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Abstract 

Model comparison is vital to evaluating progress in the fields of artificial general intelligence 

(AGI) and cognitive architecture. As they mature, AGI and cognitive architectures will become 

increasingly capable of providing a single model that completes a multitude of tasks, some of 

which the model was not specifically engineered to perform. These models will be expected to 

operate for extended periods of time and serve functional roles in real-world contexts. Questions 

arise regarding how to evaluate such models appropriately, including issues pertaining to model 

comparison and validation. In this paper, we specifically address model validation across multiple 

levels of abstraction, using an existing computational process model of unmanned aerial vehicle 

basic maneuvering to illustrate the relationship between validity and timescales of analysis. 
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1. Introduction 

There is an affinity among the high-level objectives being pursued by researchers studying 

artificial general intelligence and by researchers studying human cognitive architecture. Recent 

descriptions of the re-emergence in the artificial general intelligence (AGI) community of an 

interest in general-purpose intelligence capable of working in a variety of novel, unexpected 

situations, has included language that explicitly relates that goal to human-level intelligence. For 

instance, Wang (2009) describes the objective that artificial general intelligence be ―comparable 

with that of the human mind‖ (p. 1) and Laird et al. (2009) call for an artificial functionality ―able 

to approach the breadth and depth of human-level intelligence‖ (p. 1). These dual emphases on 

general functionality and being on par with human mind/intelligence align the objectives of AGI 

with the objectives of cognitive architecture. 

On the cognitive architecture side, we also see language that bridges these communities. 

Newell’s (1980, 1990) descriptions of evaluation criteria, as well as the more recent treatment of 
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that topic by Anderson and Lebiere (2003), strongly emphasized ―flexible behavior‖ via 

computational universality, going so far as to identify this as the most important criterion on 

which cognitive architectures should be tested. Others have also emphasized breadth and 

generality in their descriptions of what cognitive architectures are intended to be, such as ―a broad 

theory of human cognition‖ (Byrne, 2003), ―a domain-generic computational cognitive model‖ 

(Sun, 2004), or ―a software implementation of a general theory of intelligence‖ (Laird, 2008). 

Given the significant overlap in missions and methodologies, it naturally is the case that these 

scientific communities share some common challenges. One shared challenge is the widely 

varying timescales and concomitant levels of complexity across which both natural and artificial 

intelligences behave (Simon, 1999). In the context of cognitive architecture, Newell (1990) 

referred to this as the timescale of human action, with times ranging from biological activity 

occurring over a period of microseconds to social activity occurring over a period of months (see 

Table 1). Computational process models that span these levels are a challenge for cognitive 

modeling (Anderson, 2002) as well as AGI  (Laird et al., 2009). Indeed, as progress is made on 

AGI that is capable of acquiring knowledge and adapting over longer and longer periods of time, 

Newell’s entire timescale of human action becomes relevant to the artificial. Hence, a host of 

open issues in cognitive architecture associated with measurement, explanation, validation, and 

comparison across levels of analysis are also important for AGI.  

Scale (sec) Time Units System World (theory) 

10
7
 Months  

Social Band 10
6
 Weeks  

10
5
 Days  

10
4
 Hours Task 

Rational Band 10
3
 10 minutes Task 

10
2
 Minutes Task 

10
1
 10 seconds Unit task 

Cognitive Band 10
0
 1 second Operations 

10
–1

 100 milliseconds Deliberate act 

10
–2

 10 milliseconds Neural circuit 

Biological Band 10
–3

 1 millisecond Neuron 

10
–4

 10 microseconds Organelle 

Table 1. Newell’s Timescale of Human Activity (from Newell, 1990) 

Model comparisons and challenges (such as the Dynamic Stocks and Flows Model 

Comparison Challenge; Lebiere, Gonzalez, & Warwick, this issue) are of great importance to 

developers of cognitive architecture and AGI systems, providing each with a means to measure 

progress. There are two general, yet complementary, approaches to model comparison—model-

to-model comparison and model-to-referent comparison. In model-to-model comparison, two or 

more models are compared against each other and evaluated based on some predetermined 

metric, such as response times or task performance. In model-to-referent comparison, a model is 

compared against a referent (e.g., human data from a task of interest) and is evaluated by how 

closely the model data resemble the referent data. Indeed, model-to-referent comparison is often 

how members of the cognitive architecture community validate their models—comparing their 

model data to human data. Model comparison challenges, such as the Dynamics Stocks and Flow 

Challenge, use a combination of the model comparison approaches. This model comparison 
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challenge determined the ―best‖ model among a set of submitted models by examining how well 

data from each model predicted human performance from a referent data set.  

In the current paper we adopt the model-to-referent approach for evaluating a model’s degree 

of validity first for its intended use, and then for an unintended use to address model generality. 

We demonstrate how questions of model validity increase in complexity when potential 

applications extend beyond purposes for which the model was originally developed. This raises 

important issues in the context of model comparisons and challenges, where determining which 

model is ―better‖ is inextricably linked both to specific evaluation context(s) and to assumptions 

regarding the possible future uses for a model (i.e., model generality). We also discuss issues that 

arise when theorized cognitive mechanisms occur at timescales different from the knowledge, 

processes, or outcomes they predict. We demonstrate that Newell’s (1990) timescale of human 

action can serve as an organizing framework for evaluating, comparing, and contrasting the 

validity of cognitive models and AGI systems.  

1.1 Computational Cognitive Modeling 

Computational cognitive models can come in many forms, from a single equation (e.g., Bayes’ 

theorem) to systems of systems (e.g., ACT-R, EPIC, Soar, see Anderson, 2007; Kieras & Meyer, 

1997; Wray & Jones, 2005, respectively). Growing out of the desire to develop computationally 

derived predictions of human behavior, scientists have heeded Newell’s (1973) call to stop 

playing 20 questions with nature and begin developing unified theories of cognition (Newell, 

1990) through the integration of accumulated empirical knowledge and existing models (Gray, 

2007). Cognitive architecture is one response to Newell’s call, and is intended to account for 

invariant aspects of human cognition (e.g., memory retrieval mechanisms, action selection, etc.). 

