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ABSTRACT:

Although various analytical and numerical methodgehbeen proposed by researchers to solve equatigingse of numerical tools
with low volume calculations and high accuracyeast of other numerical methods with high volumewations is inevitable in the
analysis of engineering equations. In this papeBpBne spectral method was used to study bucldiopgations of the piles. Results
were compared with the calculated amounts of tlaetesolution and finite element method. Uniformihontal reaction coefficient
has been used in most of proposed methods for znglypuckling of the pile on elastic base. In ryalsoil horizontal reaction
coefficient is nonlinear along the pile. So, instheésearch by using B-Spline method, buckling egunaif the pile with nonlinear
horizontal reaction coefficient of the soil waséstigated. It is worth mentioning that B-Spline heet had not been used for buckling
of the pile.

1. INTRODUCTION r
Use of simple and precise tools in calculations andherical M_@LH*
analyses of engineering equations is essentiaplBkShas been m
used in different conditions of engineering by wad researchers Do
(Andrade et al. 2010; Moghaddam et al. 2012; Sharand i
Asemi, 2014). But use of this tool for buckling aysals of piles - Tl 1er L
under the structures has not been reported yehisnresearch e N
program, B-Spline method was utilized in numergmution of = m
buckling equation of the beam on elastic base asslin Figure ]
1. Basic equation for buckling of columns under dfiect of - /'WW“H
lateral springs based on beam on elastic baseetgiii, 1960): W""”’;ﬂ G
P
dty dy Figure 1. Column or pile under vertical load in ilmean elastic
EI +P +KY=0 (1) 9 . p
axs Jaxz * Ks base condition
where:El = pile stiffness In engineering analyses based on beam on elastg barizontal
P =vertical load on pile reaction coefficient represents characteristics sofl and
k= horizontal reaction coefficient surrounding materials of pile or column. The bougda
Y =lateral displacement of pile under vertical load conditions in Eq (1) based on Figure 1 are (Ariz Ochoa,
2013):
_ d2y dy/ _ (2a)
X=1 EIT 7/ 2tk /dx—Mb
_ d?y dy/ _ (2b)
X=0 ~E1% 7/ 2+ ka /dx—Ma
d3 d (2¢c)
X=1 —EI%“Y/, 5-P y/dx+sby=Vb
(2d)

3 d
x=0 &% Y/ 13 +P y/dx+5ay=Va

where: M,, M,, = overturning moments at A and B

* Corresponding authoArash NAYERI, e-mailArash.nayeri@gmail.com
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V.,V = Shears at Aand B

In 1960, Hetenyi proposed a method for solving bingk
equation (Hetenyi 1960). This method became a Hase
analytical methods in calculation of buckling belav. By

continuing Hetenyi method, pile's buckling critié@hd for semi-
rigid joints in supports was investigated by Adatie-Ochoa
(2013). West et al. (1997) studied buckling of thike with

various support's conditions and different modet) analytical

solution of buckling equation. Then, this analyticsethod was
extended by adding friction between soil and milthe equations
and partially embedded piles by other researchafes( et al,
1997; Heelis and West, 1999; Heelis et al, 200&8ndet al
(2017) presented an analytical method on the lddisodified

Vlasov Foundation Model. They reported that Poissmtio did

not have any effect on buckling critical load. dtworth noting
that soil's horizontal reaction coefficient alorge tpile was
assumed uniform in calculating buckling equatiorthdugh

many researches had been conducted on piles' bgadpacity,
but Bhattacharya (2004) researches on 15 constrpidés which
had experienced buckling failure under differerads; led to
onset of detailed investigations on buckling of piles in recent
years. These researchers believed that bucklitigatrioad in

different codes should be reinvestigated. Moreower effect of
buckling on liquefaction phenomenon under dynantdads
should be studied (Bhattacharya et al. 2004; Bhadtgehet al.
2005). In 2013, Law Chi Wai investigated bucklingiation by
using finite difference numerical method. He prambsile's
buckling equivalent length in various conditionsgt Chi Wai

2013). It is worth mentioning that in all of theaex solutions and
numerical methods for buckling equation on thebatbeam on
elastic base, the amount of horizontal reactiorfficoent was

supposed uniform or with linear variations along filile. But the
actual value for horizontal reaction coefficienbrad the pile is
non-uniform and nonlinear (Terzaghi 1955; Davissand

Perkash, 1963). One of the main objectives ofgsgarch was
extending these methods by using B-Spline numeriethod
with nonlinear reaction coefficient along the pileshould be
noted that the amount of horizontal reaction coggfit along the
pile should be modelled nonlinear in applied arialysf

engineering.

