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Abstract

This article analyzes and compares several approaches of formalizing the notion of evidence
in the context of general-purpose reasoning system. In each of these approaches, the notion
of evidence is defined, and the evidence-based degree of belief is represented by a binary
value, a number (such as a probability), or two numbers (such as an interval). The binary
approaches provide simple ways to represent conclusive evidence, but cannot properly
handle inconclusive evidence. The one-number approaches naturally represent inconclusive
evidence as a degree of belief, but lack the information needed to revise this degree. It
is argued that for systems opening to new evidence, each belief should at least have two
numbers attached to indicate its evidential support. A few such approaches are discussed,
including the approach used in NARS, which is designed according to the considerations
of general-purpose intelligent systems, and provides novel solutions to several traditional
problems on evidence.

Keywords: evidence, degree of belief, logic, probability, weight of evidence, revision,
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1. Introduction

It is wrong always, everywhere, and for anyone, to believe anything upon
insufficient evidence. (Clifford, 1877)

Though the notion of “evidence” is widely used in Al publications, exactly what counts
as evidence is an issue that has not been sufficiently discussed, and there are still many open
problems (McDermott, 1987). Like many other basic notions, evidence has been formalized
in different ways. Most of the formalizations came from the study of mathematics, logic, or
philosophy (Achinstein, 1983), each with its assumptions and implications. When they are
introduced into Al research, very often people only focus on the technical details, but do not
pay enough attention to the theoretical issues involved. Also, there are not many discussions
that compare the alternative formalizations of evidence, to show their comparative strength
and weakness in Al systems.

This article aims at a systematic analysis and comparison of several representative
formalizations of the notion of “evidence” in Al research. Especially, we are going to focus
on domain-independent usages of the notion, and ignore the domain-specific usages.!

Informally speaking, when evidence is mentioned, it is always with respect to some belief
of a system, for which it provides justification or reason. Since evidence is defined with

1. For example, in legal discussions, the notion of “evidence” is used with some special conventions.
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respect to belief, it is not a special type of knowledge or fact. Whether certain knowledge
is “evidence” or not depends on the belief under consideration, rather than only on the
property of the knowledge itself.

When designing an Al system, we normally hope the system to establish its beliefs
according to the evidence provided by the knowledge or experience of the system. Therefore,
it becomes desired to accurately specify the relationship between each belief of the system
and the evidence supporting it. The following questions can be asked about this relationship:

e For a given belief, what counts as evidence?
e For a given belief, is there conclusive evidence?
e For a given belief, is there qualitative difference among evidence?

e For a given belief, is there quantitative difference among evidence?

How much evidence is sufficient for a system to accept or to reject a belief?
e When new evidence comes, how to revise the related beliefs?
e For derived beliefs, how to evaluate their evidential support?

A formalization of evidence will allow the above questions to be answered accurately.

To start, let us set up a general framework in which different formalizations of evidence
can be compared. First, we assume the system has a collection of “beliefs” (for the current
discussion, they can also be called “hypotheses”) that determines the system’s responses
and behaviors. We further assume there is a belief language Lp whose sentences are the
beliefs to be evaluated, and an evidence language L whose sentences or words represent
candidate evidence.? In some approaches the two languages are the same.

To represent evidential support for beliefs, we assume there is a “degree” associated
to each belief, indicating whether, or to what extent, the system accepts the belief. This
degree of belief should depend on relevant evidence, which is the available information that
contributes to the status of belief of the system. Therefore, the degree of belief is the value
of a function d that takes a belief B (a sentence in Lp) and its evidence E (sentences or
words in Lg) as arguments. Depending on the value range of d(B, F), most of the existing
approaches explored in Al can be divided into three groups:

e Binary-value — the degree of belief is a binary value, that is, the system either
accepts a belief, or rejects it,

e One-number — the degree of belief is a number, indicating the extent to which the
belief is accepted or held by the system,

e Two-number — the degree of belief is a pair of numbers, which can be interpreted
as an interval, or two independent measurements.

2. Generated from a language, either the set of possible beliefs or the set of possible evidence can be infinite,
so cannot be exhaustively listed in advance. This framework is needed for general-purpose systems that
are always open to new knowledge and problems. Halpern and Pucella (2006) assume the hypothesis set
and the evidence set are both finite, and the former is mutually exclusive and exhaustive. Since it assums
a predetermined set of problem, this kind of model is usually improper for general-purpose systems.
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In the following, we are going to analyze each of them, as well as to compare them, in
the context of general-purpose Al (that is, Artificial General Intelligence, or AGI) systems
with evidential reasoning capability. The major conclusion to be argued is that for the
purpose of AGI, it takes two numbers to properly represent a degree of belief. Therefore,
we will not discuss approaches that use more than two numbers for the representation, since
they would be consistent with the above conclusion anyway.

Some people may think it is too rigid to use the same uncertainty measurement for
all beliefs, and wonder why not “to use as many numbers as needed” to represent the
system’s state of belief — after all, in fields like statistics, people usually analyze the
problem first, then decide how many numbers will be used to represent the uncertainty in
it. This methodology is indeed preferred when individual practical problems are analyzed,
or problem-specific solutions are designed, by a human being. However, for it to work
in an AGI system that has to deal with novel problems, it requires, at least, a decision-
making procedure to decide how many numbers are needed to represent uncertainty for each
problem the system meets, as well as a translation procedure to map one representation
into another for cross-problem inference (such as analogy). Since there is no well-established
way to formalize the above procedures in a domain-independent manner3, “to use as many
numbers as needed” does not qualify as an alternative to the ones covered in this paper.

For the same reason, the approaches of uncertainty reasoning favored in traditional
AT research may not work well in AGI systems, because most traditional Al systems are
designed for special problems, and the successes there do not guarantee similar successes
in AGI systems, where the problems to be solved are often beyond the restrictions made
by the traditional approaches. Consequently, the “AGI context” must be kept in mind to
understand the following analysis.

Since this paper focuses on the formal definition and representation of evidence in
AGI systems, it will not address the other aspects of evidential reasoning, such as the
collection and organization of evidence, or the details of inference rules and inference control
mechanism, though they are important aspects of evidential reasoning. To address all these
issues is simply impossible for a single journal article.

2. Binary-value Approaches

The most typical case of binary degree of belief can be found in logic-based systems.

In a system based on traditional binary logic, such as Aristotle’s Syllogistic or First-
Order Predicate Logic (FOPL), the truth-value of a proposition is either true or false. Since
it is rational for the system to only believe true propositions, in this context “evidence”
basically means “proof”. For given belief B and evidence F, B is acceptable if and only if
it can be derived from FE, so

d(B,E) = (E+ B)

In this case, the belief language and the evidence language are the same, with their sentences
being binary propositions.

3. Such a formalization, if possible, may require a fixed uncertainty representation itself, since the above
procedures are also evidential reasoning processes. Consequently, we will go back to the same problem
at the meta-level, where a uniform representation is required.
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This kind of evidence is conclusive, in the sense that it determines the truth-value of a
proposition (and therefore, the system’s degree of belief on it) once for all. Consequently,
the beliefs of the system increase monotonically with the coming of new evidence, and there
is no need to re-evaluate the accepted beliefs, as far as its supporting evidence remains.
For the system to be practically useful, its evidence should be consistent, that is, it cannot
contain, or derive, a proposition together with its negation, otherwise the evidence will
support any arbitrary proposition.

Though this approach is simple and elegant, it is not enough for most Al systems, where
evidence is usually inconclusive, meaning that though the evidence contributes to a degree
of belief, it cannot decide the truth-value of the proposition, and therefore the degree of
belief may change when new evidence comes. This is usually the case when the type of
inference from the evidence to the belief is not deduction, but induction. (Kyburg, 1983a)

For example, should we believe a general statement “Ravens are black”, after a finite
number of black ravens are observed? After all, as Hume (1748) pointed out, in this kind
of induction, since the statement says more than the past observations, it cannot be proved
to be true from the observations alone.

