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ABSTRACT: 

 

Present contribution intends to emphasize the contribution of geometric non-linearity to the stiffness state of semi-rigid multi –storey 

steel structures. Though semi-rigidity of beam – column connections involves a non- linearity at constitutive bending moment- 

relative rotation  level, the geometric non- linearity associated to deformed conFigure uration at element level is less referred to. The 

main objective of the study is to express the stiffness state of geometric non-linear elements semi-rigidly connected at its ends. 

Stiffness state is, in its term, expressed by element level stiffness matrix considering the six degrees of freedom of the planar 

element. Regarding the reference system, both local and global systems are employed allowing a simple and direct transition from 

element level vectorial relations to their structural level forms. The three fundamental vectorial relations (static equilibrium, 

kinematic compatibility, material constitutivity) emphasize that the principle of virtual work holds in the case of semi-rigidly 

connected skeletal structures as well. 

 

 

1. INTRODUCTION 

Connectivity of structural elements has been, for a long time, an 

important topic in modelling skeletal structures aiming at their 

analysis. Semi-rigid connectivity has covered a long way from 

its starting status - as connection imperfection to its current 

status - intermediate connectivity between pinned and rigid 

connections. Regarding the semi-rigid of steel skeletal 

structures, it has been addressed, both experimentally and 

analytically (King et al.,1993), (Kishi et al., 1993), (Kishi et al., 

1993), (Parfitt et al., 1976).  Several mechanical models of 

beam- to- column connections have been proposed in order to 

allow a proper and realistic insertion in associated soft products 

(Kishi et al., 1993), (Bjorhovde et al.,1990), (Jones et al.,1983). 

 

Laboratory results made up an extensive and documented basis 

for several satisfactory analytical models relating, mainly, 

bending moment to relative rotation (Jones et al.,1983), 

(Stewart et al. 1947), (Montforton et al., 1963). Both, 

mechanical and analytical models imply monolithical and 

cyclic behaviour and connections and structural levels. All 

these aspects allowed a large and various set of structural 

analyses and their static and kinematic results (Romstad et al., 

1970), (Frye et al., 1975), (Moldovan, 1997), (Moldovan, 

2005), (Lui et al., 1987). Nevertheless, a certain level of 

discrepancy may be detected in what regards the gradual 

transition of semi-rigidity to either one of the two more 

traditional pinned / rigid connections. Element level stiffness 

matrix, largely used in structural analyses, may be one factor 

that paves the way from pinned to rigid connections via semi-

rigidity to fulfill such a role, stiffness matrix should take into 

account three sources of elasticity of element level: geometric 

non- linearity, post elastic (plastic) behaviour and semi-rigid 

connections. Present contribution addresses to geometric non-

linearity and semi-rigidity at element level. Also, an important 

practical aspect of connection zone- its finite dimensions- has 

been taken into account. A very general stiffness matrix has 

been obtained for geometric non- linear semi-rigidly connected 

element into finite dimensions zone. The matrix is, further, 

analysed and computed by gradually neglecting finite 

dimensions of connecting zone, geometric non-linearity and 

semi-rigid connectivity at element leading in this way, to well 

known forms of stiffness matrices in the traditional cases of 

pinned-pinned, rigid-rigid and pinned-rigid  elements. 

  

 

2. DEFORMED SEMI-RIGIDLY CONNECTED 

ELEMENT 

In work follows, the vectorial fundamental relations (static 

equilibrium, kinematic compatibility and material 

constitutivity) will be derived independently of each other 

allowing , consequently, to emphasize the principle of virtual 

work- in its elementary form- in the case of  geometric non 

linear semi-rigidly connected elements. 

 

2.1 Fundamental vectors 

Mechanical state associated to deformed semi-rigidly connected 

elements is expressed via the set of kinematic parameters 

(Figure 1) and static parameters (Figure 2) collected, in their 

term, in the following vectors: 
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Figure 1. Kinematic parameters 

 
 

Figure 2. Static parameters 

 

- Vector q of the six degrees of freedom: 

 

qT = [ q1  q2  q3  q4  q5  q6  ]         

 

- Vector x of element end deformations: 

 

xT = [ θ A   θ B     x3 ]  

 

- Vector Q of nodal forces: 

 

QT = [ Q1  Q2  Q3  Q4  Q5  Q6 ]  

 

-Vector Xe 
 of  the six  stress resultants: 

 

Xe = [MA  MB  N ] 

 

Vectorial association of Q and q and X and x, respectively can 

be straight forwardly assessed. 

