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ABSTRACT: 
 
Although various analytical and numerical methods have been proposed by researchers to solve equations, but use of numerical tools 
with low volume calculations and high accuracy instead of other numerical methods with high volume calculations is inevitable in the 
analysis of engineering equations. In this paper, B-Spline spectral method was used to study buckling equations of the piles. Results 
were compared with the calculated amounts of the exact solution and finite element method. Uniform horizontal reaction coefficient 
has been used in most of proposed methods for analyzing buckling of the pile on elastic base. In reality, soil horizontal reaction 
coefficient is nonlinear along the pile. So, in this research by using B-Spline method, buckling equation of the pile with nonlinear 
horizontal reaction coefficient of the soil was investigated. It is worth mentioning that B-Spline method had not been used for buckling 
of the pile.   
 
 

1. INTRODUCTION 
 
Use of simple and precise tools in calculations and numerical 
analyses of engineering equations is essential. B-Spline has been 
used in different conditions of engineering by various researchers 
(Andrade et al. 2010; Moghaddam et al. 2012; Shariyat and 
Asemi, 2014). But use of this tool for buckling analyses of piles 
under the structures has not been reported yet. In this research 
program, B-Spline method was utilized in numerical solution of 
buckling equation of the beam on elastic base as shown in Figure 
1. Basic equation for buckling of columns under the effect of 
lateral springs based on beam on elastic base is (Hetenyi, 1960): 
 

(1) �� ��� ���� + 	 �
� ��
� + �
� = 0 

 
where: EI = pile stiffness 
            P = vertical load on pile 
           Ks = horizontal reaction coefficient 
           Y = lateral displacement of pile under vertical load 
 

                                                                 
* Corresponding author: Arash NAYERI, e-mail: Arash.nayeri@gmail.com 

 
Figure 1. Column or pile under vertical load in beam on elastic 

base condition  
 
In engineering analyses based on beam on elastic base, horizontal 
reaction coefficient represents characteristics of soil and 
surrounding materials of pile or column. The boundary 
conditions in Eq (1) based on Figure 1 are (Aristizabe Ochoa, 
2013): 
 

(2a) � = �                  �� �
� ��
� + �� �� ��� = �� 
(2b) � = 0             − �� �
� ��
� + �� �� ��� = �� 

(2c) � = �     − �� ��� ���� − 	 �� ��� + ��� = �� 

(2d) � = 0          �� ��� ���� + 	 �� ��� + ��� = �� 

 
where:   ��, �� = overturning moments at A and B 
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                �� , ��  = Shears at A and B 
 
In 1960, Hetenyi proposed a method for solving buckling 
equation (Hetenyi 1960). This method became a base for 
analytical methods in calculation of buckling behaviour. By 
continuing Hetenyi method, pile's buckling critical load for semi-
rigid joints in supports was investigated by Aristizabe-Ochoa 
(2013). West et al. (1997) studied buckling of the pile with 
various support's conditions and different modes, with analytical 
solution of buckling equation. Then, this analytical method was 
extended by adding friction between soil and pile to the equations 
and partially embedded piles by other researchers (West et al, 
1997; Heelis and West, 1999; Heelis et al, 2004). Deng et al 
(2017) presented an analytical method on the basis of Modified 
Vlasov Foundation Model. They reported that Poisson's ratio did 
not have any effect on buckling critical load. It is worth noting 
that soil's horizontal reaction coefficient along the pile was 
assumed uniform in calculating buckling equation. Although 
many researches had been conducted on piles' buckling capacity, 
but Bhattacharya (2004) researches on 15 constructed piles which 
had experienced buckling failure under different loads; led to 
onset of detailed investigations on buckling of the piles in recent 
years. These researchers believed that buckling critical load in 
different codes should be reinvestigated. Moreover, the effect of 
buckling on liquefaction phenomenon under dynamic loads 
should be studied (Bhattacharya et al. 2004; Bhattacharya et al. 
2005). In 2013, Law Chi Wai investigated buckling equation by 
using finite difference numerical method. He proposed pile's 
buckling equivalent length in various conditions (Law Chi Wai 
2013). It is worth mentioning that in all of the exact solutions and 
numerical methods for buckling equation on the basis of beam on 
elastic base, the amount of horizontal reaction coefficient was 
supposed uniform or with linear variations along the pile. But the 
actual value for horizontal reaction coefficient along the pile is 
non-uniform and nonlinear (Terzaghi 1955; Davisson and 
Perkash, 1963). One of the main objectives of this research was 
extending these methods by using B-Spline numerical method 
with nonlinear reaction coefficient along the pile. It should be 
noted that the amount of horizontal reaction coefficient along the 
pile should be modelled nonlinear in applied analysis of 
engineering. 
 
