocks of aticas, both internal and external. The
application of an operator is carried out by a piihn rule and either causes changes in the
working memory or triggers an external action. Rrobsolving is based osearch spacesand
operators can be seen as ways to move between. dtatmses where operator selection fails due
to insufficient or conflicting knowledge, an impassvent occurs and the recursive sub-goal
creation process described above is started. Thdtseof this process are then converted to
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production rules by use of chunking. It is worthing here that this works identically for parent
goals and sub-goals, which helps with the transféearning as different parent goals may share
identical sub-goals.

The symbolic and production-based approach hasntigcdbeen extended with
reinforcement learning, which is used for relatipgpduction rules to operator selection to
maximize future rewards in similar situations. Ae Soar working memory can contain execution
traces, introspective abilities are possible. Asdlchitectural learning mechanisms of the system
are fixed, however, self-reconfiguration (e.g. impng own learning capabilities) is not achieved,
but it is worth noting that reinforcement learnigiyes the architecture a method of managing
knowledge more effectively over time, for exampiedhnoosing which type of memory is most
appropriate for certain situations.

The Soar architecture provides one of the largek¢ations of simultaneously running
cognitive processes of any cognitive architectoréas. Interestingly, however, there is no explicit
mechanism for control of attention; this is notrs@s a central cognitive capability by its authors,
but as "processing that belongs to the perceptdal $We are highly skeptical of this view of
attention for numerous reasons, many of which laready been detailed above; suffice it to say
that attention will not be very useful if it canrim# meaningfully influenced by the active goals of
an agent, and several other properties of itsnatestate.

Not containing attention-like functionality, thechitecture is based on the assumption of
abundant computational power, in the sense thiat dssumed that all incoming data from the
environment can always be processed. This is pradtie, and, not surprisingly, the execution in
Soar is done in a strict step-lock form. In pafacuthe duration, or amount of computation, in
each decision cycle can vary greatly due to impassets that occasionally arise. At its core, the
architecture is based on a single sense-decidg&egiock control cycle, and it is theoreticallyt no
designed to operate in parallel; therefore, wete &ncounter situations in which the assumptions
of abundant computation do not hold, it would nelphsignificantly to add computing power by
(e.g. adding more processors). While productioasigan be fired in parallel, this is just one phase
within the operating cycle. Although it is not aldeow fast the single processor that runs a Soar
system must be for it to approach human levelq@&lligence, it is clear that this stage has not
been reached yet, even on the fastest supercomjputiate. Performance of the architecture’s
particular implementations is not being faultedehdout rather the core of the architecture’'s
operating principles, which assumes sufficient cotafonal resources at all times. Soar has
essentially not been designed to cope with sitoatior which it does not have computational
power to process "everything".

In conclusion, Soar is principally incapable ofltie@e operation. It is possible that future
versions of the architecture could address thisdysgehow parallelizing its operation; but, as the
current design of the sense-decide-act cycle i® qaire to Soar's identity, this would in our view
be quite a different architectufe.

In regard to our autonomy framework, Soar's lackat&ntion mechanism(s) presents
problems for practical operation (viz. the explamatrobot example above), as the architecture’s
only available response to insufficient knowledge eilssentially pausing its operation in the
environment. While Soar has certainly made contidng to the fields of Al and cognitive
psychology, the design of this architecture seembée quite detached from its operation in
everyday environments, which are highly complexrfrthe perspective of existing cognitive
architectures, and march to the beat of their dme.tSo, in regard to the autonomy comparison

6 John E. Laird, personal communication with HHBlgason, 2010.
7 Paralellism and scalability alone would not chettte fact that the architecture is based on the
assumption of abundant resources.
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framework, there are evident problems with Soagsource management and realtime operation.
Finally, one might argue that the development ofrSbhas been somewhat characterized by
“adding boxes”, or components, to the architectuhen it might have been better to follow a
more unified approach, putting integration at thefront.

As key elements of the Soar architecture, notabbrriing heuristics, are based on
constructionist Al principles, the architectureaag/hole is subject to limitations imposed by the
cost and practicalities of human labor. This wiithit its possibilities of developing powerful
learning mechanisms of its own, making it signifita less likely that it will ever achieve the
kinds of autonomy discussed above.

There are a few cognitive architectures that resei®@bar and can be placed categorically
on the same track. These include ICARUS (Langle§052 which strongly emphasizes
embodiment and has shown promise, in terms of géityerfor a number of toy problems such as
in-city driving. As in Soar, different types of meny are implemented in specialized components
and have a single-track step-lock decision cycle.

Real-time Not addressed, time does not influence control meisims.

Resource No. Availability or performance of resources doesinfluence control mechanisms.
management

Learning Yes. State-space search provides the basis fartegwith knowledge being retained

in specialized type-specific memory stores. Retdarent learning also used fpr
tuning of certain control parameters.

Meta-learning No. Can reason about own operation, but core legrand control mechanisms dre
fixed.

Table 3. Overview of the Soar architecture in light of owt@enomy dimensions.

3.4 NARS

The Non-Axiomatic Reasoning System (NARS) is a galRgurpose intelligent reasoning system
designed for operation in realtime under conditiafisinsufficient knowledge and resources
(Wang, 1995). Knowledge in a NARS system is grodniteits experience, both in terms of
meaning and reliability. However, a NARS systenoiidy embodied and situated in the sense of
its actual experience, rather than the more t@uili sensory-motor sense as NARS does not
address sensory-motor issues.

