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Abstract 
 
This paper shows that a constraint on universal Turing machines is necessary for Legg's 
and Hutter's formal measure of intelligence to be unbiased. Their measure, defined in 
terms of Turing machines, is adapted to finite state machines. A No Free Lunch result is 
proved for the finite version of the measure. 
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1. Introduction 
 
Legg and Hutter have developed a formal mathematical model for defining and measuring the 
intelligence of agents interacting with environments (Legg and Hutter 2006). Their model 
includes weighting distributions over time and environments. This paper argues that a constraint 
on the weighting over environments is required to eliminate bias in the intelligence measure. 

The next section of this paper describes Legg's and Hutter's measure and demonstrates the 
significance of the weighting over environments. Their measure is defined in terms of Turing 
machines and the third section investigates how the measure can be adapted to a finite model of 
computing. The fourth section proves an analog of the No Free Lunch Theorem (NFLT) for this 
finite model. 
 
 
2. A Formal Measure of Intelligence 
 
Legg and Hutter used reinforcement learning as a framework for defining and measuring 
intelligence (Legg and Hutter, 2006). In their framework an agent interacts with its environment 
at a sequence of discrete times, sending action ai to the environment and receiving observation oi 
and reward ri from the environment at time i. These are members of finite sets A, O and R 
respectively, where R is a set of rational numbers between 0 and 1. The environment is defined by 
a probability measure: 
 

µ( okrk | o1r1a1 � ok-1rk-1ak-1ak ) 
 
and the agent is defined by a probability measure: 
 

π(ak | o1r1a1 � ok-1rk-1ak-1 ). 
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The value of agent π in environment µ is defined by the expected value of rewards: 
 

Vµ
π = E(∑i=1

∞ wiri) 
 
where the wi ≥ 0 are a sequence of weights for future rewards subject to ∑i=1

∞ wi = 1 (Legg and 
Hutter combined the wi into the ri). In reinforcement learning the wi are often taken to be (1-γ)γi-1 
for some 0 < γ < 1. Note 0 ≤ Vµ

π ≤ 1. 
The intelligence of agent π is defined by a weighted sum of its values over a set E of 

computable environments. Environments are computed by programs, finite binary strings, on 
some prefix universal Turing machine (PUTM) U. The weight for µ ∈  E is defined in terms of its 
Kolmogorov complexity: 
 

K(µ) = min { |p| : U(p) computes µ } 
 
where |p| denotes the length of program p. The intelligence of agent π is: 
 

Vπ = ∑µ∈ E 2-K(µ) Vµ
π. 

 
The value of this expression for Vπ is between 0 and 1 because of Kraft's Inequality for 

PUTMs (Li and Vitányi, 1997): 
 

∑µ∈ E 2-K(µ) ≤ 1. 
 

Legg and Hutter state that because K(µ) is independent of the choice of PUTM up to an 
additive constant that is independent of µ, we can simply pick a PUTM. They do caution that the 
choice of PUTM can affect the relative intelligence of agents and discuss the possibility of 
limiting the state-symbol complexity of PUTMs. But as the following proposition illustrates, in 
order to avoid bias toward specific environments, a constraint on PUTMs is a necessary addition 
to the definition of their intelligence measure. 

Proposition 1. Given µ ∈  E and ε > 0 there exists a PUTM  Uµ  such  that  for  all  agents  π: 
 

Vµ
π / 2 ≤ Vπ < Vµ

π / 2 + ε 
 
where Vπ is computed using Uµ. 

Proof. Fix a PUTM U0 that computes environments. Given µ ∈  E and ε > 0, fix an integer n 
such that 2-n < ε. Then construct a PUTM Uµ that computes µ given the program "1", fails to halt 
(alternatively, computes µ) given a program starting with between 1 and n 0's followed by a 1, 
and computes U0(p) given a program of n+1 0's followed by p. Now define K using Uµ. Clearly: 
 

2-K(µ) = 1/2 
 
And, applying Kraft's Inequality to U0: 
 

∑µ' ≠ µ 2-K(µ') ≤ 2-n < ε. 
 

