Journal of Artificial General Intelligence 2(2) 52-68, 2010 Submitted 2009-12-18; Revised 2010-06-01
10.2478/v10229-011-0009-1

Modelling Dynamic Decision M aking with the ACT-R Cognitive
Architecture

David Peebles D.PEEBLES@HUD.AC.UK
Department of Behavioural and Social Sciences,

University of Huddersfield,

Queensgate,

Huddersfield,

HD1 3DH, UK

Adrian P. Banks A.BANKS@SURREYAC.UK
Department of Psychology,

Faculty of Arts and Human Sciences,

University of Surrey,

Guildford,

Surrey,

GU2 7XH, UK

Editor: Christian Lebiere, Cleotilde Gonzalez, and Walter Warwick

Abstract

This paper describes a model of dynamic decision makingeiDyimamic Stocks and FlowWBSF)
task, developed using the ACT-R cognitive architectures Tdsk is a simple simulation of a water
tank in which the water level must be kept constant whilsirtfiew and outflow changes at varying
rates. The basic functions of the model are based arounel skeps. Firstly, the model predicts the
water level in the next cycle by adding the current waterllew¢he predicted net inflow of water.
Secondly, based on this projection, the net outflow of thewiatadjusted to bring the water level
back to the target. Thirdly, the predicted net inflow of waseadjusted to improve its accuracy in
the future. If the prediction has overestimated net infloanth is reduced, if it has underestimated
net inflow it is increased. The model was entered into a modeiparison competition—the
Dynamic Stocks and Flows Challergéo model human performance on four conditions of the
DSF task and then subject the model to testing on five unseesfér conditions. The model
reproduced the main features of the development data rellyonell but did not reproduce human
performance well under the transfer conditions. This satggihat the principles underlying human
performance across the different conditions differ coesiily despite their apparent similarity.
Further lessons for the future development of our model andaincomparison challenges are
considered.
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1. Dynamic decision making

The termDynamic decision makinDDM) covers a wide range of relatively complex cognitive
tasks in which people must make a number of decisions over a period of timehenging task
environment. Environmental changes can depend on the structure ofitinenenent itself, on
decisions made by the decision maker or, most typically, some combination ofdh@tehmer,
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1992; Edwards, 1962). Many real-world tasks require some form@tDranging from game
playing and car driving to patient care management, military battlefield stratedjye@onomic
market analysis.

Experimental studies of DDM have typically taken the form of simulated taska@mments
in which participants are required to monitor certain states of the environmofen (fepresented
numerically or graphically) and maintain or optimise the value of one or more sth&rs over
a period of time (see Gonzalez, Vanyukanov, and Martin, 2005, foviewg Results from
such studies have shown that people typically find such tasks challengingftan perform sub-
optimally (e.g., Brehmer and Allard, 1991; Kleinmuntz and Thomas, 1987; Steft888).

There have been several proposed explanations for observeopsoial behaviour which
fall roughly into three categories. The first argue that sub-optimabpmdnce can result from
constraints on processing imposed by the structure or properties ofghiive system itself, such
as working memory capacity. For example, in an early study of human DDM abiR@poport
(1966) was able to account for sub-optimal performance with a modebtsatmed people had
limited capacity to plan ahead. More recently, Gonzalez, Thomas, and k@nyR005) found
positive correlations between performance on three DDM tasks and sndhe Visual-Span Test
measure of working memory capacity (Shah and Miyake, 1996) ariRldtien Progressive Matrices
measure of fluid intelligence (Raven, 1962, 1977).

An alternative explanation for sub-optimal performance is that peoplsteart incomplete
or incorrect mental models of the task (e.g., Besnard, Greathead, attdr,B2004; Brehmer,
1992; Sterman, 1994). Problem solvers are assumed to construct d medtl prior to, and
during the course of, interacting with a task environment, which consistsreprasentation of
the relevant variables, their given properties and relationships, grathgses about relationships
not given. Dynamic decision environments vary in terms of their complexity, (thg number
of interacting elements and the functions underlying their interactions) aadtpdthe degree
to which elements and their relationships are hidden from the problem seéh affects the
accuracy and completeness of any mental models constructed. In addigotel models about
hidden relationships may have to be constructed using limited feedback inionnfiam one or
two observed variables.