In stark contrast to conventional reasoning systemasst of which exclusively use
Boolean truth-values, beliefs in NARS are real-edltnumbers based on the experience of the
system. This allows a NARS-based system to mandffgremt types of uncertainty such as
randomness, fuzziness, and ignorance. NARS is basedterm-oriented formal language called
“Narsese”, which has experience-grounded semarditd a set of inference rules. Thus,
knowledge and beliefs contained within the systawvehassociated non-Boolean truth-values that
are shaped by operational experience. Learninghg&aed by reasoning upon this experience,
generating beliefs that grow stronger as they epeatedly confirmed or weaker if they are
contradicted.

Unlike most cognitive architectures, NARS was desdywith real-time operation as a
requirement from the start. The logic of Narsesentedded with time, making truth-values of
appropriate statements time-dependent, in contrdidt traditional logic languages that are
completely timeless. Time is represented in aikgdashion, with the timing of one event being
defined in terms of the timing of another. Tempdogjical relations and operators are present in
the language as well, providing some necessarg fooltemporal reasoning and inference. Core
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mechanisms in NARS, such as learning — and by sixienmeta-learning — are fixed.

The control strategy for computation in NARS systeémcalledcontrolled concurrency:
the execution of tasks is controlled by two spegabritization parametersurgency and
durability. The urgency value gradually decays over timehwite strength of the decay
determined by the durability value. The values depen both the environment and internal state
of the system. These parameters are used to imptesflgeamic resource management, allowing
the system to spend most of its time on what istimpgortant, giving rise to a type of attention
mechanism. Effectively, tasks constantly competepfocessing within the system, with losers
eventually removed from the task pool. An interagproperty of this mechanism is that resource
allocation is context-dependent, (i.e. the samk wath the same urgency and durability values
will vary in execution time depending on other aetiasks at any given time).

Wang (2006) examines the implications of realtimperation under insufficient
computational resources, concluding that Turing hirees and traditional models of computation
are not applicable for such scenarios. The autlakesa convincing case that deadline-based task
management is not appropriate for intelligent, tigacsystems. Instead, he suggests using problem
solving algorithms that generate solutions or ams\aéter each iteration with solutions improving
as the number of iterations increases, iterati@iisgothe atomic processing unit of the system or
what has been called amytime algorithmDean & Boddy, 1988). Resource management needs
to be highly dynamic in these scenarios, influentggamong others, the intermediate progress of
problem solving processes and exploration of meltjolution paths concurrently and at different
speeds, although not necessarily at the hardwaet. IBpace is also addressed, witig-based
memoriesbeing suggested, as memory is finite and it caeXpected that items will need to be
added and removed frequently during operation.

In regard to our autonomy comparison framework,dbgign of NARS takes into account
most of the important aspects, including some edlab realtime and resource management. It
should be mentioned, however, that relative hagdiihtime, as provided for in NARS, is not as
precise as absolute numerical treatment, but oéythas its benefits and is clearly better than no
explicit handing of time.

As for attention, NARS views tasks and goals imid¥f traditional way: A distinction is
made between original goals, being input tasksirating outside the system, and derived goals,
being created within the system in response toirmiggoals. While urgency and durability
parameters are assigned by the system to deri\add, gbis is not the case for original goals which
are supplied externally (e.g. by the system design€&his implies that original goals are accepted
by the system with these pre-assigned parametbishunakes sense for persistent goals, such as
survival, but may not be ideal in situations whdrme tsystem is accepting multiple tasks
simultaneously, perhaps from different sources thanot collaborate to find adequate parameter
control for each task.

Realtime Yes. Control mechanisms heavily influenced by timdich is handled in &
relative fashion.

Resource Some. Available resources are allocated to tasiqsgotionally to the importance

management of the task. Relies on external sources for infii@brity of tasks.

Learning Yes. Real-valued logical inference developed sfigdiar NARS.

Meta-learning No. Learning and control mechanisms are fixed. €nhtrversion does not allow
for reasoning about own performance, but thisrigeged as future work.

Table 4. Overview of the NARS architecture in the contextunfautonomy dimensions.
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3.5 OSCAR

OSCAR is an implemented architecture for generalitelligent agents operating under
uncertainty and incomplete knowledge (Pollock, 200®e work is inspired by the fact that any
human's knowledge of individuals, in the epistemmlal sense (e.g. individual grains of sand,
individual apples on the trees on the planet, as.)vell as general knowledge, is very sparse. Yet
we manage to form beliefs and make decisions wiidtive ease in our daily lives. According to
OSCAR's author, the prevalence of operating undeemainty strongly suggests some form of
statistical probability processing. For this to Woa mechanism is needed to resolve conflicting
conclusions, as the introduction of probabilityoithe reasoning process implies that incorrect and
contradicting conclusions will occur. This type refasoning is calledefeasible reasoningand
forms the basis of the OSCAR architecture.

Beliefs are encoded in OSCAR as first-order repregions, and first-order logic is the
basis of reasoning. Inference schemes supplietba are used for the reasoning process, such as
statistical syllogism. The correctness of infereachemes is evaluated over time; if a particular
scheme has been found unreliable under specifaurtistances this will be reflected in the
reasoning process and conclusions which are bas#thbscheme, and therefore less likely to be
made. The mechanism for invalidating inferencesthasn experience are calleshdercutting
defeatersand they are processed in a distinct phase ofehsoning process calleigfeat status
computation For the sake of practicality, argument constorctind defeat status computation are
interleaved; otherwise all knowledge that couldsilaly be relevant to present processing would
need to be considered in the argument construptiaise before defeat status computation could
occur. However, the construction of new argumeats affect defeat status computation with the
side effect that argument construction is not adfeasible but the defeat status computation
itself, which is why the reasoning in OSCAR s edldoubly defeasible. This produces important
properties for generally-intelligent agents, asog#ng can be interrupted at any time, yielding the
best conclusions available at that particular piwinime and essentially implementing an anytime
reasoning algorithm.

