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Abstract

This paper describes a model of dynamic decision making in theDynamic Stocks and Flows(DSF)
task, developed using the ACT-R cognitive architecture. This task is a simple simulation of a water
tank in which the water level must be kept constant whilst theinflow and outflow changes at varying
rates. The basic functions of the model are based around three steps. Firstly, the model predicts the
water level in the next cycle by adding the current water level to the predicted net inflow of water.
Secondly, based on this projection, the net outflow of the water is adjusted to bring the water level
back to the target. Thirdly, the predicted net inflow of wateris adjusted to improve its accuracy in
the future. If the prediction has overestimated net inflow then it is reduced, if it has underestimated
net inflow it is increased. The model was entered into a model comparison competition—the
Dynamic Stocks and Flows Challenge—to model human performance on four conditions of the
DSF task and then subject the model to testing on five unseen transfer conditions. The model
reproduced the main features of the development data reasonably well but did not reproduce human
performance well under the transfer conditions. This suggests that the principles underlying human
performance across the different conditions differ considerably despite their apparent similarity.
Further lessons for the future development of our model and model comparison challenges are
considered.
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1. Dynamic decision making

The termDynamic decision making(DDM) covers a wide range of relatively complex cognitive
tasks in which people must make a number of decisions over a period of time in a changing task
environment. Environmental changes can depend on the structure of the environment itself, on
decisions made by the decision maker or, most typically, some combination of the two (Brehmer,
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1992; Edwards, 1962). Many real-world tasks require some form of DDM, ranging from game
playing and car driving to patient care management, military battlefield strategy and economic
market analysis.

Experimental studies of DDM have typically taken the form of simulated task environments
in which participants are required to monitor certain states of the environment (often represented
numerically or graphically) and maintain or optimise the value of one or more otherstates over
a period of time (see Gonzalez, Vanyukanov, and Martin, 2005, for a review). Results from
such studies have shown that people typically find such tasks challenging and often perform sub-
optimally (e.g., Brehmer and Allard, 1991; Kleinmuntz and Thomas, 1987; Sterman, 1989).

There have been several proposed explanations for observed sub-optimal behaviour which
fall roughly into three categories. The first argue that sub-optimal performance can result from
constraints on processing imposed by the structure or properties of the cognitive system itself, such
as working memory capacity. For example, in an early study of human DDM ability, Rapoport
(1966) was able to account for sub-optimal performance with a model thatassumed people had
limited capacity to plan ahead. More recently, Gonzalez, Thomas, and Vanyukov (2005) found
positive correlations between performance on three DDM tasks and score on the Visual-Span Test
measure of working memory capacity (Shah and Miyake, 1996) and theRaven Progressive Matrices
measure of fluid intelligence (Raven, 1962, 1977).

An alternative explanation for sub-optimal performance is that people construct incomplete
or incorrect mental models of the task (e.g., Besnard, Greathead, and Baxter, 2004; Brehmer,
1992; Sterman, 1994). Problem solvers are assumed to construct a mental model prior to, and
during the course of, interacting with a task environment, which consists of arepresentation of
the relevant variables, their given properties and relationships, and hypotheses about relationships
not given. Dynamic decision environments vary in terms of their complexity (e.g., the number
of interacting elements and the functions underlying their interactions) and opacity (the degree
to which elements and their relationships are hidden from the problem solver)which affects the
accuracy and completeness of any mental models constructed. In addition,mental models about
hidden relationships may have to be constructed using limited feedback information from one or
two observed variables.

The third proposal is that sub-optimal performance results from sub-optimal strategies employed
by problem solvers. A number of studies have shown, for example, that problem solving
performance is related to the systematicity of the exploration strategy adopted,with more systematic
strategies (i.e., exploring the properties of individual variables consecutively) resulting in richer
structural knowledge and better performance (e.g., Putz-Osterloh, 1993; Vollmeyer, Burns, and
Holyoak, 1996).

Of course, these factors are not mutually exclusive and are bound to berelated; problem solvers’
strategies are more likely to be incorrect if they have inappropriate mental models of the task. The
complex interaction of factors makes attempting to provide mechanistic, computational accounts
of human DDM behaviour challenging if structural knowledge, strategic knowledge, learning and
cognitive architectural constraints are all to be taken into account.