The third proposal is that sub-optimal performance results from stitrakstrategies employed
by problem solvers. A number of studies have shown, for example, ttodtigmn solving
performance is related to the systematicity of the exploration strategy aduejittecjore systematic
strategies (i.e., exploring the properties of individual variables cotisety) resulting in richer
structural knowledge and better performance (e.g., Putz-OsterloB3; Y@8meyer, Burns, and
Holyoak, 1996).

Of course, these factors are not mutually exclusive and are boundeétalbed; problem solvers’
strategies are more likely to be incorrect if they have inappropriate mentalmofithe task. The
complex interaction of factors makes attempting to provide mechanistic, compatagiccounts
of human DDM behaviour challenging if structural knowledge, strategmvedge, learning and
cognitive architectural constraints are all to be taken into account.

One promising—and increasingly popular—way to formulate hypothesas & cognitive
representations and processes involved in DDM is to construct task muodelscognitive
architecture. Cognitive architectures are computational theories of tiee-danle structure of the
mind; how cognition is controlled and how knowledge is encoded, stor&teved and utilised.
There is a wide variety of cognitive architectures in existence, with difterepresentational and
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processing assumptions, and (to a greater or lesser extent) informeydiojogical theory. The
advantage of many of these theories is that they are implemented as soffstarassin which task
models can be specified and tested by running simulations and comparingoutmelwith human
data.

Currently all of the most prominent symbolic architectures (e.g., ACT-R éfswh et al., 2004;
Anderson, 2007), EPIC (Meyer and Kieras, 1997), and Soar d|L&lewell, and Rosenbloom,
1997)) are built around some form of production system, a computatiormabfism that has been
used to account for performance in DDM tasks for a number of yeags, (&nzai, 1984). The
architectures agree on other issues in addition to this common processingnisecbut also differ
in terms of their assumptions concerning matters such as memory represegtaiftiot resolution,
serial versus parallel processing etc.

The benefit of using cognitive architectures to model human performariePM tasks is that
they allow one to specify the internal model of the dynamic system assumedhelddy the
problem solver, the strategy being adopted and the precise nature ainthmi@tional processes
being carried out on environmental information. All cognitive architestuneorporate one or
more learning mechanisms while some (ACT-R and EPIC for example) areighlg bonstrained
by psychological theories of learning, memory and visual processithg@provide more plausible
accounts of human data. In the following section we provide a brief owerefeACT-R, the
architecture employed in this study.

1.1 The ACT-R cognitive architecture

ACT-R is the current version of a proposed unified theory of cognitewell, 1990) developed by
John Anderson and his colleagues over a period of 30 years (Adetal., 2004; Anderson, 2007).
It consists of a set of independent modules that acquire informationtfreranvironment, process
information and execute motor actions in the furtherance of particular geiglsre 1 illustrates the
main components of the architecture. There are four modules that compiseritral cognitive
components of ACT-R. Two of these are memory stores for two types oflkdge: a declarative
memory module that stores factual knowledge about the domain, and alpraceemory module
that stores the system’s knowledge about how tasks are performetbriie consists of a network
of knowledge chunks while the latter is a set of production rules of the fofra.conditiort> THEN
<actior>": the condition specifying chunks that must be present for the rule tty ajppl the action
specifying the actions to be taken should this occur.

Two further cognitive modules represent information related to the execotiasks; aontrol
statemodule keeps track of the intentions of the system apmbhlem statanodule maintains the
current state of the task during problem solving.

In addition to the cognitive modules, four perceptual-motor modules foickpaadition, visual
and motor processing encode perceptual information from the envirdrenenenact speech or
motor output. The visual and motor modules (shown in Figure 1) provide R@th the ability
to simulate visual attention shifts to objects on a computer display and manuatiiesawith a
computer keyboard and mouse.

Each of ACT-R’s modules has an associated buffer that can hold oalglmmk of information
from its module at a time and the contents of all of the buffers constitute the $tate ACT-R
model at any one time. Cognition proceeds via a pattern matching procesdtdmpts to find
production rules with conditions that match the current contents of therbuff®hen a match is
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Figure 1: The modular structure of ACT-R 6.0

found, the production “fires” and the actions (visual or manual movemegsgests for the retrieval
of a knowledge chunk from declarative memory, or modifications to kejfire performed. Then
the matching process continues on the updated contents of the buffeet sasits are performed
through a succession of production rule firings.