As far as the current discussion is concerned, there are two major approaches attempting
to solve Hume’s problem:

Incremental-confirmation: Though induction cannot provide conclusive evidence for a
general belief, it can incrementally confirm it with inconclusive evidence.

Hypothetico-deduction: Beliefs on general statements are not justified by the existence
of confirming evidence, but by the lack of falsifying evidence.

Though each of the two has its applicable situations, it also has well-known problems.

The incremental-confirmation approach will eventually move beyond binary logic (since
it suggests a numerical measurement as degree of belief), though some of its key issues have
been discussed qualitatively, within the framework of binary logic. We will address these
issues here, and leave the quantitative issues to the next section.

For incremental-confirmation to work, every statement should have explicitly defined
positive and negative evidence (though sometimes they are called by other names).

A well-known definition is “Nicod’s Criterion”, proposed by French mathematician Jean
Nicod. According to it, for “Ravens are black”, black ravens are positive evidence, non-
black ravens are negative evidence, and non-ravens are irrelevant (Hempel, 1965). Let us be
more accurate about this definition. First, it treats a general statement “Ravens are black”
as a universally quantified proposition in FOPL, Sy:

(Vz)(Raven(z) — Black(z))

then every constant in the domain falls into exactly one of three sets with respect to Si:

positive-evidence: Pg, = {x|Raven(x) A Black(z)}
negative-evidence: Ng, = {z|Raven(z) A —-Black(z)}
irrelevant-objects: Is, = {x|-Raven(z)}

Please note that while our belief language is still the one used in FOPL with proposition as
beliefs, each piece of evidence is not a proposition anymore, but an object in the domain,
which is specified by a proposition.
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Though this definition of evidence seems clear and natural, Hempel revealed a paradox
by considering a logically equivalent proposition Ss:

(Va)(—Black(x) — —Raven(x))

which can be read as “Whatever is not black is not a raven”, and according to Nicod’s
criterion, for Ss:

positive-evidence: Pg, = {z|-Black(xz) A ~Raven(z)}
negative-evidence: Ng, = {z|-Black(z) A Raven(z)}
irrelevant-objects: Is, = {z|Black(x)}

Compare the two cases, we see that Nicod’s criterion gives the two propositions different
positive evidence, though the same negative evidence. Since S; and Sy are equivalent
propositions (i.e., having the same truth-value), they should have the same evidence.
Therefore, Nicod’s criterion of evidence fails to specify the same evidence for logically
equivalent statements.

If we modify Nicod’s criterion by also letting Ps, be positive evidence for Si, too (and
do the symmetric treatment for S3), then the two equivalent propositions S; and Sy will
have the same evidence, that is, positive evidence Ps, U Ps, and negative evidence Ng,
(which is the same as Ng,).

However, now any red pencil (which is neither black nor a raven, so is in Ps,) becomes
confirming evidence for “Ravens are black”. This counterintuitive consequence is what
Hempel called “Confirmation Paradox” (which is also known as “Hempel’s Paradox” and
“Raven Paradox”).

Since the notion of logical equivalence is central to classical logic, Hempel (1965) felt
that “the equivalence condition has to be regarded as a necessary condition for the adequacy
of any definition of confirmation”. That means to revise Nicod’s criterion as above, and
to accept any non-black non-raven as confirming evidence for “Ravens are black”. After
analyzing several alternatives which lead to even worse situations, Hempel concluded that
we should rather accept the seemingly counterintuitive result.

There has been a large literature on this paradox, which this article will not attempt
to survey. Instead, let us just consider what Hempel’s solution means to Al systems. If an
AT system were built according to this definition of evidence, then each time it saw a red
pencil, a green leaf, or a yellow flower, it would consider “Ravens are black” as having been
confirmed one more time. If that still does not sound ridiculous enough, then consider this:
for the same reason, the above items are also confirming evidence for “Ravens are white”
and even “Ravens are colorless”. Furthermore, statement “Dragons are unicorns” would
have all existing objects as positive evidence, since they are neither unicorns nor dragons.
It is hard to imagine an Al system built according to this solution.

The confirmation paradox places the believers of incremental-confirmation between a
rock and a hard place, since they have to either give up equivalence condition and violate
propositional logic, or accept a highly counterintuitive and practically inapplicable definition
of evidence.

The confirmation paradox does not exist if we take general beliefs as accepted by
hypothetico-deduction, as suggested by Popper (1959). Using the previous terminology,
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this method says that we accept “Ravens are black” as far as no negative evidence has been
encountered, and whether there is positive evidence does not matter — this method does
not even define “positive evidence”, and in it “evidence” means “negative evidence”.

According to Popper, there is an asymmetry between verifiability (by positive evidence)
and falsifiability (by negative evidence), which results from the logical form of universal
statements, or “theories” in his words, that is, “a positive decision can only temporarily
support the theory, for subsequent negative decisions may always overthrow it”. He further
said “I never assume that by force of ‘verified’ conclusions, theories can be established as
‘true’, or even as merely ‘probable’ 7 (Popper, 1959).

Compared to Nicod’s criterion and Hempel’s suggestion, Popper’s solution to the
problem of evidence is more compatible with FOPL. If “Ravens are black” is represented
as universal proposition

(Vz)(Raven(z) — Black(z))

then an observation corresponds to a constant ¢ that instantiates the variable, and produces
a particular proposition
Raven(c) — Black(c)

If the particular proposition is false, ¢ also makes the universal proposition false; but if ¢
makes the particular proposition true, it tells us little about the truth-value of the universal
proposition, which can still be either true or false. This is the case because a universal
proposition is defined as the conjunction of corresponding particular proposition on every
constant in the domain.

Confirmation paradox does not exist in this situation, because the S; and S defined
previously do have the same negative evidence, and positive evidence does not count, so
equivalent propositions still have the same evidence, as desired. Therefore, observing a red
pencil has nothing to do with our belief on “Ravens are black”, which feels right.

However, this approach also claims that observing a black raven has nothing to do with
our belief on “Ravens are black”, which is counterintuitive. Assume that “Ravens are black”
and “Dragons are red” both have no observed counterexamples, and we have observed many
black ravens but no dragon of any color, then should the two statements be believed to the
same extent? Furthermore, almost all conclusions in empirical science and everyday life
have known exceptions, but the conclusions are rarely falsified, as long as they still cover
much more situations, that is, have sufficient positive evidence.

Now we can see that in the hypothetico-deduction approach, the notion of evidence
actually means conclusive evidence. When a general statement is represented as a
universally quantified proposition, a constant can only prove it false, but can never prove
it true. In this way, this approach is consistent with FOPL, but it still cannot capture
inconclusive evidence, either positive or negative.

One well-known result showing people’s affinity for confirming evidence is Wason’s
selection task (Wason and Johnson-Laird, 1972), a psychological experiment that has been
repeated many times by different researchers. Its result shows that when people are asked
to check the truthfulness of a general statement, they more often seek positive evidence
than negative evidence, though according to logic only the latter is relevant. For example,
when subjects are given four cards showing symbols E, K, 4, and 7, respectively, and are
asked to determine whether “If a card has a vowel on one side, then it has an even number
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on the other side”, most subjects turn the E card alone, or E and 4, while the “logical”
answer is B and 7. This result is usually interpreted as a human fallacy, but it can also be
argued that the human behavior can be justified, and the problem is actually in the “logic”
that fails to include the natural concept of (inconclusive) positive evidence (Wang, 2001c).

To summarize the above discussion, we have seen that in classical logic, the concept of
conclusive evidence is well-defined by deduction, but the concept of inconclusive evidence
is hard to introduce. It should not be a surprise if we consider where the logic come from.
Logic study has been dominated by deductive logic for two millennia, and by mathematical
logic for a century. In those logics, inconclusive evidence plays little role — no matter
how many times the Goldbach Conjecture has be verified on various numbers, it remains a
“conjecture”, not a “theorem”, even though these verifications make people’s belief on it to
become stronger and stronger.

Therefore, to build AI systems in which inconclusive evidence plays an important role,
it is necessary to look beyond classical logic.