2. B-SPLINE METHOD
B-Spline method is a spectral method for analyziggagions.

Since buckling equation is fourth order, fifth degrB-Spline
base equations should be used for analyzing. Vaudegrees of

B-Spline equations can be found in (Hikmet Caglar an

NazanCaglar 2008; De Boor 1978; Piegl and Tiller 2995
Fifth degree B-Spline base equations are presenteds. (3),
with equally-spaced knots of a partitiana= x0< x1<... <xn =

b on [a,b]. Let §n] be the space of continuously-differentiable,

piecewise, fifth-degree polynomials an that is, gn] is the
space of fifth-degree Splines anConsider the B-Splines basis
in Sx]. The fifth-degree B-Splines are defined as E@. (
(Hikmet Caglar and Nazan Caglar 2008):

By(x) =
1

— 0«&x<h
12005 «x

(x®)

3005 (—5x5 + 30hx* — 60R?x3 +
60h3x? — 30h*x + 6h5) h <« x<2h

1
——— (10x5 — 120hx* + 540h%x3 —

120h°
1140h3x2 + 1170h*x — 474h5) 2h & x < 3h

©)

1
m(—loxs + 180hx* — 1260h%x3 +

4260h%x? — 6930h*x + 4386h%) 3h K x < 4h

1
5 _ 4 2.3 _
12055 (5x 120hx* + 1140h
5340h3x2 + 12270h%*x — 10974—h5) 4h K x < 5h

1
— (—x5 4_ 2,3
12055 (—x> + 30hx* — 360h°x"> +
2160h3x% — 6480h*x + 7776h%) S5h <K x <6

Bl‘_l(.x) = Bo(x - (l - l)h , 1=23,..

General equation of B-Spline line which is the appmate
solution of the equation is defined as Eq (4):

S0 = ). B @

where: Ci= are unknown real coefficient
Bi= unknown real coefficient and B-Spline function

By equating y(x) with the value of B-Spline genetaiction i.e.
y(X)=S(x), Eq (5) is obtained.

Yo=Y Bis(C) R

As mentioned before,if) is B-Spline base function in Eq (5).
Since buckling general equation is fourth ordesebunctions
with fifth degree should be used.

By substituting the values of fifth degree B-Splifumctions
presented in Eq (3) in main equation of B-Spling, (Ba) is
obtained. Sequential derivation from this equateads to Egs.
(6b) to (6e):

y(x) = C;B1(x) + c;B3(x) + C3B3(x) + - (6a)
yD @) = BP @) + 6B (x) + €GBV (x) + - (6D)
Y@ () = ;BP () + ;B (x) + C:BP (x) + - (6C)
g YP0 = B () + 6B (0) + ¢,BP (x) + - (69)
YD) = ;B ) + 6B (x) + CBP (x) + - (6€)

B['(x) Coefficients and their derivations in above equetiare
calculated and presented in Table 1.

Table 1.Values of BB/ (x)

Xi  Xi+1 Xi+2 Xi+3 Xit4 Xi+5  Xi+e
B; 0 1 26 66 26 1 0
Bi(l) 0 S/h 500/h 0 —502/h —S/h 0
Bi(Z) 0 ZO/h2 40/h2 —120/h2 40/h2 20/h2 0
Bi(3) 0 60/h3 _120/h3 0 120/h3 —60/h3 0
Bi(4) 0 120/h4 —480/h4 720/h4 —480/h4 120/h4 0
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By substituting Egs. (6) based on derivative degmneeq (1), it
is written as a series of linear unknown coeffitseffo solve the
equation over the interval, initially interval sHdie divided to
a series of equal-spaced points. Each midpoiriegtuation is
obtained in terms of iC