 

2.2 Static equilibrium  

Equilibrium of nodal forces Q i acting on node i, Q j acting on 

node j and element-end stress resultants X of deformed state  

(Figure   2) read from the three in- plane equilibrium equations 

of the element: 
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Element equilibrium leads to the selection of the three 

independent stress resultants X out of the six elements Xe: 
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or, in a condensed form:  

 

                                   X CX  ·=e                                         (6) 

 

By substituting (5) into (4) it yields into: 

 

Q = D ·X e 

where: 
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Length Ld  of deformed element can be expressed (Figure 2) in 

the form: 

Ld = Lo + q6 – q3 
 

and nodal matrix A reads: 
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Equilibrium relation takes its final form: 

                                     XAQ ·
T

=
                                   

(9) 
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2.3 Kinematic compatibility 

In the following, kinematic compatibility of nodal degrees of 

freedom q and element end-deformation x takes into account 

both, the finite dimensions of connecting zones (Jennings, 

1968)  and the effect of excentricities a and b (Figure   1): 

 

3q0q0L

5q2q
arctg

3q6q0L

4qxb1qxa
arctg1q1x

−+

−
+

−+

+
+=

     

(10)

 

0L
2

)3q6q0(L
2

)2q5(q3x

3q6q0L

5q2q
arctg

3q6q0L

4qxb1qxa
arctg4q2x

−−++−=

−+

−
+

−+

+
+=

 
 

or, in matricial form: 

 

                                      )( qfx =                                       (11) 

 

2.4 Elementary form of virtual work 

The two vectorial relations (9) and (11) have been 

independently derived, that is no constitutive relation has been 

imposed on the static and kinematic parameters involved. In 

work follows, the validity of virtual work principle is proved 

based on countergradience form of the two vectorial relations. 

Not before the kinematic relation (11) will be transformed into 

its elementary form .This is achieved by computing Jacobian 

operator to vector f with respect to q: 
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Explicitly Jacobian operator reads: 
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It may be easily proved (Moldovan, 1997), (Moldovan, 2005), 

that: 

                                         

T
q AJ =                                (14) 

 

Therefore:                     
 

q Jx dqd ·=                                (15) 

 

Taking into account (14), elementary form of kinematic 

compatibility reads: 

                                         q Ax dd  ·=                                (16) 

 

Association of vectors dx with X and dq with Q emphasizes the 

countergradiency of the two vectorial fundamental relations 

(16) and (9). By simple mathematics, the two relations merge 

into the elementary form of virtual work principle: 

 

                                       xXqQ d ·
T

d
T
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It has to be underlined that the validity of this principle – in the 

case of geometric non linearity - only holds for elementary 

kinematic quantities dx and dq.  

 

As it can be easily seen, semi-rigidity of connections does not 

affect the principle. A computational effect of elementary form 

of kinematic relation (16) is the fact that structural analysis in 

these (geometric non linear and semi-rigid connection) can only 

be performed in a step- by- step manner. For the sake of 

simplicity, in what follows the static (Q and X) and kinematic 

(q and x) parameters involved in (17) will only be considered 

in their elementary quantities. Therefore, kinematic 

compatibility (16) may formerly be put into the form:  

 

                                             q  Ax  ·=                              (16 a) 

 

By linearization of static equilibrium (9) and kinematic 

compatibility the relation (16a) takes the well-known forms of 

geometric linear analysis (Jennings, 1968), (Moldovan, 1997), 

(Moldovan, 2011). 

 

2.5 Material elastic constitutivity 

Intended structural analysis requires the imposing of material 

constitutivity between and element-end stress resultants stress 

resultants X and element –end deformations x. Linear elastic 

hypothesis leads to: 

                                        x kX d ·d =                                (18) 

 

where element stiffness matrix k reads: 
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Noticing that rotational deformation x1 and x2 include relative 

rotation rAθ  and rBθ generated by semi-rigidity material 

constitutivity (18) may be expressed as:  
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Introducing initial stiffness of the two semi-rigid connections 

RiA and RiB the following constitutivity holds (Moldovan, 

1997), (Moldovan, 2005): 
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Explicit matrix form of constitutivity in the presence of semi-

rigidity reads: 
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while its condensed form: 

                                        x  kX dd ·=               (22 b) 
 

The entrance of stiffness matrix k of (22 b) reads: 
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Are above (23) expressions consistent with the well-known 

stiffness entries of rigidly connected element? 
 

Imposing  rθ  = 0 and  ∞→iR  it may be proved (Moldovan, 

1997) that, indeed, (23) lead to the simple well-known forms of  

kij entries of rigidly connected members: 
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3. ELEMENT LEVEL STIFFNESS MATRICES 

The three vectorial fundamental relations: 

 

Static equilibrium: 
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T
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Kinematic compatibility: 

                                        qAx · =                                (25) 

Elastic constitutivity: 

                                        xkX ·=                                (26) 
 

Allow the transition to force- displacement (Q-q) relationship at 

element level. By simple substitutions it reads: 
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By substitution: 

                                      AkAK ··
T
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The force displacement relation becomes: 

                                           K·qQ =                                (29) 

where K is the stiffness matrix of geometric non linear semi-

rigidly connected element. 
 