One attempt to extend classical logic, within the framework of binary logic, is
nonmonotonic logic (Reiter, 1987). In this kind of logic, a “default rule”, such as “A
bird normally flies”, can be used to produce tentative conclusions, like “T'weety flies”, from
the default rule and available facts, like “T'weety is a bird”. Later, when new information
disqualifies the applicability of the default rule (for example, by revealing that T'weety is not
a normal bird), the status of the previous conclusion is changed. In this way, default rules,
which represent normal or general situations, can coexist with known counterexamples, as
their exceptions. This is clearly closer to the reality of human reasoning.

However, in nonmonotonic logics the default rules are given to the system by its designer
(or user), not induced from observations by the system itself, and nor are they verified by
evidence. Consequently, here the induction problem and the confirmation problem are
avoided, rather than solved. In these systems, new evidence only revises the degree of belief
of the tentative conclusions, not that of the default rules. For instance, no matter how
many birds observed cannot fly, the belief “Birds normally fly” remains valid. If such a
system attempts to generate its own default rules, or to attach numerical degree of belief to
them, the same problems will appear, as in classical logic. This type of logic is not powerful
enough for an AGI system where all beliefs should be based on evidence.

Another related non-classical logic is conditional logic (Dubois and Prade, 1994; Milne,
1997). Though conditional statement “If P, then @” (where P and @ are propositions) is
traditionally formalized as material implication “P — @Q”, some scholars, such as de Finetti,
find reasons to represent the statement as a three-valued conditional object, “Q|P”, which
has the same truth-value as Q when P is true, while has a truth-value void (i.e., undefined)
when P is false.

This idea is relevant to the current discussion, because the evidence for a belief can be
conceptually considered as the condition of the belief, and some problems can be solved in
this way. For example, if “Ravens are black” is rephrased as “If something is a raven, then
it is black”, and formalized as “Black(x)|Raven(z)”, then the above three-valued truth
directly corresponds to Nicod’s criterion for evidence, that is, black ravens are positive
evidence, non-black ravens are negative evidence, and non-ravens are irrelevant. Hempel’s
paradox does not appear here, because “Black(x)|Raven(z)” and “—~Raven(x)|—Black(x)”
are not equivalent in this three-valued logic.
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Even so, it does not mean that conditional logic will satisfy the need for evidential
reasoning in AGI, for two major reasons:

e In its three-valued form, conditional logic still only represents conclusive evidence,
though it corresponds to an intuitively reasonable definition for inconclusive evidence
(Nicod’s Criterion). For an AGI system, three truth-values are not enough to
distinguish the status of belief caused by various inconclusive evidence.

e Though “condition” is related to “evidence”, they are not the same. The content of a
condition is always explicitly expressed in a conditional belief, while the evidence of a
belief is usually implicitly summarized in the degree of belief. Consequently, the two
are processed in different ways in a reasoning system.

Both topics will be discussed in the next section with more details.

In summary, though nonmonotonic logics and conditional logics have their applicable
situations, they are not suitable for the evidential reasoning problem discussed in this paper,
because in this context inconclusive evidence usually need to be quantitatively represented,
which is not what a binary logic can naturally do.

3. One-number Bayesian Approach

From the previous discussion, we see that for many practical problems, both positive and
negative evidence should be taken into consideration when a degree of belief is determined,
and it is often necessary to quantitatively compare them. This observation makes many
people to believe that the proper framework to be used here is not a binary logic, but
probability theory.*

According to certain interpretation, “probability” measures the logical relation between
a hypothesis and the available evidence, and “conditional probability” exactly measures the
evidential support a hypothesis gets, with the available evidence as the condition (Carnap,
1950; Rescher, 1958; Kyburg, 1994). Therefore, it seems enough to use a single value,
(conditional) probability, to indicate the status of a belief. In AI, the most influential
example of this opinion is the Bayesian approach proposed by Pearl (1988), which is
characterized by the following commitments: (Pearl, 1990)

e willingness to accept subjective belief as an expedient substitute for raw data,
e reliance on complete (i.e., coherent) probabilistic models of beliefs,

e adherence to Bayes’ conditionalization as the primary mechanism for updating belief
in light of new information.

Like many other phrases, “Bayesian approach” may mean different things to different
people. To avoid confusion, in the following we will use “one-number Bayesian” to indicate
the above treatment of evidential reasoning in an AGI system. According to it, the system’s

4. Though fuzzy logic also uses a numerical truth-value, it is usually not based on evidence. See Zadeh
(1975); Wang (1996D).
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degree of belief, with given evidence, is fully represented by a conditional probability with
the evidence as condition, that is,

d(B,E) = P(B|E)

Consequently, the processing of evidence follows probability theory, especially Bayes’
theorem.

Such a definition naturally covers both positive and negative evidence, and their
difference is whether the evidence increases the probability or decreases it. That is, for
belief B,

positive-evidence: Pp = {x|P(B|z)> P(B)}
negative-evidence: Np = {z|P(B|z) < P(B)}
irrelevant-information: Ip = {z|P(B|z) = P(B)}

Defined in this way, both the belief language and the evidence language are events or
propositions on which the probability distribution function P is defined.

Some problems in the binary approaches can be solved using probability theory. For
example, Oaksford and Chater (1994) re-interpret the result of Wason’s selection task
according to probability theory, and consequently, “we can view behavior in the selection
task as optimizing the expected amount of information gained by turning each card”.

The situation is similar for the confirmation paradox. First, there are different ways to
formalize the statement “Ravens are black” in the one-number Bayesian framework. One
way is to simply attach a probability value to a universally quantified proposition, so the
degree of belief is

P((Vx)(Raven(z) — Black(z)))

and another way is to interpret the statement as the previously mentioned “conditional
object” (Dubois and Prade, 1994; Milne, 1997), so the degree of belief is

P(Black(z)|Raven(x))

Under the former interpretation, Fitelson and Hawthorne (2009) shows that a non-black
non-raven is positive evidence for “Ravens are black”, though it is “weak evidence”, that
is, its degree of confirmation is much lower than that of a black raven. For instance, under
certain assumptions, “100 instances of black ravens would yield a likelihood ratio 169 times
higher than would 100 instances of non-black non-ravens.”

Under the latter interpretation, P(Black(x)|Raven(z)) and P(—~Raven(x)|-Black(x))
are usually different, since the first probability is for ravens to be black, and the second
for non-black things not to be raven. Consequently, a red pencil is positive evidence for
the second, but has nothing to do with the first. As in conditional logic, this treatment of
evidence returns to Nicod’s criterion.

Either way, the Bayesian solution to the confirmation paradox seems less counterintuitive
than Hempel’s. It should be noticed that this result is achieved by dropping or weakening the
equivalence condition, that is, equivalent propositions in predicate logic may have different
(though related) probabilities when they are taken to be probabilistic. The Bayesian
solution usually avoids the Raven’s paradox by building problem-specific models, where
whether, or how much, a red pencil contributes to the system’s belief on “Ravens are

33



WANG

black” depends on the assumptions made in the model, and the results can be justified in
that way, too.

Even so, in the AGI context there are still problems left. First, as mentioned before,
an AGI system cannot assume that there is already a built-in probabilistic model for every
problem, and to automatically build models for various kinds of problems is not yet a feasible
procedure. Furthermore, in AGI systems it is practically impossible to treat a red pencil as
confirming (though weak) evidence for “Ravens are black”, since the system simply cannot
afford the resources to do so (there are too many non-black non-ravens to be considered for
the system to scale up). On the other hand, it leads to theoretical inconsistency if this type
of update is acknowledge as necessary, but not implemented.

There are other criticisms to the one-number Bayesian approach. Some people do not
think it is necessary for AI systems to follow probability theory. After all, psychological
study shows that the everyday human reasoning systematically violates probability theory
(Tversky and Kahneman, 1974). For example, people tend to use representativeness as
probability. One consequence is the “conjunction fallacy” — after learning certain properties
of a certain person, people often judge her more likely to be (a) “a bank teller and active
in the feminist movement” than (b) “a bank teller”. However, since (a) is a subset of (b),
according to probability theory the person should be more likely to be in (b) than in (a)
(Tversky and Kahneman, 1983).