So: 
 

Vπ = Vµ
π / 2 + X 

 
Where 
 

X = ∑µ' ≠ µ 2-K(µ') Vµ'
π and 0 ≤ X < ε.  ! 
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Even if we limit the state-symbol complexity of PUTMs, a small number of environments 
with short programs may dominate the measured intelligence of agents. The prefix-free encoding 
of PUTM programs should be designed to prevent any small set of programs from dominating the 
total weight of the intelligence measure. The following proposition shows how to do this from an 
arbitrary UTM. 

Proposition 2. Given a UTM U that takes all binary strings as programs (i.e., U is not a 
PUTM) and a positive integer L, U restricted to programs of length at least L is a UTM and these 
programs can be encoded for a PUTM U'. 

Proof. For every U program p such that |p| < L, Rice's Theorem (Rice, 1953) says that the 
property P(x) of U programs, "program x always computes the same values as p", is undecidable. 
If there were only finitely many such x, then P(x) could be decided by an algorithm that simply 
compared x to each program in the finite list, so there must be infinitely many. Hence there must 
be some x computing the same values as p and such that |x| ≥ L. Thus U restricted to programs 
with length at least L is still universal. 

For each integer n ≥ L, encode all 2n U programs of length n by adding a prefix code string Cn 
consisting of n�L 0's followed by a 1. This gives 2n program strings of length 22n-L+1 with total 
weight 2L-n-1. The set of all encoded programs, for n ≥ L, form a prefix-free code and their total 
weight is 1. Define a PUTM U' that accepts this set of encoded programs. It strips off the prefix 
strings Cn and uses U to execute the resulting programs.  ! 

The bias from a small set of environments can be reduced as much as desired in this way, by 
picking a large L. 

The choice of PUTM can affect the relative intelligence of agents. In fact a PUTM can be 
chosen to produce the counter-intuitive result of an agent with greater measured intelligence than 
AIXI, which Hutter defined as a maximally intelligent agent (Hutter 2004). The definition of 
AIXI is quite complex, but the details are not necessary here. The important point is that AIXI 
uses a PUTM UAIXI to simulate all computable, deterministic environments. At time step k AIXI 
enumerates all environments that could have produced the interaction history up to time k, then 
produces the action ak that maximizes the expected future sum of rewards in interactions with 
these enumerated environments, where each environment is weighted by its Kolmogorov 
complexity computed using UAIXI. Because AIXI always chooses the action with maximum 
expected future sum of rewards, its actions are deterministic unless multiple actions produce the 
same maximum expected future sum of rewards. The definition of AIXI does not specify how to 
choose among multiple optimal actions, but that won't matter in the proof of Proposition 3. 

As Legg and Hutter state, AIXI has maximal intelligence by their measure, assuming the 
same PUTM is used to define AIXI and to define the intelligence measure.  However, the 
following proposition shows this is not necessarily the case if these definitions use different 
PUTMs. 

Proposition 3. Assume that |A| ≥ 2 (i.e., there are at least two possible agent actions) and 
AIXI is defined using some PUTM UAIXI. Then there exist an environment µ and an agent π such 
that VAIXI < Vπ, where the intelligence measure V is defined using a PUTM Uµ derived from µ 
according to Proposition 1. 

Proof. The action of AIXI at the first time step is a probability distribution P over A (it may 
be a deterministic distribution, where one action has probability 1 and all others have probability 
0). There must be an action a1 ∈  A such that the probability P(a1) ≤ 1/|A|. Define the action of π at 
the first time step to be a1, and define µ to give reward r1 = 1 to action a1 and reward r1 = 0 to all 
other actions in the first time step. Note in the definition of environment µ that rewards at every 
time step are dependent on agent actions at all previous time steps, including the first time step. 
So define µ to give reward ri = 1 at every time step i, if the agent action was a1 at the first time 
step, and to give reward ri = 0 at every time step i, if the agent action was any action other than a1 
at the first time step. 

Then the reward to π is 1 at each time step, so Vµ
π = 1 (this is the expected value of the 

weighted sequence of rewards to π). The expected reward to AIXI is P(a1) at each time step, so 
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Vµ
AIXI = P(a1) (this is the expected value of the weighted sequence of rewards to AIXI). Now 

apply Proposition 1 to µ and ε to get a PUTM Uµ for an intelligence measure under which: 
 

VAIXI < Vµ
AIXI / 2 + ε = P(a1) / 2 + ε ≤ 1/(2|A|) + ε  ≤ 1/4 + ε 

 
1/2 = Vµ

π / 2 < Vπ. 
 