Performing  matricial computation involved in (28) one 

obtains: 
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A first step in adapting stiffness matrix K may consist of 

neglecting the finite dimension ax and bx   (Figure 1) of 

connection zone. By imposing ax and bx in (30) and (31) it leads 

to the entries of the stiffness matrix of geometric non linear 

semi-rigdly connected into non-dimension zone element: 
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Simplifying, by neglecting deformed geometry ( 0q = ), the 

stiffness matrix K of straight beam elasticaly end connected 

from non- linear analysis reads: 
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Considering the case of element with point connecting zones 

and rigid end connections, the following hold: 
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The well-known geometric non linear stiffnes matrix Ke (23) is 

recovered with the follwing entries: 
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Another simplifying direction of the general form (31) of the 

stiffness matrix beam  may be followed by maintaining the 

geometric  characteristics  of ”finite dimensions connected 

zone” and by converting elastic connections (semi-rigid) into 

ideal (rigid / pinned) ones. 

 

• The case of semi-rigidly connected element (Figure 3): 

 
 

Figure 3. The case of semi-rigidly connected element 

 

With  ∞→iAR  it results into: 
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Similarly, when ∞→iBR  (semi-rigidly –rigidly connected) 

results into: 
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• The case of rigidly- rigidly connected element (Figure 4): 
 

 
 

Figure 4. The case of rigidly- rigidly connected element 

 

Conditioning ∞→∞→ iBR ;iAR , results into: 
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• The case of semi-rigidly- pinned connected element 

(Figure 5): 
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Figure 5. The case of semi-rigidly- pinned connected element 

 

With 0iBR = , (23), it results into: 
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Similarly, when 0iAR =  (semi-rigidly- pinned connected) 

leads to: 
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• The case of Rigidly- pinned connected element (Figure 6): 

  Figure 6. The case of Rigidly- pinned connected element 

 

Substituting 0iBR ;iAR =∞→  in (23), it results into: 
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Respectively- for rigid –pinned case: 

                                      L

EA

33k

L

3EI

22k

021k12k

011k

=

=

==

=

                             (41) 

 

• The case of pinned-pinned  connected element 

0iBR 0;iAR ==  (Figure 7): 

 
Figure 7. The case of pinned-pinned  connected element 
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By replacing relations (35) - (42) in the stiffness matrix general 

form (31) one can obtain its new form. The vector q of degrees 

of  freedom therefore, the stiffness coeficients Kij are definned 

at ends  1 and 2 of the element. Consequently, in the case of a 

straight bar connected in finite dimension zones with pinned A 

and B, the coeficients Kij- bending moments- are not necessarily 

0. They become 0 if  the obtained relationship  will be 

customised by neglecting finite dimensions of the connected 

zones (when element ends  1 and 2 coincide with A 

respectively, B). 

 

Alternative forms of these particular matrixes  are to be found 

in the literature reffering to elastically ends connected with or 

without finite dimensions zones.  The case of geometric linear  

element semi rigidly connected at on or both ist ends is largely 

reported in the literature by using a single parameter to define 

the semirigidity of connections (Bjorhovde et al.), (Jones et al., 

1983), (Moldovan, 1997), (Moldovan, 2005). The stiffness 

geometric non linear matrix for semi- rigidly point connected 

ends as well as as rigidly connected and finite dimensions  

nodes may be found in (Lui et al.,1987), (Kim et al., 1996).  

 

 

4. CONCLUDING REMARKS 

 

The elastic state of structural element semi-rigidly connected 

into finite dimension zone has been studied via geometrically 

non-linear stiffness approach. The traditional six degrees of 

freedom of planar analysis have been allotted to the element.  

Presented analysis follows the pattern of independently 

conferring if the three fundamental vectorial relations: static 

equilibrium, kinematic compatibility and material 
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constitutivity. Static equilibrium and kinematic compatibility 

relations take into account finite dimensions zone, semi-rigid 

connectivity at element ends, while material constitutivity is 

associated with a simple linear elastic element. The validity of 

principle of virtual work (via virtual displacements) is 

emphasized in its elementary form. The most general forms of 

stiffness matrix is, gradually, reduced to its traditional simplest 

form associated to point rigid / pinned geometrically linear 

stiffness matrix. Obtained element level stiffness matrix allows 

the transition from element to structural level by usual 

technique of general displacement method. 
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