The main modules of the architecture are calrrdctical Cognition and Epistemic
Cognition The former has the responsibility of posing plagrproblems, evaluating and selecting
plans as well as directing plan execution; theetatt responsible for constructing plans, genegatin
and revising beliefs, as well as forming epistegoals. The connection between the two form a
loop where epistemic cognition can supply practixgnition with the goal of learning some new
information and practical cognition will in turnsise that goal to epistemic cognition. As plan
construction relies on defeasible reasoning, & defeasible process and constructed plans can be
expected to be invalidated at any time should eeiemew information be acquired. Planning and
learning are interleaved as forward reasoning,diptien”, from perceptual inputs is coupled with
backwards reasoning, "planning”, from goals orriggts.

The strength of the OSCAR architecture is its pduetime-bound symbolic reasoning
with support for deadlines. The reasoning procgbs;h includes planning, is interruptible at any
time for the best available current information,king it suitable for realtime operation. Some
introspective capabilities are present, such asamyn construction of defeaters for inference
schemes. Some work remains to be done for OSCARR able to control embodied agents.

When considered in light of our autonomy comparis@mework, some weak points
become clear. One is the lack of attention mechaipresent in the architecture, which has
problematic implications for realtime processingewhavailable information exceeds processing
capacity. Furthermore, the limitations of memorythie architecture are somewhat unclear from
the literature available, for example whether amynf of procedural or episodic memory has been
implemented.
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Finally, how the architecture scales its multi-@esor hardware and parallelization is an
important question that relates directly to itslalo#ity and practical use: The centralized natofre
its operation may hint at problems in this regawédvertheless, OSCAR may offer valuable
contributions for future work on cognitive architieées as it presents a practical way to implement
time-bound reasoning under uncertainty.

Realtime Yes. Key components support realtime processingthisiis not fully leveraged
in the system.

Resource No. Availability of resources does not influencentrol mechanisms.

management

Learning Yes. Defeasible reasoning with first-order logic.

Meta-learning Partial. Reasoning schemes are fixed but theicSeteis adaptive.

Table 5. Overview of the OSCAR architecture along our aatny dimensions.

3.6 AKIRA

AKIRA is a fully implemented open-source framewowhose architecture is inspired by
biological systems and is designed for paralleynelsronous, and distributed computation
(Pezzulo, 2007). The AKIRA framework has been ugea number of implemented experimental
systems including a biological simulation of theaying mantis (Pezzulo, 2006). The key aspects
of biological systems that the architecture seekgroduce are self-organization, adaptivity, and
robustness. The AKIRA architecture fully implemettits perception-action loop.

The architecture consists of a number of modulescbemas, that are interconnected by
weighted activation links. Each module containscptural information as well as an activation
value that determines the resources that the mdthdeat its disposal. The activation value of a
module can be changed by other modules throughiymsir negative feedback via activation
links, and by itself. Together the modules andvatithn links form a network called tlemergetic
network Information exchange and synchronization are ipessby using shared, global,
variables, message passing, and a public blackb®ardlinks in the network are fully dynamic,
its modules that succeed more often than othetsdeslelop strong links to many more modules,
while unsuccessful modules will have weak links feav modules. The dynamic nature of
activation links leads to functionally related mbatubecoming tightly connected and forming
"coalitions”, which can be seen as functional umits solving composite tasks. This allows
cooperation and competition to be realized overcthese of the modules’ collection.

AKIRA evolves and adapts through changes in thizaain links, which are based on the
success or failure of individual modules and camdg. This process is continuous, meaning that
even if the system performs some task perfectlyilit adapt if the task changes, and evolves
towards a new configuration that drives the sydmmards perfect performance.

A serious limitation of the AKIRA framework is thdhe procedural information is
completely static, which means that the system atasnlve, or evolve an ability to solve, a
problem that cannot be addressed by some comhinatithe hard-coded procedures stored in its
modules. This limitation can be partly mitigatedttwigranularity (i.e. by having many
procedurally simple modules instead of few modéyatemplex ones). However, as new modules
or module variations cannot be generated as patteofystem's operation, the restriction is still
quite severe.

AKIRA supports important cognitive capabilities buas learning and attention, and
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implements a full perception-act loop. With regai@she autonomy comparison framework, some
important cognitive functions such as reasoning atahning are absent. Furthermore, the
architecture seems to have limited capabilities ifirospection and does not achieve meta-
learning. Some of the missing capabilities havenbeanually implemented in AKIRA-based

systems to various degrees (e.g. planning and meg®gobut remain absent from the core
architecture (Pezzulo, 2009).

Context awareness is an interesting property ofAKERA architecture as the structure
and exchange of activation in the energetic netwaitk typically ensure that modules that are
relevant to the current situation, or context, hhigh activation values while irrelevant modules
will have lower values. The system’s spreadingvation can be considered as implementing a
type of attention mechanism. As time is not explicaddressed in the architecture, general-
purpose realtime operation is nevertheless a sevieak point of the architecture.

Realtime No. Time does not influence control mechanism$iefdystem.

Resource Yes. Activation levels of system modules controlrfpenance and can

management implement a variety of resource management schemesiually built and
learned.

Learning Partial. Coarse-grained learning based on statiwualh/-created building blocks.

Meta-learning No. Core mechanisms and building blocks are fixed.

Table 6. Overview of the AKIRA architecture regarding out@omy dimensions.