One promising—and increasingly popular—way to formulate hypotheses about the cognitive
representations and processes involved in DDM is to construct task modelsin a cognitive
architecture. Cognitive architectures are computational theories of the large-scale structure of the
mind; how cognition is controlled and how knowledge is encoded, stored, retrieved and utilised.
There is a wide variety of cognitive architectures in existence, with different representational and
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processing assumptions, and (to a greater or lesser extent) informed by psychological theory. The
advantage of many of these theories is that they are implemented as software systems in which task
models can be specified and tested by running simulations and comparing modeloutput with human
data.

Currently all of the most prominent symbolic architectures (e.g., ACT-R (Anderson et al., 2004;
Anderson, 2007), EPIC (Meyer and Kieras, 1997), and Soar (Laird, Newell, and Rosenbloom,
1997)) are built around some form of production system, a computational formalism that has been
used to account for performance in DDM tasks for a number of years (e.g., Anzai, 1984). The
architectures agree on other issues in addition to this common processing mechanism but also differ
in terms of their assumptions concerning matters such as memory representation, conflict resolution,
serial versus parallel processing etc.

The benefit of using cognitive architectures to model human performancein DDM tasks is that
they allow one to specify the internal model of the dynamic system assumed to beheld by the
problem solver, the strategy being adopted and the precise nature of the computational processes
being carried out on environmental information. All cognitive architectures incorporate one or
more learning mechanisms while some (ACT-R and EPIC for example) are also highly constrained
by psychological theories of learning, memory and visual processing and so provide more plausible
accounts of human data. In the following section we provide a brief overview of ACT-R, the
architecture employed in this study.

1.1 The ACT-R cognitive architecture

ACT-R is the current version of a proposed unified theory of cognition (Newell, 1990) developed by
John Anderson and his colleagues over a period of 30 years (Anderson et al., 2004; Anderson, 2007).
It consists of a set of independent modules that acquire information fromthe environment, process
information and execute motor actions in the furtherance of particular goals.Figure 1 illustrates the
main components of the architecture. There are four modules that comprise the central cognitive
components of ACT-R. Two of these are memory stores for two types of knowledge: a declarative
memory module that stores factual knowledge about the domain, and a procedural memory module
that stores the system’s knowledge about how tasks are performed. Theformer consists of a network
of knowledge chunks while the latter is a set of production rules of the form“IF <condition> THEN
<action>”: the condition specifying chunks that must be present for the rule to apply and the action
specifying the actions to be taken should this occur.

Two further cognitive modules represent information related to the execution of tasks; acontrol
statemodule keeps track of the intentions of the system and aproblem statemodule maintains the
current state of the task during problem solving.

In addition to the cognitive modules, four perceptual-motor modules for speech, audition, visual
and motor processing encode perceptual information from the environment and enact speech or
motor output. The visual and motor modules (shown in Figure 1) provide ACT-R with the ability
to simulate visual attention shifts to objects on a computer display and manual interactions with a
computer keyboard and mouse.

Each of ACT-R’s modules has an associated buffer that can hold only one chunk of information
from its module at a time and the contents of all of the buffers constitute the state of an ACT-R
model at any one time. Cognition proceeds via a pattern matching process thatattempts to find
production rules with conditions that match the current contents of the buffers. When a match is
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Figure 1: The modular structure of ACT-R 6.0

found, the production “fires” and the actions (visual or manual movements, requests for the retrieval
of a knowledge chunk from declarative memory, or modifications to buffers) are performed. Then
the matching process continues on the updated contents of the buffers so that tasks are performed
through a succession of production rule firings.

The processing in ACT-R’s modules is serial but the modules run in parallelso that the system
can move visual attention while also moving the mouse and attempting to retrieve knowledge from
declarative memory. ACT-R processes also have associated latency parameters taken from the
psychology literature. For example, it typically takes 50 ms for a production tofire and the time
taken to move the mouse cursor to an object on the computer screen is calculated using Fitts’ Law
(Fitts, 1954).