 

2. B-SPLINE METHOD 
 

B-Spline method is a spectral method for analyzing equations. 
Since buckling equation is fourth order, fifth degree B-Spline 
base equations should be used for analyzing. Various degrees of 
B-Spline equations can be found in (Hikmet Caglar and 
NazanCaglar 2008; De Boor 1978; Piegl and Tiller 1995).  
Fifth degree B-Spline base equations are presented in Eqs. (3), 
with equally-spaced knots of a partition π: a= x0< x1<… <xn = 
b on [a,b]. Let S5[π] be the space of continuously-differentiable, 
piecewise, fifth-degree polynomials on π, that is, S5[π] is the 
space of fifth-degree Splines on π. Consider the B-Splines basis 
in S5[π]. The fifth-degree B-Splines are defined as Eqs. (3) 
(Hikmet Caglar and Nazan Caglar 2008): 
 � !"# = 1120h' !�'#                                           0 ≪ � < ℎ 

 1120h' !−5�' + 30ℎ�� − 60ℎ
�� + 60ℎ��
 − 30ℎ�� + 6ℎ')                       ℎ ≪ � < 2ℎ 

 
 
 
 
 
 
 

 1120h' !10�' − 120ℎ�� + 540ℎ
�� − 1140ℎ��
 + 1170ℎ�� − 474ℎ')          2ℎ ≪ � < 3ℎ 
 1120h' !−10�' + 180ℎ�� − 1260ℎ
�� + 4260ℎ��
 − 6930ℎ�� + 4386ℎ'#     3ℎ ≪ � < 4ℎ 
 1120h' !5�' − 120ℎ�� + 1140ℎ
�� − 5340ℎ��
 + 12270ℎ�� − 10974ℎ'#   4ℎ ≪ � < 5ℎ 
 1120h' !−�' + 30ℎ�� − 360ℎ
�� + 2160ℎ��
 − 6480ℎ�� + 7776ℎ'#   5ℎ ≪ � < 6 
 

 
 
(3) 
 

2345!�# = 26!� − !7 − �#ℎ ,   7 = 2,3, … 
 
General equation of B-Spline line which is the approximate 
solution of the equation is defined as Eq (4): 
 

(4) S!�# = : 23,;!�#<3
=
3>6  

 
where:  Ci= are unknown real coefficient  
             Bi= unknown real coefficient and B-Spline function 
 
By equating y(x) with the value of B-Spline general function i.e. 
y(x)=S(x), Eq (5) is obtained. 
 

(5) �!�# = : 23,'!�#<3
=
3>6  

 
As mentioned before, Bi(x) is B-Spline base function in Eq (5). 
Since buckling general equation is fourth order, base functions 
with fifth degree should be used. 
 
By substituting the values of fifth degree B-Spline functions 
presented in Eq (3) in main equation of B-Spline, Eq (6a) is 
obtained. Sequential derivation from this equation leads to Eqs. 
(6b) to (6e): 
 

(6a)  �!�# = <525!�# + ?
2
!�# + <�2�!�# + ⋯ 

(6b) �!5#!�# = <525!5#!�# + <
2
!5#!�# + <�2�!5#!�# + ⋯ 
(6c) �!
#!�# = <525!
#!�# + <
2
!
#!�# + <�2�!
#!�# + ⋯ 
(6d) �!�#!�# = <525!�#!�# + <
2
!�#!�# + <�2�!�#!�# + ⋯ 
(6e) �!�#!�# = <525!�#!�# + <
2
!�#!�# + <�2�!�#!�# + ⋯ 

 23=!�# Coefficients and their derivations in above equations are 
calculated and presented in Table 1. 
 