The processing in ACT-R’s modules is serial but the modules run in pasalliiat the system
can move visual attention while also moving the mouse and attempting to retrievéekigevirom
declarative memory. ACT-R processes also have associated latermyqtars taken from the
psychology literature. For example, it typically takes 50 ms for a productidimg@nd the time
taken to move the mouse cursor to an object on the computer screen is cdlogiatg Fitts’ Law
(Fitts, 1954).

In addition to these symbolic level mechanisms, ACT-R also incorporatessgrabblic (i.e.,
numerical) level of computations that govern memory retrieval and produatie selection. The
retrieval mechanism is based on the notion of activation; a chunk in déetaraemory has a
level of activation which determines its availability for retrieval, the level ofichireflects the
recency and frequency of its use. This allows models to account folywatserved recency and
frequency effects on retrieval and forgetting. Subsymbolic computagisoggovern the probability
of productions being selected in the conflict resolution process. At its siogie, it is assumed
that people choose the most efficient actions (i.e., those that maximise tlabilitplof achieving
the goal in the shortest amount of time). In addition, the more often a produstiovolved in the
successful achievement of a goal, the more likely it will be selected in theefutu

ACT-R can be used to implement several different modelling paradigmd ésggen, Lebiere,
and Anderson, 2006, for a review) and is the basis foriistance based learning theo(iBLT)
model of DDM (Gonzalez, Lerch, and Lebiere, 2003; Martin, Gonzaled Lebiere, 2004). In the
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following sections we describe the dynamic stocks and flows DDM task anditheoposed ACT-R
model of the task.

2. The DSF task and challenge

The DSF challenge was to create a cognitive model of a DDM task, and thapare the
performance of this model against human performance in five experineartditions that were
not revealed to the competitors until the models had been submitted. The motivation this
challenge was to stimulate a comparison between different cognitive modebr@ritéctures in
order to identify their strengths and weaknesses, an approach thheéassuccessfully applied
previously (Gluck and Pew, 2005). To do this a task was required whakidaprovide a rich
testbed for complex cognition but also lend itself to a range of cognitive modelpproaches. A
DDM task was chosen to fit these criteria.

The DDM task used in the challenge was the dynamic stocks and flows (Dsd)Datt and
Gonzalez, 2007; Gonzalez and Dutt, 2007). This task is designed tdigateshow people manage
stocks and flows in a changing environment and takes the form of a “nucidiM{Gonzalez,
Vanyukanov, and Martin, 2005; Gray, 2002) comprised of simple compen&hese are: the level
of stock(S) within the system; amflow which increases the stock; and amflowwhich decreases
the stock. The inflow and outflow are both comprised ofeamironmentacomponent, which is
determined by the syster& andEQ respectively), and asercomponent, which is determined by
the participantyl andUO respectively). Therefore participants have partial control over tiaann
and outflow of stock. The stock simulated in the task is water. Water flows inttatieat a rate
determined byEl andUI, and flows out again at a rate determined®y andUO. The stock level
at timet is defined by

St =St 1+ [El1 +UL_1]| = [EOt—1 + UO;_1] + SLi—1_4 (1)

whereSLis the supply line and is the delay in the supply line so that changetltaandUO have
an effect on the system only after a certain time period rather than immediatelygorl of the task
is to maintain the amount of water in the tank at a specific level whilst the ratetef flaw in and
out changes over time.

There were two factors in this task which were controlled by the challengergate a number
of different conditions. These were (a) the changing rate of envirateh#ow into the tank, and
(b) the delay between thdl andUO and their effect on the system. Both of these factors were
manipulated in the challenge. Human data from two experiments in which partcipamied out
the four conditions of the DSF task (Dutt and Gonzalez, 2007; GonzatePatt, 2007) were made
available when the challenge was initially announced as a basis for mo@ébpment, (henceforth
referred to here as thievelopmentonditions). Each of the four conditions ran for 100 time periods
and had a different rate & 1:

1. Linear increasing0.08 x (TimePeriod) + 2),

2. Linear decreasin{f).08 x (TimePeriod — 1) + 10),
3. Nonlinear increasing x log(TimePeriod))
4

. Nonlinear decreasing x log(101 — TimePeriod)).
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The mean human (and model) performance data are shown in Figure 2. Bbte fhcilitate
comparison between the observed and model data for the differentionsdthe upper range of
each y axis has been adjusted to fit the maximum value.