3.7 CLARION

The CLARION architecture is motivated by cognitipgychology and social simulation (Sun
2001, 2003, 2006). It is based on dual representatising both symbolic and sub-symbolic data,
as well as the interaction between the two. Sortendbverlooked issues such as metacognition
and agent-motivation are specifically addressedkimya CLARION a fundamentally hybrid
architecture that allows agents to learn autonoiyionghout relying on knowledge supplied a
priori. Symbolic knowledge is captured with dateustures calledules and chunks,while sub-
symbolic knowledge is encoded in connectionist oeka. Both top-down and bottom-up learning
are supported in such a way that low-level procagldunowledge develops first followed by
higher-level declarative knowledge at later stagéss gives Clarion the rather unique ability to
generate symbolic knowledge from sub-symbolic kelgke, which is achieved by a combination
of connectionist, reinforcement, and symbolic lé&agmethods.

As a result of its focus on social consideratidghs, architecture addresses the interaction
between cognition, environment, and motivation. ®IAN has four main interacting modules
that handle different aspects of its operationhesicwhich has a dual symbolic/sub-symbolic
representation: ThAction Centered SubsystémCS) is responsible for managing the internal or
external actions of the agent. Th®n-Action Centered SubsystéMACS) is responsible for
managing system knowledge, including declarativatsylic knowledge as well as sub-symbolic
knowledge. TheMotivational SubsystenMS) provides motivation for the system operation,
namely perception, cognition and action. This isfgened usingimpetus a particular type of
motivation, andfeedback evaluation, of the actions’ results. Théeta-Cognitive Subsystem
(MCS) is responsible for monitoring and dynamicatipdifying other modules, particularly the
ACS. Action selection is a cooperative process betwthe symbolic and sub-symbolic aspects of
the ACS and is based on sensory input, working mmgritems, and current goals. Generated
actions are either external, environmental, or $eduon internal aspects of working memory and
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goals.

In terms of our evaluation framework, the CLARIONMclitecture has a number of
strengths. The way in which low-level learning kills leads to high-level declarative knowledge
is biologically plausible and goes beyond what lesn attempted in most cognitive architectures
to date. The system'’s relatively sophisticated aagin to learning results in a fairly high score
along the learning dimension of our autonomy corsparframework.

Some steps are taken towards meta-learning, asrtiiétecture contains a dedicated
module for metacognition that handles introspectgpects and self-evaluation. However, the
architecture cannot fundamentally improve its oearhing capabilities in terms of functionality,
as there is no reconfiguration possible at thectiral level. Yet along this dimension, the
architecture goes significantly beyond what is camiy seen in architectures reviewed so far.

In terms of resource management, the MCS modulkeggdjiter/selection to input and output data

as well as selecting appropriate learning methadsefch situation, implementing attentional

functionality that guides the operation of the egst CLARION has been successfully tested on
tasks involving time pressures and is designed sdtne focus on time-related issues. However,
available documentation indicates that this dealstly with response times of individual modules

rather than presenting an integrated approach nmpdeal management. The designers of this
architecture have indicated that potential for-teme processing is significantly greater than can
be deduced from currently published matetial.

[ =A

Realtime Limited. Some temporal management is implementetd dvu integrated an
explicit handling of time appears absent. Has bdemonstrated on timg
constrained tasks.

Resource Some. Filtering and selection implement attentiancfionality that controls use
management of resources.

Learning Yes. Sub-symbolic and symbolic learning.

Meta-learning No. Dedicated meta-cognitive module reasons onesysperformance. This

mechanism is fixed.

Table 7. Overview of the CLARION architecture in light of @utonomy dimensions.
3.8 LIDA

The LIDA architecture (Baars, 2009) is intended ifdelligent and autonomous software agents
and is based upon IDA (Intelligent, Distributed Age which is an earlier architecture used in an
autonomous US Navy software system that negotiagsgnments for personnel based on US
Navy policies, sailor preferences, and other fact@¥ranklin 2006). The architecture is an
implementation of the Global Workspace Theory afsmousness (Baars, 1988).

LIDA features several types of specialized memasnsory, sensory-motor, perceptual
(implemented as a slip net), episodic, declaradive procedural (implemented as a scheme net).
The operation of LIDA-based systems is a seriesogfnitive cycles, each consisting sénse
attendandaction selectiorphases. In the sensing phase, the current repatisanof the internal
and external environment of the system are updatedming sensory data activates low-level
feature detectors as output from these are semériceptual memory, where higher-level feature
detectors process the information further. Finalcpssed sensory data is then sent to the local
workspace and exposed to declarative memory ansbdipi memory to generate associations

8 Ron Sun, personal communication with H. P. Halga2012.
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which are also copied to the workspace. This coetbidata constitutes the system's current
understanding of its operating situation. In therading phase, Attention&lodelets(essentially a
collection of small programs) form coalitions ota&om the Local Workspace and move these to
the Global Workspace. A coalition may be viewedhallection of functionally related data. In
the Global Workspace, the most urgent coalitiony(one is selected in each cycle) is selected by
a competitive process, and broadcast throughoutsytstem. The broadcast reaches several
components of the architecture that are relatddaiming, memory and decision making (Action
Selection, Perceptual Memory, Procedural Memoryisdjic Memory, Local Workspace and
Attentional Codelets) and triggers different typafslearning that are performed in parallel:
Procedural learning occurs as the data reachesdrad Memory, attentional learning occurs as
the data reaches the Attention Codelets, percefgaaling occurs as the data reaches Perceptual
Memory and episodic learning occurs as the datahe=a Episodic memory. Following the
broadcast, possible actions given the currenttsitugencoded by the broadcast) are selected in
Procedural Memory and sent to the Action Selectimmdule where one action is selected for
execution by a competitive process.