 

Table 1.Values of Bi, 23=!�# 
 �3  �3A5 �3A
 �3A� �3A� �3A' �3AB 

BD 0 1 26 66 26 1 0 

BD!5#
 

0 5 ℎ�  
500 ℎ�  0 −502 ℎ�  

−5 ℎ�  0 

BD!
#
 

0 20 ℎ
�  
40 ℎ
�  

−120 ℎ
�  
40 ℎ
�  

20 ℎ
�  0 

BD!�#
 

0 60 ℎ��  
−120 ℎ��  0 120 ℎ��  

−60 ℎ��  0 

BD!�#
 

0 120 ℎ��  
−480 ℎ��  

720 ℎ��  
−480 ℎ��  

120 ℎ��  0 

 

30 



JOURNAL OF APPLIED ENGINEERING SCIENCES                                VOL. 8(21), ISSUE 2/2018 
ISSN: 2247-3769 / e-ISSN: 2284-7197  ART.NO. 238, pp. 29-34 

 
 

 
 

By substituting Eqs. (6) based on derivative degree in Eq (1), it 
is written as a series of linear unknown coefficients. To solve the 
equation over the interval, initially interval should be divided to 
a series of equal-spaced points. Each midpoint of the equation is 
obtained in terms of Ci.  
 
On the other hand, let x0, x1, ..., xnbe n+1 grid points in interval 
[a,b] so that   xi = a + ih, i= 1, 2, ..., n, x0 = a, xn= b, h = (b − a)/n. 
As a result, n equations are obtained. Each equation of Ci is linear 
and it is in the form of b1C1+b2C2+b3C3+... where bi includes real 
number and parameter P. Ci is a symbolic parameter. These 
equations are expressed as the following matrix: 
 

⎣⎢
⎢⎢
⎢⎡

.I55 I5
 .I
5 I

 .. . .
. I5!=A�#. I
!=A�#. .. . .. . .I=5 I=
 .

. . .. . .. . I=!=A�#⎦⎥
⎥⎥
⎥⎤

⎣⎢
⎢⎢
⎢⎡

?5?
...?=A�⎦⎥
⎥⎥
⎥⎤ =

⎣⎢
⎢⎢
⎢⎡
00...0⎦⎥

⎥⎥
⎥⎤
 

 
 

(7) 

 
In the previous matrix, all bij parameters contain real number and 
parameter P. For instance, b12 is the value of function B1(x) in 
control point x2. Above coefficient matrix is a non-squared 
matrix of n × (n+4) which requires four equations to be squared. 
Four equations are obtained by substituting B-Spline equation in 
the boundary conditions: 
 

 
 
(8a) 
 
 

At       � = �  
 �� : 23!
#=

3>6 !�#<3 + �M : 23!5#=
3>6 !�#<3>�I   

 
 

 
 
(8b) 

At       � = 0 
 

−�� : 23!
#=
3>6 !�#<3 + �M : 23!5#=

3>6 !�#<3>�M   
 
 

 
 
 
(8c) 

At     � = � 
 

−�� : 23!�#=
3>6 !�#<3 − 	 : 23!5#=

3>6 !�#<3  
+ �I : 23!�# = �I=

3>6  

 
At    � = 0 
 

 
(8d) �� : 23!�#=

3>6 !�#<3 + 	 : 23!5#=
3>6 !�#<3

+ �M : 23!�# = �M=
3>6  

 
By replacing four boundary conditions in the coefficient matrix, 
following squared matrix is derived: 
 