As the works of Hempel and Wason show that human reasoning does not follow FOPL,
the works of Tversky and Kahneman show that it does not follow classical probability
theory, neither. These results are usually interpreted as “fallacies and biases” caused by the
non-optimality nature of the human mind. According to this opinion, probability theory,
like FOPL, is still a proper normative theory of reasoning (which specifies the rules that
should be followed), though not a proper descriptive theory of the process in the human
mind (which specifies the rules that are followed).

Even when probability theory is evaluated as a normative theory, there is still no lack
of controversy. First, the availability of a prior probability distribution may be problematic
(Kyburg, 1983a). A traditional reason for Al researchers to refuse numeric approaches of
reasoning in general, and probabilistic approaches in specific, is that we do not have the
numbers to start with (McCarthy and Hayes, 1969). Even if for each individual belief we
can evaluate its degree of belief in isolation, there is no guaranty that when these values are
putting together they form a coherent probability distribution (Walley, 1996b). Actually
the situation is often the opposite, and that is where the reference class problem comes
from: according to different considerations, we often get different probability evaluations
for the same belief, and probability theory, except in some special cases, does not tell us
what to do in this situation (Kyburg, 1983b; Wang, 1995b).

How about to use Solomonoff’s universal priori distribution (Solomonoff, 1964; Hutter,
2005)7 To handle beliefs in this way raises several complicated issues beyond the scope of
this paper. For the current discussion, it is enough to say that for an Al system working
in practical situation, this approach has not provided a computable procedure to assign a
prior probability value to a belief like “T'weety can fly”.

Some people do not take the lack of prior knowledge as a big problem, because they
believe we can start with a “non-informative prior”, then use Bayesian conditionalization
to learn from new evidence whenever it becomes available. Though putting the stress
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on learning is justifiable, depending on Bayesian conditionalization to do so has serious
limitations. As analyzed in detail in Wang (1993, 2004), when the degree of belief is
represented by a single probability value, Bayes theorem and Jeffrey’s rule cannot be used
to learn all kinds of knowledge that can be put into a prior probability. Since this topic is
central to the current discussion and the previous analysis has not got enough attention, it
is necessary for the argument to be rephrased in the following.

Assume Pk (z) is a probability distribution function established according to background
knowledge K on proposition space S, that is, Pk (x) is defined if and only if x € S, and its
value is determined by the knowledge in K, which can be intuitively considered as a set of
evidence.

In this context, Bayes theorem is often used for conditionalization, that is, to accept new
event F into the background knowledge K when the event happens, so as to turn the prior
(conditional) distribution based on K and conditioned on F into a posterior (unconditional)
distribution based on K plus F, as

Pgugey(2) = P (2|E) = Pr(E|2)Px (x)/ Pk (E)

However, this usage requires E € S and Px(E) > 0. If the new evidence E needs to be
handled by revising K, then it cannot be treated as conditionalization, because Pk (z|E)
is still based on K. Since the background knowledge K is not necessarily included in the
domain of the probability distribution S, it cannot be written as a condition. Therefore,
Pg (z) should not be written as P(z|K).

In the relevant discussions, the background knowledge K is often mistaken as the
condition E. Here are some typical examples:

e Pearl (1988, page 29): “P(A|K) stands for a person’s subjective belief in A given a
body of knowledge K, ... In defining belief expressions, we often simply write P(A)
or P(—A), leaving out the symbol K. This abbreviation is justified when K remains
constant, since the main purpose of the quantifier P is to summarize K without
explicating it.”

e Cheeseman (1988, page 60): Bayes Theorem is expressed as

_ P(E,H|c) _ P(H|c)P(E|H,c)
PUHIE. ) = =50 =~ PEl)

where H is a hypothesis, F is the evidence, and c is the context. This target paper
was published together with 23 commentaries by well-known researchers in the field,
but none of the commenters challenged the above expression by pointing out that the
context ¢ cannot be represented as a condition, since P(c) may be undefined.

Here the issue is not what terminology or notation to use, and it is usually fine to
write P (H|FE) as P(H|E; K), as some authors do. What matters is to understand that in
either form, this conditional probability evaluation of hypothesis H depends on two types of
“condition”, E and K, and the system’s degree of belief on H is actually d(H, (K U{E})),
rather than merely d(H, E). These two types of condition have different status in the
one-number Bayesian approach:
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1. FEis often referred to as “condition” or “observation”, and is called “explicit condition”
in Wang (1993, 2004). It is a proposition in the space S on which the probability
distribution function Py is defined, and usually cannot be omitted in the expression,
since Pg(H|FE) and Pk (H) are normally different. The system has no problem to do
inference with different E's for the same H.

2. K is often referred to as “background knowledge” or “context”, and is called
“Implicit condition” in Wang (1993, 2004). Its elements are not necessarily in S,
so their probabilities may be undefined. It is often omitted in the expression,
so P(H|E) normally means Pg(H|E) for certain constant K. However, even
when K is omitted in the expression, it does not mean the probability function is
“context-free”, unless P is “objective probability” (which is rarely available to Al
systems). Except in special cases, inference across probability distributions based on
different K's is not allowed in probability theory, because they correspond to different
probability distribution functions, which are not necessarily consistent with each other.
Inconsistent probability functions cannot be used together, since doing so violates the
axioms of probability theory, which require each event (or proposition) to have a
unique (prior) probability value.

This distinction between “explicit condition” and “implicit condition” is basically the
same as the distinction between “condition” and “evidence” mentioned in the previous
discussion on conditional logic. In Pg(H|E), roughly speaking both F and K provide
evidence for the system’s belief on H. However, E is explicitly expressed, while K, after
making its contribution to the degree of belief, is summarized by the probability value, and
often implicitly represented. Even when we explicitly mark it as K, we can only process it
in very limited ways. For example, we can say that Py, and P, are usually different when
K7 and K5 are different. However, in neither probability theory nor conditional logic can
K be further analyzed or processed, because its content is no longer fully specified.

Let’s see a concrete example. Assume we are interested in predicting the result of a one-
time experiment, which has three possibilities R1, R, and R3. A probability distribution
function P is used to represent our degree of belief on each possibility, so the space of
events S includes Ri, R, and Rs as propositions, as well as the propositions formed by
them using Boolean operators A (and), V (or), and = (not). Initially, the background
knowledge, referred to as K, supports each possibility to the same extent, so our belief
status about the experiment result is

PK1(R1) = PKl(RQ) = PKl(R3) = 1/3
This belief status can be revised in two different ways when new information comes:

1. The new information shows that R; will not happen. In this case, Bayesian
conditionalization gives us a new belief status

Pry(R1) = Pg,(Ri|~R1) =0
Pr,(R2) = Pg,(R2|-Ry) =1/2
Pr,(R3) = P, (R3|-R1) =1/2

here the new background knowledge K5 include K; and the new information.
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2. The new information doubles the evidential support for Ry, while says nothing directly
about the other two. According to the current background knowledge K3, the new
belief status is

Pr,(R1) =1/2; Pry(R2) = Pr,(R3) = 1/4

The revision is not carried out by Bayesian conditionalization, since the new
information cannot be represented as a “condition”.

In this example, the probability of Kj, Ks, or K3 is undefined. Some people think since
they are accepted assumptions, they have probability value 1, which is a misconception,
since they are not even in S.°

When putting in this way, we assume all researchers will agree that the two types of
evidence are very different, and the one-number Bayesian approach can only handle the
“learning” or “pooling” of E (such as to get Pk (H|E1 A E2) from the information provided
by Pk ), but not that of K (such as to get Pr,uk,(H|E) from the information provided by
Pg, and Pg,), except in certain special situations. However, the previous examples show
that inaccurate use of notions does happen in many places, and this conceptual confusion
between different types of evidence is often unnoticed. Many people seem to think that “as
far as the background knowledge is not actually processed as condition, there is no harm
for it to be represented as condition”. Though such a treatment does not cause calculation
mistakes, this practice is responsible for the misconception that there is no fundamental
difference between background knowledge and condition, so that the missing information
in background knowledge can be learned later by conditionalization. Consequently, people
get the impression that all types of evidence can be handled by the one-number Bayesian
approach, though nobody has explicitly argued that “background knowledge” can indeed
be treated as “condition” in conditional probability.

