Journal of Artificial General Intelligence 3(1) 25-47, 2012 Submitted 2012-2-22
DOI: 10.2478/v10229-011-0014-4 Accepted 2012-4-10

Is Logic in the Mind or in the World?
Why a Philosophical Question can Affect the Understanding of
Intelligence

Hanns Sommer HANNS.SOMMER@MRT.UNI-KASSEL.DE
Lothar Schreiber LSCH@IFM.MASCHINENBAU.UNI-KASSEL.DE
Universitat Kassel, Fachbereich 15

Monchebergstr. 7

D-34119 Kassel

Editor: Kai-Uwe Kuihnberger

Abstract

Dreyfus’ call ‘to make artificial intelligence (Al) more Hggggerian’ echoes Heidegger’s
affirmation that pure calculations produce no ‘intelligen(Dreyfus, 2007). But what exactly
is it that Al needs more than mathematics? The question itittagives rise to a reexamination of
the basic principles of cognition in Husserl's PhenomeggldJsing Husserl's Phenomenological
Method, a formalization of these principles is presenteak tbrovides the principal idea of
cognition, and as a consequence, a ‘natural logic’. Onlyse@nd step, mathematics is obtained
from this natural logic by abstraction.

The limitations of pure reasoning are demonstrated for dnmehtal considerations (Hilbert's
finite Einstellung’) as well as for the task of solving priaet problems. Principles will be
presented for the design of general intelligent systemgltwiake use of a natural logic.

Keywords: Cognition, Natural logic, Intelligence, Husserl, Hilbert

1. An Engineer’s Look at Grounding Problems

On which principles can ‘intelligence’ be based? To find an answer to tleistigm, we may look
at the grounding of our knowledge, and at our ability of making ‘intelligertidions.

Grounding problems are considered by many scientists to be well posedwithip the
framework of a theory, and therefore those problems are treated ag peiely theoretical
problems. On the other hand, practical problems in engineering, in Aliramdbotics have
demonstrated the need to understand the meaning of ‘intelligence’ in géWénad), 2007, 2009).
Trying this will change the focus: instead of proving the completenessrwistency of a theory,
the main interest will be to make systems ‘more intelligent’.

As logics are thought to be the most important tools of ‘intelligent behaviog,lmas to ask for
their provenance as Gila Sher has done (Sher, 2010): ‘Is logic deolin formal or structural laws
governing the world?’ or ‘does sensory experience play a centrabfiexclusive) role in logic?’,
shortly ‘Is logic in the mind or in the world?’

Though Sher's question seems to be quite theoretical, the more so it wassgidcin a
philosophical journal, the question has important practical consegsidoceartificial general
intelligence (AGI). To make artificial systems intelligent, it is generally accefmadse heuristic
algorithms, which consist of mathematical parts (e.g. the definition of a segate with a
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neighborhood structure and an objected function), but also employ simategges, like ‘greedy

search’ strategy, that are justified only by experiences of whom &eerthese non-mathematical
parts are alway doubtable. It remains obscure where they come frarhaav in general, we are
able to find them. Their adequacy and optimality never can be ascertainedaincagand their

formulations tend to be nebulous.

The main idea of our paper is based on Husserl’s distinction between ‘a dbdrath’ on
one side, and on the other side ‘mathematical logics’ understood aswideahschaft” (Hartimo,
2011). Husserl considers his ‘phenomenological method’ to be a filstsophy, or a first access
to cognition taking place before any logic is available.

A a result of this, some statements by means of cognition are made true, amdrtieeseliefs
are called knowledge. This definition corresponds to the epistemic viewkthawledge essentially
is representation’ (Tarrazo, 2004). But, as is explained with referemBrentano’s and Husserl’s
idea of ‘intention’, true beliefs need not be specified by complicated psesan the knower’s brain.
The structures of knowledge obtained thus provide a ‘logic of truths’.

Following some of Husserl’s ideas, and reformulating them in Fuzzy Logic Betref Theory,
we deduce a knowledge from principles of cognition and empirical data oftheg examination
of this ‘natural knowledge’ provides a logic which, in correspondetacthe work of P. Maddy
(Maddy, 2007), we call ‘natural logic’.

We find that natural logic always is context-dependent, and therefa@miparable with
mathematical set-theory and any other mathematical theory based on it. Neduicas not very
convenient for calculations, but it has one important property: it cositanother structures than
can be identified in the empirical data. In that sense natural logic is minimal.

In contrast, if a problem is solved with purely mathematical methods, the problesh beu
modeled completely within mathematical theories by means fixed in advance fdredre means
may be considerably more complex than the problem itself, and will make théepramtractable.
This is why a theory of AGI must combine mathematical methods with cognition methiduks
objective of the present paper is to explain the differences, but alscotihhenon origin of these
methods.

In section 2 a formal access to a natural logic is presented. Some phiicslogthtements are
cited to support our understanding of some of Husserl’s introductoty &&d the ideas we derived
from them. We don’t aim at a systematic discussion of Husserl’s thinking ingtsrical context.

In section 3 the relation between a natural logic and a mathematical logic is exantingl|
be shown by examples that a mathematical logic may create structures that barsonfirmed
by cognition. At the end of this section we contrast our understandingnofvledge’ to Platon’s
theory of ideas, and discuss the meaning of knowledge.

In section 4 hints are given, how to use a natural logic to solve real pabpticblems, and we
discuss for which type of problems these concepts will be adequate.

Section 5 considers the relation between our work and the actual distusd&! about the
meaning of logic. We observe strong relations between AGI and physics.

The central role of cognition is summarized in the conclusion.

2. Intelligence as the ability of cognition

The way an engineer looks at problems he has to solve provides a préeficéion:
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A system or an agent are said to be intelligent if they are capable to selscafset of
actions, they can carry out, the most effective one to solve the cumaiepn of a set
of problems posed to them.

Practical intelligence therefore is not an absolute capability. It depemds o

e the set of problems to be solved,

the environment in which the agent has to solve the problems,

the set of actions, which the agent has at his disposal,

the estimation of the success of actions on former problems and the memory of it,

the sequence, in which the problems are offered to the agent.

Intelligence is strongly intertwined with the old philosophical problem of cognjtiabout
which many philosophers have pondered and sought for a founddiitqiCbandrasekharan, 2009).
Cognition must be comprehended in its general sense: besides the objectsamrld, it has to
provide the concepts of reasoning.