The data reveal that people are generally able to maintain the tank at, ota;ltfse goal level
after an initial learning period of varying length where the tank level is atlog desired level. The
data also show that for both linear and nonlinear cases, individualstteaomtrol the system more
quickly for the positive functions than the negative ones (Dutt and Genz2007).
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Figure 2: Observed and ACT-R model performance in the DSF develdpraeditions.

3. An ACT-R model of the DSF task

From an analysis of the human performance data, we identified a numbey tddtures which we
assumed could be relevant for the development of a cognitive model. rshefieviously noted by
the challenge organisers (e.g., Dutt and Gonzalez, 2007), is that lcovgrahe system gradually
improves over the first ten to thirty time periods to a state where accuracy éeealslatively stable
and tank levels are generally close to target.
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It is reasonable to assume that in the early time periods people are learminigpdngystem
operates and making initial hypotheses about the relationships betweenitii#es. Once subjects
have constructed a mental representation of the system, the monotonic erdental nature of
the functions means that subjects are generally able to maintain the tank agjdtdeteel (although
close examination of individual performance profiles revealed subdtantigidual differences in
the time taken to achieve and sustain target tank levels). The second fefateedata from the
early time periods (particularly in the decreasing conditions) is that the tankeifud and that
subjects must reduce rather than increase the level to the target.

One cause of overfilling is if the amount df/ is underestimated, which leads to an
underestimate in th&O necessary to stabilise the water level. One plausible explanation for this
underestimate lies in the initial assumptions that participants make when startingikth€hare are
few cues in the DSF task environment about what the inflow is likely to be. eMitst time period
participants know only that the current water level is 0, the target levehisd4 crucially, that the
scale on the display used to indicate water level runs from 0 to 10. Thisolirsglrvation provides
parameters for the likely water level because it is reasonable (althougisinabe incorrect) to
assume that the display will be designed to show likely water levels.

In the decreasing condition#;/ in the first time period fills the tank completely. Unlds¢)
is set to remove almost all of this water, the tank will overflow in the second timiedeThus,
the expectations set by the experiment lead to an underestimate of the initlaldével in the
decreasing conditions. These assumptions are not faulty in the increasidiions in which the
initial £ T is around 2, a more reasonable figure to expect if you are assumingatixapate level
will be between 0 and 10. On this basis, it is reasonable to expect thatdfeadimg conditions will
initially overflow considerably a&'! is higher than expected whereas the increasing conditions will
not ask ] is not unexpectedly high. Further, a greater overfilling would be exgéctde nonlinear
decreasing condition becaugd remains higher for longer. The patterns of data shown in Figure 2
support these explanations.

We also suggest that the tank level range in the DSF display may also ctattdwan
explanation of why participants were generally slow to react to the high Watels by failing to
increase the user outflow sufficiently (it typically takes subjects betwedo thirty time periods to
reduce the level to the target value). As noted above, the DSF displayram zero to ten and any
level of water above ten is simply displayed as a full tank. When this occersftire, participants
are unable to use this visual cue to obtain information about the water leved tartk. This may
lead them simply to keep increasing the valué/@? until the level goes below ten or learn to attend
to the less salient numeric tank level display. In addition, it is reasonablstongsthat it may take
more than the evidence of one or two time periods for participants to adjustahijrassumptions.

The basis of the model then is that participants learnAtdebased on the amount of water
flowing into the tank. They initially underestimate what this level will be howeard are slow to
adjust their estimates in the direction of the correct value. This explanatomuiats for the main
features of the group level data in the development conditions.

4. Assumptions of the model

The DSF task environment presents six variables to the problem solwaroEmental Inflow (EI),
Environmental Outflow (EO), User Inflow (Ul), User Outflow (UO), @amt tank Level (CL) and

58



MODELLING DSFwITH ACT-R

Goal Level (GL). These are presented to cognitive models directlyragrmcal values over a socket
connection.