So, for ε < 1/4, VAIXI < Vπ.  ! 

To reiterate, this is only possible because UAIXI ≠ Uµ. In the proof, µ and π are designed to 
conspire to give π higher measured intelligence than AIXI, and hence illustrate the possible 
pathology of allowing arbitrary PUTMs. 
 Proposition 3 shows by example that there exist weightings of environments for which some 
agents have higher measured intelligence than other agents. The construction used in the proof of 
Proposition 3 can be modified to show the existence of environment weightings for which the 
difference in measured intelligence between two agents can be arbitrarily close to 1. However, the 
environment weightings in Proposition 3 are pathological. Proposition 4 will show that for certain 
environment weightings in a modified, finite version of the intelligence measure, all agents have 
the same measured intelligence. It is an interesting open question for future research to analyze 
the distribution of measured intelligence of agents for reasonable environment weightings. 
 
 
3. A Finite Model 
 
The no free lunch theorem (NFLT) tells us that all optimization algorithms have equal 
performance when averaged over all finite problems (Wolpert and Macready, 1997). Although 
the mathematical definition of agents interacting with environments is different from the 
definition of optimization algorithms interacting with problems, the fact that agents and 
optimization algorithms are both "trying to do as well as possible" against a set of challenges 
suggests that there may be a way to reinterpret the NFLT in the context of intelligence measures. 
That is the goal of this and the next section. 

The NFLT is proved for finite problems and encounters difficulties in infinite cases (Auger 
and Teytaud, 1997), so we will adapt Legg's and Hutter's measure to a finite model. This will lose 
access to the rich theory of Turing machines, such as the existence of universal Turing machines 
and the impossibility of solving the halting problem. However, Wang makes a convincing 
argument that finite and limited resources are an essential component of a definition of 
intelligence (Wang, 1995). Lloyd estimates that the universe contains no more than 1090 bits of 
information and can have performed no more than 10120 elementary operations during its history 
(Lloyd, 2002), in which case our universe is a finite state machine (FSM) with no more than 
2^(1090) states. An intelligence measure based on a finite model is consistent with finite physics 
and conforms to Wang's argument. 

As before, assume the sets A, O and R of actions, observations and rewards are finite and 
fixed. A FSM is defined by a mapping: 
 

f:S(n)×A→S(n)×O×R 
 
where S(n)={1,2,3,�,n} is a set of states and "1" is the start state (we assume deterministic FSMs 
so f is single-valued). Letting si denote the state at time step i, the timing is such that f(si,ai) = 
(si+1,oi,ri). Because the agent π may be nondeterministic its value in this environment is defined 
by the expected value of rewards: 
 

Vf
π = E(∑i=1

M(n) wn,iri) 
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where the wn,i ≥ 0.0 are a sequence  of  weights  for  future  rewards  subject  to  ∑i=1
 M(n) wn,i = 1 

and M(n) is a finite time limit depending on state set size. Note that different state set sizes have 
different time weights, possibly giving agents more time to learn more complex environments. 

Define F(n) as the set of all FSMs with the state set S(n). Define: 
 

F = Un=L
H F(n) 

 
as the set of all FSMs with state set size between L and H. Define weights Wn such that ∑ n=L

H Wn 
= 1,  and for f ∈  F(n) define W(f) = Wn / |F(n)|. Then ∑f∈ F W(f) = 1 and we define the intelligence 
of agent π as: 
 

Vπ = ∑f∈ F W(f) Vf
π. 

 
The lower limit L on state set size is intended to avoid domination of Vπ by the value of π in a 

small number of environments. The upper limit H on state size means that intelligence is 
determined by an agent's value in a finite number of environments. This avoids the necessity for 
weights to tend toward zero as environment complexity increases. In fact, the weights Wn may be 
chosen so that more complex environments actually have greater weight than simpler 
environments. 

State is not directly observable so this model counts multiple FSMs with identical behavior. 
This can be regarded as implicitly weighting behaviors by counting numbers of representations. 
 