In addition to these symbolic level mechanisms, ACT-R also incorporates a subsymbolic (i.e.,
numerical) level of computations that govern memory retrieval and production rule selection. The
retrieval mechanism is based on the notion of activation; a chunk in declarative memory has a
level of activation which determines its availability for retrieval, the level of which reflects the
recency and frequency of its use. This allows models to account for widely observed recency and
frequency effects on retrieval and forgetting. Subsymbolic computationsalso govern the probability
of productions being selected in the conflict resolution process. At its mostsimple, it is assumed
that people choose the most efficient actions (i.e., those that maximise the probability of achieving
the goal in the shortest amount of time). In addition, the more often a production is involved in the
successful achievement of a goal, the more likely it will be selected in the future.

ACT-R can be used to implement several different modelling paradigms (seeTaatgen, Lebiere,
and Anderson, 2006, for a review) and is the basis for theinstance based learning theory(IBLT)
model of DDM (Gonzalez, Lerch, and Lebiere, 2003; Martin, Gonzalez, and Lebiere, 2004). In the
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following sections we describe the dynamic stocks and flows DDM task and then a proposed ACT-R
model of the task.

2. The DSF task and challenge

The DSF challenge was to create a cognitive model of a DDM task, and then compare the
performance of this model against human performance in five experimentalconditions that were
not revealed to the competitors until the models had been submitted. The motivationbehind this
challenge was to stimulate a comparison between different cognitive models andarchitectures in
order to identify their strengths and weaknesses, an approach that hasbeen successfully applied
previously (Gluck and Pew, 2005). To do this a task was required which would provide a rich
testbed for complex cognition but also lend itself to a range of cognitive modelling approaches. A
DDM task was chosen to fit these criteria.

The DDM task used in the challenge was the dynamic stocks and flows (DSF) task (Dutt and
Gonzalez, 2007; Gonzalez and Dutt, 2007). This task is designed to investigate how people manage
stocks and flows in a changing environment and takes the form of a “microworld” (Gonzalez,
Vanyukanov, and Martin, 2005; Gray, 2002) comprised of simple components. These are: the level
of stock(S) within the system; aninflowwhich increases the stock; and anoutflowwhich decreases
the stock. The inflow and outflow are both comprised of anenvironmentalcomponent, which is
determined by the system (EI andEO respectively), and ausercomponent, which is determined by
the participant (UI andUO respectively). Therefore participants have partial control over the inflow
and outflow of stock. The stock simulated in the task is water. Water flows into thetank at a rate
determined byEI andUI, and flows out again at a rate determined byEO andUO. The stock level
at timet is defined by

St = St−1 + [EIt−1 + UIt−1]− [EOt−1 + UOt−1] + SLt−1−d (1)

whereSL is the supply line andd is the delay in the supply line so that changes toUI andUO have
an effect on the system only after a certain time period rather than immediately. The goal of the task
is to maintain the amount of water in the tank at a specific level whilst the rate of water flow in and
out changes over time.

There were two factors in this task which were controlled by the challengersto create a number
of different conditions. These were (a) the changing rate of environmental flow into the tank, and
(b) the delay between theUI andUO and their effect on the system. Both of these factors were
manipulated in the challenge. Human data from two experiments in which participants carried out
the four conditions of the DSF task (Dutt and Gonzalez, 2007; Gonzalez and Dutt, 2007) were made
available when the challenge was initially announced as a basis for model development, (henceforth
referred to here as thedevelopmentconditions). Each of the four conditions ran for 100 time periods
and had a different rate ofEI:

1. Linear increasing(0.08× (TimePeriod) + 2),

2. Linear decreasing(0.08× (TimePeriod− 1) + 10),

3. Nonlinear increasing(5× log(TimePeriod))

4. Nonlinear decreasing(5× log(101− TimePeriod)).
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The mean human (and model) performance data are shown in Figure 2. Note that to facilitate
comparison between the observed and model data for the different conditions, the upper range of
each y axis has been adjusted to fit the maximum value.