In summary, when used properly, the one-number Bayesian approach does provide a
framework for the representation and processing of inconclusive evidence. Using a numerical
measurement of evidential support, it works better than a binary logic in many problems.
However, within this framework certain properties of evidence cannot be captured. It is not
enough to use a single probability distribution for representation (since it cannot provide the
information on how much the distribution should be modified by a piece of new evidence),
and Bayesian conditionalization for learning (since it cannot revise background knowledge).
As soon as there is a need to generally revise the background knowledge (i.e., the evidence
on which the prior probability distribution is based), the one-number Bayesian approach
will not work. Since an AGI system needs to handle evidence coming from different sources,
it cannot assume that all evidence can be treated with respect to a chunk of background
knowledge that remains constant all the time.

4. Dempster-Shafer Approach

The conclusion of the previous section can be put in a different way, that is, even if a
probability value can be assigned to a belief according to the available evidence, the value

5. S cannot be extended to include possible background knowledge, since Ki, K2, and K3 are not in
the same conceptual space as Ri, Rz, and R3, so the two groups should not be covered by the same
probability distribution function.
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does not show the system’s ignorance or uncertainty about the probability evaluation itself,
which is needed for its revision. This opinion is hardly new, and it has been a major
motivation for new uncertain reasoning theories. Omne example is the Dempster-Shafer
theory of evidence, or D-S theory (Dempster, 1967; Shafer, 1976).

D-S theory differs from other uncertainty management approaches in two major points:

1. In the representation of uncertainty, the theory starts at a basic probability assignment,
m(x), defined on the space of the subsets of competing hypotheses. Then m(x) defines
the degree of belief, Bel(A), and the degree of plausibility, PI(A), of a set of hypotheses
A. Intuitively, the [Bel(A), PI(A)] interval is a generalization of probability function
Pr(A), and the width of the interval indicates the ignorance of the system on A.

2. In the processing of uncertainty, Dempster’s rule of combination is applied to calculate
mi1@®ma(x) from my(x) and ma(x), where mj(x) and mao(z) are based on evidence
from distinct sources, and mj;@®ma(z) is based on the pooled evidence. The resulting
interval [Bel(x), Pl(z)] gets narrower, and when the rule is repeatedly applied, the
interval eventually converges to a point, which is a probability value.

Formally, a frame of discernment © is an exhaustive and exclusive set of hypothesis. On
it, the basic probability assignment m : 2© — [0, 1] is constrained by

m(®) =0, > {m(4)|ACeO}=1

When A is a subset of O, its degree of belief Bel(A) and degree of plausibility PI(A) are
defined as the following

Bel(A) => {m(B)|B C A}, PI(A) =) {m(B)|BNA# 0}

For a hypothesis H € ©, Bel({H}) < PI({H}), and PI({H}) = 1 — Bel({-H}). When
Bel({H}) = PI({H}), both of them should be the same as Pr(H), the probability, or
chance, of H. Therefore, D-S theory attaches two numbers to each belief to measure its
uncertainty, and the [Bel({H}), PI({H})] interval provides a more general measurement
than Pr(H), by allowing some ignorance, as measured by the width of the interval.
Dempster’s rule specifies how to combine two basic probability assignments:

ml@mg(@) = 0
m@ma(4) = AY {mi(B)ma(C) | BNC = A+ 0}
A= 1= {mi(B)ma(C) | BNC =0}

This rule is used to combine the evidential support from distinct sources.
Shafer (1976) also introduces a weight of evidence with the following properties (Shafer,
1976, pages 7, 88):

1. Weight of evidence w is a measurement defined on bodies of evidence, and it takes
values in [0, oo].

2. When two entirely distinct bodies of evidence are combined, the weight of the pooled
evidence is the sum of the original ones.
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Now we can summarize the relevant statements in Shafer (1976) into the following four
postulates:

Postulate 1: Chance, or probability, is the limit of the proportion of positive outcomes
among all outcomes (pages 9, 202).

Postulate 2: Chances, if known, should be used as degrees of belief (pages 16, 201).

Postulate 3: Evidence combination corresponds to the addition of weights of evidence
(pages 8, 77).

Postulate 4: Dempster’s rule should be used for evidence combination (pages 6, 57).

Though each of the above postulates sounds reasonable individually, Wang (1994a) has
proved that they are inconsistent. In the following the proof is summarized.

For our current purpose, it is enough to study the simplest non-trivial frame of
discernment, where |©] = 2. Let © = {H,H'}. Since O is exhaustive and exclusive,
H' = —H. Also, we consider a simple type of evidence combination: enumerative induction.
In this situation there are only two types of evidence: positive evidence (that supporting
H) and negative evidence (that supporting —H).

For each piece of evidence, the basic probability assignment is:

positive evidence: m({H})=s, m({-H})=0, m(©)=1-s
negative evidence: m({H}) =0, m({-H})=s, m(©)=1-s

where s is a constant in (0, 1), indicating the extent of the support by a single piece of
evidence. Later we will see that the value of s does not matter for this discussion.

The relationship between s and the weight of a single piece of evidence, wgy, can be
derived from Dempster’s rule (Postulate 4) and the additivity of the weight in evidence
combination (Postulate 3). Shafer (1976, page 78) gives the following results:

wo

s=1—e" wy=—log(l—s)

Let us use tT and ¢t~ for the number of pieces of positive and negative evidence,
respectively, and assume the pieces are all distinct, so no evidence is repeatedly counted.
Applying the above relation to this situation, Postulate 3 gives the accumulated weight of
positive and negative evidence:

wt = wot+ , W = wot

The corresponding basic probability assignments can be decided by the reverse relation,
and then using Dempster’s rule the belief function can be derived (Shafer, 1976, page 84):

+
eV —1

Bel({H}) =

Now when the number of pieces of evidence, t = tT + ¢, goes to infinite, so does the
total weight of evidence w = w™ + w™. According to Postulate 1, the probability of H is
t+
q= lim —

t—oo t
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At the same time, the belief function also converges (Shafer, 1976, page 198):
Belo({H}) = lim Bel({H})
w—00

But for the current example we find (Wang, 1994a):

0 ifg<0.5
Belo({H}) = 0.5 ifg=0.5
1 ifg>05

This result contradicts Postulate 2, which requires Belo({H}) = g.

Therefore if g (the chance of H) exists, then by repeatedly applying Dempster’s rule to
combine the coming evidence, Bel({H}) (and PI({H})) will converge to a point. However,
that point is not ¢ in most cases, but 0, 0.5, or 1, indicating qualitatively whether there is
more positive evidence than negative evidence.

Possible solutions of this inconsistency are discussed in detail in Wang (1994a). One of
them is to give belief function and Dempster’s rule a new interpretation, and do not link
them to probability or chance (Smets, 1991; Smets and Kennes, 1994; Baroni and Vicig,
2001). Such a semantic change resolves the inconsistency (though it was not proposed
initially for this purpose), but it achieves that at the price of giving up a major objective
of the theory, that is, to extend probability theory by representing ignorance as part of the
uncertainty to be processed.

As far as the current discussion goes, the important issue is not how to save D-S theory
from the inconsistency, but how to represent and process evidence in AGI systems. On
one hand, we see that the one-number Bayesian approach is not enough here, because the
amount of evidence cannot be decided from a probability distribution function. On the
other hand, we still want to take a probability distribution as a special case, when the
ignorance about it can be ignored.