On the other hand, letxxs, ..., xbe n+1 grid points in interval
[a,b] sothat dx=a+ih,i=1, 2, .., noea, »=b, h=(b-a)n.
As a result, n equations are obtained. Each equaliGiis linear
and it is in the form of #£1+b2C2+bsCst... where bincludes real
number and parameter Pi i€ a symbolic parameter. These
equations are expressed as the following matrix:

bll b12 - b1(n+4) ][ CZ] [0]
b21 b22 i b2(n+4) | (7)

[
s
B m H

In the previous matrix, alljpparameters contain real number and
parameter P. For instanceplis the value of function $x) in
control point %. Above coefficient matrix is a non-squared
matrix of n x (n+4) which requires four equationse squared.
Four equations are obtained by substituting B-®pdiquation in
the boundary conditions:

At x =1
n n
Elz B® (x)C; + Kaz BV cocmy &Y
i=0 i=0
At x=0
(8b)

n 2 n 1
—EI E B® (x)C; + Ka g B™ (x)C;-Ma
i=0 i=0

At x=1
n n
—Elz B® C-—PZ B® (x)¢;
i=0 ° 2 . i=0 2 (8c)
+sz B,(x) = Vb
i=0
At x=0
n n
EIZ B® C-+PZ BY o,
R AP N
+Saz B;(x) =Va
i=0

By replacing four boundary conditions in the cagéfnt matrix,
following squared matrix is derived:

by by © e n L by [ 1]
C

b21 b22 e e bZ(n+4) 2
+ bpi + bna . I ) .
bm+nr  bm+nt - - b(n+1)(m+4) ) 9)
bm+nt  bm+nt b(n+2)(n+a)
bm+nt  bm+nt b(n+3)(n+4) c
Lbm+n1  bm+n bn+a)m+ad —DT4T

I

M,

M,

Va

LV},

To calculate buckling critical load, determinant adfefficient
matrix should be equal to zero. Thus, the matrinusth be
squared. In coefficient matrix, coefficients of etfitries of bii are
known and the only unknown parameter is Pcr. Rmnahe
amount of buckling critical load is calculated bgualing
determinant of coefficient matrix to zero. With tpeoposed
method, buckling critical load of the pile with i@us boundary
conditions is simply calculated by using B-Splinethod.

3. CALCULATION OF BUCKLING LOAD WITH
LATERAL SPRING IN FE MODEL

Finite element software was used in this researogram for

analyzing the pile. Buckling critical load of a coet pile was
calculated. Figure 2 shows modeling of the concpdiein the

FE software. Meshing, modeling and deformatiorhefgile with

lateral springs based on the beam on elastic bagar@posed in
Figure 2. It is worth noting that deformations asadculations
were investigated in the first mode. In Figure i3glh of pile is
10 m, concrete modulus of elasticity was 20 GPalarakling

behavior of the pile was investigated.

Soil and pile behavior was in elastic range. Moezpgoil was
modeled with lateral springs of the beam on eldstige. Linear
perturbation, buckling analyses and subspace soleee used
for modeling in the software. It is worth notingattmodeling of
the pile in the software was three dimensional.

Figure 2. Modeling of pile in the FE software (asbd on the
beam on elastic base (b) Pile's buckling deformatiodel
under axial load in finite element software
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4. COMPARING THE RESULTS AND VERIFICATION
OF B-SPLINE METHOD

In this section, buckling critical load of the pileder the effect
of uniform lateral spring with B-Spline was compangith FE
method and exact solution of Aristizabe-Ochoa (20R&sults
of non-dimensional buckling critical load versuare presented
in Tables 2. Table 2 represents the results of batts pinned
and both ends fixed conditionk.is non-dimensional stiffness
parameter as defined in Eq (10):

Kt
El

(10)

2_:

Where EI = pile stiffness
Ks = horizontal reaction coefficient
L = length of pile

Moreover, Euler's equation as defined in Eq (113 waed to
make the critical load non-dimensional.

2
p=T EI/L2 (11)

Results were compared with Table 3 proposed by i2aise-
Ochoa in (2013). Results showed that the valuesileaérl by B-
Spline, exact solution and FE Software did not hsigeificant
difference. Therefore, proposed method of B-Splineld be
used in the desired analyses.