The data reveal that people are generally able to maintain the tank at, or closeto, the goal level
after an initial learning period of varying length where the tank level is above the desired level. The
data also show that for both linear and nonlinear cases, individuals learnto control the system more
quickly for the positive functions than the negative ones (Dutt and Gonzalez, 2007).
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(b) Linear Decreasing
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(d) Nonlinear Decreasing

Figure 2: Observed and ACT-R model performance in the DSF development conditions.

3. An ACT-R model of the DSF task

From an analysis of the human performance data, we identified a number of key features which we
assumed could be relevant for the development of a cognitive model. The first, previously noted by
the challenge organisers (e.g., Dutt and Gonzalez, 2007), is that control over the system gradually
improves over the first ten to thirty time periods to a state where accuracy levelsare relatively stable
and tank levels are generally close to target.
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It is reasonable to assume that in the early time periods people are learning how the system
operates and making initial hypotheses about the relationships between the variables. Once subjects
have constructed a mental representation of the system, the monotonic and incremental nature of
the functions means that subjects are generally able to maintain the tank at the target level (although
close examination of individual performance profiles revealed substantial individual differences in
the time taken to achieve and sustain target tank levels). The second featureof the data from the
early time periods (particularly in the decreasing conditions) is that the tank is overfull and that
subjects must reduce rather than increase the level to the target.

One cause of overfilling is if the amount ofEI is underestimated, which leads to an
underestimate in theUO necessary to stabilise the water level. One plausible explanation for this
underestimate lies in the initial assumptions that participants make when starting the task. There are
few cues in the DSF task environment about what the inflow is likely to be. At the first time period
participants know only that the current water level is 0, the target level is 4and, crucially, that the
scale on the display used to indicate water level runs from 0 to 10. This finalobservation provides
parameters for the likely water level because it is reasonable (although in this case incorrect) to
assume that the display will be designed to show likely water levels.

In the decreasing conditions,EI in the first time period fills the tank completely. UnlessUO

is set to remove almost all of this water, the tank will overflow in the second time period. Thus,
the expectations set by the experiment lead to an underestimate of the initial levels of EI in the
decreasing conditions. These assumptions are not faulty in the increasingconditions in which the
initial EI is around 2, a more reasonable figure to expect if you are assuming the approximate level
will be between 0 and 10. On this basis, it is reasonable to expect that the decreasing conditions will
initially overflow considerably asEI is higher than expected whereas the increasing conditions will
not asEI is not unexpectedly high. Further, a greater overfilling would be expected in the nonlinear
decreasing condition becauseEI remains higher for longer. The patterns of data shown in Figure 2
support these explanations.

We also suggest that the tank level range in the DSF display may also contribute to an
explanation of why participants were generally slow to react to the high waterlevels by failing to
increase the user outflow sufficiently (it typically takes subjects between tento thirty time periods to
reduce the level to the target value). As noted above, the DSF display runs from zero to ten and any
level of water above ten is simply displayed as a full tank. When this occurs therefore, participants
are unable to use this visual cue to obtain information about the water level in the tank. This may
lead them simply to keep increasing the value ofUO until the level goes below ten or learn to attend
to the less salient numeric tank level display. In addition, it is reasonable to assume that it may take
more than the evidence of one or two time periods for participants to adjust theirfaulty assumptions.

The basis of the model then is that participants learn theEI based on the amount of water
flowing into the tank. They initially underestimate what this level will be however,and are slow to
adjust their estimates in the direction of the correct value. This explanation accounts for the main
features of the group level data in the development conditions.

4. Assumptions of the model

The DSF task environment presents six variables to the problem solver: Environmental Inflow (EI),
Environmental Outflow (EO), User Inflow (UI), User Outflow (UO), Current tank Level (CL) and
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Goal Level (GL). These are presented to cognitive models directly as numerical values over a socket
connection.

Our ACT-R model of the DSF task consists of a set of eleven ACT-R production rules. Figure 3
displays the productions (shown as rectangles) and the flow of control between them. The model
assumes that four items of declarative knowledge are maintained and employed in carrying out the
task: (a) the estimatednet environmental inputto the tank, (b) thecurrent difference(dc) between
the actual and target tank levels, (c) theprevious difference(dp) between the actual and target tank
levels in the previous trial, and (d) therate of change(m) of the adjustment for the estimated net
environmental change.