From the above discussion, we show that if Dempster’s rule is used to combine evidence,
the belief function does not converge to the chance of the belief (if it exists), and in general,
the belief function is not directly related to the most common measurement of uncertainty,
the proposition of positive evidence among all evidence. If these properties are desired, then
Dempster’s rule has to be given up.

5. Two-number Bayesian Approaches

D-S theory is not the first attempt to use two numbers to represent a probability evaluation
and the amount of its supporting evidence. Similar opinions were proposed much earlier,
by researchers following different paths of thought:

In short, to express the proper state of our belief, not one number but two are
requisite, the first depending on the inferred probability, the second on the amount

of knowledge on which that probability is based. (Peirce, 1878, page 160)

As the relevant evidence at our disposal increases, the magnitude of the
probability of the argument may either decrease or increase, according as the new
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knowledge strengthens the unfavorable or the favorable evidence; but something
seems to have increased in either case — we have a more substantial basis upon
which to rest our conclusion. (Keynes, 1921, page 71)

According to these opinions, this amount of evidence (or knowledge) provides informa-
tion that is not in the probability values. Intuitively, this measurement should correspond
to the weight of evidence in D-S theory, or the sample size in statistics, and it should be
additive when different pieces of evidence are pooled together. A larger amount of evidence
should correspond to a more stable belief during revision.

There have been attempts to derive such a measurement from a probability distribution
function. For example, Good (1950, 1985) defined a “weight of evidence” as the logarithm
of a “Bayes factor”, a function of probability. More recently, Halpern and Pucella (2006)
introduced a “weight of evidence”, which “is essentially a normalized likelihood”. This kind
of measurement, though useful for other purposes, cannot solve our current issue, because
according to the previous discussion, the probability distribution function Pk (z) does not
contain all the information about the background knowledge K. This K is able to derives
the probability distribution, rather than be derived from it, since the same probability
distribution (such as “The probability of getting a head from tossing this coin is 0.5.”) may
come from very different background knowledge (“This coin is known to be fair” vs. “The
fairness of this coin is unknown”).

Another approach in the Bayesian tradition is Walley’s theory of “imprecise probabil-
ities” (Walley, 1991, 1996b). The intuition behind Walley’s lower and upper probabilities
of an event is similar to Dempster’s original idea, as well as Shafer’s belief function and
plausibility function, but Walley defines them as the minimum and maximum betting rate,
respectively, that a rational person is willing to pay for a gamble on the event.

To compare this approach with D-S theory, we can also apply it to enumerative
induction. To relate probability to evidence, Walley assumes a situation where the chance
for an event to happen has a near-ignorance prior distribution, and the observations of the
event are independent of one another. If among ¢ observations the event happens ¢* times,
then according to Bayes’ Rule, the lower and upper probabilities of the event are

I=t"/(t+s0), u= (tT +s0)/(t+ s0)

respectively, where sy is a parameter of the prior distribution, indicating the convergence
speed of the lower and upper probabilities (Walley, 1991, page 218).

An evidence combination rule can be derived from the additivity of evidence and the
above relation between evidence and lower /upper probability. If the support of two distinct
pieces of evidence to the same belief is measured by two pairs of lower /upper probabilities,
[l1, u1] and [l2, ug], respectively, then the equivalent amounts of evidence are:

l 1-— —1
tf =so——, t1 = 807@1 )
u — I up — Ul
l 1-— —1
t+ = S0 2 y t2 = 807(’“2 2)
Uy — o ug — lo

The ignorance (or imprecision) of a belief is defined as the difference between its lower and
upper probabilities, that is, i = u — [ = s¢/(t + s¢), which decreases as t increases. Using
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it, the above relations are simplified into:

l 1—1
+ 1 - 1
ty = 80—, t1 = 80—

11 11

l 1—i
+ 2 . 2
ty = S0, ta = So—

12 12

When the two pieces of evidence are combined, for the result we have
th =t +t5, t=t1+1

Now the probability interval of the conclusion, [I, u], can be calculated from the probability
intervals of the premises, [l1, u1] and [l, uz|, according to the relation between [l, u] and
{t*, t}, plus the above six equations. Assuming all ignorance values are non-zero, we get
the following functions

lyig + 121y " — l1ig + loi1 + 1189 i — 1112

[ =- . — . . — = - . —
i1 + iy — i1i2’ i1 +ig — i1 11 + 12 — 1112

which are independent of the choice of sy. This combination rule is not in any of Walley’s
writings (as far as we know), though can be directly derived from the relationship between
belief and evidence in his theory.

In this simple situation, the above rule does what Dempster’s rule is supposed to do,
that is, to combine evidence from different sources. Furthermore, when the chance of the
event does exist, the two probabilities converge to it, that is,
tt Lottt tt + s

= lim — = lim
t—oo t + s t—oo t t—oo ¢+ sg

In summary, as far as the current discussion is concerned, both D-S theory and Walley’s
theory can be seen as attempts to extend the one-number Bayesian approach, by using an
interval to represent the degree of belief:

d(B,E) = [l,u]

Intuitively speaking, the interval as a whole serves the role of a probability value in the
one-number Bayesian approach, while the width of the interval measures another type
of uncertainty that cannot be properly represented in the one-number approach. When
the system gets more and more evidence, the interval gets narrower and narrower, and it
eventually converges to a point. Their difference is that in Walley’s theory, the point is the
probability of the belief, while in D-S theory it is not (despite of the claim that it is).

In Walley’s theory, the [l,u] interval and the amounts of (confirming and total)
observations {t*,¢} mutually determine each other, under the assumption on the prior
distribution and its parameters. Therefore if the evidence of the system directly comes
from countable observations (as in enumerative induction), the degree of belief can also be
represented by the this pair of number:

d(B,E) = {t",t}
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Similar situations exist in some other approaches of the Bayesian tradition, where the
system’s belief on a statement is represented not by a probability value, but by a probability
distribution of a certain type (such as beta distribution) and with certain parameters, then
with the coming of new observations, Bayes Theorem is used to revise the parameters, so as
to change the system’s belief (DeGroot, 1970). These approaches are different from the one-
number Bayesian approach discussed previously, because when implemented in a computer
system, they will need to attach two numbers to each statement to represent how much the
system believes it, either in the form of the parameters of the probability distribution (e.g.,
a and 3 for a beta distribution), or the number of observations (i.e., {t*,¢}) from which
the parameters can be determined.

This result is in agreement with the Peirce-Keynes thesis that two numbers are needed
to represent the relation between evidence and belief, though we have seen that there may
be different ways to define such numbers. What matters here is that the “degree of belief”
should actually have two degrees of freedom in it, because using a single number, it is
impossible to distinguish the two aspects in evidential support: its direction (i.e., positive
vs. negative) and its stability (i.e., strong vs. weak). More will be said about these two
factors in the following.

6. Evidence in NARS

In this section, one more two-number approach is introduced. It is part of an AGI project,
NARS (Non-Axiomatic Reasoning System). The project has been described in many other
places, including Wang (2006) and the publications at the project website.5 This article
makes no attempt to introduce NARS as a whole, but uses it as another example to support
the conclusion that two numbers are needed for degree of belief used in AGI systems.
Therefore, here we only describe the definitions of evidence and degree of belief in NARS,
as well as how these definitions are related to the approaches and issues discussed earlier in
the article.

NARS is an adaptive system that can work with insufficient knowledge and resources.
The system solves problems in real time according to its beliefs (i.e., knowledge), while
new knowledge and problems show up from time to time, with unpredictable content. As
a reasoning system, its beliefs and problems are all represented in a formal language, and
processed according to a set of formal inference rules. The system implements a logic, in
the sense that the language and the rules are not ad hoc, but based on a clearly specified
semantics, which is established to capture the rationality and validity of reasoning in
intelligent systems. NARS is very different from classical or the other non-classical logics,
mainly due to the assumption of insufficient knowledge and resources.”