After verification of B-Spline method in sectionglie's buckling
equation with non-uniform and nonlinear horizontahction
coefficient is investigated in section 5.

5. PARAMETRIC STUDY OF PILE'S BUCKLING
WITH NOLINEAR HORIZONTAL REACTION
COEFFICIENT

Any numerial analysis in engineering should be fticat

applicable and usable in reality. Analysis of birglequation is
used for stability of slender columns in civil enggring. It is
utilized for analysis of pile's buckling under t&ucture in
geotechnical engineering. For more accurate usmalyses on
the basis of beam on elastic base and close tityrdadrizontal
reaction coefficient should be modeled nonlineanan-uniform
along the column or pile (Terzaghi 1955; Davissod Rerkash
1963). Horizontal reaction coefficient is represgine of
materials characteristics around the column. In ¢hse of
buckling in the piles, it models horizontal reanticoefficient of
the soil around the pile. Figure 3 shows variatiéorizontal
reaction coefficient in the forms of uniform, limeend nonlinear
along the pile.

B-Spline method can modeled nonlinear horizontaktiea
coefficient along the pile. For this purpose, tlagameter k of
horizontal reaction coefficient is defined as EQ)({Terzaghi,
1955):

Kh = thW (12)

where: m» = horizontal reaction coefficient at the bottontlod
pile as shown in Figure 3.

Z = depth of the pile
w=a coefficient to define uniform, linear and paribo
horizontal reaction coefficient.

Different values have been suggested for empicoafficient w
by researchers. The value of w have been propogetb & for
clay and silt soils, 1 for normal consolidated ctayd granular
soil and 1.5 and even up to 2 for sand soil angba bf over
consolidated clay.

Table 2. Comparison of non-dimensional bucklingaaltload
versush in, (a) both ends pinned; (b) both ends fixedagituins

A (Pin-Pin) P¢/Pg
Aristizabe-Ochoa  B-spline FE
1= \/H (2013) Softwere
EI
5 1.2566 1.2647 1.2561
10 2.0266 2.03643 2.0212
15 3.3098 3.32159 3.3011
20 5.0266 5.12080 4.9984
40 8.10639 8.22790 8.0583
50 10.41624 10.5408 10.3964
60 13.10639 13.36774 13.0814
80 16.30025 16.88197 16.1185
100 20.40665 20.99092 20.1378
200 41.42557 43.45451 40.1258
500 101.37746 107.1254 96.1854
B (Fix-Fix) Pc/Pg
Aristizabe-Ochoa B-spline FE
K I (2013) Softwere
1= s
El
5 4.19205 4.2341 4.19125
10 4.76276 4.8089 4.7327
15 5.69423 5.74733 5.5827
20 6.95763 7.01408 6.8217
40 11.47225 11.66296 11.2257
50 13.26391 13.47207 13.1869
60 15.38058 15.61344 15.2268
80 20.19018 20.59776 19.8945
100 23.68742 24.24701 23.0148
200 44.04601 45.46422 42.7158
500 105.13392 111.84984  101.198
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\ \\ y
Pile \
\,‘ \
Ky K, \\ K, “'\
\
\

A
X h=thw

Figure 3. Uniform, linear and nonlinear variatiaiorizontal
reaction coefficient

Non-dimensional buckling critical loads with unifoy linear or
nonlinear horizontal reaction coefficient in botids pinned and
both ends fixed situations are presented in TaBleResults
showed that the type of horizontal reaction cogffit had a
significant effect on buckling critical load. Usd aniform
horizontal reaction coefficient in analyses resultecalculating
critical load more than reality. Indeed, horizontalaction
coefficient is non-uniform or parabolic. For examgh the case
of both ends pinned with=50, buckling critical load with
nonlinear horizontal reaction coefficient (w=1.5sabout half
of the one with uniform horizontal reaction coafiat (w=0).

The percent of difference in buckling critical loaith nonlinear
and non-uniform horizontal reaction coefficientrthmiform one
along the pile with two ends fixed and two endsnpih are
presented in Figures 4 and 5, respectively.