The strategy embodied by the model can be divided into three main steps. In thefirst step the
model estimates the net environmental input for the next time period, based onthe accuracy of the
prediction for the previous one. For each time period, the estimate for the netenvironmental input
in the following time period is the current net environmental input plus the model’s estimate of the
change in the net environmental input. This estimated change is the difference between the current
tank level and the target level (i.e., the error in the previous prediction) multiplied by the model’s
estimate of the rate at which the net environmental input is changing. These estimates are carried
out by thetest differenceproduction.

The model assumes that problem solvers must attempt to keep a track of how the net
environmental input is progressing over time periods so that the rate at which the net user change
(UI − UO) changes can be kept the same asm. A major component of the model, therefore is the
mechanism to adjust the estimated rate at which the net environmental input is changing at each
time period,mt. If dc is greater thandp, then the rate of the net user change is insufficient (i.e.,
EI andEO are changing faster than the estimate). Therefore the model’s estimate ofm must be
increased so that the net user change is adjusted in line with the actual changes toEI andEO.
Specifically, the rate of change is increased according to how much moredc is greater thandp. A
large relative increase leads to a large increase in rate of change and soon, calculated according to
the equation

mt+1 = mt + θ
|dc|+ |dp|

|dc|
. (2)

whereθ is a parameter representing an estimate of people’s accuracy at adjusting the rate of change.
If θ = 1 then the model’s adjustment is perfect whereas a value of0.5 was found to capture the
human data well by under-adjusting the rate of change.

In the second step (implemented by the fourROCproductions), the model calculates the rate of
change according to the relationship between the current difference and that from the previous time
period. If the current difference is greater than the previous difference the rate of change is increased
accordingly. Alternatively, if the difference is decreasing (either positively or negatively), the model
decreases the rate of change in proportion whereas if the difference isconstant then the model keeps
the current rate of change constant. An additional production was also added to manage situations
where the rate of change fluctuates either side of the goal. In this case the difference between the
current and target levels is not a reliable indicator of the accuracy of theprevious estimate and the
rate of change is reduced to prevent an ever-increasing rate of change.

In the third step the model predicts the next tank level by adding the net environmental input to
the current tank level (theadd net inputproduction). Once this has been estimated, the model then
simply adjustsUI or UO by the difference between the predicted next level and the target level to
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Figure 3: Control flow of the model.

bring the level to the target. This is handled by threecompareproductions, which fire depending on
the relative values of the predicted and target levels. Finally theexecutesends the decision to the
DSF simulation.

The three-step process can be further illustrated by an example. For a particular time period,
t, if the current tank level is6, the target level is4, and the current estimate of the rate of change,
mt = 1, thendc = 2 and the model computes the net environmental input asmt × dc = 2. In
addition, assumingdp = 1 then the error in the model’s prediction is increasing so the model adjusts

its estimate of the rate of changemt+1 to be1 + 0.5 |2|+|1|
|2| = 1.75 (as the size of the difference has

increased across time periods so has the model’s estimate of the rate of change).

The predicted level fort + 1 therefore is the current level plus the net environmental input
(6 + 2 = 8). The model will then compensate for this predicted discrepancy by settingUI = 0 and
UO = 8− 4 = 4).
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As can be seen in Figure 2, the performance of the model in the four development conditions is
reasonably close to that of the human experiment participants. The goodness-of-fit measures used
for the challenge (R2 andRMSE) for the model are shown in Table 1.

Table 1: R2 andRMSEgoodness-of-fit measures for the ACT-R model on the four development
conditions

Development Condition
Error Linear Inc. Linear Dec. Nonlinear Inc. Nonlinear Dec.
R2 0.63 0.67 0.26 0.74

RMSE 0.34 2.97 1.06 3.7

5. Testing the model

The DSF challenge was designed not simply to test models’ ability to account for the given data sets
but primarily to test their ability to predict new, unseen data sets from five different conditions of
the DSF task after they bad been constructed. No information about the nature of these new transfer
conditions was made available during the model construction phase. The stated aim of this approach
was that, because model performance in the test phase could not be modified by hand, to predict the
transfer data accurately, models must capture general principles governing human performance in
the DSF task rather than specific features of a single condition or data set.