Edmund Husserl invented the ‘Phenomenological Method’ to deduceeptdrom the
experiences we obtain in our natural life-world. This method enables uariecend subjective
knowledge into an objective understanding. Husserl claims that our ctemtewledge, our
subjective perceptions, and all concepts are based on our life-vigsseéntial concepts are deduced
from the ‘horizon’ given by the subjective structure by removing (artting into parenthesis’,
in Husserl's words) from a complexity of thoughts everything that can kentaway without
destroying the meaning. This procedure is called the ‘Phenomenologidatien Method'.

our

A essential
subjective concepts
world _

reduction method AN
0

Using the phenomenological method we can see cognition as a processdiyméaning is
deduced from empirical data relative to intentions.

As our knowledge, thus obtained, is qualified by our intentions, greatopdiris subjective,
that is to say, depending on ourselves. But there are also intentionsathbedixed objectively,
and respective to these intentions, all beings, sharing the same data,ildiiH@ausame concepts.
(An example for intentions of that kind is presented in section 2.2.) Hus$drésiomenological
Method provides an unambiguous determination of a cognition processy &vgnition, and with
it, every knowledge in phenomenology is based on Husserl’s Principlé Bfiaciples (Husserl,
1913; Hopp, 2009):

‘Every originary presentive intuition is a legitimating source of knowledgevery-
thing originarily ... offered to us in “intuition” is to be accepted simply as wha,it
presented as being, but also within the limits, in which it is presented theréis.. T
“vast world” appears as finite, as a “constitutive result” that is, with thessehat
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its intelligibility is a product of intentional acts and intuitive presentations thaé hav
gradually constituted it through time. What the world means for us, is ultimatively
dependent on our own limited subjectivity [sic].

A perception will be constructed with a meaning-constituting activity (noesia)grocess we
call cognition. This process may be very complex, but taking Husseragmnenological method
into consideration, the essential idea of cognition, on its lowest level as éesiipprehension, can
be reduced to basic concepts. All results of this paper are based miltivérig postulate:

The data, the recognising agent’s relation to these data, and his intenéprss@gnted
by the questions for which he searches answers) each constituteegptoacessary in
every cognition.

Based on this postulate, it is claimed that the cognition process presentadiam 22 reduces to
a minimum the presuppositions and preconception for cognition.

Remark: This result of minimality is our motivation to include some of Husserl'ssidiet®
an interdisciplinary discussion of the basic tools for AGI. Besides simpleechppsions, there
also exist higher levels of comprehension, which correlate objects dcfcmmrsness to more
complex intentions, which are systematically discussed in a recent philoabpajer of Kosowski
(Kosowski, 2012).

The definitions presented in sections 2.1 and 3, precisely: knowledgarah#ogic, and
mathematical formalisms, are believed by us to compare to some aspects ofl’sludeas:
‘Anschauung’, ‘Sprache’, and ‘Kailt’ (Zuh, 2011).

2.1 Derivation of a natural logic from operational principles

In a first step (First Philosophy), Husserl deduces the principateqas characterising some idea
of our life-world by the ‘transcendental-phenomenological reductidhese concepts become the
tool for all further steps (Second Philosophy (Maddy, 2007)). Seafdure the essential idea of
cognition the following concepts are needed (Schreiber and Sommer); 2010

| Empirical data: Here empirical data is represented by measurement tuples:
TN, T2, - -y TV Ky 5 TT02,15, 102,25 -+« 5 T2 Joo 5 TTR31, 11032, - - -

Il The relation to this empirical data: Empirical data may appear to us as big, mediuall,
tiny, or having some other property.
Formally this relation is represented by Fuzzy predicdtesiescribing the degree, up to
which a measurement value; ; satisfies a property.
For technical reasons, all values will be represented here by ratomabl numbers. The
value Zp(m) € [—1;1] of the membership-functio&r can be interpreted as the strength
of our feeling that the value: belongs to the predicate. Zp(m) near 1 indicates strong
agreement, and p(m) near -1 strong refusal.
The predicate- P is represented by the membership-functidi tm).
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[l The intention to obtain knowledge: This is formalised in two steps:

e Confirmation of sentences: Sentencésare formulated with predicates arahd-
operators, for examplent; ; is greatand m 7 is not smalland m; 3 is small’.
A statement with aor -operator like ing o is P; or my 7 is P’
can be rewritten with aand-operator: hot (mq 2 is =P, and my 7 is = P)’.
The confirmation of a sentence will be obtained from the membership degrees
Zp,(m;;) of its n ‘atoms’ (m;, is P;) for k measurement tuples:;;, (i =
1,...,n;j = 1,...,k) with an aggregation operatargg : |J;°,[—1;1]° — [-1;1]
by the expression (see appendix A):

Agg(dii,doj,dsa,. .. dna,di2,doo, ... dyo,dig, ... ... dyg) (1)

e The process of knowledge acquisition: All knowledge depends on #’agntentions
that find their expression in the questions he asks his world.
A question is formed by a sentendeand an agent, who asks for the believability of it
relative to his empirical data.
The complexity of a sentencé by definition is the length of the shortest text that
represents! in a binary alphabef0; 1}. Fano’s Theorem tells us that all the bits of this
representation are independent and of equal importance. (This &acbissequence of
the minimality of a Fano code (Hutter, 2009b).)
Let Z(A) denote the confirmation obtained fdrby expression (1) and the unknown
confirmation of a bit in the shortest bit-text fer with lengthC'(A). As the bits of the
text must provide the confirmation fot, we obtain the equation (2), which specifies a
function Fio4)(d):

Z(A) = Agg(ds d; ... ;d) = Foay(d) )
C(A) factors

This equation can be rewritten:

d= F5(1,4)(Z(A)) 3)

As the believabilityBEL(A) of a sentencel should be equal to the confirmation of its
description, equation (3) gives the result:
BEL(A) = F;(, (Z(4)) 4)

Strongly believable sentences constitute knowledge.
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By steps from | to Il (natural) knowledge is obtained from empirical datd aur relation
regarding this data according to our intentions (quesd@h For a sentencel, to be part of the
knowledge, two conditions have to be satisfied:

I QuestionA? has to be asked.
Il By steps | to lll the inequalityBEL(A) > BEL(—A) is approved.