Cognitive architecture is typically instantiated as software, and serves as a foundation for the 

development of computational cognitive process models (Byrne, 2003; Gluck, 2010). 

Much of the history of cognitive modeling has involved the understandable scientific strategy 

of isolating specific cognitive sub-systems through empirical studies in simple, abstract task 

contexts and then producing models that account for the empirical data. Examples include visual 

attention and search (Wolfe, 2007; Herd & O’Reilly, 2005), memory (Anderson & Schooler, 

1991), problem solving (Newell & Simon, 1972), decision-making (Gonzalez, Lerch, & Lebiere, 

2003; Lovett, 1998), and alertness (Gunzelmann, et al., 2009),.  

As cognitive modeling continues to mature, it is becoming increasingly common to develop 

models that are capable of performing in more complex task environments, such as operating 

radar (Gray, Schoelles, & Myers, 2002; Taatgen & Lee, 2003), driving a car (Salvucci, 2006), 

flying an unmanned air vehicle (Gluck, Ball, & Krusmark, 2007) or a jet fighter (Jones, et al., 

1999) or acting as a teammate (Ball et al., in press). These models depend on the integrated 

operation of a variety of cognitive processes (Gray, 2007), and quickly become large-scale 

systems-of-systems models. Large-scale models based on cognitive architecture contain 

hypotheses about underlying cognitive mechanisms at the architectural level, such as times 

associated with memory retrievals, as well as hypotheses about the knowledge and strategic 

approaches brought to bear on a task (Meyer & Kieras, 1997). These models may produce 

behavior across a wide range of times, from fractions of a second to days (Anderson, 2002; 

Newell, 1990; Simon, 1999). 

How does a model developer determine the appropriate level of analysis for validating 

general, large-scale computational cognitive process models when different model components 

have effects on model behavior across a wide range of times? How is a model evaluated when 
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used in contexts for which it was not originally designed? Finally, how can the cognitive 

modeling and AGI communities know which levels of analysis are appropriate for validating 

large-scale models? We take up these questions in the remainder of this paper, following the 

suggestion by Schoelles et al. (2006) that Newell’s (1990) timescale of human activity is an 

appropriate and useful framework for guiding model validation across multiple levels of analysis.  

1.2 The Timescale of Human Activity 

Allen Newell (1990) carved up human activity into timescales associated with biological, 

cognitive, rational, and social activities (see Table 1). Each of these bands captures approximately 

three orders of magnitude of the duration of various human activities. Newell suggested that 

cognitive architectures and models were best situated within the Cognitive Band.  

Human behavior can be observed and measured at timescales of up to seven magnitudes 

greater than those occurring at the level where architectures and models are often situated (i.e., 

the Cognitive Band). Anderson (2002) challenged cognitive modeling to demonstrate that 

processes occurring at tens of milliseconds affect processes occurring over hours/days/months, 

and has implications for model validation. If the goal of a model is to predict human cognitive 

activity occurring within the Social Band (i.e., learning to fly a plane) using a model developed in 

a computational cognitive architecture situated within or below the Cognitive Band, then 

cognitive processes within the Social and Cognitive bands must be considered when validating 

the model (Anderson, 2002). Further, if measured behavior at the Social Band is hypothesized to 

result from processes scaling up from the Cognitive Band to the Social, then the model data from 

intervening levels of analysis must also be compared against referent data from the same levels 

(Schoelles et al., 2006). 

The focus of our evaluation is a case study using Newell’s (1990) timescale of human activity 

as a frame for guiding and interpreting the validation of a cognitive model capable of performing 

flight maneuvers within an uninhabited air vehicle (UAV) synthetic task environment (STE). In 

the following sections, we introduce the task human participants and the model performed, 

followed by a description of the computational cognitive process model developed to account for 

expert pilot performance on basic flight maneuvers in the STE. We then describe the process 

undertaken to evaluate the validity of the model across two levels of human activity. 

2. Model Validation in the Uninhabited Air Vehicle Basic Maneuvering Task 

The STE used to collect data was developed for the Air Force Research Laboratory to provide an 

unclassified yet militarily relevant platform for basic research in human performance. The STE 

includes a realistic simulation of the flight dynamics of the Predator RQ-1A System 4 UAV, and 

three mission relevant tasks: basic maneuvering, reconnaissance, and landing. Basic maneuvering 

provided the task context for the research reported here.  

2.1 The Basic Maneuvering Task 

The basic maneuvering task (BMT) requires a pilot to make very precise, constant-rate changes in 

UAV airspeed, altitude and/or heading (Martin, Lyon, & Schreiber, 1998). It is an instrument 

flight task, with no out-of-cockpit view, requiring the pilot to attend to flight instruments to alter 

the UAV’s altitude, airspeed, and/or heading over the course of a 60 or 90 second trial (see Figure 

1). The task consists of seven distinct maneuvers, and pilots attempt to minimize root-mean-
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squared deviation (RMSD) from ideal performance on each of the performance measures for each 

maneuver. Prior to beginning each maneuver is a 10-second lead-in, during which the operator is 

instructed to fly straight and level. At the end of this lead-in, the timed maneuver (either 60 or 90 

seconds) begins, and the operator maneuvers the aircraft at a constant rate of change with regard 

to one or more of the three flight performance parameters (airspeed, altitude, and/or heading). 

  

 

The first three maneuvers require the operator to change one parameter while holding the 

other two constant. For example, in Maneuver 1 the task is to reduce airspeed by five knots at a 

constant rate of change over a 60-second trial while maintaining altitude and heading. Maneuvers 

progressively increase in complexity by requiring the operator to make constant rate changes 

along two and then three axes of flight. The seventh, and most difficult, maneuver requires 

changing all three parameters simultaneously over a 90-second trial: decrease altitude, increase 

airspeed, and change heading. 