The five conditions against which the submitted models were tested were not simple variations
of these, such as different linear or nonlinear functions; they were qualitatively different. Three
conditions manipulatedEI according to a repeated sequence for the 100 trials:

1. S2. EI is the sequence1, 5.

2. S2 ± 1. EI is the sequence1 ± 1, 5 ± 1, with ±1 noise being distributed equally amongst
trials.

3. S4. EI is the sequence0, 4, 2, 6.

The two other transfer conditions manipulated the delay between the submissionof users’UI

andUO decision and its execution:

1. D2. UI andUO decisions were delayed until the trial after submission.

2. D3. UI andUO decisions were delayed until two trials after submission.

Both delay conditions started with 4 gallons of water, a goal level of 6, andEO set at 0. The
EI function was a linear increasing function that deposited water into the tank from 2 to 10 gallons
over the course of 100 trials.

The human and model data for the five transfer conditions are displayed in Figure 4. Note that,
as in Figure 2, the upper range of each y axis has been adjusted to aid comparison. In this case, the
upper bound has been set to allow a reasonable display of the pattern of values, even if this required
omitting extreme cases. TheR2 andRMSEgoodness-of-fit measures for the model are shown in
Table 2.
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(a) Sequence 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

T
an

k 
Le

ve
l

Time Period

Observed
Model

(b) Sequence 2 plus noise
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(c) Sequence 4
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(d) Delay 2
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(e) Delay 3

Figure 4: Observed and ACT-R model performance in the DSF transfer conditions.

There are a number of comments to make about the data in Figure 4. Firstly, it can be seen that
the human data does not resemble that from the development conditions but varies widely between
transfer conditions. Overall, subjects performed less well in all five transfer conditions than in the
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development ones, most likely because the underlying functions were lesseasy to discern. This
could be because, unlike the relatively simple monotonic functions in the development conditions
in which only the rate and direction ofEI was manipulated, the transfer functions were either non-
monotonic, contained noise, affected the control of the system, or required the taking of several time
periods into account.

Although there is some degree of similarity between the patterns in the three sequence
conditions, they differ considerably from the two delay conditions. All three sequence conditions
display a regular “saw tooth” pattern reflecting the repeated sequence pattern and a general
overfilling of the tank. TheS2 condition does show a pattern of overfilling and then stabilising like
the development conditions (although with less accuracy as it overfills every other time) whereas
S2 ± 1 displays a series of over-corrections in which the tank is overfilled but never stabilises. The
S4 condition also appears to be overfilled but moving towards stabilising towardsthe goal level to
some extent, although very slowly so that the target is not achieved beforethe end of the experiment.
In addition, it seems that the tank overfills every time there is a large input.

Human performance was somewhat similar for theD2 and D3 conditions; both show an
overfilled tank with a series of over-corrections, the pattern being more varied and less accurate
in the latter.

Table 2:R2 andRMSEgoodness-of-fit measures for the ACT-R model on the five test conditions

Test Condition
Error S2 S2 ± 1 S4 D2 D3

R2 0.16 0.4 0.5 0.02 0.11
RMSE 0.96 0.38 0.59 0.53 1.25

The model did not capture human performance in any of the five transfer conditions very well.
For all three sequence conditions the tank level tended to oscillate around the correct with periods
of large over-correction. Model performance in the delay conditions was also quite dissimilar to
human data. In theD2 condition, model performance matches human performance very closely for
the first 15 time periods but then the tank level increases rapidly and neverreturns to normal levels.
In theD3 condition, the model is able to perform in a similar fashion to the development conditions,
showing the familiar pattern of overfilling and then stabilising at the correct value. However, this is
not what people do.

We are unable to provide a general explanation of the model’s behaviour inthe transfer
conditions or more specifically for the delay conditions other than to assume that it has something
to do with the fact that the model only takes the previous trial into account when adjusting the
estimated rate at which the net environmental input is changing at each time period. For several of
these conditions, it may be the case that accurate prediction relies on the encoding and integration
of information from a number of previous trials.