But the believability of a sentence is not independent from other previguosgd questions, and
the knowledge they provided. The believabilBfL(.A) for a set of sentenced is obtained as a
whole by the same procedure used for a single sentence. The believdtslirg sentencel € A
depends oA.

Respective to the contexd, a sentenced belongs to the knowledge, if the following two
conditions are satisfied:

| QuestionA? has been asked.
Il By steps | to I the inequalityBEL(A U {A}) > BEL(AU {—~A}) is approved.

The context-dependency of our natural knowledge has been explicélysed by Husserl. He
writes (Barber, 2009):

‘These complex syntheses [of knowledge] cannot remain isolated. Adicpkar
syntheses through which things in perception, in memory are given, en@sded
by a general milieu and they do not float there in an isolated manner, bet,ratle
themselves synthetically intertwined with one another.’

Acceptable imaginations are only those that can be obtained as knowledge freal world.
Inference rules are rules that produce new sentences from settsaviible sentences. An inference
rule is called admissible respective to a knowledge, if it transforms stroraigviable sentences
of that knowledge into strongly believable sentences. Thus, the knoevleolgstitutes the data
for the calculation of the degree of believability of interference rules. riieke this definition
unambiguous, it would be necessary to fix the degree, wherefrongdtsievability begins.)

Natural logic is constituted by sets of strongly believable sentences (axamu£prresponding
admissible inference rules. As the believability of the result of the applicafian sference rule
to a set of sentences is obtained by an aggregation of the respectiwabiities of the rule and
the sentences, the believability of this result is always less than (or azaptie equal to) that of
the sentences. Therefore, long sequences of conclusions casalbtim highly believable results.
Because of the impossibility to build an unlimited sequence of inference ruledunahlogic, the
confirmed knowledge will always be finite.

Summary: (I) An observer’s basic knowledge is obtained from empirical dataagdwith regard
to his intentions. This knowledge is constituted by a set of sentences andibyetpective
degrees of believability. The believability of one single sentence depemdseowhole
knowledge. Believability therefore is a context-dependent property.

(I1) As basic knowledge, again, is empirical data, it provides the possiblitihe constitution
of higher order knowledge: knowledge about knowledge.
Concepts are defined by sets of sentences and the membership dggteeshich they
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correspond to a certain concept. Any property of a concept is repes by a sentence
which strongly corresponds to that concept. Any imagination consistsavflkeage that can
be constructed with admissible inference rules from believable knowl&dgetransmission
from simple apprehensions to logical judging will be produced by furthdrraore complex
intentions, as e.g. the demand of tractability and consistency of knowlefdgection 3.

2.2 Objections of physicists

Many physicists will not be satisfied with the results, we have obtained sbdanuse they are
convinced of the objectivity of physical laws. But as we have seenpatyral logic is subjective,
because it depends on the empirical data and on the observer’s relatimdata, especially on his
intentions. To obtain the objectivity of physical laws we have to remember theipal objective
of physics. The physicists’ intention may be summarised by the general motto{&r, 2009):

‘Find a knowledge by which forecasts of future measurements are eladde.’

Knowledge that has been constituted respectively to this intention depelydsiche empirical
data, which were obtained in an experiment. Context-dependency, othdrehand, characterises
natural knowledge just the same way as it characterises the most basicabligeory (quantum
mechanics): Carlo Rovelli, Grete Hermann, Jeeva Anandan and othglcisty gave a relational,
that is context-dependent interpretation for quantum mechanics, which alerithe concepts of
the absolute state of a system and the absolute value of physical quantiieziiblerg, 2008;
Stuckey, Silberstein, and Cifone, 2009). Relational theory only descthe ways systems affect
each other.

Concepts of knowledge are called context-independent, if no contextecamagined, in which
they lose their properties. Likewise, for physical systems we get the

Definition: A physical system S is defined by a preparation-process, that is byagtiioducing a
structure satisfying some test measurements. A property P that can ¢y disecibed to S
alone so that the assumption of S really possessing P does not lead talicbiomavith any
measurement that can in principle be done on S, is called a context-inégpgmdperty of
S. Properties that do not satisfy these requirements are called conpexteldat properties of
S (Hajicek and Tolar, 2009).

The context-independence of a property P of a system S dependswhdleesystem. It is obvious
that very great systems which are defined by a huge set of measuremikmst be changed
significantly by a single new measurement, because the lot of measuremeatiy &inown provides
a large confirmation of knowledge that cannot be disturbed by a singlensasurement.

The cognition process produces an adaptation between a system andrdaraent. Because
of this, the environment requires redundant reports of the system \8. iHany observers can
find out the state of S independently and without perturbing it. This is hofempesl states of
S become objective (classical) (Zurek, 1998, 2007; Hornberg®9;2beh, 1999; Schlosshauer,
2008; Sommer, 2009; Symons, 2008). This effect is called decoler&w; classicality emerges
from natural as well as from quantum mechanical knowledge by fislingdntext-independent
information.

A natural Logic is principally different from a mathematical logic. As natu@ic is
context-dependent, conclusions using self-reference (for exangieos diagonal method) are
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not allowed, because every conclusion increases the observerigddyge and therefore changes
the context.

The important point to be learned from these considerations is that a cogmiticess in general
does not provide a classical ontology nor a reality, which is composediepeandent objects. To
obtain a mathematical or set-theoretical description from a recognisedédsy abstractions are
necessary.

3. An introduction to mathematical logic, the ability to think abstractly

Husserl means by formalisation: ‘To abstract from the matter by substitubinjg¢t variables” for
the names of “materially determinate objects” ’ (Stenlund, 2010). The piep@f the objects are
then specified by the axioms of the theory.

In this way, mathematical objects are supposed to be abstract entities (Batt@008). They
can be obtained from natural knowledge by abstraction:

e A set of highly believable sentences is selected.

e Some of the terms in the sentences are generalised by abstracting thenofnenfestures.
(Hermann Weyl wrote (Weyl, 1968): ‘The decisive step of mathematicsttattion [is]. .. to
forget about what the symbols stand for.")

e The abstracted sentences are declared absolutely true and cont@eridelet. They form
the axioms of a mathematical theory.

e An inference rule is mathematically admissible, if no reality can be imagined, \tthisneile
is not admissible.

Example 1. We start with the sentence:
‘To a set ofn. sheep one can always add one sheep tg:get 1) sheep.
By abstracting from the feature ‘sheep’, and assuming absolute trutbbiaen Peano’s
axiom:n e N = (n+1) e N.