Our ACT-R model of the DSF task consists of a set of eleven ACT-R ptamturules. Figure 3
displays the productions (shown as rectangles) and the flow of comttwkebn them. The model
assumes that four items of declarative knowledge are maintained and ethpiaaarying out the
task: (a) the estimatetket environmental inpub the tank, (b) theurrent differencdd.) between
the actual and target tank levels, (c) threvious differencéd,) between the actual and target tank
levels in the previous trial, and (d) timate of change&m) of the adjustment for the estimated net
environmental change.

The strategy embodied by the model can be divided into three main steps. firstistep the
model estimates the net environmental input for the next time period, bageé ancuracy of the
prediction for the previous one. For each time period, the estimate for tlenmebnmental input
in the following time period is the current net environmental input plus the nodstimate of the
change in the net environmental input. This estimated change is the di#doehgeen the current
tank level and the target level (i.e., the error in the previous prediction) riedtipy the model's
estimate of the rate at which the net environmental input is changing. Thsates are carried
out by thetest differencgproduction.

The model assumes that problem solvers must attempt to keep a track of Bometh
environmental input is progressing over time periods so that the rate ab Wi@met user change
(UI — UO) changes can be kept the samerasA major component of the model, therefore is the
mechanism to adjust the estimated rate at which the net environmental inpainigirndy at each
time period,m;. If d. is greater thanl,, then the rate of the net user change is insufficient (i.e.,
ET and EO are changing faster than the estimate). Therefore the model’s estimatenofst be
increased so that the net user change is adjusted in line with the actugeshad’/ and FO.
Specifically, the rate of change is increased according to how muchdpdsegreater tharwl,. A
large relative increase leads to a large increase in rate of change andaaculated according to
the equation

el + 1dy|
d.

wheref is a parameter representing an estimate of people’s accuracy at adjustiatetbf change.
If # = 1 then the model’s adjustment is perfect whereas a valuehoivas found to capture the
human data well by under-adjusting the rate of change.

In the second step (implemented by the fR@C productions), the model calculates the rate of
change according to the relationship between the current differeddbaifrom the previous time
period. If the current difference is greater than the previous diiferé¢he rate of change is increased
accordingly. Alternatively, if the difference is decreasing (either paditior negatively), the model
decreases the rate of change in proportion whereas if the differecmestant then the model keeps
the current rate of change constant. An additional production was dékido manage situations
where the rate of change fluctuates either side of the goal. In this casdfénerte between the
current and target levels is not a reliable indicator of the accuracy gfréhadous estimate and the
rate of change is reduced to prevent an ever-increasing rate ajehan

In the third step the model predicts the next tank level by adding the nebenvintal input to
the current tank level (thadd net inpufproduction). Once this has been estimated, the model then
simply adjustd/ I or UO by the difference between the predicted next level and the target level to

(2)

me+1 = My +6
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Figure 3: Control flow of the model.

bring the level to the target. This is handled by theeenpareproductions, which fire depending on
the relative values of the predicted and target levels. FinalleXeeutesends the decision to the
DSF simulation.

The three-step process can be further illustrated by an example. Fdiculpa time period,
t, if the current tank level i§, the target level ig, and the current estimate of the rate of change,
m; = 1, thend. = 2 and the model computes the net environmental inpubas d. = 2. In
addition, assuming,, = 1 then the error in the model’s prediction is increasing so the model adjusts

its estimate of the rate of change; to bel + 0.5 ‘2|J2“‘|1| = 1.75 (as the size of the difference has

increased across time periods so has the model's estimate of the rate af}chang

The predicted level fot + 1 therefore is the current level plus the net environmental input
(6 + 2 = 8). The model will then compensate for this predicted discrepancy by sétting 0 and
UO =8—4=4).
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As can be seen in Figure 2, the performance of the model in the four geveld conditions is
reasonably close to that of the human experiment participants. The gseafdfitsmeasures used
for the challenge g2 andRMSB for the model are shown in Table 1.