The LIDA architecture does not address time inxgilieit fashion, tasks can be scheduled
in terms of “ticks” (operating cycles) but not eattime. However, some promising steps are taken
in realtime direction, such as learnable alarmcstines, which are reflex-like mechanisms for
reacting quickly (faster than the average operatyale) to certain events. While nothing prevents
the system from performing temporal reasoning,ettae no provisions for dealing with realtime
operation in the control mechanisms of the systemintegrated approach to attention is followed
by the architecture where attention is one of threatral processes in the operating cycle.
Attention is implemented as filtering/selection walhi potentially allows the architecture to
gracefully handle situations of information ovedo&lowever, availability of resources does not
affect the processing of the system, with eachaijer cycle always selecting a single coalition of
data for further processing. It should be noted th2A implements attentional learning, giving it
the capability to improve its own resource managenie terms of data filtering. This is
significant especially in light of the many diffestetypes of learning supported by the architecture,
both symbolic (e.g. declarative) and sub-symbadalig.(perceptual). The core learning mechanisms
of the architecture are fixed but as internal datilandled identically to external (environmental)
data, the architecture is well suited for introsfwec and self-improvement at the content level
while the architectural level remains fixed.

Recently, a customizable implementation of LIDA lm®n made available as a general
framework to implement AGI software agents (Snai@éd.1).

Realtime Limited. Tasks can be scheduled at tick-level astriable alarm structures are a
step in the right direction. Time does not influenke control mechanisms of the
system.

Resource Some. Filtering and selection of data implemergraiton, which is a dynamic

management process that is learned. Availability of resourdess not affect processing.

Learning Yes. Sub-symbolic and symbolic learning.

Meta-learning No. Core learning mechanisms are fixed but introspe capabilities are present.

Table 8 Overview of the LIDA architecture in light of ountanomy dimensions.

3.9 Ikon Flux

The Ikon Flux architecture is aimed at creatingoaatnous systems that adapt and evolve in open-
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ended environments with incomplete knowledge (Niv&)07). From a minimal manually-
constructed initial specification, continuous s#itected growth takes over and aims at
maximizing current and future performance througitgéted realtime evolution of structure and
code embodying newly-created knowledge. Observaisothe key component to knowledge
construction in Ikon Flux: Both the external envingent and the internal operation of the system
are monitored constantly, as part of the systemrsaperation, which effectively implements self-
reflection.

Knowledge in Ikon Flux is encoded modelsthat may have multiple levels of detail.
Models in lkon Flux are of two typefgrward modelsandinverse modelsForward models deal
with prediction, using present states to deternmmat states will follow. Inverse models have
explanatory power as they deal with explaining st&tes were, or can be, brought about by using
of previous states which contain a recipe for reagh target state from a starting state. Models in
Ikon Flux are continuously modified to maximize itheorrectness in light of the system's
experience. As models are expressed in the nativaestof the machine’s instructions, they are
grounded in the hardware's operation.

Models are key to the adaptive and evolutionarymeabf the architecture, as desired
future states of the system are expressed as tanaggls. Goal achievement works in a similar
way, with goals also expressed as target modelheRéhan using traditional planning methods,
Ikon Flux is designed for reactive planning at riplét levels of detail, where many solutions
compete for execution at each level. The modeldagmproach creates the opportunity for the
system to perform simulations, which are leveramgetind new or better solutions for problems
without acting in the external environment. An aipi@tion mechanism is implemented using
simulations with forward models and is useful fdarp optimization and the construction of
complex composite plans.

Ikon Flux implements limited attention control wittontrol values and thresholds that
define a focus of attention. This process is @itto system operation as lkon Flux systems are
intended to contain a very large number of prograaisof which cannot run constantly under
realtime constraints as resources are limitedhéngystem, internal objects and input data both
have control values. For an input to be processethé system, it must have both sufficiently
large activation values and the same must be tnuatfleast one program, or model, that accepts
inputs of that type with respect to present sibmatit is worth noting that input data does notyonl
mean information coming from the environment, batynalso be generated by the system itself.
By following this approach, attention does not jast as a filter on input data, but is also
responsible for selecting which objects are impurtéithin the system at any time.

Ikon Flux is one of the few cognitive architectuthat implements architectural self-
growth, or learning at the structural level. Cuthgnthere is limited experience in using the
architecture, but enough to suggest that it is actfral and promising direction for cognitive
architectures. To achieve significant results, @ Flux architecture requires a considerably
greater amount of computational resources thawottier architectures reviewed here, on all fronts
(e.g. CPU muscle, memory size, and data transmisshigh speed, low latency).

The lack of existing learning and meta-learning destrations influences our evaluation
of this architecture along relevant dimensions, tipaearly learning and meta-learning.
Nevertheless, our autonomy comparison frameworls dag highlight any weak points in this
architecture; in fact it performs admirably and ke potential to address all of them. Therefore,
this architecture reaches relatively high on oupaomy scale. But since deep evaluation of this
architecture is limited, this result should onlyta&en as indicative. Ikon Flux is one of the main
sources of influence in the AERA architecture of HUMANOBS project (c.f. Thorisson,

9 http://www.humanobs.org
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2009); basic principles of lkon Flux, in the incation of that project, will undergo thorough
evaluation over the next two years.

Real-time Yes. Explicit handling of time.

Resource Yes. Processes compete for available resourcesl bmsemportance; contral

management mechanism is resource-aware.

Learning Yes. Forward and inverse models describing thereateenvironment and the
system itself are continuously produced and madifimsed on operational
experience.

Meta-learning Yes. Models of internal operation enable directedf-configuration at the
architectural level.

Table 9. Overview of the Ikon Flux architecture in lighHtaur autonomy dimensions.