Table 3. Buckling critical loads with various horni#tal reaction
coefficients in (a) both ends pinned; (b) both efixi=d

situations
A (Pin-Pin) P,/P;
1= K1t W=0 W=0.5 Ww=1 W=15
EI
5 1.2647 1.1820 1.1321 1.0990
10 2.0364 1.7154 15146  1.3820
15 3.3215 2.5961 21406  1.8430
20 5.1208 3.7789 2.9732  2.4552
40 8.2279 6.5757 54557  4.6395
50 10.5408 7.9847 6.3746  5.3187
60 13.3677 9.5709 7.3769  6.0080
80 16.8819 12.5823  0.4377  7.4369
100 20.9909 152207  11.3314  8.8119
200 434545 285074  19.8372 14.6768
500 115.2986  66.0712  42.0943  29.0052

B (Fix-Fix)
= P¢/Pg
1= K, l* W=0 W=0.5 w=1 W=1.5
EIl
5 42341 4.1780 4.1394 4.1131
10 4.8089 4.5813 4.4279 4.3233
15 5.7473 5.2433 4.9018 4.6685
20 7.01408  6.14577  5.5492 5.1409
40 116629  10.4264  9.0829 7.8633
50 13.4720  11.7359  10.3407  9.1076
60 156134 13.2241  11.4464  10.0704
0 205977 167425  13.9076  11.8986
100 242470  20.3383  16.6097  13.8585
200 454642  36.6505  28.7259  22.9750
500 111.8498  84.6319  61.3017  45.7008
80 +
Fix-Fix
70 4 ~&W-05
9
2 60 4
£
g 50
5
S 40 -
3
E 30 4
£ 20
a
10 -
0

0 20 40 60 80 100

A
Figure 4. Percent of difference in buckling critiead with
nonlinear and non-uniform horizontal reaction cio@ht than
uniform one along the pile with two ends fixed

+R+W=0.5  Ppin-Pin

Difference Percengate

Figure 5. Percent of difference in buckling critiead with
nonlinear and non-uniform horizontal reaction cioéht than
uniform one along the pile with two ends Pinned

It is worth noting that maximum displacement of file occurs

in the first mode. The range for changes of firsdmto second
mode in both ends fixed situation occurs.iequals to 30 to 40
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and in both ends pinned situation occuré gquals to 20 (West
et al. 1997; Heelis and West 1999; Heelis et @0420According
to Figure 4, if the horizontal reaction coefficiesft the soil is
considered uniform, the buckling critical load liretfirst mode is
12%, 35% and 55% higher than the situation with &5 w =1
and w=1.5 in both ends fixed condition, respectivBlased on
Figure 5, if the horizontal reaction coefficient thfe soil is
considered uniform, the buckling critical load liretfirst mode is
35%, 70% and 105% higher than the situation with &5, w =
1 and w=1.5 in both ends pinned condition, respelti In the
case of two ends pinned, this difference is muchentiban the
one in two ends fixed pile. Because the value of'pil
displacement in two ends pinned situation is highas
mentioned before, horizontal reaction coefficiesnhon-uniform
and nonlinear in reality. Calculation of bucklingtical load with
uniform horizontal reaction coefficient based om #uggestion
of beams on elastic base leads to much more vahrereality
which causes serious risks in predicting buckliebawvior of the
pile.

6. CONCLUSIONS

In this research, B-Spline method was used for aivadypile's

buckling equations based on the beam on elastie. bHsis

method was verified with finite element method aexhct

solution. Following results can be drawn:

-Results showed that B-Spline method is a leadingerical

method in the analysis of pile's buckling diffeiehequations
which needs lower volume than other numerical nadtsuch as
finite element method.

- In order to get more accurate pile's bucklingaal load in the

case of beam on elastic base, horizontal reactamfficient

should be assumed non-uniform and nonlinear.

- By increasing the value of w, the critical buokliload

decreased. So, the equations proposed by most oésearchers
based on uniform horizontal reaction coefficientthwithe

assumption of the beam on elastic base are notsprethis

difference increases with increasing the amouixt of

- In calculating buckling critical load by usinglegjions of the
beams on elastic base for sand soils and over lidatsal clay in

the first mode in two ends pinned situation, thédue can be
estimated about two times of the real value.
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