Table 1: R? and RMSEgoodness-of-fit measures for the ACT-R model on the four developmen
conditions

Development Condition
Error LinearInc. Linear Dec. Nonlinear Inc. Nonlinear Dec.
R? 0.63 0.67 0.26 0.74
RMSE 0.34 2.97 1.06 3.7

5. Testing the model

The DSF challenge was designed not simply to test models’ ability to accauhefgiven data sets
but primarily to test their ability to predict new, unseen data sets from fiverdift conditions of
the DSF task after they bad been constructed. No information about thre phthese new transfer
conditions was made available during the model construction phase. Thkatatef this approach
was that, because model performance in the test phase could not be dogifiend, to predict the
transfer data accurately, models must capture general principleshgaydruman performance in
the DSF task rather than specific features of a single condition or data set.

The five conditions against which the submitted models were tested were née semnjations
of these, such as different linear or nonlinear functions; they weaditgtively different. Three
conditions manipulated' I according to a repeated sequence for the 100 trials:

1. So. E1 is the sequencg, 5.

2. S5+ 1. EI is the sequencé + 1,5 + 1, with +1 noise being distributed equally amongst
trials.

3. S4. ET isthe sequence, 4, 2, 6.

The two other transfer conditions manipulated the delay between the subno$sisers’U 1
andU O decision and its execution:

1. Dy. UI andUO decisions were delayed until the trial after submission.

2. D3. UI andUO decisions were delayed until two trials after submission.

Both delay conditions started with 4 gallons of water, a goal level of 6,/aficset at 0. The
ET function was a linear increasing function that deposited water into the tamkZrto 10 gallons
over the course of 100 trials.

The human and model data for the five transfer conditions are displayedureFigNote that,
as in Figure 2, the upper range of each y axis has been adjusted to aidrgmnpln this case, the
upper bound has been set to allow a reasonable display of the pattednes veven if this required
omitting extreme cases. The? and RMSEgoodness-of-fit measures for the model are shown in
Table 2.
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Figure 4: Observed and ACT-R model performance in the DSF transifelitions.

There are a number of comments to make about the data in Figure 4. Firstlyheseen that
the human data does not resemble that from the development conditioreziestwidely between
transfer conditions. Overall, subjects performed less well in all five fea®nditions than in the
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development ones, most likely because the underlying functions weredsgsto discern. This
could be because, unlike the relatively simple monotonic functions in the geweltt conditions

in which only the rate and direction &/ was manipulated, the transfer functions were either non-
monotonic, contained noise, affected the control of the system, or rddb&eéaking of several time
periods into account.

Although there is some degree of similarity between the patterns in the threensequ
conditions, they differ considerably from the two delay conditions. All¢hsequence conditions
display a regular “saw tooth” pattern reflecting the repeated sequerntarnpand a general
overfilling of the tank. The5; condition does show a pattern of overfilling and then stabilising like
the development conditions (although with less accuracy as it overfilly etieer time) whereas
So + 1 displays a series of over-corrections in which the tank is overfilled begrregabilises. The
S, condition also appears to be overfilled but moving towards stabilising towlaedgoal level to
some extent, although very slowly so that the target is not achieved libéoead of the experiment.

In addition, it seems that the tank overfills every time there is a large input.

Human performance was somewhat similar for the and D3 conditions; both show an
overfilled tank with a series of over-corrections, the pattern being maredvand less accurate
in the latter.

Table 2: R? andRMSEgoodness-of-fit measures for the ACT-R model on the five test conslition

Test Condition
Error SQ 52 +1 54 Do D3
R? 0.16 0.4 0.5 0.02 0.11
RMSE 096 0.38 059 053 1.25

The model did not capture human performance in any of the five transfeiitons very well.
For all three sequence conditions the tank level tended to oscillate arceicdrifect with periods
of large over-correction. Model performance in the delay conditions also quite dissimilar to
human data. In th&, condition, model performance matches human performance very closely fo
the first 15 time periods but then the tank level increases rapidly and retuens to normal levels.
In the D3 condition, the model is able to perform in a similar fashion to the developmeditiors,
showing the familiar pattern of overfilling and then stabilising at the corrdaevddowever, this is
not what people do.