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

.b55 b5
 . .. ..b
5 b

 . . . .. .. .. . .
. b5!OA�#. b
!OA�#. .. . .. . .. PQRP!QSR#RP!QSR#RP!QSR#RP!QSR#R

. PQTP!QSR#RP!QSR#RP!QSR#RP!QSR#R

.. .
. . .. . .. . . PQ!QSU#P!QSR#!QSU#P!QST#!QSU#P!QSV#!QSU#P!QSU#!QSU#⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎤

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡ c5c
......cOA�⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0....MYMPVYVP ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤
 

 

 
 
 
 
 
 
(9) 

To calculate buckling critical load, determinant of coefficient 
matrix should be equal to zero. Thus, the matrix should be 
squared. In coefficient matrix, coefficients of all entries of bii are 
known and the only unknown parameter is Pcr. Finally, the 
amount of buckling critical load is calculated by equaling 
determinant of coefficient matrix to zero. With the proposed 
method, buckling critical load of the pile with various boundary 
conditions is simply calculated by using B-Spline method. 
 
 

3. CALCULATION OF BUCKLING LOAD WITH 
LATERAL SPRING IN FE MODEL 

 
Finite element software was used in this research program for 
analyzing the pile. Buckling critical load of a concrete pile was 
calculated. Figure 2 shows modeling of the concrete pile in the 
FE software. Meshing, modeling and deformation of the pile with 
lateral springs based on the beam on elastic base are proposed in 
Figure 2. It is worth noting that deformations and calculations 
were investigated in the first mode. In Figure 3 length of pile is 
10 m, concrete modulus of elasticity was 20 GPa and buckling 
behavior of the pile was investigated.  
 
Soil and pile behavior was in elastic range. Moreover, soil was 
modeled with lateral springs of the beam on elastic base. Linear 
perturbation, buckling analyses and subspace solver were used 
for modeling in the software. It is worth noting that modeling of 
the pile in the software was three dimensional. 

 

          
 

Figure 2. Modeling of pile in the FE software (a) based on the 
beam on elastic base (b) Pile's buckling deformation model 

under axial load in finite element software 
 

a 
b 
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4.  COMPARING THE RESULTS AND VERIFICATION 
OF B-SPLINE METHOD 

 
In this section, buckling critical load of the pile under the effect 
of uniform lateral spring with B-Spline was compared with FE 
method and exact solution of Aristizabe-Ochoa (2013). Results 
of non-dimensional buckling critical load versus λ are presented 
in Tables 2. Table 2 represents the results of both ends pinned 
and both ends fixed conditions. λ is non-dimensional stiffness 
parameter as defined in Eq (10): 
 

[ = \�]�4
��  

 
(10) 

Where   EI = pile stiffness 
              Ks = horizontal reaction coefficient 
              L = length of pile 

 
Moreover, Euler's equation as defined in Eq (11) was used to 
make the critical load non-dimensional. 

 	̂ = _
�� `
�  (11) 

 
Results were compared with Table 3 proposed by Aristizabe-
Ochoa in (2013). Results showed that the values calculated by B-
Spline, exact solution and FE Software did not have significant 
difference. Therefore, proposed method of B-Spline could be 
used in the desired analyses.   
After verification of B-Spline method in section 4, pile's buckling 
equation with non-uniform and nonlinear horizontal reaction 
coefficient is investigated in section 5.  
 
 

5. PARAMETRIC STUDY OF PILE'S BUCKLING 
WITH NOLINEAR HORIZONTAL REACTION 

COEFFICIENT 

 
Any numerial analysis in engineering should be practical, 
applicable and usable in reality. Analysis of buckling equation is 
used for stability of slender columns in civil engineering. It is 
utilized for analysis of pile's buckling under the structure in 
geotechnical engineering. For more accurate use of analyses on 
the basis of beam on elastic base and close to reality, horizontal 
reaction coefficient should be modeled nonlinear or non-uniform 
along the column or pile (Terzaghi 1955; Davisson and Perkash 
1963). Horizontal reaction coefficient is representative of 
materials characteristics around the column. In the case of 
buckling in the piles, it models horizontal reaction coefficient of 
the soil around the pile. Figure 3 shows variation of horizontal 
reaction coefficient in the forms of uniform, linear and nonlinear 
along the pile. 
 