As there is no conceivable exception from this axiom inside the conceptiagent obtains from
our world by natural logic, Peano’s axiom is suitable for mathematics.

The here sketched path to a foundation of mathematics (e.g. Peano’s axgiropigy related
to the ideas of the famous mathematician David Hilbert (Hilbert, 1964). As thecedgect access
to pure ideas (of an ‘Idealwissenschaft), an ‘Urdomain’ and a ‘finitestéllung’ are needed to
justify the foundations of mathematical theories. Each true mathematical statgmeid be based
on the following principles (Stenlund, 2010):

e ‘All logical inferences have to be founded on a finite basis that dependsur faculty of
representation.’

e ‘Mathematical truth is obtained by proofs.’

e ‘A formalised proof, like a numeral, is a concrete and survey-able objdttcan be
communicated from beginning to end.’
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3.1 Godel's Objections

In Hilbert's view, mathematics is the theory of theories. But is a theory of ibgarally
possible? Because of Kurtd@el's results, many mathematicians mistrust Hilbert's notion.
Godel's understanding of mathematical concepts was deeply influenceldtoy b Plato’s view,
mathematical concepts are pure ideas and the basic condition of any exig¥ato postulates that
the ideas are first and reality is only their approximative realisation. Absaoigext-independent
entities in this view are the building blocks of everything. Thus, in abstractenatics, self-
reference is admissible. Based on this philosophical position, and p@sing consistency and
the existence of the set of theorems in the theory of natural numbédgl @as able to prove the
existence of unprovable true theorems. This result suggests the imndficof Hilbert’s ‘finite
Einstellung’. The controversy between Hilbert anddel leads back to the question:

Is mathematics, as we understand it today, the fundament of every cahsisteep-
tion?

To answer this question, we present the following examples, which deratmgtiat besides
Godel’s view also Hilbert's view is admissible. Especially in Al and in applied matlies)a
Hilbert’s view seems to be more promising. This will be the subject of Section 4.

Example 2. Recognition of identical entities in an absolutely empty space:
Hannes Leitgeb and James Ladyman discussed the question (Leitgeboynabina 2008):

‘Is it possible to recognise two identical entities in an otherwise absolutely empty
space?’

Their answer is deduced in a Platonian way of argumentation:

Firstly, they note that the mathematical structure consisting of two identical erititi@s
empty space consists of a graph= { K, E'}, where the set of nodés is defined by the two
entities and the set of edgésis empty.

In a second step, they conclude the possibility to recognise two identical grmitempty
space ‘because graph theory postulates it and we have every tedsaieve that the basic
principles of graph theory are coherent: because we can geneagteical templates that
indicate so, and so forth.

This answer, however, is not valid in Hilbert’s and Husserl’s epistemic.\vdawve are unable
to distinguish between two identical entities in an empty space, in a world thastsooionly
two identical entities we have no access to the number ‘two’. Only from two disshable
entities (for example two different sheep) we can construct the numbet Biyvabstracting
from the differences between these entities. Button’s arguments theehefiokin an epistemic
view (Leitgeb and Ladyman, 2008):

| ‘Itis unclear how we could have epistemic access to primitive identity facts.’
Il [We have to question] ‘the “objecthood” of entities the numerical diigrsf which

would be primitive while they were at the same time indistinguishable from each othe

in terms of properties or relations.’
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The example demonstrates that different philosophical positions mayageiéferent conceptions.
If in a Platonian attitude, abstract mathematics are presupposed, thenpgpeks # be resolvable
that are not resolvable in a logic and a knowledge that is only deduceddpistemic methods.
Merlau Ponty, in his philosophical essays, criticised the confinement ohcgiéo abstract
mathematics giving exactly the same reason (Erdinast-Vulcan, 2007; MR@8):

‘Signification is always the articulation of separation, divergence obgapeen figure
and ground which is the enabling principle of the transition between the sonmatic a
the semiotic.’

‘Formalism’s error is not that it overestimates form but that it esteems forittls that
it abstracts it from meaning.’

The next example demonstrates that cognition may produce knowledgé, iwimcompatible with
basic mathematical results.

Example 3. Weierstrass’ continuous function, which is nowhere differentiable:

As velocity is a concept of our empirical experience for some cuges the meaning of
differentiability exists also in our natural knowledge and in our empiricdlityealn the
19" century many mathematicians believed that every continuous function is fsecew
differentiable. But Weierstrass gave an example showing the falsity of #liefb We
demonstrate with the following Lemma that such a function cannot be the réaddebaviour

of any system that has been obtained from empirically observed discratireenents.

The example demonstrates that the mathematical concepts of correctnessisistency of

an idea are not enough to make the ‘existence’ of that idea in a real waiddrdble. We learn

from Husserl that in a real world both, a logic of truths (or, in our woedsatural logic), as

well as mathematical logics are needed. Therefore AGI as an enginseigmge is based on
these two kinds of logic.

Lemma: Let f(z) = y denote the most believable function describing the measurements
{(zi,yi);1 = 1,2,..n}, then from f(x) is continuous follows thatf(x) is piecewise
differentiable.

Proof: The proof of the Lemma is given in appendix B.

‘Knowledge’ is a controversially discussed idea in philosophy. Our digfin of ‘natural
knowledge’ is more specific than others, but has some restrictions, t@ocdsequence of context-
dependency, natural logic does not allow self referential conclusson®laton’s absolute ideas are
not available (Schreiber and Sommer, 2010).

This is not the only shortcoming, as some very instructive comments of onewemv
demonstrate:

e ‘The entire conception under consideration (in section 2) seems to depetite degree
wherefrom strong believability begins. It seems questionable whethbrasdefinition can
be made without arbitrariness.’

e ‘Assume all measurements have been taken within a certain partial are@ofand A new
measurement is conducted in a new area outsides the initial one (but still wighsathe
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overall domain), and suddenly the rules and laws allegedly governingntine domain show
to be only at work within the first limited area, but have to be adapted (e.cergleged) to
also cover the second area, and thus the entire domain. What now?’

e ‘What about the classical idea of “refutation by a single counterexardple”

The first comment demonstrates that believability strongly depends on tiexton which
statements are considered. For example, if we ask for the clemency of dfieawplanning a walk,
the degree, wherefrom strong believability begins, can be chosen tnk&lerably lower than the
degree we would apply asking for the stability of a bridge. Because ofahixt-dependency, the
theoretical formalism by itself cannot fix the degree, from where stretig\uability begins.