We are unable to provide a general explanation of the model's behaviotlreinransfer
conditions or more specifically for the delay conditions other than to assuri¢ tlaa something
to do with the fact that the model only takes the previous trial into accounhaldgusting the
estimated rate at which the net environmental input is changing at each tirod.deor several of
these conditions, it may be the case that accurate prediction relies on tiérenand integration
of information from a number of previous trials.

6. Conclusions

The process of developing a cognitive model of a complex task is chalrigome seeks to
generate accurate fits to human data over a wide range of differentdeskr®s. It requires
deep insights into the three factors that have been identified as affectiiognpence: the strategy
or strategies employed, the various constraints imposed by the cognititeasyand the task
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representations constructed and used by the problem solver. TheRADHnitive architecture
is well suited for modelling such tasks because it combines a symbolic level fdellimg

knowledge structures and strategic, decision making processes withsgndutlic level for
modelling constraints such as working memory capacity, learning and foigedties etc.

It is not necessary to use all of the available mechanisms in ACT-R howaden developing
this model we have chosen to focus exclusively on the strategic precelssterms of the space
of possible models therefore, the model is relatively minimal and abstract; gsingally an
implementation of a relatively high-level specification of the strategy we hys@bd subjects
employed. We did not utilise ACT-R’s subsymbolic learning or memory retrieeadhanisms, nor
did we model the details of the various calculations that were required. Extést that the model
captured the given data however, we can say that the assumptions ofdbeweoe supported. We
believe that the algorithm suggested may well lie at the core of a more sopteidtanrad elaborate
model that captures the human data more closely—from the developmerdilamnat least.

There are several possible options for making the model more complexexkomple, during
each trial of the task, the current model creates a single declarativdddge structure containing
the four required items of knowledge and maintains them in ACT#R&ginalbuffer throughout the
trial. The model therefore is not required to retrieve any of this knowleldgieg the trial or seek it
from the environment as part of a strategy or if a retrieval failure acolthough this is convenient
and sufficient for our current purposes, it no doubt glossesmassibly important processes and a
more detailed model would probably represent these knowledge elempatatsdy (in the current
model, if the chunk is forgotten then all four knowledge items are irretrieyabled would be
required to recall the knowledge (or seek it from the environment) wheanired.

The second type of explanation for suboptimal human performance esv@round the
accuracy of the mental models constructed during the task. For the DSFstadk a mental
model will consist of a representation of the variables and their valuesn) gelationships between
variables, and hypotheses about relationships not given. The DIiSErtaisonment inputs the six
variables (El, EO, Ul, UO, CL, and GL) to the ACT-R model directly as nuoa values and
the mental model of their relationships is embodied primarily in the set of numeatallations
employed by the model to compute the values of the declarative knowledgenééeme

Although we believe that the mental model we have hypothesised is a réasataurate
characterisation of that used by most human participants, for the sakemlfcity and in order
to allow us to focus on strategic considerations, the various numericalai@as and comparisons
carried out by the current model were not implemented using cognitiveaneerhs (i.e., memory
retrievals or production based computations), but were simply implementedspscade in
productions. A more fine-grained model would replace these substituttidos with more
plausible psychological mechanisms.

The third proposed explanation for suboptimal human performance retatie strategies
employed to complete DDM tasks. In ACT-R models, problem solving strategieepresented
by the control structure embodied in the model’s production rule set. A singielneay contain
productions to allow several strategies for the same task with the goal of tthelling enterprise
being to use ACT-R’s production rule utility learning mechanism to accounthi® learning and
selection of different strategies over the course of problem solving, (eogett and Anderson,
1996, 2005).

The generally close fit of the model to the human data in the developmentalionaduggests
that the strategy we have proposed is a reasonable first start and bagie for further elaboration.
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It is probably not the only strategy available however and it may well be dse that alternative
strategies were used by some of the participants—or that participants shatomedified strategies
during the course of the experiment. One possible option for extendingithent model therefore
is to explore alternative strategies, implement them as ACT-R productiontheesas independent
hypotheses, or combine them in a single model and let them compete for adogitigg ACT-R’s
production rule utility learning mechanisms.

By using more of ACT-R’s architectural mechanisms, the three options X@nding the
current model outlined above add further psychological constrainthemproposed explanation
and, because they reduce the explicit control of the modeller, providera ngmrous test of
the architecture (one of the primary aims of the DSF challenge). In mos$ tasenumber of
productions—and time—required to complete the task would increase, as theuidelinood of
retrieval failures and errors (together with additional recalculationsaartth strategies required to
obtain the information from the environment).