 
4. A No Free Lunch Result 
 
The finite model in the previous section lacks an important hypothesis of the NFLT: that the 
optimization algorithm never makes the same action more than once. This is necessary to 
conclude that the ensembles of rewards are independent at different times. The following 
constraint on the finite model achieves the same result: 

Definition. An environment FSM satisfies the No Repeating State Condition (NRSC) if it can 
never repeat the same state. Such environments must include one or more final states (successor 
undefined) and a criterion of the NRSC is that every path from the start state to a final state has 
length ≥ M(n), the time limit in the sum for Vf

π (this is only possible if M(n) ≤ n). 
Although the NRSC may seem somewhat artificial, it applies in the physical universe because 

of the second law of thermodynamics (under the reasonable assumption an irreversible process is 
always occurring somewhere). FSMs satisfying the NRSC are not trivial environments, because 
our physical universe is not trivial. Also, consider that the state set of our universe is composed of 
the cross product of the state sets of many subsystems, such as the states of many different stars 
on an astronomical scale, and the states of individual humans on a social level. For the system as 
a whole to repeat its state, each subsystem must individually and simultaneously repeat its state. 
This is so unlikely as to be effectively impossible. Similarly, for complex artificial environments 
whose state sets are composed of cross products of the state sets of large numbers of subsystems, 
the NRSC is a natural condition. 

Proposition 4. In the finite model defined in the previous section, assume that M(n) ≤ n and 
restrict F to those FSMs satisfying the NRSC. Then for any agent π, Vπ = (∑r∈ R r) / |R|, the 
average reward. Thus all agents have the same measured intelligence. 

Proof. Given an agent π, calculate: 
 

Vπ = ∑f∈ F W(f) Vf
π = 

 
∑n=L

H ∑f∈ F(n) W(f) Vf
π = 
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∑n=L
H (Wn / |F(n)|) ∑f∈ F(n) Vf

π = 
 

∑n=L
H (Wn / |F(n)|) ∑f∈ F(n) E(∑i=1

M(n) wn,i rf,i) = 
 

∑n=L
H (Wn / |F(n)|) ∑i=1

M(n) wn,i ∑f∈ F(n) E(rf,i). 
 
where rf,i denotes the reward to the agent from environment f at time step i. 

To analyze ∑f∈ F(n) E(rf,i), define P(s,a|i,f) as the probability that in a time sequence of 
interactions between agent π and environment f, π makes action a and f is in state s at time step i. 
Also define P(r|i,f) as the probability that f makes reward r at time step i. Note: 
 
 ∑a∈ A ∑s∈ S P(s,a|i,f) = 1 (1) 
 

Let fR denote the R-component of a map f:S(n)×A→S(n)×O×R. For any s∈ S and a∈ A, 
partition F(n) into the disjoint union F(n) = Ur∈ R F(s,a,r) where F(s,a,r) = { f∈ F(n) | fR(s,a) = r}. 
Define a deterministic probability: 
 

P(r|f,s,a)  = 1 if f∈ F(s,a,r), 
= 0 otherwise. 

 
Given any two reward values r1,r2∈ R (here these do not denote the rewards at the first and 

second time steps) there is a one-to-one correspondence between F(s,a,r1) and F(s,a,r2) as 
follows: f1∈ F(s,a,r1) corresponds with f2∈ F(s,a,r2) if f1 = f2 everywhere except: 
 

f1
R(s,a) = r1 ≠ r2 = f2

R(s,a). 
 
(Changing a reward value does not affect whether a FSM satisfies the NRSC.) Given such f1 and 
f2 in correspondence, because of the NRSC f1 and f2 can only be in state s once, and because they 
are in correspondence they will interact identically with the agent π before reaching state s. Thus: 
 
 P(s,a|i,f1) = P(s,a|i,f2) (2) 
 

Because of the one-to-one correspondence between F(s,a,r1) and F(s,a,r2) for any r1,r2∈ R, 
and because of equation (2), the value of ∑f∈ F(s,a,r) P(s,a|i,f) is independent of r and we denote it 
by Q(i,s,a). We use this and equation (1) as follows: 
 

|F(n)| = ∑f∈ F(n) 1 = 
 

∑f∈ F(n) ∑a∈ A ∑s∈ S P(s,a|i,f) = 
 

∑a∈ A ∑s∈ S ∑f∈ F(n) P(s,a|i,f) = 
 

∑a∈ A ∑s∈ S ∑r∈ R ∑f∈ F(s,a,r) P(s,a|i,f) = 
 

∑a∈ A ∑s∈ S ∑r∈ R Q(i,s,a) = 
 

∑a∈ A ∑s∈ S |R| Q(i,s,a). 
 