4. Comparison

The autonomy scale we have defined ranges fromyprgractive systems at the low end, such as a
thermostat (zero autonomy), to independent thinkieimgs such as primates. We view autonomy
as a key (necessary but not sufficient) aspectntdlligence: As a first approximation, an
architecture with greater support for autonomy éstdr equipped for supporting high levels of
intelligence, other things being equal.

A comparison between the reviewed systems are givefiable 10. Scores are given
based on our evaluation of each architecture toesddhe full scope along each dimension of our
scale. An empty cell indicates severe lack of asking the dimension in question; five pluses
(+++++) represent the highest possible score. Tighelst possible score means significant
potential to address a dimension in light of outoaamous exploration robot example. Other
scores are placed relatively (approximate norm@dina- authors' best effort) between these two.

For an architecture to achieve the highest scara imension it must have demonstrated
strong results in that aspect, and a strong pafefoti continued growth along that dimension. The
sum of scores from the four dimensions constittitedinal score of each architecture.

In Figure 2, a qualitative comparison is shown leetwthree representative architectures
(Ymir, Soar and Ikon Flux) where differences arghlighted in a visual spectrum-like fashion.
Here our goal is to highlight the breadth of cogerahat the reviewed architectures present and
extract some of the variability in approaches #ratrelevant to the themes discussed in the paper.
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SELECTED A.Il. ARCHITECTURES EVALUATED ALONG DIMENSI ONS OF AUTONOMY
Realtime Resource Learning Meta-learning | Total
Management
IKON FLUX™ [ +++++ TR ++++ PRI +++ + (17)
CLARION ++ + ++++ +++++ ++ + +++ + (15)
LIDA ++ + ++++ +++++ ++ + +++ + (15)
NARS ++++ ++++ ++++ +++ ++ + + (15)
OSCAR ++ + ++++ + + +++(9)
Ymir +4++++ + + + +++(8)
Soar +++++ + + ++(7)
AKIRA ++++ ++ + ++ (7)
ACT-R ++ +++ + + (6)

Table 10: Selected Al architectures evaluated along dimersafnautonomy (columns). The dimensions in thiketab
represent the four major foundations of autononay tie have identified and defined (see text). Autonin our view is
the ability to act independently in the (real) wbr- the selected dimensions being key featuresrlyimde such
autonomy. While all of the above architectures Haeen implemented as running systems, the extentbfation, and

the availability of evaluation data, varies signdntly.

Realtime
Non-realtime Architecture-

No architectum-/_— level learning
Iev:wg

BB

KN

SOAR

Reasoning-based

Top-level architecture: Static
Granularity: Two levels
Components: Rigid rules of logic
Learning: Topic/domain

IKON FLUX

Constructivist

Top-level architecture: Plastc
Granularity: peewee-size to coarse-grain
Learning: Topic/domain and meta-

Non-realtime
Limited focus on perception

YMIR

Subsumption-like

Top-level architecture: Static
Granularity: mid- to coarse-grain
Learning: Mone

Realtime
Strong focus on perception

Meta-inspection
Autonomous generation of
new components

No meta-inspection
No generation of new components

Figure 2: Qualitative comparison of three representative ¢tigm architectures: Soar, lkon Flux and Ymifhe
architectures shown were selected on the basisvofrhain principles, first, together they presentantinuum of

10 As the principles of Ikon Flux have not yet reeei rigorous scientific evaluation, the score @ th
architecture should be taken as indicative.

22



COGNITIVE ARCHITECTURES AND AUTONOMY

solutions along axes of interest to the conceppdoead here, especially that of autonomy; secohdytspan a wide
spectrum of approaches to building cognitive amttiires, from the behavior-based approaches in80e to the
present state-of-the-art. The arrows connecting dahehitectures highlight most significant differeiscbetween each
pair of architectures. The key characteristics a€te architecture are listed, which are core arcbiteal principle, top-
level architecture, granularity and types of leamgi Top-level architecture refers to whether systdrased on the
architecture have static or plastic structure ahftime while granularity refers to the size (inrtex of functionality and
processing time) of processing units employedeératichitecture.

4.1 Realtime

Both lkon Flux and Ymir are designed with a strdogus on realtime operation, and both handle
time in an explicit fashion. NARS is also desigried realtime operation but handles time in a
relative fashion, rather than absolute as in lklux Bnd Ymir, meaning that the temporal aspects
of NARS focus largely on the sequence of events:titming of a particular event is defined in
relation to the occurrence of other events. This igeaker form of temporal management than in
Ikon Flux and Ymir, both of which offer the postillyi of reasoning upon the absolute temporal
sequence of events, which is better when workirth piiecise deadlines. OSCAR is one of a very
few systems that are designed for symbolic reagonirder time constraints, providing the best
currently available solution to a problem at anymmeat, with the solutions generally improving as
the system is given more time to solve the probldowever, temporal control is largely isolated
to the reasoning process and is not apparent inotrerall architecture. The CLARION
architecture is designed with some focus on tinfeted issues and has been evaluated on time-
constrained tasks but does not appear to taketagrative and explicit approach to time in its
core design. Much the same can be said of LIDA. rfEmeaining architectures, Soar, AKIRA and
ACT-R, do not address realtime operation in thatghssage of time does not affect the operation
of these systems — they generally process task®utiany consideration of time and are not in a
reactive state (in terms of the environment) wttile processing occurs.