2.2 An Expert Model for the Basic Maneuvering Task 

A computational cognitive process model of expert pilot performance in the basic maneuvering 

task was developed for use in contexts where a simulation of maneuver-level flying that is 

constrained by human cognitive limitations is functionally adequate, such as in a training 

simulation that requires a high cognitive fidelity representation of Predator maneuvering. The 

model was developed in ACT-R 5 (Anderson et al., 2004), which is a hybrid cognitive 

architecture that includes continuous processes that operate on symbolic knowledge. Symbolic 

knowledge is discrete and is divided into procedural knowledge that is implemented as IF-THEN 

rules (i.e., production rules) and declarative knowledge that represents retrievable facts (i.e., 

chunks).  

The combination of continuous and symbolic processes situates the ACT-R architecture 

across the top half of the Biological Band (i.e., 10
-2

 sec; Table 1) and the lower end of the 

Cognitive Band (i.e., 10
-1

 sec). For instance, the declarative memory calculus within ACT-R 

results in latency effects ranging from 10s of milliseconds to 1 second (or even slightly more), 

and the default production cycle time is 50 ms. This provides a lower bound for which cognitive 

process models can be developed within ACT-R because it ―abstracts away‖ from processes 

occurring at, and below, the 10
-2

 sec level of analysis. However, models developed in ACT-R can 

theoretically account for performance and phenomena occurring at the 10
6
 sec and the 10

7
 sec 

timescales. The theoretical claim and methodological approach within cognitive process 

modeling is that longer, more complex tasks are composed of collections of the atomic 

Figure 1. The UAV STE heads-up display. 
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representations and processes at the lower timescales (Anderson, 2002). The basic maneuvering 

model is an example of this approach. The maximum duration of BMT maneuvers (60-90 sec.) 

falls within the Rational Band (i.e., 10
2
 sec), providing an upper bound for applying Newell’s 

timescale to BMT model evaluation.  

2.2.1 The Control & Performance Concept for Instrument Flight 

There is a prescribed strategy used by the United States Air Force for teaching instrument flight 

called the ―control and performance concept‖ (USAF, 2000). The strategy is divided into two 

subtasks: control and crosscheck. The control subtask involves establishing appropriate control 

settings (i.e., stick and throttle positions) to achieve the desired performance result. Expert pilots 

have knowledge of the relationship between control instrument values (i.e., engine RPMs 

[power], pitch angle, and bank angle), and the performance characteristics they achieve in 

particular aircraft. 

Importantly, changes in the performance of the aircraft unfold over the course of many 

seconds, whereas the impact on control instruments is more immediate. Thus, expert pilots first 

ensure that reasonable values are observed in the control instruments, and then initiate the 

crosscheck subtask, where the pilot verifies both that control settings are being maintained and 

that they are having the expected impact on performance (i.e., altitude, airspeed, and heading). 

Completing a maneuver requires repeatedly executing the crosscheck and control subtasks across 

60 to 90 seconds. Hence, the control and performance concept, as a method for completing a 

maneuver, is best situated in the bottom Task level within the Rational Band (i.e., 10
2
 sec; Table 

1), whereas the control and crosscheck subtasks are best situated in the Unit Task level within the 

Cognitive Band (i.e., 10
1
 sec).  

The model implements the control and performance concept by executing the control subtask 

at the beginning of a maneuver, followed by the crosscheck subtask to assess performance and to 

ensure that control settings are being maintained. To effectively use the control and performance 

concept in the basic maneuvering task, the pilot must have the requisite control setting knowledge 

for various types of desired aircraft performance stored as declarative knowledge as well as the 

requisite procedural knowledge for adjusting the aircraft controls which are described in the 

following sections. 

2.2.2 Declarative Knowledge for the Control and Performance Concept 

The model’s declarative knowledge is represented using four types of chunks: the goal chunk, 

crosscheck intent chunks, instrument chunks, and knowledge of appropriate control settings. The 

goal chunk contains knowledge and links to other knowledge that is needed to fly the UAV. The 

goal chunk contains knowledge that is organized into three categories of slots: maneuver 

knowledge (e.g., the duration of time passed in a trial), control knowledge (e.g., current and 

desired values for the control instruments), and performance knowledge (e.g., current and desired 

values for the performance instruments). Clearly this is much information, all of which is 

important to instrument flight; however, the production rules are designed so that only a few slots 

in the goal chunk are used for matching production rules at each procedural cycle.  

Crosscheck-intent chunks are retrieved from declarative memory for moving attention from 

one instrument to the next, and determining whether the model performs the standard crosscheck 

or focuses on achieving appropriate control instrument settings for the maneuver. Retrievals are 

based on the instrument being attended, the maneuver, and the time into the maneuver. The model 
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also has declarative knowledge of the instruments on the task display, including information 

about the location of the instrument and the significance of the value of that instrument for 

performing the task. Finally, the model has declarative knowledge of the control settings that are 

appropriate for executing the required maneuvers. This knowledge is crucial for establishing the 

correct settings at the start of a trial, following the lead-in period. Knowledge of the desired 

control instrument settings at given points in a scenario (e.g. 15 sec, 30 sec, 45 sec) is important 

for ensuring that performance objectives are being achieved. 

2.2.3 Procedural Knowledge for the Control and Performance Concept 

In order to succeed in the basic maneuvering task, the pilot must adjust the UAV stick and throttle 

to produce approximately the right rate of change in the performance instruments the moment a 

maneuver starts. Following the lead-in period of a maneuver, the model executes a series of 

productions to transition from the straight and level lead-in to performing the maneuver. This 

transition procedure is provided to the model since it is a model of expert performance and not a 

learning model. The execution of these productions is triggered by the perception of an auditory 

beep which occurs at the start of a trial following the lead-in period, via ACT-R’s audition 

module, or by recognition that the lead-in period is nearing completion.  

 
Figure 2. Steps in the control and crosscheck subtasks of the expert ACT-R model. 