The second observation of the reviewer stresses that natural kigende@s not generally hold
outside the sub-domain it was obtained in. Our laws are dependent onrtextcan which they
were found. Even the knowledge obtained from a surrounding domastt contain the complete
knowledge of the sub-domain. This fact, well-known in quantum-mecharacsbe elucidated by
a simple figure.

== N=
O =

The left figure shows a duck, the right one a rabbit. In the middle, thedsuimin can be
seen that is contained in both outside figures. It shows the well-knowak-durabbit’ problem,
confirming the believability of both sentences: ‘This is a duck’s head’ Hisch rabbit’s head’. The
believability of the first sentence is completely lost in the right picture, thateosétond is lost in
the left one.

To the question last listed there is the definite answer ‘No’ — singular evantetlead to true
beliefs. In physics and engineering an experiment has to be repeatgbtitde knowledge.

Knowledge depends on the science, by which it is deduced, and by whschpplied. Ayer
says (Ayer, 1956): ‘To have knowledge is to have the power to giveeessful performance.’” As
we are interested in engineering practice, we have to show in section 4thedlrand mathematical
logics are suitable to engineering problems.

[ Sk

4. Intelligence of Technical Systems

Every engineering task deals with the problems of a present state (whicpédufly precisely
known) and some desired future objectives, namely solving the problechpaasibly all other
problems arising on the way. Although the task of solving problems is rewandlitself, any solver
of problems finds reward and esteem from former sufferers. Thiaegits way of solving problems
is to build technical devices and equipment, which are bound to become nbreaaa adaptable
to serve today’s ever changing conditions and restrictions. The meealhaeiectro-technical- and
computer-scientific parts of a device called ‘machine’ can no longer bigraes separately by
disciplines that ignore each other, but have to be intelligent and learréegalso (Froese and

35



SOMMER, SCHREIBER

Ziemke, 2009). As for technical systems, the rewards are defined teynak authorities, their
learning capabilities and intelligence can be measured by their efficiencinfoneement learning
problems, ref. (Hutter, 2009a).

However, in these considerations, the most important question for Alrdidsecome visible:

Do the tools, which machines or agents can use to solve reinforcemenintearn
problems, constitute a mathematically well defined set?

Giving an affirmative answer to this question, opens a discussion of theimgeaf ‘intelligence’
in the framework of the mathematical theory of complexity (founded by Kolmuf§cand
Solomonoff). Many authors take part in this discussion (Hutter, 2008ggland Hutter, 2007;
Veness et al., 2009; Hernandez-Grallo and Dowe, 2010). VeneagsHNtter and Silver have
presented principal requirements of these argumentations. Discusgiingeting tasks, they
define:

‘The general reinforcement learning problem is to construct an abathtover time,
collects as much reward as possible in this setting [that is the given task].

To obtain a mathematically treatable problem, they give the following specificafiotiheo
environment of an optimal agent, called ‘AlXI’:

‘The AIXI setup mirrors that of the general reinforcement problem, é@v the
environment is assumed to be an unknown but computable function, that is the
observations and rewards received by the agent, given its actionsecaamputed

by a Turing machine.

An ideal agent reacts in accordance with the following rules (Veneds 2089):

e ‘The agent considers the sum of the total reward over all possiblersegs of future actions
up to a fixed number aof, steps ahead.’

e ‘It weights each of these rewards with the complexity of programs that ledéctinis sequence
of actions on an universal Turing machine and whose calculations assstent with the
agent’s past. The sum of these weighted rewards constitutes an expseted.’

e ‘The agent picks the action that maximises expected future rewards.

As most practical problems are intractable or NP-difficult, it is normally natsjibe to realize
an ideal agent. The presented principles only define, what is optimavibehaf an agent, if
complexity is not an issue. Veness et al. therefore make ‘an attempt to dedldovn to produce
a practical agent that can perform well in a wide range of differerknawn and potentially noisy
environments.” The ideal agent is their means to explain, what artificial irdaltig is.

But this explanation is problematic for systems acting under the conditions wffidisnt
knowledge and limited resources, more precisely, artificial general inteflgystems. For example,
the arduousness of assurance companies consists of those riskscaniinties, which have no
mean value and no variance, or cannot even be modelled by probabilifputistins. So, systems
acting in real life have to take account of a negative answer to the maitiauabove.

Giving a negative answer, we can discuss the idea of ‘intelligence’ rgelan a well-defined
mathematical frame. Even if the two main questions for problem solving, namely:
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(1) What are we looking for? (Intentions)
(2) Where are we searching? (Clarification of the environment)

find mathematically formulated answers, they never reduce the solvingsgraca pure mathemat-
ical task. The reason for this conclusion has been presented in Sectidre3ogic of a part of
reality is not unambiguously determined by mathematics.

What can be learned from psychology, is the impossibility of scaling doywmathematical
means only, the solution principles used to design an ideal AlXl-agentlgr oo create a practical
one:

‘The agents’ interpretation of stimuli, rewards and actions will be of crucipbrtance

... This dependence on interpretation does not fit immediately into a reamhanmat
learning model, conceived of mechanistically ...Sophisticated cognitiveepsing
applies to the interpretation of stimuli, evaluation of rewards, and implementation of
actions’ (Chater, 2008).

The psychologist J.P. Broonen stresses that an intelligent agent hasgfotm its basic objectives
into a form that allows their realisation in a real world. He describes this w@#keaprocess of the
formation of an intention (Broonen, 2010):

‘A cardinal distinction is to be made between forming a decision (i.e. an intention)
primarily a motivational process and implementing it, a volitional process. \olition
addresses the regulation of behaviour and environment after the intdratobeen
formed. After a first motivational phase, during which the individual Wweigp the
cost and benefits of performing the behaviour which culminates with théageaent

of a behavioural intention, a post-intentional, or volitional, phase is napesscase

of difficulties of reaching the goal during which the individual has to tystrategies
and plans in order to ensure that her intention will be enacted in a third phase

Practical psychologists dissociate the original motivation of a human beargea ‘will’ by the
philosophers Schelling and Schopenhauer) from its representatioehawibural processes and
conscious goals formed to get them.