4.2 Resource management

Ikon Flux implements attention by continuously, rantime, ranking both information and
processes along dimensions of importance ("salfgnaad applying available resources to tasks
accordingly, with the highest priority items forrgithe focus of attention. This may be viewed as
a competition for system resources by data andegeas. The approach prevents the possibility of
the system becoming overloaded, as it will autoradl$i disregard tasks of low importance when
insufficient resources for all tasks are availablARS follows a similar approach, except that the
initial priorities of tasks need to be suppliedthg user, and are thus not generated by the system
itself as in lkon Flux. This may be a disadvantageome situations, as was discussed above in
the section on NARS. LIDA implements attention mexplicit and integrated way, but does not
factor availability of resources into its controleananisms. The CLARION architecture also
contains an implementation of attention, where ingrud output data are filtered by relevance
based on goals and ongoing processing. It is untdearhat degree the availability of resources
affects such filtering and the principles of howe thrchitecture deals with sensory overload
situations. The spreading activation in the AKIRAKhHitecture leads to to emergent attention
functionality that gives priority to modules thaeamost relevant in each situation; this attention
functionality only affects processes of the systhowever, and does not filter incoming sensory
data in any way as resource management is entpebgess driven. In Ymir, attention
functionality can be manually implemented by progmsers at design time, in a logic-based
framework, and does not evolve once created. AG¥eforms filtering on incoming data but this
functionality is not influenced by availability sésources and thus does not help to deal with
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sensory overload situations. The OSCAR architecimes not implement notable resource
management or attentional capabilities.

4.3 Learning

The CLARION architecture includes both sub-symbalitd symbolic learning, with these two
learning modes having a rather unique relationshighich symbolic knowledge is built on top of
sub-symbolic knowledge. This approach to learns@niqgue among the reviewed architectures,
especially in that it allows for systems that dot mtrictly require any initial knowledge
(bootstrapping). LIDA features several types ofriéay, both sub-symbolic and symbolic, with
each being focused on individual parts of the systéxplicit learning of attentional control is
noteworthy in the architecture. In NARS, learniagéerformed by a special type of non-axiomatic
reasoning that is performed on experienced datahliads to beliefs that have different degrees
of certainty. In its current implementation, NAR&shsome limitations when it comes to learning
procedural skills as commands for actuators areanwtural fit for a logical reasoning language.
Work is currently underway to address this iSSUSCAR performs learning on the basis of first-
order logic with supplied inference schemes, with selection of individual inference schemes
being adaptive according to experience. The ddflaseasoning process accommodates and
resolves conflicting beliefs when necessary. ANARS, learning in OSCAR is performed only at
the symbolic level and the same issues with praeddearning apply.The Soar architecture has a
main learning mechanism that involves search spacdsoperators, with solutions being stored
for future use as chunks. A sub-symbolic reinforeetiearning mechanism is also present which
relates stored knowledge to operational situatidssboth symbolic and sub-symbolic learning
are included and operators are a natural matchdimator commands, the learning mechanisms of
Soar can be considered fairly complete. ACT-Ristohnically and operationally, closely related to
Soar and has similar learning mechanisms, alth@adr has more diverse learning modes and
types of memory (semantic, procedural, episodic)kbn Flux, learning is performed by creating
models from observed experience which are bi-doeet in nature (forward/inverse), meaning
that they can both predict future states and gémeerations to bring about desired states. Not
being limited to reasoning for learning gives thehitecture a considerable advantage in dealing
with procedural learning compared to architectlilesNARS and OSCAR. Learning in AKIRA
consists of adaptive changes to weights of actimdtnks based on system performance and thus
addresses the subsymbolic level only. This is aramdge for procedural learning but greatly
limits or even precludes symbolic reasoning. Whiike core YMIR architecture does not perform
learning, it has been augmented with reinforcertearhing in later work.

4.4 Meta-learning

Meta-learning is the ability of an architecturegte better at learning something — to learn tonlear
None of the Ymir, AKIRA, and ACT-R architecturesntain functionality allowing or supporting
self-inspection, and as a result they are all inb&pof supporting meta-learning. NARS does not
contain meta-learning functionality, but this igta@ly not precluded in its present state since it
already supports learning and reasoning, andgetad as future work. Similarly, Soar is capable
of reasoning about its own operation, but like NAIRRB results only in changes in content — the

11 Pei Wang, 2012, personal communication.
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system is static at the structural level. Furthiting is the fact that self-inspection is not an
integral part of the Soar architecture, and thécdity or ease of imparting meta-learning to Soar
is highly dependent on the already-implementedhiagralgorithms, and the difficulty associated
with implementing learning for the particular dom@i the system is intended for. On this point
NARS is slightly ahead of Soar. In OSCAR, the aeptelection of reasoning schemes is a step
in the meta-learning direction, but again, is nxgplieitly addressed. CLARION has a dedicated
module for meta-cognitive aspects which monitorerafon and modifies parameters of other
modules at runtime, and is thus a step up fromatheady-mentioned architectures. However,
CLARION is similarly fixed at the structural levelhe learning mechanism of lkon Flux is
identical at the meta-cognitive level, giving thehdtecture the strong capabilities of the bunch to
reason about its own performance and modify iteglfpoth the content and structural level. The
unique ability of Ikon Flux to reconfigure its ovatructure is the result of the plastic and fine
grained nature of the architecture. Although LIDl&cafeatures identical learning mechanisms at
cognitive and meta-cognitive levels, the underlyamghitecture is fixed.

5. Autonomy Discussion

How appropriate are the reviewed architecturedatfopms for building Al systems with respect
to our autonomous exploration robot example? Tablattempts to roughly quantify the scale of
the problems faced by each architecture in eactobttee four areas of our autonomy comparison
framework based on the reviews above.