The model has separate sets of production rules that implement the control and crosscheck 

subtasks, each diagrammed in Figure 2. Establishing control begins with the selection of an 

instrument for which control needs to be established. This happens either at the beginning of a 

trial when the values of control instruments are first set, or whenever the value of a control 

instrument deviates beyond a threshold from the desired setting, which causes the model to focus 

on that instrument. To establish control, the model attends to control instruments rather than 

performance instruments at the beginning of a maneuver. If an adjustment to a control instrument 

is required, the model assesses the deviation between the current and retrieved values and then 

makes a control adjustment to the flight parameter. It then continues focusing on the same control 

instrument on the next production cycle to achieve the desired control settings. Once no other 

control instrument is in need of setting, the model sets its state to conduct a normal crosscheck.  
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The subtask process of crosschecking is very similar to the subtask process of establishing 

control (see Figure 2); however, crosschecks include attending to control and performance 

instruments. If the model attends to an instrument that deviates significantly from the desired 

value, it returns to the control subtask. Moderate deviations of instrument settings result in 

adjustments to the stick and/or throttle without exiting the crosscheck subtask.  

2.2.4 Subsymbolic Processes 

A variety of ACT-R parameters can be modified to influence model behavior at a subsymbolic 

level. In this model, however, parameters were not explicitly tuned to optimize the fit to human 

data. Default ACT-R values were used in cases where they were available, including (with values 

in parentheses): goal weight (1) and latency factor (1). Other relevant parameters were set to 

commonly used values, such as decay rate (.5), production utility noise (1), and activation noise 

(.25). These parameters directly affect the selection and retrieval times of declarative information 

(e.g., goal weight, latency factor, decay rate, and activation noise) as well as the selection 

between a set of unit tasks that are applicable given the same context (production utility noise).  

3. Validation at the Task Level of the Rational Band  

In the context of the UAV STE, each maneuver takes 60 or 90 seconds to complete. The control 

and performance concept falls within the Task level of the Rational Band; hence the model spans 

five levels of human activity (from 10
-2

 to 10
2
). This section describes the validation effort at the 

model’s highest band of human activity, the Rational Band (10
2
).  

3.1 Materials & Equipment 

El Mar's Vision 2000 Eye-Tracking System was used to collect oculomotor data. The system 

estimates eye point of regard by recording horizontal and vertical eye position from the relative 

positions of corneal and pupil center reflections, and merging these data with a recording of the 

visual scene. El Mar's Fixation Analysis Software Technology was used to define eye fixations 

and generate data files that contain gaze sequences and times. Fixations were defined when the 

eye was stationary for a minimum of 167 milliseconds, and the eye was considered stationary 

below a velocity of 30 degrees per second. Fixations to specific flight instruments of the UAV 

STE were identified when fixations occurred within predefined regions for each instrument. 

3.2 Participants 

Human data were collected from seven aviation Subject Matter Experts (SMEs) at the Air Force 

Research Laboratory’s Warfighter Readiness Research Division in Mesa, Arizona. Participants 

were active duty or reserve Air Force pilots with extensive experience in a variety of aircraft, but 

none had actual Predator UAV flying experience or training. All were mission qualified in Air 

Force operational aircraft, and all had commercial rated certification. The seven participants had 

an average of 3,818 hours flying operational aircraft. 
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3.3 Procedure 

Participants completed each maneuver for a fixed number of trials that ranged from 12-24, 

depending on the difficulty of the maneuver. Each participant completed the maneuvers in order, 

starting with Maneuver 1 and ending with Maneuver 7. Success was defined as flying within the 

performance deviation criteria used by Schreiber et al (2002). The precise criteria for success are 

not critical here, but they were developed to be attainable yet challenging, even for expert pilots. 

We analyzed data from successful trials only because the model was developed as a performance 

model of skilled aircraft maneuvering. Hence, the appropriate comparison is between successful 

model and human trials.  

3.4 Data Analysis & Results 

The determination of overall task performance required aggregating data across airspeed, altitude, 

and heading deviation performance measures, which were each on different scales. To achieve 

this, the RMSD data for each performance measure was converted to a z score and the values 

were summed for each trial, providing a Mean Sum RMSD (z) score for each participant in each 

maneuver (49 scores total from seven participants on each of seven maneuvers). Mean Sum 

RMSD (z) scores were then averaged across maneuvers to obtain an average RMSD (z) for each 

participant. Those averages were used to compute a Grand Mean RMSD (z) score and a 95% 

Confidence Interval for participant performance. The grand mean and 95% CI are plotted in the 

left pane of Figure 3. 

The model data are an average of 20 model runs in each maneuver. The model data were 

converted to z scores by a linear transformation, using the mean and standard deviation from the 

normalization of the RMSD’s in the SME data. Model data were aggregated in the same manner 

as the human data. The model data are plotted as a point prediction because we use exactly the 

same model for every run, without varying any of the knowledge or parameters that might be 

varied in order to account for individual differences. The model is a baseline representation of the 

performance of a single, highly competent UAV operator. There are stochastic characteristics 

(noise parameters) in ACT-R that result in variability in the model’s performance, so we ran it 20 

times to get an average. This is not the same as simulating 20 different people doing the task. It is 

a simulation of the same person doing the task 20 times (without learning from one run to the 

next). The confidence intervals in the human data capture between-subjects variability. Due to the 

fact that we have just one model subject, it is inappropriate to plot confidence intervals for the 

point prediction.  

The Task Level performance comparison indicates that the model flies the UAV at a level of 

proficiency equivalent to that of expert human pilots on average. If we de-aggregate down to the 

level of average performance on each maneuver, we see that the fit of the model to pilot 

performance does vary by maneuver (see Figure 3). Furthermore, across maneuvers, the model 

corresponds to human performance with an r2
 = .57 and a root mean squared scaled deviation 

(RMSSD; Schunn & Wallach, 2005) of 3.46, meaning that on average the model data deviate 3.46 

standard errors from the SME data. 

To get a better sense for how we should interpret these results, we used the jackknifing 

procedure to determine if the model data were similar to human data, which involved running the 

same goodness of fit measures for each of the human participants compared to the data from the 

other participants. We tested the fit of participant-1 (P1) to the data from P2-P7, then the fit of P2 

to the data from P1, P3-P7, and so on. The average human fit is r2
 = .76 and RMSSD = 2.85. So 

the model’s fit to overall human performance is only slightly worse than the average individual 
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human participant’s fit to overall human performance. We interpret this as evidence that the 

model is a good approximation to expert performance in the basic maneuvering task. 