volitional
process

@ selection of
sequences o
appropriate

requests :> :> actions

Will causes intentions, and intentions build intelligence such that requesansnered by the
most adequate actions. In the language of engineers, this ‘volitionags’dranslates into a very
general and, at the first sight, very simple concept: the formation of intgoads. An interim goal
is a goal that can be reached more easily and will serve as an orientatieacto the final goal.
Nearly all methods used to make problems simpler can be interpreted as usiirtg guals:

e If a preparation step is necessary to solve a problem, the characteristitis step
constitutes an interim goal.
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e If a problem can be taken apart, the solution of its parts are interim goalsghdie found
more easily.

e A strategy to solve a problem can be understood as an interim goal thatraléed in a
coarse graining language. For example each chess player knowsethieatito win a game,
that is to conquer the opponent’s king, it is recommendable to occupy #rsetitral squares.

e A well known problem-solving-method is to simplify a problem by reducing theddomons
under which the solution has to exist, to solve the simplified problem and tohstara
modification of the solution to reach the final goal. The solution of the simplifiedlpm is
interpretable as an interim goal.

The difficulty to detect interim goals essentially depends on the languagetagermulate the
problem with all its requirements and requisites for its solution (Srivastawaerman, and
Zilberstein, 2010). An optimal language to solve a problem in is the languatgeioterim goals.
For finding the language, suitable for a solution plan, we recommend adun@ceery similar to
the algorithm of Section 2:

4.1 A cumulative learning strategy to detect interim goals of a proble

(a) Construct a set of similar and more simple problems to the original problaninds to be
solved.

(b) A solution consists of a sequence of actions (a plan (Pollock, 200®))m sequences of
actions by pure chance and

(c) test them for the set of problems defined in part (a).

(d) With the methods provided in section 2, find significant sentences thatglissh between
successful and unsuccessful solution processes. The sentwwhads characterise the
successful solution processes are suitable interim goals.

This methodology allows for focusing on interim goals and thus to simplify theckefar an
adequate solution language. Carrying out this search without taking heofaplexity of the
problems into consideration, is the same basic idea as found in many heustids. designing
heuristics, a guide is needed to find the path between Skylla and CharyBdione side, an
incomplete language makes the problems unsolvable, whereas in mostrcagastaand complete
mathematical description will produce unsolvable complications. To navigaeeee these two
poles, it is necessary to be aware of the restrictions of mathematical todlsy amaster a method
for the deduction of an adequate solution logic.

4.2 Applications

Problem solving may be interpreted as the task to learn a solution for a prérolenthe problem.
Contrary, however, to the mostly probability-based learning techniqués,h&s to take more
general views. E.g. in economy, agents are confronted with procebssdsare governed by power
law distributions that have neither well defined mean values nor variaamtésometimes they have
to deal with risks that have no probability distribution at all. In quantum mechkaihis well known
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that new measurements may diminish the observer’s knowledge and thigsdorexplanation of
the phenomena in a Bayesian style. Human errors demonstrate that humamisaa logically
in every situation, and it is supposed that this feat has survived with thst fitidividuals along
evolution. In this sense, illogical action sometimes seems to be the more effechieny.

The methods presented in this paper are of interest wherever clasgjicapfoduces absurd
or even contradictory results. The following example is well known in pslgdy (Tversky and
Kahnemann, 1983), but it must be mentioned that our interpretation differs

Example 4: Two statements (I) and (Il) are presented to arbitrarily selected persons

| Eulaliais a journalist.

A
Il Eulalia is a journalistvith interest in politicseand she is a member of a feminist society

A B C

It comes out that more persons find statement (Il) more believable thamstzté). This
observation is not understandable from the view of classic logic andsBay@robability
theory, because for probabilities the inequatityl) > p(A and B andC') always holds.

However, respective to a knowledge structure obtained by meangioisgt1), the combination of
the parts4, B, andC' of statement (ll) produces an augmented believability for the averagerper
if one takes into account the believability of concepts of concepts (also medtia the summary
(I1) of the same section). In other words, the stateméhisnd C' produce a context, in whicd
is more believable than without this supplementary information. Our explicatiwaspond to the
‘pragmatic paradigm’ for the understanding of language in psychologpé€tri, 2012).

Even in engineering research, scientists more and more are forced tinedmbwledge from
very different planes, and have to cope with the problem that the resoftsdne theory do not
have a well defined meaning in the other theory. E.qg., if fracture mechamissadmbine Cauchy’s
continuum mechanics with quantum mechanical models of atomic structuresyréstic bridge’ is
needed, which cannot be designed by physical means only. Gensualhy,heuristic’ translations
will construct the assignment between elements from different theoriesgayding the similarity
of the effects they produce. The similarity is specified and evaluated with defram AGI.

In this way, both, engineering research and physics, need AGI hofaran evaluation of their
models, but also for the modelling itself and for theoretical considerationagia et al., 2011).
Very often the main problem to be solved when designing engineering totidjigl formal terms
for ideas that have been obtained from observations in practice. E.gnsleéof fracture of tools is
a concept in practical engineering that is hard to translate into mathematicsmputer program
that puts the cumulative learning strategy in practice to find fundamental feermas for technical
modelling was developed by the second authair(@aum, Scherm, and Sommer, 2008).

Example 5: Forecast of drill fracture

It is always a difficult problem to fix the time for drilling processes when i kdad better
be changed. If changed too early, good expensive drills may be waftext, the broken
tool may cause excessive damage to a valuable workpiece. In the actuattd application,
measurements of axial fordé(¢) and moment of torqué/ (¢) were available of always the
same drilling process repeated with one and the same drill until fracture.mefieod of
forecasting drill fracture consists of four steps:
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I An a priori given list of mathematical operatioid®;, each resulting scalar values
when applied to a short sequence of numbers, is sequentially applied tatthefdhe
first drilling process of a still undamaged drill, thus giving s8t©f numbersw;. The
distributions of values in these sets are taken as guidelines to define furdyership-
functionsZ;;(w;) so that the values; most clearly belong to the predicates chosen.

Il The time axis also is divided in initially equal time slofg. which are mapped by
fuzzy membership-function8y(¢) to predicates;, describing each time sl@t,. The
parameters ofZ,(t) are shifted in an ensuing optimization process to enhance the
contrast of the mapping of values;(¢) to predicatesP;; of magnitude, as well as of
time 7;,.