Table10 highlights a common tendency — which is &dge for cognitive architectures in
general — to ignore realtime operation and resonr@eagement aspects. From a practical point of
view, these capabilities are essential for any drigbvel intelligence, and therefore hints at a
prevalent detachment of cognitive architecture gtefrom concrete operation in real-world
settings. Ignoring practical matters clearly delaysst useful applications of the technologies
being developed. But the resulting problems may daéper. Ignoring the needs for resource
management is likely to lead to time being spenpmjects with such fundamental problems that
the future goal of embodied real-world operatiorl e nearly — or completely — impossible.
What is worse, by ignoring fundamental principleshie operation of such systems the theoretical
foundation is likely to be flawed. To take an exdenphe Soar architecture has been in
development for over 30 years. It is tempting t& ady it does not have more powerful
capabilities and demonstrated applications to mactproblems. Architectures that assume
unlimited time or computational resources canneg gise to systems that operate in a world (i.e.
the real world) where unlimited resources do nadstex such approaches can only support
problems that we would consider toy problems, déwafi much of the complexity of the real
world that human beings live and operate in.

Table 10 also highlights the importance of desigranchitectures from the get-go with a
more complete set of cognitive functions and opemat capabilities, as was the case in the
development of the architectures scoring highesier@ is substantial difficulty involved in
retrofitting existing architectures with new cogwét functions (cf. Garlan & Ockerbloom 1995).
Consider, for example, the problem of adding metariing capabilities to architectures that were
not designed with this ability in mind, or implentieig realtime functionality in architectures that
are largely “timeless”. For most, if not all, coraplsystems conceivable, this is an intractable
problem.

Current methodologies in the design of Al systetnsoat exclusively involve manually
constructed systems, where learning takes plagheunlata/content or module levels, which we
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have called constructionist Al. It is reasonableaksume that significantly larger and more
complex system than exist today are necessary alizeaesystems approaching human-level
intelligence. However, methodologies relying solely a constructionist approach are doomed
because of the practical restrictions on complexitgt size for any software systems designed and
implemented by humans. Thoérisson (2009) proposesorstructivist Al methodology that
advocates self-directed, bottom-up architecturawgn instead of the top-down, handcrafted
approach currently prevalent in the field. Althougbnstructivist Al certainly presents new
challenges, it holds promise in terms of buildiggtems where complexity must go beyond what
humans can deal with using present methods. Ikor Bl the only architecture we are aware of
that addresses the difficult problems related strifbuted-ness. The CLARION architecture comes
a close second, but while meta-learning is desrablterms of autonomy, it is not as critical as
fundamental support for realtime operation, whitHacks. lkon Flux and CLARION differ
substantially in terms of granularity, with Ikonukl having smaller components, making self-
modification more feasible. lkon Flux has been ienpénted and put to use in practical settings,
but a thorough evaluation of its premises and perémce lies in future research, as some of its
key principles will be evaluated over the next tygars as part of the HUMANOBS project (c.f.
Thorisson, 2009). VARIAC is an architecture witlesgngly similar goals of open-ended self-
growth (Hall, 2008). However, insufficient inforni@t about this architecture has prevented us
from making a sufficiently thorough comparison tabi the other architectures reviewed here.

Some predictions place the availability of afforidattomputers with a processing capacity
equivalent to that of the human brain at around yhar 2020-2025 (Kurzweil, 2006). This
estimate is based on reasonably strongly arguedtree; even if the estimation of the human
brain’s computing power is off by an order of mdgde or more this would only delay the
prediction by a few years, as the drop in the qest CPU cycle is increasing exponentially.
However, assuming that computational power equitdte the human brain is needed to generate
human-level artificial intelligence, this is prolhala low estimate as researchers have generally
required at least tenfold the computing power teettsp a technology that a product relying on
this technology ultimately requires after refinemene should see the first inklings of such
machines perhaps around 2030 or shortly thereafi@never, this hinges on our ability to find
implementation methods that do not rely on constsaist Al, and it is highly doubtful that
manual design is a viable or even possible appréaduilding such software. The amount of
remaining work in creating such systems should thotsbe underestimated: Considering that
evolution had around 4 billion years, as measurenh foeginning of life on earth, to create the
human brain, it is likely that these future AGI t®ms will have to deal with some part of a
development history too, which might require anitoigial one or two orders of magnitude more
computing power. In other words, development ofhssgstems may involve an interleaved
mixture of evolving with the environment througHfggowth, leaving open the possibility that
existing predictions for human-level Al may requimo orders of magnitude more computing
power than present estimates suggest.

Even without the somewhat pessimistic estimatepfputing power requirements, there
are strong and obvious reasons to assume thateartthies based on methods that are inherently
unable to run on parallel hardware will face sewdrallenges moving forward: There are strong
limits to the speed that any single-pipeline CPU rgiach in the coming decades, as well as hard
physical limitations on the horizon. Should quanttomputers become commonly available in the
next few decades, some architectures based origbgradcessing may reap huge benefits over
those that are not. But even so, the present noovartls multicore CPUs is a trend that is likely to
continue for essentially this reason.

While it is perhaps a bit too early to tell, ousulis indicate that it is quite possible that
currently available technology presents a somewl@implete framework that can be used to
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build future autonomous systems rivaling that af example jungle-space-underwater exploration
robot. No single architecture seems perfectly pmsid to do so, but many of the features
demonstrated in the reviewed architectures takes steat give reason for being optimistic.

The architecture comparison presented in this papeeals that very few existing
cognitive architectures are based on viable metlogtks to reach human-level autonomy or
beyond, as represented by our autonomy comparismmefvork, by continued incremental
development.To achieve the potential of human-lewgbnomy and intelligence we argue that
present research must search for methodologiesseitte promise in that direction, able to handle
systems of substantial size and complexity. Given st estimates of the complexity of such
systems, this excludes methodologies based on rmanpementation as well as structurally
and/or functionally fixed architectures. In our mipn, constructivist Al is — i.e. systems that can
automatically organize their own growth in light@fperience — is the most promising candidate
in this respect
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