    
Figure 3. The left pane is the aggregate comparison of SME and model performance. The right pane 

is the comparison of SME and model performance by maneuver. 

There are two things worth noting about the model data. First, the fact that it is a performance 

model and not a learning model could play a role in decreasing the fit to the human data. Note 

that model performance is better than the human data in the earlier maneuvers. Due to the fact 

that the SMEs progressed through the seven basic maneuvers in sequence, it would be reasonable 

to assume that rapid motor learning of the stick and throttle or adaptation to Predator-specific 

flight dynamics occurred within SMEs during Maneuver’s 1 and 2 relative to Maneuver’s 3 

through 7. Maneuver 1 required SMEs to learn system specific stick pitch and throttle settings 

and resulting flight dynamics, while Maneuver 2 required additional learning of stick roll. This 

would explain the relatively large performance difference between SMEs and the model on 

Maneuver’s 1 and 2. In fact, if we compute the fit using only data from Maneuver’s 3 through 7, 

r2 
increases to .80 and RMSSD drops to 3.06. 

Second, it is noteworthy that the model is sensitive to maneuver complexity, defined as the 

number of flight parameters, or axes (i.e., altitude, heading, and speed), that were supposed to be 

changing during the maneuver. Significant main effects of the number of axes were observed for 

both the model, F(2,118) = 70.09, p < .001, and SMEs, F(2,449) = 37.87, p < .001. For both the 

model and SMEs, performance was significantly better on one-axis maneuvers compared to two-

axes maneuvers, t(118) = 8.67, p < .001 and t(449) = 2.98, p < .01, and on two-axes compared to 

three-axes maneuvers, t(118) = 5.10, p < .001, and t(449) = 6.90, p < .001, respectively. Thus, the 

model captures maneuver difficulty, even though it was not intentionally engineered to do so. 

These effects emerge naturally from the general design of the model. 

3.5 Summary of Model Validation at the Task Level of the Rational Band 

The results from the model validation effort situated at the Task level of the Rational Band 

demonstrate that the ACT-R model is a good approximation of overall task-level performance 

achieved by expert pilots, and does well on individual maneuvers. This serves as evidence to 

support the model’s validity for use in application contexts in which a simulation of maneuver-

level flying (constrained by the bounded cognition of humans) is functionally adequate, such as in 

a training event that requires a model of Predator maneuvering. 

We might ask whether the model is valid for other purposes, such as for making predictions 

regarding the effects of changes in the training protocol on pilot performance. In this case, the 
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answer is clear: the model is not valid for this purpose because it is a performance model, and not 

a learning model. Although the model does learn some declarative information in the process of 

completing a maneuver, it was not designed to take advantage of the full range of learning 

capabilities in the ACT-R architecture. 

Another purpose of the model would be to fly an entire mission. However, the model is of 

basic maneuvers, and having the model complete entire missions would require changing the 

model by adding declarative and procedural knowledge to perform other mission relevant tasks 

along with basic maneuvers (e.g., Dimperio, Gunzelmann, & Harris, 2008). Another purpose of 

cognitive and AGI models is for evaluating how changes to a system interface affect task 

performance (Gray, John, & Atwood, 1993). For instance, proposed changes to the Predator’s 

Heads-Up Display (HUD) could be evaluated through model predictions regarding whether the 

proposed changes have the desired effects, such as improved maneuver performance. Here it is 

less clear whether the model is valid for this purpose. This determination would likely depend on 

the nature of the change made to the HUD. 

We might suppose in general, however, that the prediction validity of a model for evaluating 

system designs in complex visual environments like aircraft HUDs would depend very much on 

the construct validity of the underlying visual attention processes that guide information 

acquisition during task execution. This shifts the level of analysis for validation below the Task 

level, to the Unit Task level. Because the ACT-R architecture situates model development at the 

10
-2

 sec and 10
-1

 sec levels of analysis and the basic maneuvering model spans five levels of 

analysis, it is not unreasonable to conclude that intermediate levels of analysis within the model 

should accurately replicate human cognitive processes, such as eye movements and movements 

of attention. In the next section, we re-evaluate the model by focusing on unit tasks, using 

fixation sequences (i.e., visual scans) as data. We compare visual scans from the SMEs with 

sequences of attention shifts generated by our expert model to investigate the extent to which the 

model may be valid for purposes that extend beyond the original modeling goal. 

4. Validation at the Unit Task Level of the Cognitive Band 

Sequences of fixations provide process-level information about human task performance, 

providing more detailed data regarding how the task is being done (Myers & Schoelles, 2005; 

Salvucci & Anderson, 2001). Such data are important if the goal is to create human-computer 

interfaces that optimize performance on critical tasks (Myers & Gray, 2010). Thus, assessing 

model validity for the predictive analysis of alternative interfaces requires that human 

performance be captured accurately at this lower, process-focused, Unit Task level of analysis. 

The UAV basic maneuvering model was not developed with this purpose in mind, and so this 

level of analysis was not explicitly considered during model development; however these 

processes had to be included for the model to complete the maneuver.  

Technology reuse in new contexts is not a contrived circumstance; technology is often 

leveraged for uses that go beyond its original purpose. Indeed, it often is the case that additional 

possible applications are not apparent until after a technology is developed. Velcro© and Global 

Positioning Systems are good examples of base technologies that are used today in a wider range 

of applications than those for which they were originally intended. In the context of this paper, 

the applications for UAVs have expanded significantly from their original role in military 

reconnaissance to include strike operations in the military and border protection in domestic 

airspace.  
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Yet there are limits to the transferability of any technology. It is important to assess the 

appropriateness of a technology for any novel application. Our goal in this section is to evaluate 

the validity of the basic maneuvering model for system design analyses. We compare shifts of 

attention from the model and eye movements from SMEs to determine if the model scans flight 

instruments in a similar manner to SMEs. If it does, this would support the conclusion that the 

model could be appropriately applied to evaluate alternative HUD layouts or designs. If not, it 

would call into question the validity of the model for such a purpose. 