Now, the believability of the fuzzy sentenég;; = (Zi(t) and Z;;(w;)) means: the
valuew; from operatiorO; applied to data from a measurement channel for a time value
t satisfying time predicaté;,, correspond strongly to predicaf®;. The believability
By.;; of sentencesy,;; is calculated by the aggregation of all valuesSpf; obtained for
time values satisfyin@y.

Il The believability of all sentences);; is examined for all following measurement
files with the aim to located the relevant sentences, i.e. those which keepntiee sa
believability in all measurements, but the very last few before fracturerevtheir
believability changes drastically.

IV From the relevant sentences the final fracture criterion is deriyetidir aggregation.

The criterion found can be used in the industrial process, if the axie¢ fand moment of
torque are measured and can be processed online, to indicate to theoopgesaneed to
change the drill.

5. The role of logic for artificial general intelligence

If, in case of Al, intelligence may simply be understood as the ability to solvel@ns, the same
definition will not be sufficient for general intelligence, as Look, Godrtand Pennachin stress
(Goertzel, B. and Pennachin, C., 2007): ‘A general intelligence muablseto carry out a variety
of different tasks in a variety of different context.’

Such general objectives nearly always are affected by frame pnsblée, in the history of
sciences, they were extensively discussed in physics: Kant coegditiere and space as frames
for every cognition, making both preconditions of physics. When Einsteimahstrated the
dependence of space and time on matter distributions, tHe ckhitury physicists switched to
causality being the unalterable principle of physics, but again the riseasftgun mechanics has
cast new doubts on this conception (Mittelstaedt, 2011).

In the same way as physics needs a fixed description frame to determine theagneh
measurements, any reasoning system needs structures or at leastagpmentary logic enabling
structured reasoning processes. If researchers in AGI couldensuie of the assumption that
basically every intelligent process may be seen as a structured reapomiegs mirroring a certain
logic, it would be difficult to say, what AGI is researching.

On the other hand, any fixed structure or logic may conflict with the strustfr@ome problems,
thus complicating their solution. A general reasoning system therefore mbsised on a logic that
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assumes only minimal structures for knowledge processes, or on meuokamikich may not be
recognized as logic any more. This, for example, is the case in Pei Waagsning system (NARS)
(Wang, 1994, 2011), which uses a non monotonic term logic with an inbenatation and bases
the credibility of the inherence relatedness between terms on observations.

The ‘logic’ used in NARS is non-axiomatic, meaning no axioms are postulated nlon-
monotonic, because new observations can overwrite prior judgmentshiarithgic’ captures the
principles of adaption to insufficient knowledge and resources. Td¢ems to be no system with
lesser needs of a priori specifications than NARS to capture informationdrflux of observations
in order to solve problems.

The knowledge processing system presented by us has many similaritiesRis, e to the
common purpose to be as free as possible from prejudices. But, asjeativais more limited,
there also are important differences. Our interest is guided by the que8tthich are the basic
principles that enable answers to questions respective to intentions asdttofaobservations?’

Many difficulties that must be considered in the design of an intelligent ngagsystem, such
as restrictions of time, memory or hardware, or exigencies arising from caoioation between
agents, are excluded from our considerations. In our understafyliegtion answering’ is the
archetype of problem solving. In our real world we find problems em¢ahdut like physicists
always seeking effects in most simple experiments, we try to recognizeuhddtional principles
for problem solving in an universal but well-defined initial situation.

The function of the description language and the corresponding logid¢ nhoto describe the
world, but also to enable reasoning processes, an idea stressedigjidORlacbeth: ‘The good
mathematical notion [in our wording description language] serves not mereg§cord something
but to embody the reasoning, to put the reasoning itself before our @yasbeth, 2011).

Though artificial systems do not necessarily have eyes, the statemesitheéess, applies to
our context: The description language of an AGI system not only hastwide all relevant entities,
but also has to make visible the solution obtaining concepts and algorithms.ethisdsobjective,
corresponding to the frame problems in physics, cannot be achievedthemmtics itself, but it
firstly needs some grounding principles, before mathematical or logicaliderations can take
place.

In the same way as physicists have searched for and found principlesyyeconservation,
least action principle, and so on) that hold in every frame, even if thasees are obtained from
incompatible theories (Newton mechanics, general relativity, quantum mieshar quantum field
theories) we are searching for principles of artificial general intelligehat are independent of
logic.

Once these principles are known, they provide tools for the design ofsf&ems. Firstly,
an AGI system has to select from general principles those corresptadits demands, and only
in a second step it can specify a logic correspondingly to the choserigbeisic Obviously, in
an imprecisely known environment terms must be flexible and logical strsctamrenot be fixed
in advance, whereas a simpler structure, as found in most games, alloapfheation of a
mathematical logic.

Like physicists, who design their experiments in order to detect the princiflghysics,
in Section 2 we have designed a task to detect the cognition principles of @@l.most
important result concerning the role of logic in AGI is the observation that emagiics as well as
mathematical logics by themselves are insufficient tools, though they areuskein as Pennachin
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and Goertzel state: ‘One approach of creating AGI is to formalize thdgromathematically and
then seek a solution using the tools of abstract mathematics.’

But this approach can never exploit all the possibilities of AGI. As the digalu of knowledge
by basic principles of cognition only provides context-dependent kray@eneither the definition
of terms, nor that of concepts can be founded solely on set theoryather mathematical theory
with context-independent entities.

Taking into consideration the difficulties of using context-dependent lpgicgy be necessary
to approximate the context-dependent knowledge with a context-indeptdadguage. But such a
further step (see. Venesse et al.) is dependent on computing and acildie$, and therefore must
be treated as an additional problem.

In an overall view, AGI must necessarily be seen as an embedded arudliechlintelligence,
and an intelligence like this cannot be limited to a self-contained mind, like pure matios can.
Logic is the most effective tool the pure mind can use, but the adaption icftm¢he world needs
cognition. So, cognitive skills come primary to logic. The logic of an AGI systanmot be justified
by rational reasoning only, but strongly needs empirical evidence. Watgim (Philosophische
Untersuchungen) has stated: ‘An accordance in definitions is impossithleulvan accordance
in the judgments.” That means that the definitions needed for the specificdttba logic in an
intelligent system must depend on our judgment of ‘what is good'.

6. Conclusions

Clarifying the meaning of ‘intelligence’ is a very important objective for eegiring projects in Al
and robotics. As AGI systems act in open environments, they cannotralpgiequipped with a
predetermined language conforming to the meaning of intelligence in all coreldf@mployment.