So for any r∈ R: 
 
 ∑a∈ A ∑s∈ S ∑f∈ F(s,a,r) P(s,a|i,f) = (3) 
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∑a∈ A ∑s∈ S Q(i,s,a) = 
 

|F(n)| / |R|. 
 

Now we are ready to evaluate ∑f∈ F(n) E(rf,i): 
 

∑f∈ F(n) E(rf,i) = 
 

∑f∈ F(n) ∑r∈ R r P(r|i,f) = 
 

∑f∈ F(n) ∑r∈ R r ∑a∈ A ∑s∈ S P(r|f,s,a) P(s,a|i,f) = 
 

∑r∈ R r ∑a∈ A ∑s∈ S ∑f∈ F(n) P(r|f,s,a) P(s,a|i,f) = 
 

∑r∈ R r ∑a∈ A ∑s∈ S ∑f∈ F(s,a,r) P(s,a|i,f) = (by 3) 
 

∑r∈ R r |F(n)| / |R| = |F(n)| (∑r∈ R r) / |R|. 
 

Plugging this back into the expression for Vπ: 
 

Vπ = ∑n=L
H (Wn / |F(n)|) ∑i=1

M(n) wn,i ∑f∈ F(n) E(rf,i) = 
 

∑n=L
H (Wn / |F(n)|) ∑i=1

M(n) wn,i |F(n)| (∑r∈ R r) / |R| = 
 

∑n=L
H (Wn / |F(n)|) |F(n)| (∑r∈ R r) / |R| = 

 
(∑r∈ R r) / |R|.  ! 

This proposition satisfies our curiosity about whether and how the NFLT can be reinterpreted 
in the context of intelligence measures. It also provides evidence of the need for a non-uniform 
weighting of environments. With infinitely many environments, such as in Legg's and Hutter's 
intelligence measure, non-uniform weights are inevitable in order to have a finite total weight. 
But even in a model with finitely many environments, Proposition 4 shows the necessity for non-
uniform weights. 

By letting L = H in the finite model, Proposition 4 applies to a distribution of environments 
defined by FSMs with the same state set size. 

It would be interesting to construct a PUTM in Legg's and Hutter's model for which all agents 
have the same measured intelligence within an arbitrarily small ε. It is not difficult to construct a 
PUTM, somewhat similar to the one defined in the proof of Proposition 1, that gives equal weight 
to a set of programs defining all FSMs with state set size n satisfying the NRSC, and gives 
arbitrarily small weight to all other programs. The difficulty is that multiple FSMs will define the 
same behavior and only one of those FSMs will be counted toward agent intelligence, since 
Legg's and Hutter's measure sums over environment behaviors rather than over programs. But if 
their measure had summed over programs, then a PUTM could be constructed for which an 
analog of Proposition 4 could be proved. 
 
 
5. Conclusion 
 

Some choices of PUTM can produce extreme bias in Legg's and Hutter's formal measure of 
intelligence. This bias can be reduced as much as desired by imposing a minimum length limit on 
programs used to define environments. 
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According to current physics our universe is a FSM satisfying the NRSC. So it is not 
unreasonable to measure intelligence using environments defined by FSMs satisfying the NRSC. 
However, if we measure agent intelligence using a distribution of FSMs satisfying the NRSC in 
which all FSMs with the same number of states have the same weight, then Proposition 4 shows 
that all agents have the same measured intelligence. This provides rigorous support that an 
intelligence measure must based on unequal weighting of environments, such as the weighting 
based on Kolmogorov complexity used by Legg and Hutter. With an equal weighting of 
environments, past behavior of environments provides no information about their future behavior. 
There is a large literature relating to the NFLT, including many papers applying it to various 
problem areas (http://www.no-free-lunch.org/). This paper applies it to formal measures of 
intelligence. 
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