4.1 Data Analysis & Results 

Of the seven SMEs in the dataset, five had well-calibrated eye tracking data that could be used for 

detailed analysis. The previous ACT-R model runs had not been configured to provide data on 

shifts of attention on the display. With this addition in place, the ACT-R model was run 24 times 

on each maneuver. The order of UAV flight instruments attended by the model throughout each 

maneuver was saved to a data file for analysis. Like the validation of the model at the task level, 

only successful trials from SMEs and model runs were analyzed.  

To assess the degree with which SMEs followed the control and performance strategy, 

specific flight instruments were coded as either control or performance instruments based on the 

Air Force flight-training manual (USAF, 2000). Recoding instruments as ―control‖ or 

―performance‖ focused the analyses at the appropriate level of abstraction for determining 

reliance on the control and performance strategy and away from specific and idiosyncratic 

approaches to encoding flight instruments. 

Because the UAV basic maneuvering task is a dynamic, interactive, complex task 

environment, behavior within the environment changes the state of the environment, which in 

turn can influence behavior. Consequently, the first 10 seconds leading into the maneuver (i.e., 

the lead-in) and the first 15 seconds of the maneuver (i.e., the first leg) were analyzed to minimize 

differences in task states across individual participants. Furthermore, only data from the easiest 

and most difficult maneuvers (i.e., Maneuver 1 and Maneuver 7, respectively) were analyzed to 

maximize any differences between model and human scanning strategies as a function of task 

difficulty. 

There were 90 visual scans from Maneuver 1, equally divided between the lead-in and first 

leg of the maneuver. There were 118 scans in Maneuver 7, also equally divided between the lead-

in and first leg of the maneuver. The ACT-R model contributed 22 scans to the lead-in and the 

first leg of Maneuver 1 and 20 to the lead-in and first leg of Maneuver 7. (Six trials were omitted 

because they did not result in trial success.) The remaining scans were divided between five 

SMEs (see Table 2 for a breakdown of the number of scans contributed from the model and each 

SME). There are fewer scans from the SMEs relative to the ACT-R model due to difficulties 

associated with eye tracking data loss and poor calibration to the eye tracking system.  

To compare model scans to human scans, two steps were pursued. First, the similarities 

between pairs of scans were computed, followed by a second step, which grouped scans 

according to their similarity. To compute similarities between pairs of scans, the Levenshtein 

(1966) sequence alignment algorithm was applied. This algorithm bases similarity on a 

computation of the minimum number of edits (e.g., insertions, deletions and replacements) 

necessary to change one scan into another.  

The standard Levenshtein algorithm can be biased when sequences vary in length. However, 

the distance value can be normalized to control for differences in lengths of compared visual 

scans providing a normalized similarity index (NSI, Myers & Gray, 2010). NSI controls for 
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length by dividing the number of edits to change one scan into another with the number of 

fixations from the longest of the two scans. The NSI metric represents the maximum similarity 

between two visual scans. 

 

UAV Maneuver 1 Maneuver 7 

Operator Lead-in First Leg Lead-in First Leg 

ACT-R 22 22 20 20 

SME-1 2 2 5 5 

SME-2 5 5 19 19 

SME-3 4 4 1 1 

SME-4 5 5 5 5 

SME-5 7 7 9 9 

Total 45 45 59 59 

Table 2. Number of visual scans obtained from human and model AVOs by maneuver and leg. The 

lead-in is the first 10 seconds of a maneuver, and the first-leg follows the lead-in for 15 seconds. 

The second step used the NSI values to determine scanning strategies by grouping scans 

according to their similarity. This was done by applying principle components analysis (PCA) on 

the computed NSIs. The number of components was determined by a rotated eigenvalue greater 

than one, where components with an eigenvalue less than one were assumed to be contributing 

little to the explanation of variance and were excluded from the analyses. Each component with 

an eigenvalue greater than one can be considered a general strategy and each scan within a 

component is a specific instantiation of the strategy. A limitation of PCA is the difficulty in 

providing descriptions of the components. K-means clustering was used in conjunction with PCA 

to ease the burden of component description1.  

ProtoMatch software (Myers & Schoelles, 2005) was used to compute the NSI values. 

Analyses were conducted for Maneuver 1, Lead-in (M1-L), Maneuver 1, Leg-1 (M1-1), 

Maneuver 7, Lead-in (M7-L), and Maneuver 7, Leg-1 (M7-1). NSI values were obtained for each 

sequence when compared against all other sequences within the same leg from the same 

maneuver. There were 990 NSI values from M1-L (MNSI = 0.46) and M1-1 (MNSI = 0.40). There 

were 1,711 NSI values from M7-L (MNSI = 0.46) and M7-1 (MNSI = 0.38).  

For Maneuver 1, the PCA and k-means cluster analyses resulted in three components that 

accounted for 93.5% of the variance between NSI values from the lead-in, and four components 

that accounted for 89.1% of the variance between NSI values from leg one. The analyses for 

Maneuver 7 resulted in four components that accounted for 92% of the variance between NSI 

values from the lead-in, and four components that accounted for 90.4% of the variance between 

NSI values from leg one. The small number of clusters superficially suggests relative consistency 

in the scanning strategies used across human and model participants for each leg of each 

maneuver, and demonstrates visual scan similarity among participants.  

Table 3 presents the results of the clustering analysis. In all cases but one, attention shifts 

from the model grouped separately from visual scans from the expert pilots. There is a clear 

tendency for a higher proportion of model attention shifts to control instruments than the human 

                                                     

1 Ding and He (2004) proved that components from PCA are the continuous solutions to the discrete cluster 

membership associated with K-means clustering results. Consequently, using K-means clustering to aid in 

interpreting results from PCA will not be a factor in erroneous descriptions/interpretations of 

components/clusters. 
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participants. In addition, the model produces the same number of attention shifts compared to 

clusters containing human scans on average, and demonstrates that cluster solutions were not 

solely based on sequence length. 