B-Spline method can modeled nonlinear horizontal reaction 
coefficient along the pile. For this purpose, the parameter k of 
horizontal reaction coefficient is defined as Eq (12) (Terzaghi, 
1955): 
 
 
 

(12) �a = bacd 
 
where:  mh = horizontal reaction coefficient at the bottom of the 
             pile as  shown in Figure 3.  

             Z = depth of the pile  
              w=a coefficient to define uniform, linear and parabolic 

horizontal reaction coefficient. 
 
Different values have been suggested for empirical coefficient w 
by researchers. The value of w have been proposed 0.1 to 5 for 
clay and silt soils, 1 for normal consolidated clay and granular 
soil and 1.5 and even up to 2 for sand soil and a type of  over 
consolidated clay. 
 
Table 2. Comparison of non-dimensional buckling critical load 
versus λ in, (a) both ends pinned; (b) both ends fixed situations 

 

 

 

 ef/eh  A  (Pin-Pin) 

FE 
Softwere 

B-spline 
 

Aristizabe-Ochoa 
(2013) i = \jklm

hn  

1.2561 1.2647 1.2566 5 
2.0212 2.03643 2.0266 10 
3.3011 3.32159 3.3098 15 
4.9984 5.12080 5.0266 20 
8.0583 8.22790 8.10639 40 
10.3964 10.5408 10.41624 50 
13.0814 13.36774 13.10639 60 
16.1185 16.88197 16.30025 80 
20.1378 20.99092 20.40665 100 
40.1258 43.45451 41.42557 200 
96.1854 107.1254 101.37746 500 

 ef/eh  B  (Fix-Fix) 

FE 
Softwere 

B-spline 
 

Aristizabe-Ochoa 
(2013) 

 i = \jklm
hn  

4.19125 4.2341 4.19205 5 
4.7327 4.8089 4.76276 10 
5.5827 5.74733 5.69423 15 
6.8217 7.01408 6.95763 20 
11.2257 11.66296 11.47225 40 
13.1869 13.47207 13.26391 50 
15.2268 15.61344 15.38058 60 
19.8945 20.59776 20.19018 80 
23.0148 24.24701 23.68742 100 
42.7158 45.46422 44.04601 200 
101.198 111.84984 105.13392 500 
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Figure 3. Uniform, linear and nonlinear variations of horizontal 
reaction coefficient 

 
 
Non-dimensional buckling critical loads with uniform, linear or 
nonlinear horizontal reaction coefficient in both ends pinned and 
both ends fixed situations are presented in Tables 3. Results 
showed that the type of horizontal reaction coefficient had a 
significant effect on buckling critical load. Use of uniform 
horizontal reaction coefficient in analyses resulted in calculating 
critical load more than reality. Indeed, horizontal reaction 
coefficient is non-uniform or parabolic. For example, in the case 
of both ends pinned with λ=50, buckling critical load with 
nonlinear horizontal reaction coefficient (w=1.5) was about half 
of the one with uniform horizontal reaction coefficient (w=0). 
  
The percent of difference in buckling critical load with nonlinear 
and non-uniform horizontal reaction coefficient than uniform one 
along the pile with two ends fixed and two ends pinned are 
presented in Figures 4 and 5, respectively. 
 
Table 3. Buckling critical loads with various horizontal reaction 

coefficients in (a) both ends pinned; (b) both ends fixed 
situations 

 

 

 
 

 

 
Figure 4. Percent of difference in buckling critical load with 

nonlinear and non-uniform horizontal reaction coefficient than 
uniform one along the pile with two ends fixed 

 

 
 

Figure 5. Percent of difference in buckling critical load with 
nonlinear and non-uniform horizontal reaction coefficient than 

uniform one along the pile with two ends Pinned 
 
It is worth noting that maximum displacement of the pile occurs 
in the first mode. The range for changes of first mode to second 
mode in both ends fixed situation occurs in λ equals to 30 to 40 