Such considerations of model accuracy and veracity could be takeriueteer by requiring the
model to interact with the task environment at the eye movement, mouse moveardekgyapress
level—an approach increasingly adopted by ACT-R modellers investigatiatpative behaviour
(e.g., Fleetwood and Byrne, 2006; Peebles and Cheng, 2003; SaRQ@6).

The question remains however, to what extent the current model woeattitnebe modified in
order to explain the transfer data. Although we have yet to test this, werddthiat the performance
of the model in a number of the transfer conditions is close enough to the hdateato suggest that
significant improvements to the fit could be achieved by relatively minor adjustne parts of the
model (e.g., the number of previous time periods taken into account) ratimes thajor revision of
the proposed strategy. This assumes that the same factors are appliediéttoe scenarios being
modelled, or at least that they are sufficiently similar that they can be cdptuiesingle model
that is not so general as to provide little psychological insight.

It may be the case, however, that more radical extensions to the cunoetel in the ways
outlined above are necessary in order to able to account for the trdasfeadequately, for example
by having a model that learns to adopt the best solution from a numbengfeting strategies and
mental models. This approach would no doubt provide useful insightiffers from the criticism
that alternative strategies are simply being added in a post-hoc fashioa otieller. Ultimately
the optimal strategy for a model may be one in which one or more hypothesésriared, tested,
updated or abandoned during the course of the task.

The DSF challenge is an important and valuable exercise which shoulddesl&or its aims.
In setting competitive opportunities for model comparison, modellers frorardifit traditions and
backgrounds are able to test their assumptions and methods againstfeeserioal, objective
criteria. The format of this challenge (model a given data set, test against, unseen data
sets) also forces modellers to address the tension in modelling between the apesificity and
closeness of fit to observed data and the generality of the model's assnsaptio

To maximise the benefit of such endeavours in the future however, it méyebease that a
broader approach to model evaluation has to be taken, rather than singgleads of fit as measured
by R? andRMSE Although these measures are useful as objective, quantitative criteaissessing
the relationship between model predictions and behavioural observétioRoberts and Pashler,
2000), a more profitable (although admittedly more costly and time-consumiteypase would
be to develop more sophisticated criteria for model evaluation in terms of theetload insight
they provide about the task and the architecture used.
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If R? and RMSEare used as the sole criteria for model comparison, there is a danger that
models will be produced that simply optimise these measures (while neglectimgemttogs such as
parsimony) rather than models that provide genuine psychological ingighhis is antithetical to
the long term aims of such challenges, we would argue that more apprapiiat&a for conceptual
understanding of human performance are necessary.

For example, in the DSF challenge, the organisers could have identifiedizenof qualitative
features of human performance such as ‘an initial overfilling of the tafdréestabilising at the
target’ in the linear conditions; or ‘a repeating larger overfill, return toegrgmaller overfill,
return to target pattern’ in th&, condition and then assessed whether models showed these general
features (irrespective of the exact quantity of water in the tank) as iteei@rof success instead of
(or more likely as well as) the other quantitative measures. Subsequenthodels improve and
they all start to meet the initial goal of demonstrating the general featuresnoén dataR? and
RMSEwould presumably become more important as criteria.

These additional criteria may make it harder to identify a clear ‘winner’ bilitefgoal of such
challenges is to work towards greater conceptual understanding they berfaund that several
models are equal in terms of the insight they provide. This could, of cotake a longer time
to assess than is typically set for such challenges and may only be kntevrfuather testing,
comparison or integration. However the benefits of such an evaluation anaufweigh these
costs.

This challenge has been a valuable exercise, progressing the traditearligfi modelling
challenges, and we hope that it will encourage and provide a usefoipe for future challenges.
We also hope that the models entered into the challenge provide furthertinsitghthe DSF task
and be of long-term benefit to the organisers. If lessons can also feedefrom the challenge
in terms of how models can be evaluated then the enterprise will have bebkly daluable, with
consequences that have a long-term benefit for the cognitive modadimmanity.
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