The finding that the clustering algorithm produced clusters that almost completely separated 

the human visual scans from the model scans raises important questions regarding the Unit Task 

level validity of this model. It suggests that one should be skeptical of using this model to 

evaluate changes to HUD design or other features of the UAV interface. The lack of 

correspondence suggests that there are real differences between the model and the human 

participants with regard to the composition of subtasks being used to execute the control and 

performance concept. 

 

  
Mean 

Scan 

Length 

Mean Root Mean Squared 

Deviation 

Contributed 

visual scans 

Percent of 

fixations on 

control items 

Mean% (SD%) Cluster 

# of 

Scans Altitude Airspeed Heading Human Model 

M
1

-L
 

A 4 5.25 16.48 0.82 0.03 4 -- 53% (6.5%) 

B 19 13.68 15.37 1.37 0.22 19 -- 52% (9.1%) 

C 22 13.91 8.6 0.92 0.00 -- 22 100% (0.0%) 

M
1
-1

 

D 13 25.31 14.79 1.19 0.83 13 -- 41% (8.8%) 

E 11 20.82 12.37 1.12 0.19 7 4 61% (26.9%) 

F 18 20.22 8.9 0.93 0.00 -- 18 84% (9.2%) 

G 3 12 19.82 1.69 0.00 3 -- 47% (8.2%) 

M
7

-L
 

H 18 8.83 12.79 1.3 5.4 18 -- 63% (11.8%) 

I 18 13.89 16.41 1.59 4.89 18 -- 59% (9.6%) 

J 3 5 10.85 1.52 3.9 3 -- 92% (14.4%) 

K 20 14.25 14.27 1.4 4.73 -- 20 100% (0.0%) 

M
7
-1

 

L 20 20.45 14.43 1.4 4.73 -- 20 99% (1.2%) 

M 14 15.43 14.22 1.4 5.08 14 -- 57% (8.2%) 

N 5 12.2 10.07 1.49 5.62 5 -- 62% (9.7%) 

O 20 20.25 15.43 1.47 4.88 20 -- 61% (6.3%) 

Table 3. Descriptive statistics associated with cluster solutions of NSI values from the lead in and first 

leg of maneuvers 1 and 7. Mean RMSD scores are the average root mean squared deviation between 

participants’ altitude, airspeed, and heading and the desired settings for each flight parameter.  

4.2 Summary of Model Validation at the Unit Task Level of the Cognitive Band 

The results from the model validation effort at the Unit Task level are not nearly as promising as 

Task level results. The results revealed that the model did not attend to control instruments in the 

UAV basic maneuvering task in either the same sequence or in the same proportion relative to 

expert human pilots. Sequences of attention shifts from the model were clustered with human 

visual scans in only M1-1, but only to a limited extent even in that case. Furthermore, clusters did 

not represent individuals; instead, each cluster contained scans from multiple individuals. This is 

clear, as at most there were four clusters yet there were five SMEs and the model. 

The findings lead us to conclude that scans produced by different SMEs were more similar to 

each other than they were to sequences of attention shifts produced by the ACT-R model. With 

respect to use of the control and performance concept, a large proportion of control instruments 

fixated during the lead-in and first leg of a mission demonstrate the adoption of the concept. 



MYERS ET AL 

122 

Inspection of Table 3 reveals that clusters dominated by sequences from the model had 

proportions of fixated control instruments near 90%, and clusters dominated by SME visual scans 

had proportions near 50%. Based on these results we would not be confident using the UAV basic 

maneuvering ACT-R model to provide predictions associated with the evaluation of new HUD 

layouts or designs for the UAV. 

A potential limitation of the Unit Task level evaluation is that the comparison was between 

sequences of items attended by the model and sequences of items fixated by the SMEs. Research 

has demonstrated that shifts of attention can occur without saccades; however, there is a close tie 

between the two, as saccades tend to follow shifts of attention and are incapable of being 

executed to locations orthogonal to the location of attention (Kowler et al., 1995). A possible 

effect on the data is the shifts of attention without including the costs of eye movements could 

possibly lead to substantially more items attended by the model than fixated by the SMEs; 

however, the numbers of items attended by the model were not substantially different from items 

fixated by SMEs (see Mean Scan Length in Table 3).  

5. Discussion 

Creating a capacity for generally intelligent systems to complete tasks whose times range from 

tens of seconds to tens of months is desirable for AGI system developers and developers of 

computational process models grounded in cognitive architecture. Even more common ground is 

found in the desired ability for developed systems to successfully generalize beyond the task 

contexts originally intended by developers. Results from the current analyses provide insight into 

just some of the challenges associated with cognitive systems that can produce behavior across 

multiple timescales and their operation within unintended contexts. 

We presented Newell’s timescale of human activity as a guide to evaluating cognitive 

architecture and AGI across multiple levels of analysis. Based on the results, we are confident 

that the ACT-R cognitive model reported here would perform at the appropriate effectiveness for 

mimicking human behavior when performing UAV maneuvers. However, we are less confident 

that the model would be appropriate for the purpose of evaluating UAV HUDs.  

When evaluating computational cognitive process models, it is often the case that models are 

developed at a timescale below the timescale of dependent variables collected from human 

participants to provide a referent. Consequently, it is difficult to evaluate cognitive processes 

across the intervening levels. As new data collection techniques become less cumbersome, such 

as analyzing eye movement sequences, we can begin to evaluate the intervening levels. Although 

we report a case study of model evaluation that moved down Newell’s timescale of human 

activity, from 10
2
 to 10

1
, model evaluation can also move up the timescales. For example, if the 

basic maneuvering model were to be provided knowledge for completing whole missions, 

processes associated with situated action, such as when to execute different maneuvers or 

maintain situation awareness, become important processes for evaluation at higher levels of 

analysis (e.g., 10
3
-10

4
 in Table 1).  Consequently, we conclude that Newell’s timescale of human 

activity provides a useful organizing framework for evaluating cognitive models and AGI. 