A major syntactical feature that distinguishes the logic of NARS from FOPL and other
conventional logics is that it is a term logic, in which a typical statement is in the “subject-
copula-predicate” format, as in Aristotle’s logic. Concretely, in NARS the basic form of

6. The NARS website is at http://nars.wang.googlepages.com/. The syntax of NARS’ formal language
and inference rules is described in Wang (1994b, 2001a), and its semantics in Wang (2005). NARS is
compared with probabilistic logics in Wang (2001b), and with fuzzy logics in Wang (1996b). The website
also links to an online demonstration of NARS, with working examples.

7. A detailed discussion on this topic can be found in Wang (2006).
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knowledge is an inheritance statement, “S — P”, where S and P are the subject term and
predicate term of the statement, respectively, and “—” is a copula representing inheritance,
a reflexive and transitive relation from one term to another. Intuitively, the statement says
that S is a specialization of P, and P is a generalization of S. Therefore “Ravens are black”
can be represented as “raven — black-thing” in NARS.8

In NARS, an experience-grounded semantics is used, which defines truth-value and
meaning according to the system’s ezperience (i.e., input information stream). In the
idealized situation, the system’s experience is a set of inheritance statement defined above.
Given experience K and different terms S and P, “S — P” is true if and only if it is in
K or can be derived from it (via the transitivity of the inheritance relation). The meaning
of a term T is defined as consisting of its extension T* = {x|z — T} and intension
T! = {x|T — z}, that is, its known specializations and generalizations.

From the above definitions, it can be proved that

S—P <+ SFcpf — plcg!

that is, a perfect inheritance relation means the extension of the subject is completely
included in that of the predicate, and the intension of the predicate is completely included
in that of the subject. Furthermore, all evidence is already available, so there is no future
evidence to be considered.

The above result shows that an inheritance statement can also be seen as a summary of
many other inheritance statements. This feature is used to naturally introduce the notion
of evidence, so as to extend the perfect inheritance relation into an imperfect inheritance
relation, where conflicting evidence and future evidence must be considered.

From given experience K, the meaning of the terms in it, including S and P, are
determined. For statement “S — P”, its positive evidence are terms in S¥ N PP and
PN ST (because the statement is true as far as these terms are considered), and its negative
evidence are terms in S¥ — PF and P! — S! (because the statement is false as far as these
terms are considered). As a result, the amounts of positive evidence, negative evidence, and
total evidence of the statement “S — P” are defined as the following, respectively:

wt = |SENPF|+|PINS|
w™ = |S¥ - PE|+|Pl -8
w = wt+w = |SF|+|P

The truth-value of a statement consists of a pair of real numbers in [0, 1], defined by

the amounts of evidence:?

frequency = wt/w
confidence = w/(w+ k)

where k is a positive parameter, with 1 as default in the current implementation.

8. NARS can directly use compound terms called “intensional sets” to represent adjectives, without turning
them into nouns. Therefore, “Ravens are black” can also be represented in NARS as “raven — [black]”.
See Wang (2006) for details, though this topic has little impact on the current discussion.

9. According to model-theoretic semantics, truth and belief are different. On the contrary, according to
experience-grounded semantics, truth-value and degree of belief are the same, both determined by the
extent of evidential support. This topic is discussed in detail in Wang (2005, 2006).
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Comparing the above definition of evidence to the previously discussed ones, we see
that it is basically Nicod’s criterion, except that in NARS both the extensional aspect and
the intensional aspect of the relation are taken into account. Therefore the properties
(generalizations, intension) of the predicate are counted as evidence of the inheritance
statement, just like the instances (specializations, extension) of the subject. Consequently,
the truth-value of NARS includes a factor that is similar to the “representativeness”
discussed in Tversky and Kahneman (1974, 1983), and the “conjunction fallacy” is not
necessarily a fallacy anymore. A detailed discussion of this topic is in Wang (1996a).

NARS uses a term logic partly because in it the basic statements are in the “subject-
copula-predicate” format, so the above definition of evidence can be easily introduced. In
predicate logics, such a definition cannot be directly applied.

NARS does not suffer from the confirmation paradox, because a red pencil is not evidence
for “raven — black-thing”. NARS uses compound terms for complex statements, and they
include the extensional difference of terms Ty and Ty, (11 — T%), defined by

(T =) =T - T3, (1 —T)' =T{
Therefore “Whatever is not black is not a raven” can be written as
(thing — black-thing) — (thing — raven)
which has the same negative evidence (i.e., non-black ravens) as
raven — black-thing

but they have different positive evidence. Consequently, in NARS “Ravens are black” and
“Whatever is not black is not a raven” have different evidence, and therefore different
truth-value and meaning, though they are still related to each other semantically.

Now it is time to summarize our analysis of the confirmation paradox. Since
“confirmation” is about inconclusive positive evidence, it cannot be properly introduced
into a binary logic, where a single constant can only provide negative evidence. For the same
reason, it cannot be introduced into a new logic together with the traditional equivalence
condition, which only considers negative evidence. The proper solution to this paradox is
not to accept the counterintuitive conclusion (e.g., A red pencil is confirming evidence for
“Ravens are black”), but to drop the old equivalence condition, because it is incompatible
with the notion of confirming evidence.

Some people may think that this does not count as a solution to Hempel’s paradox, but
a different problem. This is true in a sense, but does not disqualify the conclusion. For
many problems in the history of science, their solutions turn out to be reformulations of
the problems. Hempel’s initial goal was to formalize the confirmation process, and when he
tried to do so in the framework of binary logic, a paradox was found. The above analysis
shows that the problem exists in the fundamental assumptions of the framework, in which
the concept of confirming evidence cannot be properly introduced. This is a valid solution
of Hempel’s problem, though not in a form expected by him and many others.

Our treatment of Wason’s selection task is similar, which has been explained in Wang
(2001c). To evaluate the truth-value of a statement, both positive evidence and negative
evidence should be collected. Since the former is often easier to be recognized and processed,
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what the subjects do in this experiment can be explained and even justified. The problem
in the traditional interpretation of the experiment result is that many people take FOPL
as the only normative theory of reasoning, and therefore treat any deviation from it as
a mistake. According to the previous discussion, binary logic should be applied to the
selection task only when violation of a statement is explicitly sought and confirming evidence
are deliberately ignored. There are such situations, such as the often mentioned “underage
drinking” scenario (Griggs and Cox, 1982), but they are exceptions, not normal cases, for
evidential reasoning in general.

The truth-value in NARS is intuitively related to probability. The frequency value is the
success rate of the inheritance statement in the past, which is often taken as an estimation
of the statement’s probability when the sample size is large enough. In NARS, frequency
indicates the direction of a belief, that is, a value near 1 means the belief is affirmative (or
positive), while a value near 0 means the belief is dissenting (or negative). The confidence
value is the ratio of the amount of current evidence to the amount of future evidence after
the coming of evidence of a constant amount, and is therefore an increasing function of
the amount of total evidence. In NARS, confidence indicates the stability of a belief, that
is, a value near 1 means the belief is already based on a large amount of evidence (so is
insensitive to new evidence), while a value near 0 means the belief is based on little evidence
(so is sensitive to new evidence). Frequency and confidence are independent of each other,
in the sense that given the value of one, the value of the other cannot be determined or even
bounded. Used together, these two values are roughly what Peirce and Keynes suggested.'”

As argued previously, as well as in Wang (1993, 2001b, 2004), the information in the
confidence measurement of NARS is not generally available in the one-number Bayesian
approach, which uses a probability value to represent a degree of belief.

Furthermore, though each truth-value in NARS can be seen as corresponding to an
estimated probability value plus a function of sample size, the truth-values of various beliefs
that co-exist at the same time do not correspond to a consistent probability distribution
on the statement space. In NARS, each inheritance statement has its own evidence scope
(defined by the extension of its subject and the intension of its predicate, as described
before), and due to the assumption of insufficient resources, when the truth-value of a
given statement is evaluated, the system does not attempt to consider all relevant evidence.
Instead, in each inference step the truth-value of the conclusion is evaluated only according
to the evidence provided by the premises. Consequently, following different inference paths,
the same statement can be given different truth-values, so there is no guarantee of coherence,
in the sense that the truth-value of a statement is unique, independent of how it is decided.