The discussion in this paper is based on the most fundamental feat an 'ari€ligstem should
achieve: The cognition of solutions to a problem.

The fundamental conditions of cognition, therefore, constitute the minimalgiéegs of every
and even the most simple intelligent system. An examination of these conditions shat
‘intelligence’ is an idea that cannot be obtained by classical ontologyotiytin the context of
the whole including the ‘intelligent’ actor, because ‘intelligence’ dependtheractor’'s view on
the whole. An intelligent actor may have a ‘free will' (as claimed by some philosts), but an
artificial system always corresponds to its creator’s will, as well as thésgmnd subgoals used in
the design of intelligent systems emerge from the creator’s view, his intenéindsyis desires.

The intelligence of an artificial system corresponds to two abilities of its areato

1. To construct a language, or, in more precise terms, a logic, whichspmnds to a given class
of problems in the creator’s own perspective. (Because of Quinetsamslatability-thesis,
sometimes two or more languages will be necessary.)

2. To have sufficient command of these languages in order to find andutesglutions.

The second ability has a theoretical foundation (Hutter, 2009a; Leg¢fatidr, 2007; Hernandez-
Grallo and Dowe, 2010). But, as we have shown, the first ability escapganathematical
formalism.

‘Finding the “right” representation is a crucial problem’ (Schmid and Kitzelm&011), and
a representation is a presupposition for a discussion of intelligence in matbanerms. Quine’s

42



ISLOGIC IN THE MIND OR IN THE WORLD?

un-translatability-thesis causes the in-comparableness of intelligenezbdradifferent languages.
As has been demonstrated in sections 3 and 4 the most intelligent view of sobfenps cannot be
obtained from mathematical considerations only. ‘Intelligence’ has to berstabd in relation to
our real world, but not pertaining to formal theories obtained by aligires

Husserl's phenomenology starts with our real world. His Phenomenoldggchiction provides
cognition principles and, in succession, a natural logic. But the findibtgred from this natural
logic do not correspond to the requirements of mathematical theories @onme: the context-
independent meaning of elements and operators). Cognition may preisgst tfore easily, and
may exclude singular abstract mathematical objects. So, Heidegger's maotiog ‘Bue signifies
to enable detections’, leads to the astonishing observation:

Mathematics cannot constitute a complete foundation of Al, and, the other way
around, Al is needed to determine the meaning of mathematical proofs, and,with
mathematical truth.

Having specified our questions and intentions, the principles of cognitiovida a scientific
foundation of justified belief, and thus a foundation of Al-methods withinlamgdnd mathematics,
as well as AGI methods.

Our discussion has disclosed the relation between intelligence and thelitapdlletecting
knowledge. As these ideas cannot be disentangled, there does na présise (mathematical)
definition of intelligence, but only general principles, the realization of Whieates intelligent
behaviour. The detection and realization of these principles is the task bf @@ examples
demonstrate that AGI’s contribution is crucial to meet the challenges of meagineering.
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Appendix A: Aggregation Operators (Yager, 1994; Benferhat2010)

Letd,ds,...,dy € [—1,1]" be a string ofNV assessments. An aggregation operator transforms
this string into one valudgg(d;, ds, . ..,dy) € [—1, 1] such that the following conditions hold:

Equality: Each agent has the same influence.

Commutativity: The value of an aggregation operator is independent ofdiee af the values
dy,da, ..., dy.

Monotony: Ifdj, < Ek fork =1,...,N thenAgg(dy,ds,...,dy) < Agg(c?l,@, . .,EN)

Neutrality: There exists a valuec [—1, 1] such that
Agg(dl,dg, Ce ,dN) = Agg(dl, dg, ey dN, 6).

Associativity: Agg(dy, da, . . ., dg, Agg(dis1, - ., dn)) = Agg(dy, da, ..., dN).

Accumulation:Agg(dy, dso, .. .,dN) <
Agg(dl, do,...,dn, d) ford = max{dl,dg, . ,dN} > e.
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It is interesting that this very general definition strongly determines theseptation of any
aggregation operator.

Representation Theorem Any aggregation operator Agg can be represented by the openaiars
or min, or by the operators andA if the assessments have been rescaled by
y[—1,¢e] — [0,1] andiale, 1] — [0, 1]
((a/\b) —a-b, (avb)=1—(1—a) (1—b)forabe [0,1]).
The operator Agg is represented by the equations:
Agg(dy, da) = ;" (1ha(dr) A ba(da)) for dy,dy € [~1, €], and
Agg(dy, dy) = Py (1hy(dr) V by (da)) for dy, da € [e, 1]

If a confirmationd; € [e, 1] meets a negatioth, € [—1, e] there are various possibilities:

e Strong veto: Cancel any influence of confirmatifn
e Optimistic evaluation: Cancel any influence of negation
e Balanced decisiondgg(dy, ds) = v/d; - do

Appendix B: Proof of the Lemma in Section 3

Proof: The proof of the Lemma will be given in a generally accepted mathematicaldgegu
For anyz, f(z) is defined by the most believable valyeespective to the knowledge
{(z1,n1]i =1,...,n}. The functionf(x) can be defined by the statement:

The more similar: is to z; the more similar igy to y; (5)

We define similarity with a distance measuie:, x;) and a twice differentiable membership-
function Z: ﬁllld and use the aggregation operatord (= A). (That is to say
assessments, ds € [0,1],e = 1, andAgg(di,d2) = dy Ada = dy - da.)
Replacing[Z(d(z, z:)) = Z(d(y,y:))] by [not Z(d(z, ;) V Z(d(y,yz-))], (5) can be
reformulated with the equation:

y = argmax /\ not Z(d(xz,xz;)) vV Z(d(y,y;)) =
y i=1

arg@H (1 - Z(d(av,ﬂci))> - Z(d(y, vi))

y =1

9(z,y)
As f(z) = y is assumed to be continuou&x + Ax) remains in a small neighbourhood of
f(x) andy can be found by minimising(x, y) or by the equation:

dg(,y)
dx
The implicit function theorem guarantees a differentiable solution of equd@prfor

% = 0. As this condition is satisfied almost everywhere for suitably defined fumsdio
andZ, we conclude that up to a finite set of discrete poifis;) = y is piecewise continuous.

—0 (6)
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