Given the results from the presented case study and developers’ desiderata of model reuse, 

expansion, and integration with other models, how do developers determine the capabilities of 

their model when the model is being used for a different purpose, within a new context, or when 

models are being compared against each other? In the following sections we elaborate on these 

concerns. 
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5.1 Apparent Validity Disjunction across Timescales 

How is it that a single model can vary in its apparent validity across timescales? Further, what can 

a developer deduce from validity disjunction across timescales? Before addressing these 

questions we must first consider validity and what a developer can conclude based on outcomes 

from validation exercises. If a single validation test is conducted on a model and model data fall 

within confidence intervals derived from a referent, should a developer conclude that the model is 

valid? Indeed, developers typically draw this conclusion on the basis of such results. However, 

what if the model data fall outside of confidence intervals of referent data, but are still correlated 

to referent data? In this situation a developer would be less confident in accurate predictions from 

the model, but more confident that the model is capturing potentially interesting variation within 

the referent data. Consequently, we would argue that labeling the model as either valid or invalid 

is not warranted. This is true in the conflicting evidence case just described and also more broadly 

in all evaluations of validity. Assessing the validity of a model, architecture, or system is an 

evidence accumulation process, with conclusions about validity best thought of as existing on a 

continuum. Recasting validity as a matter of degree of confidence regarding usefulness for a 

specific purpose, rather than as a globally relevant binary state, seems to us to be an appropriate 

way for researchers to orient their thinking and methods when evaluating cognitive architecture 

and AGI.  

Based on the case study presented above, one interpretation of the differences in goodness-of-

fit results between our model and referent human visual scan data at the Unit Task level is that 

there are likely many different sequences of behavior that can result in successful maneuver 

performance. In the case of the ACT-R model, the behavioral sequences being produced at the 

Unit Task level of analysis did not adequately capture the human approach to beginning a 

maneuver, nor the variety of approaches. However, the approach used by the model at the Unit 

Task level resulted in very similar performance outcomes to the approaches used by the SMEs. 

Indeed, this illustrates a persistent issue associated with model development, where an infinite 

number of models could account for a given data set. It may also be the case that expert pilots 

have visual scan strategies that illustrate a more sophisticated strategy than the textbook 

description of the Control and Performance Concept. Accumulated expertise may lead to a more 

complex interleaving of control and crosscheck subtasks, which would also explain why expert 

human pilots tended to have proportionally fewer fixations on control instruments than the model. 

Developers typically have an intended use in mind when they begin work on a model. The 

intended use informs the developers which level of analysis should be the focus of the 

development effort. Further, when developing models to operate at a specific level of analysis, 

the precision of modeled processes below the specified level becomes less important to the 

developer. Indeed, this is the point of developing a model; it allows the developer to concentrate 

on precisely modeling processes that produce the range of behaviors of interest while abstracting 

away from finer-grained details that are not of interest. This is central to the approach of 

cognitive architecture where cognitive mechanisms are the focus, rather than neural-level 

processes. However, as models become more general in their intended use they must also be 

capable of performing tasks across multiple levels of abstraction. Hence, developers will have to 

pay increasing attention to the precision of mechanisms across multiple levels of analysis as 

model generality and complexity increase.  
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5.2 The Importance of Newell’s Timescales as System Complexity Increases 

Model comparison, such as the Dynamic Stocks and Flows Modeling Challenge, provides a 

useful technique for estimating progress. As developers of AGI and cognitive architecture move 

from building models of single tasks to building systems capable of learning and operating across 

a wide range of tasks and contexts for long periods of time, model precision will increase across 

multiple levels of analysis. Hence, generally intelligent agents will be required to operate across 

many of the different levels described by Newell, and will need to be capable of producing valid 

behavior within each level. Further, as research on the connection between the brain and 

cognitive activity is accumulated, it is likely that cognitive scientists interested in building a 

unified theory of human cognition will begin to integrate computational and mathematical models 

of biological processes that affect processes at higher levels of analysis. Indeed, this has already 

begun within the ACT-R architecture (Anderson, 2007; Gunzelmann et al., 2009).  

We suggest that, first and foremost, validation efforts should be guided by models’ intended 

uses. However, there will need to be specified approaches to measure progress toward attaining 

the goal of increased task generality as more developers embrace the goal of developing general, 

large-scale cognitive systems intended for uses that span multiple contexts and timescales. The 

question then becomes, how do we compare two models capable of operating across multiple 

timescales within multiple contexts? (To some, the sheer thought of attaining this goal suggests a 

valid cognitive system–if it can operate at such a large scale it must be doing something right!) In 

instances where the mere capacity to perform the task is insufficient to distinguish between 

models, referent data becomes a tool for comparing the models across the different levels of 

analysis. Within the domain of cognitive architecture, human behavior becomes the gold standard 

referent, and the number of levels with which a large scale model accurately replicates human 

referent data helps to place the model along the validation continuum. For example, models 

submitted as part of the Dynamics Stocks and Flows Modeling Challenge could be evaluated 

across a number of Newell’s levels (e.g., 10
0
, 10

1
, and 10

2
), along with models’ performance on 

transfer tasks. The case study presented here demonstrated the use of human visual scans as 

referent data for the Unit Task level of analysis.  

An important goal in cognitive architecture is for developers to stop being modelers and to 

become architects. This entails that generally intelligent agents based on cognitive architecture 

have the capability of being ―set loose‖ in an environment with instructions on how to perform a 

multitude of tasks and produce learning and performance patterns that are in line with humans 

performing the same tasks, given the same instructions. This goal for cognitive architecture 

represents an example of an artificial general intelligence system that incorporates cognitive 

limitations inherent to human cognitive processing. Evaluating the robustness of such systems 

will require the capability for developers to perform model-to-referent comparisons across a 

range of levels within Newell’s timescale of human action, and the same is true of AGI systems. 

The case study presented here provides a limited example of performing such model comparisons 

as well as highlighting issues of validity interpretation that will likely arise as AGI and cognitive 

architecture increase in generality. 
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