6. Conclusions

The process of developing a cognitive model of a complex task is challenging if one seeks to
generate accurate fits to human data over a wide range of different task scenarios. It requires
deep insights into the three factors that have been identified as affecting performance: the strategy
or strategies employed, the various constraints imposed by the cognitive system, and the task
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representations constructed and used by the problem solver. The ACT-R cognitive architecture
is well suited for modelling such tasks because it combines a symbolic level for modelling
knowledge structures and strategic, decision making processes with a subsymbolic level for
modelling constraints such as working memory capacity, learning and forgetting rates etc.

It is not necessary to use all of the available mechanisms in ACT-R howeverand in developing
this model we have chosen to focus exclusively on the strategic processes. In terms of the space
of possible models therefore, the model is relatively minimal and abstract; it is essentially an
implementation of a relatively high-level specification of the strategy we hypothesised subjects
employed. We did not utilise ACT-R’s subsymbolic learning or memory retrievalmechanisms, nor
did we model the details of the various calculations that were required. To theextent that the model
captured the given data however, we can say that the assumptions of the model were supported. We
believe that the algorithm suggested may well lie at the core of a more sophisticated and elaborate
model that captures the human data more closely—from the developmental conditions at least.

There are several possible options for making the model more complex. Forexample, during
each trial of the task, the current model creates a single declarative knowledge structure containing
the four required items of knowledge and maintains them in ACT-R’simaginalbuffer throughout the
trial. The model therefore is not required to retrieve any of this knowledgeduring the trial or seek it
from the environment as part of a strategy or if a retrieval failure occurs. Although this is convenient
and sufficient for our current purposes, it no doubt glosses overpossibly important processes and a
more detailed model would probably represent these knowledge elements separately (in the current
model, if the chunk is forgotten then all four knowledge items are irretrievable), and would be
required to recall the knowledge (or seek it from the environment) when required.

The second type of explanation for suboptimal human performance revolves around the
accuracy of the mental models constructed during the task. For the DSF task, such a mental
model will consist of a representation of the variables and their values, given relationships between
variables, and hypotheses about relationships not given. The DSF task environment inputs the six
variables (EI, EO, UI, UO, CL, and GL) to the ACT-R model directly as numerical values and
the mental model of their relationships is embodied primarily in the set of numericalcalculations
employed by the model to compute the values of the declarative knowledge elements.

Although we believe that the mental model we have hypothesised is a reasonably accurate
characterisation of that used by most human participants, for the sake of simplicity and in order
to allow us to focus on strategic considerations, the various numerical calculations and comparisons
carried out by the current model were not implemented using cognitive mechanisms (i.e., memory
retrievals or production based computations), but were simply implemented as Lisp code in
productions. A more fine-grained model would replace these substitute functions with more
plausible psychological mechanisms.

The third proposed explanation for suboptimal human performance relatesto the strategies
employed to complete DDM tasks. In ACT-R models, problem solving strategies are represented
by the control structure embodied in the model’s production rule set. A single model may contain
productions to allow several strategies for the same task with the goal of the modelling enterprise
being to use ACT-R’s production rule utility learning mechanism to account for the learning and
selection of different strategies over the course of problem solving (e.g., Lovett and Anderson,
1996, 2005).

The generally close fit of the model to the human data in the developmental conditions suggests
that the strategy we have proposed is a reasonable first start and a good basis for further elaboration.
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It is probably not the only strategy available however and it may well be the case that alternative
strategies were used by some of the participants—or that participants switched or modified strategies
during the course of the experiment. One possible option for extending the current model therefore
is to explore alternative strategies, implement them as ACT-R productions, test them as independent
hypotheses, or combine them in a single model and let them compete for adoption using ACT-R’s
production rule utility learning mechanisms.

By using more of ACT-R’s architectural mechanisms, the three options for extending the
current model outlined above add further psychological constraints onthe proposed explanation
and, because they reduce the explicit control of the modeller, provide a more rigorous test of
the architecture (one of the primary aims of the DSF challenge). In most cases the number of
productions—and time—required to complete the task would increase, as wouldthe likelihood of
retrieval failures and errors (together with additional recalculations andsearch strategies required to
obtain the information from the environment).