  
 

 ef/eh 

 
 A  (Pin-Pin) 

 
W=1.5 

 
W=1 

 
W=0.5 

 
W=0 
 i � \jklmhn  

1.0990 
 

1.1321 
 

1.1820 
 

1.2647 5 

1.3820 1.5146 1.7154 2.0364 10 
1.8430 2.1406 2.5961 3.3215 15 
2.4552 2.9732 3.7789 5.1208 20 
4.6395 5.4557 6.5757 8.2279 40 

5.3187 6.3746 7.9847 10.5408 50 

6.0080 7.3769 9.5709 13.3677 60 

7.4369 9.4377 12.5823 16.8819 80 

8.8119 11.3314 15.2207 20.9909 100 

14.6768 19.8372 28.5074 43.4545 200 
29.0052 42.0943 66.0712 115.2986 500 

  ef/eh 

 
 
 

B  (Fix-Fix) 

 
W=1.5 

 
W=1 

 
W=0.5 

 
W=0 i � \jklmhn  

4.1131 
 

4.1394 
 

4.1780 
 

4.2341 5 
4.3233 

 
4.4279 

 
4.5813 

 
4.8089 10 

4.6685 
 

4.9018 
 

5.2433 
 

5.7473 15 
5.1409 

 
5.5492 

 
6.14577 

 
7.01408 20 

7.8633 
 

9.0829 
 

10.4264 
 

11.6629 40 
9.1076 

 
10.3407 

 
11.7359 

 
13.4720 50 

10.0704 
 

11.4464 
 

13.2241 
 

15.6134 60 
11.8986 

 
13.9076 

 
16.7425 

 
20.5977 80 

13.8585 
 

16.6097 
 

20.3383 
 

24.2470 100 
22.9750 

 
28.7259 

 
36.6505 

 
45.4642 200 

45.7008 
 

61.3017 
 

84.6319 
 

111.8498 500 
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and in both ends pinned situation occurs in λ equals to 20 (West 
et al. 1997; Heelis and West 1999; Heelis et al. 2004). According 
to Figure 4, if the horizontal reaction coefficient of the soil is 
considered uniform, the buckling critical load in the first mode is 
12%, 35% and 55% higher than the situation with w = 0.5, w = 1 
and w=1.5 in both ends fixed condition, respectively. Based on 
Figure 5, if the horizontal reaction coefficient of the soil is 
considered uniform, the buckling critical load in the first mode is 
35%, 70% and 105% higher than the situation with w = 0.5, w = 
1 and w=1.5 in both ends pinned condition, respectively. In the 
case of two ends pinned, this difference is much more than the 
one in two ends fixed pile. Because the value of pile's 
displacement in two ends pinned situation is higher. As 
mentioned before, horizontal reaction coefficient is non-uniform 
and nonlinear in reality. Calculation of buckling critical load with 
uniform horizontal reaction coefficient based on the suggestion 
of beams on elastic base leads to much more value than reality 
which causes serious risks in predicting buckling behavior of the 
pile. 
 
 

6. CONCLUSIONS 
 

In this research, B-Spline method was used for analyzing pile's 
buckling equations based on the beam on elastic base. This 
method was verified with finite element method and exact 
solution. Following results can be drawn: 
-Results showed that B-Spline method is a leading numerical 
method in the analysis of pile's buckling differential equations 
which needs lower volume than other numerical methods such as 
finite element method. 
 - In order to get more accurate pile's buckling critical load in the 
case of beam on elastic base, horizontal reaction coefficient 
should be assumed non-uniform and nonlinear. 
 - By increasing the value of w, the critical buckling load 
decreased. So, the equations proposed by most of the researchers 
based on uniform horizontal reaction coefficient with the 
assumption of the beam on elastic base are not precise. This 
difference increases with increasing the amount of λ. 
- In calculating buckling critical load by using equations of the 
beams on elastic base for sand soils and over consolidated clay in 
the first mode in two ends pinned situation, this value can be 
estimated about two times of the real value. 
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