Though coherence among beliefs is highly desired, it is not always possible to be fully
achieved. For a system working with insufficient knowledge and resources, it cannot always
recognize potential conflicts among its beliefs, nor can it afford the resources to fully and
immediately resolve all the conflicts it finds. Instead, such a system can only try its best to
base its beliefs on available evidence that can be considered with available resources.

In NARS, when the same statement gets two different truth-values from distinct bodies
of evidence,'! the revision rule is used to combine the evidence. The truth-value function of

10. NARS does not directly use amounts of evidence as truth-value, because in the design of inference rules,
values in [0, 1] are easier to handle than values in [0, co).
11. See Wang (1995a, 2006) for how the system decides whether two bodies of evidence are distinct.
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this rule is directly derived from the additivity of amount of evidence in this operation. If
the bodies of evidence have overlap, the choice rule is used to select one of the truth-values
(usually the one with a higher confidence factor). These rules contribute to the solution of
the reference class problem, as described in Wang (1995b, 2006).

The truth-value of NARS can be equivalently represented as an interval, too. As defined
previously, the current frequency value of a statement is the proposition of positive evidence
among all available evidence, w™ /w. In the near future, with the coming of evidence of
amount k, the frequency value will be in the interval

[wh/(w+ k), (w +k)/(w+ k)]

Since enumerative induction is a special case where w™ = wot* and w = wgt, this interval
is basically the same as Walley’s

[tT/(t + s0), (T + s0)/(t + s0)]

though interpreted differently — in NARS, the assumption on prior distribution is not
made, and all measurements are defined on available evidence.

In NARS, the system’s ignorance about the statement is also represented by the width of
the above “frequency interval”, like the other interval approaches. Soi = k/(w+k) =1—¢,
where c is the confidence factor. Therefore, “confidence” and “ignorance” are opposite to
each other, which is consistent with the usual usage of these two words. With the coming
of new evidence, the interval becomes narrower and narrower. An interval-based revision
rule that combines evidence from different sources can be derived for frequency interval
from the additivity of w™ and w during revision, and it has the same form as the proposed
“combination rule” for Walley’s theory in the previous section.

The representation and processing of uncertainty in NARS is more similar to Walley’s
theory of imprecise probabilities than to the other approaches mentioned before. These
two approaches not only share many intuitions, but also have identical results on certain
cases. One major difference between the two is semantic interpretation. The truth-value of
NARS is defined in terms of evidence, while Walley’s theory starts at people’s preference
among options as revealed by their betting decisions. Though the probability interval in
Walley’s theory can be related to additive evidence, it is not the focus of the theory, so this
relation is often omitted completely in descriptions of the theory, such as Walley (1996a).
Walley’s theory is proposed as an extension of probability theory, and therefore the inference
is mainly within the same probability distribution. On the other hand, NARS is designed
to be a logic. As described previously, in NARS each belief is based on a separate body
of evidence, so that the rules correspond to inference across different evidential basis, and
the coherence principle, a cornerstone of Walley’s theory and all other probability-based
approaches, is not granted in NARS.

Now let us summarize the major similarity and difference between NARS and the other
approaches in the definition and representation of evidence.

Binary-valued (and three-valued) logics: Like other logics, NARS represents beliefs
and evidence using a formal language, though it uses a numerical truth-value to
measure evidential support, which is inconclusive, and covers both positive evidence
and negative evidence.
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One-number Bayesian approach: The frequency measurement in NARS is intuitively
related to probability, though it is defined on available evidence, and is accompanied
by a confidence measurement. The truth values do not form a probability distribution
in a closed statement space. All domain knowledge can be revised by new evidence.

Dempster-Shafer theory: NARS accepts the first three postulates of D-S theory (listed
previously), though rejects Dempster’s rule of evidence combination. Instead, the
corresponding rule in NARS is directly implied by the additivity of the amount of
evidence during combination.

Two-number Bayesian approaches: NARS uses two numbers to represent the degree
of belief of a statement, like some approaches in the Bayesian tradition. However, it
is still different from the others in the following aspects:

e The numbers are fully defined on available evidence, without assumption on their
probability distribution or behavioral implication. For an AGI system opening
to novel experience, its degree of belief does not necessarily converge to a limit.
Some of its beliefs do not directly correspond to observable events or actions.

e The beliefs of a system are statements in a formal language (so their number is
unlimited), rather than in a constant proposition/event set. For an AGI system
opening to novel experience, new evidence may contain novel statements (even
statements with novel words) for which no previous belief exists.

e Each belief is based on its own chunk of evidence, so there is no guaranteed
coherence among the truth-values in the system. An AGI system should try to
resolve incoherence among its beliefs, though conflicting evidence cannot always
be formalized as conditional probabilities that are based on different conditions,
nor can the system afford the resources to exclude all contradictions implied by
its beliefs.

Given the above differences, NARS indeed proposes a novel formalization of evidence,
though it is still similar to the existing approaches here or there.

The inference rules of NARS, which are summarized and explained in Wang (2006), are
very different from those of the other theories. This paper cannot go into the details of the
rules, so here we will only say that

e Different inference rules are unified in NARS by having similar formats and usages.
They including revision, choice, deduction, induction, abduction, comparison, analogy,
compound-term composition and decomposition, and so on.

e The inference rules are justified according to the experience-grounded semantics. For
a given rule, the truth-value of its conclusion is determined only by the evidence
provided by the premises.

e The truth-value functions included in the inference rules are designed using “T-norm”
and “T-conorm” (Bonissone, 1987; Dubois and Prade, 1982). These functions cannot
be derived from probability theory, partly because some of the values cannot be
interpreted as probability, and the ones that can be taken as probability still do
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not belong to the same probability distribution. Even so, there are situations where
they produce similar results as probability-based approaches.

In summary, the formal treatment of evidence in NARS is designed according to the
considerations of AGI research, and the result is consistent with our understanding of human
intelligence. Furthermore, many related traditional problems are consistently handled.

7. Conclusion

The major conclusion of this article is the previously mentioned “Peirce-Keynes Thesis”,
which can be expressed, for our current purpose, as the following:

For a general-purpose system to base its beliefs on available evidence and to
process novel evidence in real time, it is necessary to use two numbers to measure
the system’s degree of belief.

These two numbers can be defined and used in different ways. For example, in NARS the
same information can be represented as amount of evidence (w™ and w), truth-value (f and
¢), or frequency-interval ([l, u]), and the system can switch among the three representations,
plus some variants of them.

Though some results in this article are known to logicians or statisticians, the above
conclusion is not trivial, because in most existing Al systems, degree of belief (or whatever it
is called) is still either represented qualitatively, or measured using a single number, usually
a probability. Though two-number approaches are common in fields like statistics, they are
rare in Al, especially in implemented systems. This situation is to a large extent caused by
the underestimation of the limitation of the binary-value and one-number approaches.

Binary logic, as exemplified by FOPL, can properly represent and handle beliefs with
conclusive evidence, but cannot do that with inconclusive evidence. To introduce such
evidence leads to counterintuitive results, as shown by Hempel’s confirmation paradox and
Wason’s selection task.

The one-number Bayesian approach can represent inconclusive evidence in a simple and
natural way, but has limitation in revising the current beliefs according to new evidence,
because the ignorance of the system cannot be captured as conditional probability. As a
result, it should be used only when a probability distribution function can be established
on stable background knowledge.

To support revision in general, it is necessary to attach two numbers to each belief.
Though there are more than one way to do it, the evidence combination rule should be
consistent with the additivity of the amount of evidence. Furthermore, it is desired for
the measurements to converge to probability as an extreme case. When the coherence of
probability can be achieved, the imprecise probability theory or other two-number Bayesian
approaches may work.

The representation and processing of evidence in NARS is developed specially for
general-purpose intelligent systems, and is based on the assumption of insufficient knowledge
and resources. Consequently, it is designed to work in realistic situations, and can carry out
inference without making strong assumption on the environment, or requiring huge amount
of resources to keep the coherence of the beliefs.
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