Such considerations of model accuracy and veracity could be taken even further by requiring the
model to interact with the task environment at the eye movement, mouse movement and key-press
level—an approach increasingly adopted by ACT-R modellers investigating interactive behaviour
(e.g., Fleetwood and Byrne, 2006; Peebles and Cheng, 2003; Salvucci, 2006).

The question remains however, to what extent the current model would need to be modified in
order to explain the transfer data. Although we have yet to test this, we believe that the performance
of the model in a number of the transfer conditions is close enough to the humandata to suggest that
significant improvements to the fit could be achieved by relatively minor adjustments to parts of the
model (e.g., the number of previous time periods taken into account) rather than a major revision of
the proposed strategy. This assumes that the same factors are applicable toall of the scenarios being
modelled, or at least that they are sufficiently similar that they can be captured in a single model
that is not so general as to provide little psychological insight.

It may be the case, however, that more radical extensions to the currentmodel in the ways
outlined above are necessary in order to able to account for the transfer data adequately, for example
by having a model that learns to adopt the best solution from a number of competing strategies and
mental models. This approach would no doubt provide useful insights butsuffers from the criticism
that alternative strategies are simply being added in a post-hoc fashion by the modeller. Ultimately
the optimal strategy for a model may be one in which one or more hypotheses are formed, tested,
updated or abandoned during the course of the task.

The DSF challenge is an important and valuable exercise which should be lauded for its aims.
In setting competitive opportunities for model comparison, modellers from different traditions and
backgrounds are able to test their assumptions and methods against a set of external, objective
criteria. The format of this challenge (model a given data set, test againstnovel, unseen data
sets) also forces modellers to address the tension in modelling between the aims of specificity and
closeness of fit to observed data and the generality of the model’s assumptions.

To maximise the benefit of such endeavours in the future however, it may bethe case that a
broader approach to model evaluation has to be taken, rather than simple closeness of fit as measured
byR2 andRMSE. Although these measures are useful as objective, quantitative criteria for assessing
the relationship between model predictions and behavioural observations(cf. Roberts and Pashler,
2000), a more profitable (although admittedly more costly and time-consuming) enterprise would
be to develop more sophisticated criteria for model evaluation in terms of the theoretical insight
they provide about the task and the architecture used.
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If R2 and RMSEare used as the sole criteria for model comparison, there is a danger that
models will be produced that simply optimise these measures (while neglecting other factors such as
parsimony) rather than models that provide genuine psychological insight.As this is antithetical to
the long term aims of such challenges, we would argue that more appropriatecriteria for conceptual
understanding of human performance are necessary.

For example, in the DSF challenge, the organisers could have identified a number of qualitative
features of human performance such as ‘an initial overfilling of the tank before stabilising at the
target’ in the linear conditions; or ‘a repeating larger overfill, return to target, smaller overfill,
return to target pattern’ in theS4 condition and then assessed whether models showed these general
features (irrespective of the exact quantity of water in the tank) as the criteria of success instead of
(or more likely as well as) the other quantitative measures. Subsequently, as models improve and
they all start to meet the initial goal of demonstrating the general features ofhuman data,R2 and
RMSEwould presumably become more important as criteria.

These additional criteria may make it harder to identify a clear ‘winner’ but ifthe goal of such
challenges is to work towards greater conceptual understanding then it may be found that several
models are equal in terms of the insight they provide. This could, of course, take a longer time
to assess than is typically set for such challenges and may only be known after further testing,
comparison or integration. However the benefits of such an evaluation may far outweigh these
costs.

This challenge has been a valuable exercise, progressing the tradition ofearlier modelling
challenges, and we hope that it will encourage and provide a useful example for future challenges.
We also hope that the models entered into the challenge provide further insights into the DSF task
and be of long-term benefit to the organisers. If lessons can also be learned from the challenge
in terms of how models can be evaluated then the enterprise will have been doubly valuable, with
consequences that have a long-term benefit for the cognitive modelling community.
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